physics Documentation - Read the Docs

17
physics Documentation Release 0.1 bczhu October 16, 2014

Transcript of physics Documentation - Read the Docs

Page 1: physics Documentation - Read the Docs

physics DocumentationRelease 0.1

bczhu

October 16, 2014

Page 2: physics Documentation - Read the Docs
Page 3: physics Documentation - Read the Docs

Contents

1 Classical Mechanics: 31.1 Phase space Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Topological Insulator: 52.1 Berryโ€™s Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.2 Weyl Semi-metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Condensed Matter Physics: 93.1 Linear response theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Fermiโ€™s Golden rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Some topics want to explore 11

5 Indices and tables 13

i

Page 4: physics Documentation - Read the Docs

ii

Page 5: physics Documentation - Read the Docs

physics Documentation, Release 0.1

Welcome! This is the place for me to write some notes on physics. Contents will be added indefinitely.

Contents 1

Page 6: physics Documentation - Read the Docs

physics Documentation, Release 0.1

2 Contents

Page 7: physics Documentation - Read the Docs

CHAPTER 1

Classical Mechanics:

1.1 Phase space Lagrangian

The climax part of classical mechanics lies in the Lagrangian and Hamiltonian form. It starts with the extremalprinciple, the real motion of a mechanical system is the one makes the variation of the action ๐‘† vanish, i.e.,

๐›ฟ๐‘† = ๐›ฟ

โˆซ๏ธ๐ฟ(๐‘ž, ๐‘ž, ๐‘ก)๐‘‘๐‘ก = 0

When the Lagrangian is not depend on time explicitly, we get

๐›ฟ๐ฟ =๐œ•๐ฟ

๐œ•๐‘ž๐›ฟ๐‘ž +

๐œ•๐ฟ

๐œ•๐‘ž๐›ฟ๐‘ž =

๐‘‘

๐‘‘๐‘ก

(๏ธ‚๐œ•๐ฟ

๐œ•๐‘ž๐›ฟ๐‘ž

)๏ธ‚+

[๏ธ‚๐œ•๐ฟ

๐œ•๐‘žโˆ’ ๐‘‘

๐‘‘๐‘ก

๐œ•๐ฟ

๐œ•๐‘ž

]๏ธ‚๐›ฟ๐‘ž

which gives us the Lagrangian equation:

๐‘‘

๐‘‘๐‘ก

๐œ•๐ฟ

๐œ•๐‘ž=๐œ•๐ฟ

๐œ•๐‘ž

Define the canonical momentum ๐‘ = ๐œ•๐ฟ๐œ•๐‘ž , we have

๏ฟฝฬ‡๏ฟฝ =๐œ•๐ฟ

๐œ•๐‘ž

We can easily prove that energy is an integral of motion (which is a conserved quantity in motion) based on thehomogeneity of time. When the Lagrangian does not depend on time explicitly, we found that its total derivative is

๐‘‘๐ฟ

๐‘‘๐‘ก=๐œ•๐ฟ

๐œ•๐‘ž๐‘ž +

๐œ•๐ฟ

๐œ•๐‘ž๐‘ž

=๐‘‘

๐‘‘๐‘ก(๐‘๐‘ž)

We have used Lagrangian equation in the above derivation,and we have now

๐‘‘

๐‘‘๐‘ก(๐‘๐‘ž โˆ’ ๐ฟ) = 0

indicating that is conserved in the motion, which is called Hamiltonian with physical meaning of energy.

3

Page 8: physics Documentation - Read the Docs

physics Documentation, Release 0.1

4 Chapter 1. Classical Mechanics:

Page 9: physics Documentation - Read the Docs

CHAPTER 2

Topological Insulator:

2.1 Berryโ€™s Phase

2.1.1 Preliminary

2.1.2 some topics

โ€ข fiber bundle

โ€ข graphene(trival Weyl semi-metal)

โ€ข gauge/parallel transport

โ€ข symmetry

2.2 Weyl Semi-metal

2.2.1 Graphene

In the tight-binding approximation, when only nearest neighborhood couplings are considered, the Hamiltonian ofGraphene can be written as:

๏ฟฝฬ‚๏ฟฝ(๏ฟฝโƒ—๏ฟฝ) = โˆ’๐‘ก

(๏ธƒ0 โ„Ž(๏ฟฝโƒ—๏ฟฝ)

โ„Ž*(๏ฟฝโƒ—๏ฟฝ) 0

)๏ธƒ

where โ„Ž(๏ฟฝโƒ—๏ฟฝ) =โˆ‘โƒ—๏ธ€๐›ฟ๐‘–

๐‘’๐‘–๏ฟฝโƒ—๏ฟฝยท๏ฟฝโƒ—๏ฟฝ๐‘– = |โ„Ž(๏ฟฝโƒ—๏ฟฝ)|๐‘’๐‘–๐œ‘(๏ฟฝโƒ—๏ฟฝ), ๏ฟฝโƒ—๏ฟฝ๐‘– are three position vectors shown in the following diagram.

Then the Hamiltonian is:

๏ฟฝฬ‚๏ฟฝ(๏ฟฝโƒ—๏ฟฝ) = โˆ’๐‘ก|โ„Ž(๏ฟฝโƒ—๏ฟฝ)|

(๏ธƒ0 ๐‘’๐‘–๐œ‘(๏ฟฝโƒ—๏ฟฝ)

๐‘’โˆ’๐‘–๐œ‘(๏ฟฝโƒ—๏ฟฝ) 0

)๏ธƒ

with the eigen-value: ๐ธ(๏ฟฝโƒ—๏ฟฝ) = โˆ’๐‘ก|โ„Ž(๏ฟฝโƒ—๏ฟฝ)| and eigen-function (only show one of the two):

๐‘ข(๏ฟฝโƒ—๏ฟฝ) =1โˆš2

(๏ธƒ๐‘’๐‘–๐œ‘(๏ฟฝโƒ—๏ฟฝ)/2

๐‘’โˆ’๐‘–๐œ‘(๏ฟฝโƒ—๏ฟฝ)/2

)๏ธƒ๐‘’๐‘–๐œ“(๏ฟฝโƒ—๏ฟฝ)

5

Page 10: physics Documentation - Read the Docs

physics Documentation, Release 0.1

Figure 2.1: Fig. 1 Crystal Structure of Graphene: ๏ฟฝโƒ—๏ฟฝ1 and ๏ฟฝโƒ—๏ฟฝ2 are Bravais crystal vectors for a Graphene unit cell.Each primitive unit cell has two atomic sties, A and B. ๏ฟฝโƒ—๏ฟฝ๐‘– specifies B-sโ€™ position around A site. (b) Brillouin Zone forGraphene ๏ฟฝโƒ—๏ฟฝ1 and ๏ฟฝโƒ—๏ฟฝ2 are reciprocal vector basis for intrinsic Graphene. Its corners are known as K and Kโ€™ points.

We should notice that the 1/2 factor is quite important here, when ๐œ‘ changes 2๐œ‹, the wave-function does not returnto its original value, but with a minus sign. If instead, we want the wave-function to be single valued, the function:math:โ€˜psi(vec{k})โ€˜should change accordingly.

At the vicinity of Dirac point (K or Kโ€™, here we expand the things near K), we have:

๏ฟฝฬ‚๏ฟฝ(๏ฟฝโƒ—๏ฟฝ + ๏ฟฝโƒ—๏ฟฝ) =๐›ผ

(๏ธ‚0 ๐‘ž๐‘ฅ + ๐‘–๐‘ž๐‘ฆ

๐‘ž๐‘ฅ โˆ’ ๐‘–๐‘ž๐‘ฆ 0

)๏ธ‚= ๐›ผ(๐‘ž๐‘ฅ๐œŽ๐‘ฅ โˆ’ ๐‘ž๐‘ฆ๐œŽ๐‘ฆ)

=๐›ผ|๐‘ž|(๏ธ‚

0 ๐‘’๐‘–๐œ‘(๐‘ž)

๐‘’โˆ’๐‘–๐œ‘(๐‘ž) 0

)๏ธ‚We can see that the general ๐œ‘ turn out to be the angle of ๏ฟฝโƒ—๏ฟฝ with the x axis. Then, wind a circle around the Dirac pointK at some energy in the band structure shown below (Fig. 2(a)), the corresponding ๐œ‘ (Fig. 2(c))winds one round too.

Figure 2.2: Fig. 2 Dirac cone and the winding of ๏ฟฝโƒ—๏ฟฝ and ๐œ‘

So, if ๏ฟฝโƒ—๏ฟฝ circles around the Dirac point one turn, ๐œ‘ changes from 0 to 2๐œ‹, in order to keep the basic wave-function ๐‘ข(๏ฟฝโƒ—๏ฟฝ)single-valued, ๐œ“ must changes ๐œ‹.

More explicitly, we calculate the vector potential in momentum space with:

๏ฟฝโƒ—๏ฟฝ(๏ฟฝโƒ—๏ฟฝ) = ๐‘–โŸจ๐‘ขโ€ |โˆ‡๏ฟฝโƒ—๏ฟฝ๐‘ข(๏ฟฝโƒ—๏ฟฝ)โŸฉ=โˆ’โˆ‡๐œ“(๏ฟฝโƒ—๏ฟฝ)

Then we got:

๐›พ =

โˆฎ๏ธ๏ฟฝโƒ—๏ฟฝ ยท ๐‘‘๏ฟฝโƒ—๏ฟฝ = โˆ’๐œ“(๐œ‘ = 2๐œ‹) + ๐œ“(๐œ‘(0)) = โˆ’๐œ‹

We got the Berryโ€™s phase ๐›พ = ยฑ๐œ‹. It is this non-trivial phase of the equal-frequency surface that makes us call it Weylsemi-metal, and the Dirac points called Weyl nodes.

2.2.2 Three dimension: Weyl semi-metal and Chern number

In three dimension, things can goes the same way. Using a simple model with Hamiltonian:

๐ป(๏ฟฝโƒ—๏ฟฝ) = [โˆ’2๐‘ก๐‘ฅ (๐‘๐‘œ๐‘ ๐‘˜๐‘ฅ โˆ’ ๐‘๐‘œ๐‘ ๐‘˜0) +๐‘š (2 โˆ’ ๐‘๐‘œ๐‘ ๐‘˜๐‘ฆ โˆ’ ๐‘๐‘œ๐‘ ๐‘˜๐‘ง)]๐œŽ๐‘ฅ + 2๐‘ก๐‘ฆ๐‘ ๐‘–๐‘›๐‘˜๐‘ฆ๐œŽ๐‘ฆ + 2๐‘ก๐‘ง๐‘ ๐‘–๐‘›๐‘˜๐‘ง๐œŽ๐‘ง

6 Chapter 2. Topological Insulator:

Page 11: physics Documentation - Read the Docs

physics Documentation, Release 0.1

It has two Weyl nodes: ๏ฟฝโƒ—๏ฟฝ = ยฑ (๐‘˜0, 0, 0), which means if we treat ๐‘˜๐‘ฅ as a variable, only when ๐‘˜๐‘ฅ = ยฑ๐‘˜0, thecorresponding energy band ๐ธ๐‘˜๐‘ฅ(๐‘˜๐‘ฆ, ๐‘˜๐‘ง) is crossing at the point ๐‘˜๐‘ฆ, ๐‘˜๐‘ง = (0, 0).

Also, at the Weyl node (say ๐‘˜๐‘ฅ = ๐‘˜0), we have:

๐ป(๏ฟฝโƒ—๏ฟฝ + ๏ฟฝโƒ—๏ฟฝ) = ๐‘ฃ๐‘ฅ๐‘ž๐‘ฅ๐œŽ๐‘ฅ + ๐‘ฃ๐‘ฆ๐‘ž๐‘ฆ๐œŽ๐‘ฆ + ๐‘ฃ๐‘ง๐‘ž๐‘ง๐œŽ๐‘ง

with ๐‘ฃ๐‘ฅ = 2๐‘ก๐‘ฅ๐‘ ๐‘–๐‘›๐‘˜0, ๐‘ฃ๐‘ฆ = 2๐‘ก๐‘ฆ, ๐‘ฃ๐‘ง = 2๐‘ก๐‘ง . Without loss of generality, we can set ๐‘ฃ๐‘ฅ = ๐‘ฃ๐‘ฆ = ๐‘ฃ๐‘ง (the only effect is theshape changing from sphere to ellipsoid, which has no effect on the topology), then we get:

๐ป(๏ฟฝโƒ—๏ฟฝ + ๏ฟฝโƒ—๏ฟฝ) = ๐‘ฃ๏ฟฝโƒ—๏ฟฝ ยท ๏ฟฝโƒ—๏ฟฝ

with eigen-value: ๐ธ(๏ฟฝโƒ—๏ฟฝ) = ๐‘ฃ|๏ฟฝโƒ—๏ฟฝ| and eigen-function (only show one of the two):

๐‘ข(๏ฟฝโƒ—๏ฟฝ) =

(๏ธ‚๐‘ ๐‘–๐‘› ๐œƒ2

โˆ’๐‘๐‘œ๐‘  ๐œƒ2๐‘’๐‘–๐œ‘

)๏ธ‚๐‘’๐‘–๐œ’

It is easy to find that this wave-function will give us a magnetic field with a monopole at ๏ฟฝโƒ—๏ฟฝ, which will give usnon-trivial equal-frequency surface Chern number ๐ถ = 1.

2.2.3 Bulk-boundary corresponding

In order to see things clearer, also, to see the connection of Weyl semi-metal with Topological insulator, we treat ๐‘˜๐‘ฅ asa variable, the Hamiltonian is:

๐ป๐‘˜๐‘ฅ(๐‘˜๐‘ฆ, ๐‘˜๐‘ง) = โ„Žโƒ—(๏ฟฝโƒ—๏ฟฝ) ยท ๐œŽ = [โˆ’2๐‘ก๐‘ฅ (๐‘๐‘œ๐‘ ๐‘˜๐‘ฅ โˆ’ ๐‘๐‘œ๐‘ ๐‘˜0) +๐‘š (2 โˆ’ ๐‘๐‘œ๐‘ ๐‘˜๐‘ฆ โˆ’ ๐‘๐‘œ๐‘ ๐‘˜๐‘ง)]๐œŽ๐‘ฅ + 2๐‘ก๐‘ฆ๐‘ ๐‘–๐‘›๐‘˜๐‘ฆ๐œŽ๐‘ฆ + 2๐‘ก๐‘ง๐‘ ๐‘–๐‘›๐‘˜๐‘ง๐œŽ๐‘ง

For example, we set ๐‘ก๐‘ฅ = ๐‘ก๐‘ฆ = ๐‘ก๐‘ง = 1,๐‘š = 2, ๐‘˜0 = 1, three typical energy band dispersion shown below:

Figure 2.3: Fig. 3 Typical energy band dispersion with (a) ๐‘˜๐‘ฅ = 0, (b) ๐‘˜๐‘ฅ = ๐‘˜0 = 1, (c) ๐‘˜๐‘ฅ = 2.

To see if the system with ๐‘˜๐‘ฅ ฬธ= ๐‘˜0 is a topological insulator or not, we can plot the diagram of โ„Žโƒ—(๐‘˜๐‘ฆ, ๐‘˜๐‘ง), and see howmany times the resulting torus incorporates the origin point. Typical shape of the torus shows below:

Figure 2.4: Fig. 4 Typical torus of โ„Žโƒ—(๐‘˜๐‘ฆ, ๐‘˜๐‘ง) with ๐‘˜๐‘ฅ = 0.

We found that at the region ๐‘˜๐‘ฅ = [โˆ’๐‘˜0, ๐‘˜0], the origin point is in the torus once with Chern number ๐ถ = 1, outsideof that, we got ๐ถ = 1 (Noticing we have ๐‘˜๐‘ฅ = [โˆ’๐œ‹, ๐œ‹]) . This is why we plot the edge state in Fig. 4(a), but notin Fig. 4(c). In the non-trivial case, for any energy inside the gap, we get a edge state, so different ๐‘˜๐‘ฅ will give us aedge-state line, which is called Fermi-arc, especially, when we look at the case of Fermi surface with energy ๐ธ = 0,the Fermi-arc stretch from one Weyl node to another, like the picture shown below:

2.2. Weyl Semi-metal 7

Page 12: physics Documentation - Read the Docs

physics Documentation, Release 0.1

TI/images/5.jpg

Figure 2.5: Fig. 5 Fermi arc.

8 Chapter 2. Topological Insulator:

Page 13: physics Documentation - Read the Docs

CHAPTER 3

Condensed Matter Physics:

3.1 Linear response theory

3.1.1 Kubo formula

Many times, the world shows us as a black box, we can only get limited knowledge about it and the rest are filledwith our theories, in this way, theories can always changing and are never completed. we always use a probe to probea system and check its response to this probe, and naturally, we expect when the perturbation of the probe is ignorableto the system, the response should be linear to the probe, which is called linear response theory. The most importantresult of linear response theory is consummated by Kubo formula, we are now going to derive it.

Zero temperature

Let ๏ฟฝฬ‚๏ฟฝ0 be the full manybody Hamiltonian for some isolated system that we are interested in, and assume the existenceof a set of eigenkets {|๐‘›โŸฉ} that diagonalize ๏ฟฝฬ‚๏ฟฝ0 with associated eigenvalues (energies) ๐œ€๐‘›.

In addition to ๏ฟฝฬ‚๏ฟฝ0, we now turn on an external probe potential ๐‘‰ (๐‘ก), such that the total Hamiltonian ๏ฟฝฬ‚๏ฟฝ(๐‘ก) satisfies:

๏ฟฝฬ‚๏ฟฝ(๐‘ก) = ๏ฟฝฬ‚๏ฟฝ0 + ๐‘’๐œ‚๐‘ก๐‘‰ (๐‘ก)

Note: The additional factor ๐‘’๐œ‚๐‘ก means we switch on the external potential adiabatically from ๐‘กโ†’ โˆ’โˆž, weโ€™ll see laterthat it is this factor gives us the way to detour the singular points, it is an analytical continuation which is a reflectionof causality.

The Schrรถdinger equation of the system now reads:

๐‘–โ„Žฬ„๐œ•

๐œ•๐‘ก|๐œ“(๐‘ก)โŸฉ = (๏ฟฝฬ‚๏ฟฝ0 + ๐‘’๐œ‚๐‘ก๐‘‰ (๐‘ก))|๐œ“(๐‘ก)โŸฉ

Warning: us the way to detour the singular points, it is an analytical continuation which is a reflection of causality.

Important: us the way to detour the singular points, it is an analytical continuation which is a reflection of causality.

Hint: us the way to detour the singular points, it is an analytical continuation which is a reflection of causality.

9

Page 14: physics Documentation - Read the Docs

physics Documentation, Release 0.1

3.2 Fermiโ€™s Golden rule

10 Chapter 3. Condensed Matter Physics:

Page 15: physics Documentation - Read the Docs

CHAPTER 4

Some topics want to explore

โ€ข Phase-space Lagrangian

11

Page 16: physics Documentation - Read the Docs

physics Documentation, Release 0.1

12 Chapter 4. Some topics want to explore

Page 17: physics Documentation - Read the Docs

CHAPTER 5

Indices and tables

โ€ข genindex

โ€ข modindex

โ€ข search

13