PHYS-401 Astrophysics III : Stellar and galactic … de...Physicien MA2 Opt. Language English...

91
PHYS-401 Astrophysics III : Stellar and galactic dynamics Kneib Jean-Paul Richard Cursus Sem. Type Ing.-phys MA1, MA3 Opt. Mineur en Technologies spatiales H Opt. Physicien MA1, MA3 Opt. Language English Credits 4 Session Winter Semester Fall Exam Oral Workload 120h Weeks 14 Hours 4 weekly Lecture 2 weekly Exercises 2 weekly Summary The aim of this course is to acquire some knowledge on specific dynamical phenomena related to the origin, equilibrium, and evolution of star clusters, galaxies, and galaxy clusters. Content 1. Introduction: distances, sizes, masses of stellar dynamics systems such as star and galaxy clusters. 2. Potential theory. 3. The orbits of stars. 4. Equilibria of collisionless systems. 5. Stability of collisionless systems. 6. Disk dynamics. 7. Kinetic theory: relaxation processes, thermodynamics of self-gravitating systems, Fokker-Planck approximation. 8. Collisions and encounters of stellar systems Learning Prerequisites Recommended courses Bachelor in physics or mathematics and Astrophysics I and II Learning Outcomes By the end of the course, the student must be able to: • Theorize the laws of stellar dynamics Transversal skills • Access and evaluate appropriate sources of information. Teaching methods Ex cathedra and exercises supervised in classroom Assessment methods 2017-2018 COURSE BOOKLET Astrophysics III : Stellar and galactic dynamics Page 1 / 2

Transcript of PHYS-401 Astrophysics III : Stellar and galactic … de...Physicien MA2 Opt. Language English...

PHYS-401 Astrophysics III : Stellar and galactic dynamicsKneib Jean-Paul Richard

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Mineur en Technologies spatiales H Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The aim of this course is to acquire some knowledge on specific dynamical phenomena related to the origin, equilibrium,and evolution of star clusters, galaxies, and galaxy clusters.

Content

1. Introduction: distances, sizes, masses of stellar dynamics systems such as star and galaxy clusters.

2. Potential theory.

3. The orbits of stars.

4. Equilibria of collisionless systems.

5. Stability of collisionless systems.

6. Disk dynamics.

7. Kinetic theory: relaxation processes, thermodynamics of self-gravitating systems, Fokker-Planck approximation.

8. Collisions and encounters of stellar systems

Learning Prerequisites

Recommended courses

Bachelor in physics or mathematics and Astrophysics I and II

Learning Outcomes

By the end of the course, the student must be able to:

• Theorize the laws of stellar dynamics

Transversal skills

• Access and evaluate appropriate sources of information.

Teaching methods

Ex cathedra and exercises supervised in classroom

Assessment methods

2017-2018 COURSE BOOKLET

Astrophysics III : Stellar and galactic dynamics Page 1 / 2

oral exam (100%)

Resources

Ressources en bibliothèque

• Galactic dynamics / Binney

2017-2018 COURSE BOOKLET

Astrophysics III : Stellar and galactic dynamics Page 2 / 2

PHYS-402 Astrophysics IV : Observational cosmologyKneib Jean-Paul Richard

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principalthemes of cosmology, as seen from the point of view of observations.

Content

1. A brief historical perspective: a few ancient cosmologies. Olbers' paradox.

2. The three observational pillars of Big Bang cosmology dis-covered during the 20th century: (i) The universeexpansion; (ii) The cosmic microwave background at 3K; (iii) The abundance of light elements.

3. The metric of the universe. The spectral redshifts.

4. Cosmological models and the evolution of the universe.

5. Observational tests: the age of the universe, mean density and the problem of dark matter, nucleo-cosmo-chronology,the deep galaxy counts.

6. Recent observations of the cosmic microwave background and its power spectrum.

7. Impact of gravitational lenses on cosmology.

8. The initial phases of the evolution of the universe in the Big Bang model and cosmological nucleosynthesis.

Learning Prerequisites

Recommended courses

Bachelor in physics or mathematics and Astrophysics I, II and III

Learning Outcomes

By the end of the course, the student must be able to:

• Theorize the fondamental principles of cosmology

Transversal skills

• Access and evaluate appropriate sources of information.

Teaching methods

2017-2018 COURSE BOOKLET

Astrophysics IV : Observational cosmology Page 1 / 2

Ex cathedra and exercices supervised in classroom

Assessment methods

oral exam (100%)

Resources

Ressources en bibliothèque

• Galaxy formation / Longair

• Modern Cosmology / Dodelson

2017-2018 COURSE BOOKLET

Astrophysics IV : Observational cosmology Page 2 / 2

CH-360 Atomes et rayonnementArrell Christopher Alexander

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Spectroscopy, i.e. measurement of the response of a system to a perturbing electromagnetic field, is one of the mostimportant tools to study microscopic systems. This course provides the basics of spectroscopy, discussing in detail theinteraction between atoms and electromagnetic radiation.

Content

- Reminder: Early concepts of the atom- Reminder: Radiating bodies- Emission, absorption and dispersion of light- The spectral shapes of atomic transitions- Spectrometers and Detectors- Stimulated absorption and emission of radiation- Fundamentals of lasers- Fine structure in atomic spectra / Effects of external fields- Manipulation of atoms with electromagnetic radiation- Measurement of light- Ultrashort optics physics- Strong field physics- High harmonic Generation- Attosecond pulse production- Attosecond experiments- Photoelectron spectroscopy- Molecular photoelectron spectrscopy

Keywords

Atoms, radiation, spectroscopy, laser, attosecond, high harmonic generation

Learning Prerequisites

Recommended courses

Quantum mechanics, Electromagnetism

Learning Outcomes

By the end of the course, the student must be able to:

• Link classical and quantum mechanical pictures for the interaction of atoms with electromagnetic radiation

• Discuss effects of the environment on atomic spectra

• Explain the relation between atomic properties and spectroscopic line shapes

2017-2018 COURSE BOOKLET

Atomes et rayonnement Page 1 / 2

• Explain the physics behind a laser

• Explain Strong field physics

• Discuss attosecond physics

• Choose an appropriate spectroscopic technique for a given problem

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

• Demonstrate a capacity for creativity.

• Access and evaluate appropriate sources of information.

• Use a work methodology appropriate to the task.

• Demonstrate the capacity for critical thinking

Assessment methods

100% oral exam

Supervision

Others Office: CH H1 565

Resources

Bibliography

W. Demtröder : Laser Spectroscopy (Springer Verlag, Berlin 1997)Hertel :Atoms, Molecules and optical physics

Ressources en bibliothèque

• Laser spectroscopy / Demtröder

• Atoms, Molecules and Optical Physics / Hertel

Notes/Handbook

Lecture notes

2017-2018 COURSE BOOKLET

Atomes et rayonnement Page 2 / 2

PHYS-302 Biophysics IIVerkhovskiy Alexander

Cursus Sem. Type

Bioingénierie MA1, MA3 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Understanding and modeling properties of living cells such as shape, motion and force generation in terms offundamental laws of physics

Content

Introduction. Spatial and temporal scales and relevant physical forces at the cellular level. Viscous drag and adhesiveforces.Overview of bioenergetics. The cell as out-of-equilibrium system. Mitochondria, transmembrane potential,proton-ATPase, and rotational electric motor of bacterial flagellum.Cytoskeleton, cell shape and motion. Actin filaments, microtubules and intermediate filaments. Filament polarity.Assembly mechanisms and models. Force generation by assembly. Molecular motors: kinesins, dyneins and myosins.Motor steps and forces. Microtubule-dependent motors in intracellular transport and mitosis. Myosins in musclecontraction and cell motion. Cell adhesion and traction forces. Interaction of the cytoskeleton with the membrane,hydrostatic pressure, membrane tension and shape.Cell symmetry breaking: asymmetric cell division, directional motion. Mechanisms: reaction-diffusion, mechanicalfeedback. PIP3-signaling system, Rho GTPases, feedback from actin flow. Directional sensing and chemotaxis.

Keywords

cell biophysics, cell motion, cytoskeleton, traction forces, molecular motors, actin, symmetry breaking, membranetension, transmembrane potential

Learning Prerequisites

Recommended courses

physics and mathematics at the introductory university level, general biology at the high school level

Teaching methods

Lectures, paper discussion, problem solving

Expected student activities

attending the lectures, completing exercises, reading and presenting recent papers in the field

Assessment methods

paper presentation, problem solving, oral exam

Supervision

Office hours YesAssistants Yes

2017-2018 COURSE BOOKLET

Biophysics II Page 1 / 1

PHYS-410 Cold atoms and quantum simulationBrantut Jean-Philippe

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

This course describes the concept of quantum simulation and its implementation using cold atomic gases. Theexperimental tools and core theoretical concepts are presented, together with a few topics of ongoing research in thefield.

Content

Basic tools of the physics of cold atoms:1. Introduction: basics of atomic physics, alkali atoms. Reminders on the two level system, forces on two-level atoms.Cooling and trapping of neutral atoms.2. Ideal Bose and Fermi gases: reminders of quantum statistical mechanics, trapped gases. Experimental aspects.3. Effective Hamitonians: adiabatic elimination of fast degrees of freedom, moving frames4. Optical lattices: band theory and tight binding models, fundamental exemples5. Interactions between atoms: s-wave scattering, Feshbach resonances

Fundamental exemples of quantum simulations with cold atoms, chosen among:1. Interacting atoms in a lattice: Bose-Hubbard model, Superfluid to Mott insulator phase transition, Fermi Hubbardmodels.2. Quantum transport and disordered systems: Anderson localization, the Bose glass, many-body localization3. The unitary Fermi gas: Leggett theory of the BEC-BCS crossover, universality and Tan's relations4. Topological systems: artificial gauge fields and spin orbit coupling schemes, Haldane and Harper-Hofstattermodels

Learning Prerequisites

Required courses

Quantum electrodynamics and quantum optics

Recommended courses

Solid state physics III

Important concepts to start the course

Basic quantum mechanics: hydrogen atoms, harmonic oscillators, two level systems, perturbation theoryBasic statistical mechanics: quantum statistics, density matricesQuantum optics: two level system in an external field, Optical Bloch equations, stimulated and spontaneousemission

Learning Outcomes

By the end of the course, the student must be able to:

• Describe the basic ingredient of cold atoms experiments

2017-2018 COURSE BOOKLET

Cold atoms and quantum simulation Page 1 / 2

• Analyze scientific articles in the field of cold atoms

• Recall the most significant outcomes of quantum simulation with cold atoms

Transversal skills

• Summarize an article or a technical report.

• Make an oral presentation.

Teaching methods

Lectures and exercise classes, paper clubs: each student will be given one research article to read and analyze, andthen expose in class.

Assessment methods

Oral exam

Resources

Bibliography

Statistical mechanics, Kerson HuangLaser cooling and trapping, Metclaf and Van der StratenBose-Einstein condensation in dilute gases, Pethick and SmithQuantum Fluids, Anthony LeggettAtomes et Rayonnements, lectures by Jean Dalibard at Collège de France

Ressources en bibliothèque

• Statistical mechanics / Huang

• Laser cooling and trapping / Metclaf; Van der Straten

• Bose-Einstein condensation in dilute gases / Pethick; Smith

• Quantum liquids / Leggett

• Atomes et rayonnement / Dalibard

2017-2018 COURSE BOOKLET

Cold atoms and quantum simulation Page 2 / 2

PHYS-403 Computer simulation of physical systems IPasquarello Alfredo

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Mineur STAS Russie H Opt.

Physicien MA1, MA3 Opt.

Science et ing. computationelles MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The two main topics covered by this course are classical molecular dynamics and the Monte Carlo method.

Content

Ordinary differential equations: methods for numerical integration: multistep algorithms and implicit algorithms.

Classical molecular dynamics: Verlet algorithm, predictor-corrector algorithms, determination of macroscopicparameters, Nosé-Hoover thermostat, constraints, Ewald summations, application to Lennard-Jones liquids.

Random variables: definitions and properties, generators and distribution functions, central-limit theorem.

Random walks: binomial and Gaussian distributions, particle diffusion, Brownian motion.

Monte Carlo integration: direct sampling, importance sampling, Metropolis algorithm, errors in correlated sampling,Monte-Carlo simulations of Lennard-Jones liquids and of two-dimensional spin systems.

Learning Prerequisites

Recommended courses

Statistical physics

Learning Outcomes

By the end of the course, the student must be able to:

• Model a physical problem by a computer simulation

• Interpret experimental properties using a computer program

• Carry out computer simulations

• Synthesize results in the form of a scientific report

Assessment methods

Report + oral exam = 1 grade

Resources

Virtual desktop infrastructure (VDI)

Yes

Ressources en bibliothèque

2017-2018 COURSE BOOKLET

Computer simulation of physical systems I Page 1 / 2

• Computational physics : an introduction / F.J. Vesely

• Computational physics / S. E. Koonin

• Computational physics / J. M. Thijssen

Websites

• http://moodle.epfl.ch/course/view.php?id=3711

2017-2018 COURSE BOOKLET

Computer simulation of physical systems I Page 2 / 2

MSE-450 Electron microscopy: advanced methodsAlexander Duncan, Hébert Cécile

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Science et génie des matériaux MA1, MA3 Opt.

Language EnglishCredits 3Session WinterSemester FallExam OralWorkload 90hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

With this course, the student will learn advanced methods in transmission electron microscopy, especially what is theelectron optical setup involved in the acquisition, and how to interpret the data. After the course, students will be able tounderstand and assess TEM encountered in papers.

Content

1. Electron imaging and diffraction contrasts2. Phase contrast3. Scanning TEM4. EDS-, EEL-spectroscopy in TEM.

Exercises and demonstrations concerning these themes.

Learning Prerequisites

Required courses

- Electron microscopy : introduction- Basic knowledge of Solid state physics, Cristallography, Cristal defects

Learning Outcomes

By the end of the course, the student must be able to:

• Choose the appropriate TEM technique adapted to their problems

• Recognize The TEM techniques used in a publication

• Interpret TEM images

• Present the TEM results

Teaching methods

Seven weeks of the course will be with MOOCS, 7 weeks with conventional format, alternating over the semestre.The weeks with MOOCS format, there will be time reserved at the microscope(s) to discuss and practice on the TEM thecontent of the lecture, as well as to answer student's questions.

Expected student activities

Follow the MOOCS *before* attending the TEM session for the 7 weeks on MOOCS format.

Assessment methods

Oral examination

Resources

2017-2018 COURSE BOOKLET

Electron microscopy: advanced methods Page 1 / 2

Bibliography

Transmission Electron MicroscopyA Textbook for Materials ScienceWilliams, David B., Carter, C. Barry

Ressources en bibliothèque

• Electron energy loss spectroscopy / Egerton

• Transmission electron microscopy : a textbook for materials science / Carter

• Transmission electron microscopy diffractometry of materials / Fultz

2017-2018 COURSE BOOKLET

Electron microscopy: advanced methods Page 2 / 2

PHYS-405 Experimental methods in physicsCantoni Marco, Dwir Benjamin

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 3Session WinterSemester FallExam OralWorkload 90hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

The course's objectivs are: Learning several advenced methods in experimental physics, and critical reading ofexperimental papers.

Content

- Scanning probe microscopy (SMP):Principles of operation of scanning tunneling microscopy and atomic forcemicroscopy. Advanced scanning microscopy techniques. The uses of SPM in industry and research- Cryogenics:measurement and regulation of low temperatures, cryostat.- Optics: optical elements (modulators, polarisers,lenses...)Spectrometer, monochromator...- Light sources: lasers, discharge lamps, incandescence lamps,synchrotron...- Electron microscopy: Transmission and scanning microscopes, their principles of operation, observationtecniques, uses ...- Structural characterization: RX, electron diffraction, ...

Learning Prerequisites

Recommended courses

Basis course

Learning Outcomes

By the end of the course, the student must be able to:

• Integrate the notions of critical reading of articles

• Integrate knowledge of experimental methods of characterisation

Transversal skills

• Communicate effectively, being understood, including across different languages and cultures.

Teaching methods

Ex cathedra Account, reading and discussion of recent research tasks

Assessment methods

oral exam (100%)

2017-2018 COURSE BOOKLET

Experimental methods in physics Page 1 / 1

PHYS-407 Frontiers in nanosciencesKern Klaus, Rusponi Stefano

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The students understand the relevant experimental and theoretical concepts of the nanoscale science. The course movefrom basic concepts like quantum size effects to ##hot fields## such as spin transport for data storage applications(spintronics), carbon electronics, or nanocatalysis.

Content

1. Introduction to the concepts of nanoscale science2. The art of making nanostructures:a. Bottom-up assemblyb. Top-down fabrication3. Quantum structures and devices:a. Current at the nanoscaleb. Quantum technology4. Carbon nanotechnology:a. From fullerenes to grapheneb. Molecular electronics and machines5. Microscopy and manipulation tools:a. Electron microscopyb. Scanning probe microscopy: STM, AFM, MFM6. Spectroscopy tools:a. Electron and photon spectroscopy: XPS, XAS, Augerb. Electron and photon diffraction: LEED, TEM, SXRDc. Synchrotron radiation7. Magnetism at the nanoscale:a. Orbital and spin magnetic momentb. Superparamagnetic limit in magnetic data storage8. From electronics to spintronics:a. 2D electron gas at heterogeneous semiconductor interfacesb. Single electron transistorc. Spin transport: spin valve, GMR and TMR effects

Learning Prerequisites

Recommended courses

Solid state physics

Learning Outcomes

By the end of the course, the student must be able to:

• Explain the differences between nanoscopic and macroscopic scale

• Analyze the results of a scientific experiment

2017-2018 COURSE BOOKLET

Frontiers in nanosciences Page 1 / 2

• Design a scientific experiment

Transversal skills

• Summarize an article or a technical report.

• Access and evaluate appropriate sources of information.

• Use a work methodology appropriate to the task.

Teaching methods

Ex cathedra with visiting of laboratories at EPFL and the Max-Planck-Institute for Solid State Research in Stuttgart,Germany

Assessment methods

oral exam (100%)

Resources

Ressources en bibliothèque

• Quantum Transport, Atom to Transistor / Datta

• Physics of surfaces and interfaces / Ibach

• Surfaces and interfaces of solids / Lüth

• Introduction to Nanoscience / Lindsay

• Physics at surfaces / Zangwill

Websites

• http://moodle.epfl.ch/course/view.php?id=7781

2017-2018 COURSE BOOKLET

Frontiers in nanosciences Page 2 / 2

PHYS-438 Fundamentals of biomedical imagingGruetter Rolf

Cursus Sem. Type

Auditeurs en ligne E Obl.

Bioingénierie MA2, MA4 Opt.

Génie électrique Obl.

Ing.-phys MA2, MA4 Opt.

Mineur en Neuroprosthétiques E Opt.

Mineur en Neurosciences computationnelles E Opt.

Mineur en Technologies biomédicales E Opt.

Photonique Obl.

Physicien MA2 Opt.

Sciences du vivant MA2, MA4 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam WrittenWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The goal of this course is to illustrate how modern principles of basic science approaches are integrated into the majorbiomedical imaging modalities of importance to biology and medicine, with an emphasis on those of interest to in vivo.

Content

1. Introduction to the course, importance and essential elements of bioimaging - lab visit of CIBM2. Ultrasound imaging; ionizing radiation and its generation3. X-ray imaging - when the photon bumps into living tissue, radioprotection primer4. Computed tomography - From projection to image5. Emission tomography - what are tracers and how to "trace" them in your body, x-ray detection, scintillation principle6. Positron emission tomography (PET) - imaging anti-matter annihilation7. Tracer kinetics - modeling of imaging data8. Introduction to biological magnetic resonance (MR) - Boltzmann distribution, from spins to magnetization9. Excitation of spins, Relaxation, the Basis of MR contrast (The Bloch Equations)10. MR spectroscopy: In vivo Biochemistry, without chemistry ...11. From Fourier to image: Principles of MR image formation, k-space - echo formation12. Basic MRI contrast mechanisms, BOLD fMRI, contrast agents13. Spin gymnastics: Imaging Einstein's random walk - fiber tracking. Overview of imaging modalities treated in thiscourse

Keywords

UltrasoundMRIPETSPECTCTRadioprotection

Learning Prerequisites

Recommended courses

General Physics I-III

Important concepts to start the course

Fourier transformation

Learning Outcomes

2017-2018 COURSE BOOKLET

Fundamentals of biomedical imaging Page 1 / 2

By the end of the course, the student must be able to:

• Deduce which imaging technique is appropriate for a given situation.

• Describe their fundamental promises and limitations

• Differentiate the imaging modalities covered in the course.

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

• Manage priorities.

Teaching methods

Ex cathedra with experimental demos.

Expected student activities

strong participation in course and exercices.

Assessment methods

a written exam

Supervision

Office hours YesAssistants Yes

Resources

Bibliography

"Introduction to biomedical imaging / Andrew Webb". Année:2003. ISBN:0-471-23766-3

Ressources en bibliothèque

• Introduction to Biomedical Imaging / Webb

Websites

• http://lifmet.epfl.ch

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=250

Videos

• https://www.youtube.com/playlist?list=PLTCZivgYYpFpVnxdGrxcuL5YOvPwespXy

2017-2018 COURSE BOOKLET

Fundamentals of biomedical imaging Page 2 / 2

PHYS-448 Introduction to particle acceleratorsRivkin Leonid

Cursus Sem. Type

Génie nucléaire MA1 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam WrittenWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key featuresand limitations of these machines as used in accelerator driven sciences like high energy physics, materials and lifesciences.

Content

Overview, history and fundamentalsTransverse particle dynamics (linear and nonlinear)Longitudinal particle dynamicsLinear acceleratorsCircular acceleratorsAcceleration and RF-technologyBeam diagnosticsAccelerator magnetsInjection and extraction systemsSynchrotron radiation

Learning Outcomes

By the end of the course, the student must be able to:

• Design basic linear and non-linear charged particles optics

• Elaborate basic ideas of physics of accelerators

• Use a computer code for optics design

• Optimize accelerator design for a given application

• Estimate main beam parameters of a given accelerator

Transversal skills

• Communicate effectively with professionals from other disciplines.

• Use both general and domain specific IT resources and tools

Assessment methods

mainly written exambonus for submitting the solutions to the weekly problem sets and participation in the computer tutorials

2017-2018 COURSE BOOKLET

Introduction to particle accelerators Page 1 / 1

PHYS-439 Introduction à la physique des astroparticulesBay Aurelio, Neronov Andrii

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Langue françaisCrédits 4Session EtéSemestre PrintempsExamen OralCharge 120hSemaines 14Heures 4 hebdo

Cours 2 hebdoExercices 2 hebdo

Résumé

On traite de l'implication de la physique des particules en cosmologie et dans les phénomènes astrophysiques, ainsi quedes techniques d'observation de rayons cosmiques.

Contenu

1. Observation de l'univers : expansion cosmologique, âge de l'univers. Le rayonnement fossile.

2. Matière noire dans l'univers. Courbes de rotation des galaxies, expériences de détection de la matière noire.

3. Sources astrophysiques de gammas à haute énergie et rayons cosmiques.

4. Pulsars et supernovae. Neutrinos de supernovae SN1987A.

5. Accélération de particules à haute énergie près d'étoiles magnétisées.

6. Trous noirs astrophysiques : trous noirs de masse stellaire et trous noirs supermassifs dans les nucléi des galaxiesactives.

7. Accélération de particules à haute énergie et production de rayons cosmiques près des trous noirs.

8. Les rayons cosmiques : Spectre, composition isotopique et spectrale, moyens de détection, mécanisme de spallation,équations de transport, propagation, modèle de la boîte fuyante, horloges cosmiques. Le détecteur AMS. Lesmécanismes d'accélération de Fermi de premier et deuxième ordre. Les rayons cosmiques d'énergie ultra-haute :Détection. Gerbes atmosphériques: profil, principe de superposition, modèle de Bethe-Heitler, composition. Interactionavec le fond micro-onde.

9. La radiation électromagnétique : Mécanismes de production. Mécanismes d'absorption. Les détecteurs embarqués etau sol. CGRO & le projet GLAST. L'imagerie Cherenkov. Les sources gamma avec E>100 GeV. Origine des spectresmulti-longueurs.

10. Les neutrinos : Mécanismes de production. Interaction avec la matière. Neutrinos solaires et atmosphériques,oscillations. Les neutrinos des Supernovae. Détecteurs et méthodologie. Modèle de la source transparente et flux deWaxman-Bahcall. Modèle de flux de neutrinos des AGN.11. Observation des ondes gravitationnelles.12. Mesures astrophyisiques de la masse du photon.

Compétences requises

Cours prérequis indicatifs

Cours de Physique des particules 3ème année

Acquis de formation

2017-2018 LIVRET DE COURS

Introduction à la physique des astroparticules Page 1 / 2

A la fin de ce cours l'étudiant doit être capable de:

• Analyser les phénomènes physiques associés aux rayons cosmiques

Méthode d'enseignement

Ex cathedra

Méthode d'évaluation

examen oral (100%)

Ressources

Sites web

• http://lphe.epfl.ch/~bay

2017-2018 LIVRET DE COURS

Introduction à la physique des astroparticules Page 2 / 2

PHYS-421 Laboratoire de physique IVaProfs divers *

Cursus Sem. Type

Ing.-phys MA1, MA3 Obl.

Physicien MA1, MA3 Obl.

Langue françaisCrédits 8Retrait Non autoriséSession HiverSemestre AutomneExamen Pendant le

semestreCharge 240hSemaines 14Heures 8 hebdo

TP 8 hebdo

Résumé

L'étudiant(e) applique les compétences acquises au cours de ses études dans une recherche effectuée dans l'un deslaboratoires de la section de physique sous l'encadrement d'un maître de la section. Elle/il est présent dans le laboratoireun jour par semaine.

Contenu

Objectifs d'apprentissage: Pour les Travaux Pratiques de Physique IV effectués à la Section de Physique les sujetstraités peuvent être de la physique théorique, expérimentale ou appliquée. Pour les Travaux Pratiques de Physique IVeffectués dans une autre section de l'EPFL, un descriptif doit être fourni à l'adjoint du directeur de la Section pour luipermettre de prendre une décision quant à l'adéquation du sujet avec la formation de physicien.

Mots-clés

physique appliquée, expérimentation, recherche

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Choisir ou sélectionner une méthode d'investigation

• Elaborer un projet de recherche

• Formuler une hypothèse

• Analyser des résultats expérimentaux

• Modéliser un système physique

• Exploiter des données

• Identifier les paramètres significatifs

• Représenter un modèle, un résultat expérimental

• Critiquer des hypothèses ou des résultats

Compétences transversales

• Utiliser une méthodologie de travail appropriée, organiser un/son travail.

• Communiquer efficacement et être compris y compris par des personnes de languages et cultures différentes.

• Etre responsable de sa propre santé et sécurité au travail ainsi que de celles des autres.

• Gérer ses priorités.

• Persévérer dans la difficulté ou après un échec initial pour trouver une meilleure solution.

• Accéder aux sources d'informations appropriées et les évaluer.

2017-2018 LIVRET DE COURS

Laboratoire de physique IVa Page 1 / 2

• Ecrire un rapport scientifique ou technique.

• Ecrire une revue de la littérature qui établit l'état de l'art.

Méthode d'enseignement

Travail en laboratoire

Méthode d'évaluation

Un rapport écrit doit être fourni à la fin du travail

2017-2018 LIVRET DE COURS

Laboratoire de physique IVa Page 2 / 2

PHYS-422 Laboratoire de physique IVbProfs divers *

Cursus Sem. Type

Hors plans H Obl.

Ing.-phys MA2, MA4 Obl.

Physicien MA2 Obl.

Langue françaisCrédits 8Retrait Non autoriséSession Hiver, EtéSemestre PrintempsExamen Pendant le

semestreCharge 240hSemaines 14Heures 8 hebdo

TP 8 hebdo

Résumé

L'étudiant(e) applique les compétences acquises au cours de ses études dans une recherche effectuée dans l'un deslaboratoires de la section de physique sous l'encadrement d'un maître de la section. Elle/il est présent dans le laboratoireun jour par semaine.

Contenu

Objectifs d'apprentissage: Pour les Travaux Pratiques de Physique IV effectués à la Section de Physique les sujetstraités peuvent être de la physique théorique, expérimentale ou appliquée. Pour les Travaux Pratiques de Physique IVeffectués dans une autre section de l'EPFL, un descriptif doit être fourni à l'adjoint du directeur de la Section pour luipermettre de prendre une décision quant à l'adéquation du sujet avec la formation de physicien.

Mots-clés

physique appliquée, expérimentation, recherche

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Choisir ou sélectionner une méthode d'investigation

• Elaborer un projet de recherche

• Formuler une hypothèse

• Analyser des résultats expérimentaux

• Modéliser un système physique

• Exploiter des données

• Identifier les paramètres significatifs

• Représenter un modèle, un résultat expérimental

• Critiquer des hypothèses ou des résultats

Compétences transversales

• Utiliser une méthodologie de travail appropriée, organiser un/son travail.

• Communiquer efficacement et être compris y compris par des personnes de languages et cultures différentes.

• Etre responsable de sa propre santé et sécurité au travail ainsi que de celles des autres.

• Gérer ses priorités.

• Persévérer dans la difficulté ou après un échec initial pour trouver une meilleure solution.

• Accéder aux sources d'informations appropriées et les évaluer.

2017-2018 LIVRET DE COURS

Laboratoire de physique IVb Page 1 / 2

• Ecrire un rapport scientifique ou technique.

• Ecrire une revue de la littérature qui établit l'état de l'art.

Méthode d'enseignement

Travail en laboratoire

Méthode d'évaluation

Un rapport écrit doit être fourni à la fin du travail

2017-2018 LIVRET DE COURS

Laboratoire de physique IVb Page 2 / 2

MICRO-422 Lasers: theory and modern applicationsKippenberg Tobias, Moser Christophe

Cursus Sem. Type

Génie électrique et électronique MA1, MA3 Obl.

Ing.-phys MA1, MA3 Opt.

Microtechnique MA1, MA3 Opt.

Photonique Obl.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam WrittenWorkload 120hWeeks 14Hours 4 weekly

Lecture 3 weeklyExercises 1 weekly

Summary

This course gives an introduction to Lasers by both considering fundamental principles and applications. Topics that arecovered include the theory of lasers, laser resonators and laser dynamics. In addition to the basic concepts, a variety ofinteresting laser systems and applications are covered

Content

1. Introduction (Overview: History of the laser, Market application, Nobel Prizes,)- demo laser printer.2. Basics of resonators and Gaussian beam optics.3. Principle of laser operation: Lorentz model, dispersion theory.4. Principle of laser operation: Laser oscillation, threshold, coherence.5. Semiconductor and photonic nanostructured lasers6. Laser dynamics : Laser oscillation, laser line-width, coherent population oscillations - AM, PM Noise.7. (Gas and ) Solid state lasers Optical fibers8. Fiber laser and amplifiers Optical fibers9. Ultrafast lasers, Femtosecond laser Frequency Metrology, Mode locked lasers, autocorrelation, FTIR10. Ultrafast lasers, Femtosecond laser Frequency Metrology, Mode locked lasers11. Detection of laser light (detector basics)12. Optical parametric oscillators (OPO), Raman Lasers13. Tools of laser light manipulation

Learning Prerequisites

Important concepts to start the course

This course requires an understanding of introductory physics in wave theory (incl. complex numbers) andfamiliarity with Maxwell equations and electromagnetism.

Learning Outcomes

By the end of the course, the student must be able to:

• Able to compute absorption cross-section

• explain in details YAG, He-Ne, Ti-saphirre, external cavity lasers, fiber lasers

• Know shot and thermal noise, laser linewidth, relaxation oscillation

• know passive and active modelocking, methods to caracterize pulse duration

• Know phase matching, method to obtain phase matching

• know parametric gain, singly and doubly resonant lasers

Teaching methods

2 hours of class + 1 hour of exercises

2017-2018 COURSE BOOKLET

Lasers: theory and modern applications Page 1 / 2

Part of the class will be given via MOOC videos.

Assessment methods

Written exam.Homework will be given every week . Solutions will be handed out. Homework will not be graded.It is strongly advised tomake the effort to do the homework weekly.

Resources

Bibliography

Main text book:Milonni, Eberly "Laser Physics" (Wiley Interscience)Additional chapters will be selected from:Saleh, B. E. A., and M. C. Teich. Fundamentals of Photonics. New York, NY: John Wiley and Sons, 1991.ISBN: 0471839655.Yariv, A. Optical Electronics in Modern Communications. 5th ed. New York, NY: Oxford University Press,1997. ISBN: 0195106261.Amnon Yariv "Quantum Electronics" (Wiley)

Ressources en bibliothèque

• Quantum Electronics / Yariv

• Fundamentals of Photonics / Saleh

• Optical Electronics in Modern Communications / Yariv

• Laser Physics / Milonni

Notes/Handbook

Polycopié:"Theory and applications of lasers" by Tobias J. Kippenberg and Christophe Moser (available as pdf onMoodle)

2017-2018 COURSE BOOKLET

Lasers: theory and modern applications Page 2 / 2

PHYS-442 Méthodologie des plans d'expériencesFuerbringer Jean-Marie

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Langue françaisCrédits 4Session HiverSemestre AutomneExamen OralCharge 120hSemaines 14Heures 4 hebdo

Cours 2 hebdoTP 2 hebdo

Résumé

La méthodologie des plans d'expériences permet de minimiser la variance des données collectées lors d'une séried'expériences en choisissant stratégiquement la position des points de mesure. Le cours transmet les bases de cetteméthodologie clé pour la recherche académique et industrielle.

Contenu

• Concepts de base de la théorie des plans d’expériences

• Modèles empiriques

• Carrés gréco-latins

• Plan de Hadamard

• Plans factoriels

• Plans fractionnaires

• Plans 2^k

• Algorithme d’optimisation d’un plan

Mots-clés

plan d’expériences, ANOVA, moindres carrés, statistiques, régression multilinéaire, médodologie expérimentale

Compétences requises

Cours prérequis indicatifs

Statistique, Métrologie

Concepts importants à maîtriser

Base de statistique (moyenne, variance, distribution, régression), Calcul matriciel, base de Matlab et deprogrammation

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Proposer un modèle empirique en fonction de l'objectif

• Analyser une situation expérimentale pour identifier les aspects critiques du point de vue statistique

• Elaborer un plan en fonction des modèles candidats et des contraintes (qualité, budget et délais)

• Analyser la qualité d'un modèle de régression et proposer des mesures complémentaires

Compétences transversales

2017-2018 LIVRET DE COURS

Méthodologie des plans d'expériences Page 1 / 2

• Planifier des actions et les mener à bien de façon à faire un usage optimal du temps et des ressources à disposition.

• Utiliser une méthodologie de travail appropriée, organiser un/son travail.

• Faire preuve d'esprit critique

• Utiliser les outils informatiques courants ainsi que ceux spécifiques à leur discipline.

Méthode d'enseignement

Exposés théoriques, analyses de cas traités avec Matlab (et Excel), travaux pratiques

Travail attendu

Résumer les exposés théoriques sous forme de cartes conceptuelles, lire des textes de référence, faire des exercices,effectuer des mesures selon un plan standard et analyser les résultats.

Méthode d'évaluation

Examen oral consistant à présenter les résultats d’une expérience et/ou résoudre un problème

Ressources

Bibliographie

• Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters, An introduction to design, dataanalysis and model building, first ed.; Wiley Series in Probability and Mathematical Statistics, John Wyleyand Son, 1978.

• Montgomery, D.C. Design and analysis of experiments, 7th edition ed.; John Wyley and Son, 2009.

• Davison A.C.; Statistical model, Cambridge University Press in June 2003.

• Ryan Th.; Modern Experimental Design, John Wyley and Son, 2007.

Ressources en bibliothèque

• Statistics for Experimenters, An introduction to design, data analysis and model building

• Design and analysis of experiments

• Statistical model

• Modern Experimental Design

Polycopiés

Transparents du cours, énoncés et corrigés des exercices distribués par le site Moodle du cours

Liens Moodle

• http://moodle.epfl.ch

Préparation pour

les stages et les projets de recherche

2017-2018 LIVRET DE COURS

Méthodologie des plans d'expériences Page 2 / 2

PHYS-443 NeutronicsHursin Mathieu, Pautz Andreas

Cursus Sem. Type

Génie nucléaire MA1 Obl.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactorand, as such, the conditions for establishing and controlling a nuclear chain reaction.

Content

• Brief review of nuclear physics- Historical: Constitution of the nucleus and discovery of the neutron - Nuclear reactions and radioactivity - Crosssections - Differences between fusion and fission.

• Nuclear fission- Characteristics - Nuclear fuel - Introductory elements of neutronics.- Fissile and fertile materials - Breeding.

• Neutron diffusion and slowing down- Monoenergetic neutrons - Angular and scalar flux- Diffusion theory as simplified case of transport theory - Neutron slowing down through elastic scattering.

• Multiplying media (reactors)- Multiplication factors - Criticality condition in simple cases.- Thermal reactors - Neutron spectra - Multizone reactors - Multigroup theory and general criticality condition -Heterogeneous reactors.

• Reactor kinetics- Point reactor model: prompt and delayed transients - Practical applications.

• Reactivity variations and control- Short, medium and long term reactivity changes. Different means of control.

Learning Outcomes

By the end of the course, the student must be able to:

• Elaborate on neutron diffusion equation

• Systematize nuclear reaction cross sections

• Formulate approximations to solving the diffusion equation for simple systems

Transversal skills

• Access and evaluate appropriate sources of information.

• Collect data.

• Use both general and domain specific IT resources and tools

2017-2018 COURSE BOOKLET

Neutronics Page 1 / 2

Teaching methods

Lectures, numerical exercises

Assessment methods

oral exam (100%)

2017-2018 COURSE BOOKLET

Neutronics Page 2 / 2

PHYS-445 Nuclear fusion and plasma physicsFasoli Ambrogio

Cursus Sem. Type

Génie nucléaire MA1 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The goal of the course is to provide the physics and technology basis for controlled fusion research, from the mainelements of plasma physics to the reactor concepts.

Content

1) Basics of thermonuclear fusion2) The plasma state and its collective effects3) Charged particle motion and collisional effects4) Fluid description of a plasma5) Plasma equilibrium and stability6) Magnetic confinement: Tokamak and Stellarator7) Waves in plasma8) Wave-particle interactions9) Heating and non inductive current drive by radio frequency waves10) Heating and non inductive current drive by neutral particle beams11) Material science and technology: Low and high Temperature superconductor - Properties of material underirradiation12) Some nuclear aspects of a fusion reactor: Tritium production13) Licensing a fusion reactor: safety, nuclear waste14) Inertial confinement

Learning Prerequisites

Recommended courses

Basicknowledge of electricity and magnetism, and of simple concepts of fluids

Learning Outcomes

By the end of the course, the student must be able to:

• Design the main elements of a fusion reactor

• Identify the main physics challenges on the way to fusion

• Identify the main technological challenges of fusion

Teaching methods

Ex cathedra and in-class exercises

Assessment methods

2017-2018 COURSE BOOKLET

Nuclear fusion and plasma physics Page 1 / 2

oral examen (100%)

Resources

Ressources en bibliothèque

• Introduction to Plasma Physcs / Chen

• Plasma Physics and Fusion Energy / Freidberg

Websites

• https://spcnet.epfl.ch/nuclfus/

2017-2018 COURSE BOOKLET

Nuclear fusion and plasma physics Page 2 / 2

PHYS-449 Optique IIIPortella Oberli Marcia

Cursus Sem. Type

Génie électrique et électronique MA1, MA3 Obl.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Langue françaisCrédits 4Session HiverSemestre AutomneExamen OralCharge 120hSemaines 14Heures 4 hebdo

Cours 2 hebdoExercices 2 hebdo

Résumé

Analyser, comprendre et, en principe, réaliser un système d'optique complexe (éléments passifs et actifs). Acquérir uneconnaissance de base des méthodes spectroscopiques incohérentes et cohérentes résolues en temps, utilisées pourétudier des systèmes chimiques, biologiques et physiques.

Contenu

• Optique non linéaire : Interaction de la lumière avec la matière, description électromagnétique de l'interactionoptique non linéaire. Effets non linéaires du deuxième ordre (rectification optique, effet électro-optique, effet Pockels,conversion de fréquence, mélange à trois ondes, interaction paramétrique des fréquences) et du troisièmeordre (effetKerr optique, l'auto modulation de phase, l'auto focalisation, mélange à quatre-ondes, la conjugaison de phase, lesoliton).

• Optique pulsée : Impulsion de lumière, application de transformation de Fourier, propagation d'impulsions courtes,dispersion de vitesse de groupe, l'auto modulation de phase, le soliton.

• Lasers à impulsions courtes : Méthodes de génération des impulsions courtes : principe du blocage des modesactif et passif, blocage de modes hybride, amplification et compression des impulsions. Techniques de caractérisationet de mesures temporales des impulsions courtes : les autocorrelateurs, la caméra à balayage de fentes, mesures dephase et amplitude. Laser à colorant, laser à Ti : Saphire, laser à semiconducteur.

• Méthodes de spectroscopie résolue en temps cohérente et incohérente : luminescence, expérience pompe etsonde, mélange à quatre-ondes, échos des photons, applications en systèmes chimiques, biologiques etsemiconducteurs.

• Propriétés optiques linéaires et non linéaires des semiconducteurs : absorption et émission de la lumière,processus de relaxation, durées de vie radiatives, rénormalisation du gap d'énergie, déplacement d'énergie Stark,remplissage de l'espace de phase.

Compétences requises

Cours prérequis indicatifs

aucun

Acquis de formation

2017-2018 LIVRET DE COURS

Optique III Page 1 / 2

A la fin de ce cours l'étudiant doit être capable de:

• Formuler des approches pour résoudre des problèmes en optique

• Analyser des systèmes optiques

• Etablir des compétences pour la conception des systèmes optiques

Compétences transversales

• Utiliser une méthodologie de travail appropriée, organiser un/son travail.

• Recevoir du feedback (une critique) et y répondre de manière appropriée.

• Accéder aux sources d'informations appropriées et les évaluer.

Méthode d'enseignement

Ex cathedra avec exercices chaque semaine

Méthode d'évaluation

examen oral (100%)

2017-2018 LIVRET DE COURS

Optique III Page 2 / 2

PHYS-440 Particle detectionHaefeli Guido

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The course will cover the physics of particle detectors. It will introduce the experimental techniques used in nuclear andparticle physics. The lecture includes the interaction of particles with matter, scintillators, gas chambers, silicon, anddetectors for particle ID.

Content

Interaction of particles in matter: ionization (Bethe-Bloch formula), interaction of electrons and photons(electromagnetic showers, radiation length and critical energy).General characteristics of detectors: linearity, efficiency, resolution and Fano factor.Gas detectors: ionization, proportional and Geiger-Muller counters, multiwire proportional, drift and time-projectionchambers, micro-pattern gas detectors.Semiconductor detectors: pn junction, silicon and germanium diode detectors, silicon microstrip and pixel detectors.Scintillators: organic and inorganic scintillators, wavelength shifters and light guides.Photodetectors: photomultipliers, photodiodes and other alternatives.Applications: momentum measurement in magnetic fields, calorimetry, particle identification.

Learning Prerequisites

Recommended courses

Elementary particle I, knowledge in nuclear and particle physics

Learning Outcomes

By the end of the course, the student must be able to:

• Categorize processes

• Describe energy deposite processes

• Quantify availabe signal

Transversal skills

• Communicate effectively with professionals from other disciplines.

Teaching methods

Slides, blackboard and exercises in class

Assessment methods

Oral exam

2017-2018 COURSE BOOKLET

Particle detection Page 1 / 2

Supervision

Office hours NoAssistants NoForum NoOthers During exercises and at office if requried

Resources

Bibliography

K.Kleinknecht: Detectors for Particle Radiation, CambridgeW.R.Leo: Techniques for Nuclear and Particle Physics Experiments, Springer

2017-2018 COURSE BOOKLET

Particle detection Page 2 / 2

PHYS-415 Particules élémentaires IBay Aurelio

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Langue françaisCrédits 4Session HiverSemestre AutomneExamen OralCharge 120hSemaines 14Heures 4 hebdo

Cours 2 hebdoExercices 2 hebdo

Résumé

Présentation des propriétés des particule, leurs symétries et leurs interactions. Introduction à l' électrodynamiquequantique et aux règles de Feynman.

Contenu

Introduction :Le Modèle Standard, une étape vers la Grande Unification.Détecteurs, accélérateurs, radioactivité, rayonnement cosmique. Les particules en astrophysique et cosmologie.Relativité restreinte, équations de Klein-Gordon et de Dirac.

Propriétés des particules :Masse, charge, temps de vie, spin, moment magnétique...

Symétries et lois de conservation :Invariance par translation et rotation, parité, conjugaison de charge, inversion temporelle, violation de P et de CP,théorème CPT, l'isospin.

QED :Introduction. Les règles de Feynman. Les facteurs de forme.

Compétences requises

Cours prérequis indicatifs

Cours de Physique nucléaire et corspusculaire I et II, Physique quantique I, II

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Analyser les phénomènes physiques submicroscopiques

Méthode d'enseignement

Ex cathedra et exercices en classe

Méthode d'évaluation

examen oral (100%)

Ressources

Bibliographie

2017-2018 LIVRET DE COURS

Particules élémentaires I Page 1 / 2

Polycopié

Sites web

• http://lphe.epfl.ch/~bay

Préparation pour

Méthodes et concepts sont à large spectre d'utilisation; Introduction aux cours de 3ème cycle

2017-2018 LIVRET DE COURS

Particules élémentaires I Page 2 / 2

PHYS-416 Particules élémentaires IIBay Aurelio

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Langue françaisCrédits 4Session EtéSemestre PrintempsExamen OralCharge 120hSemaines 14Heures 4 hebdo

Cours 2 hebdoExercices 2 hebdo

Résumé

Présentation des théories d'interaction electro-faible et forte qui constituent le Modèle Standard des particules. Ondiscute aussi des nouvelles théories proposées pour résoudre les difficultés du Modèle Standard.

Contenu

Partons et quarks :Diffusion électron-nucléon, annihilation électron-positron au LEP, jets et cordes.L'interaction faible :La théorie de Fermi, théorie V-A. Désintégration du pion et du muon. La théorie de Cabibbo. Les bosons W et Z et leurobservation aux collisionneurs.Modèle des quarks et QCD :SU(3) saveur, structure mésonique et baryonique. SU(N). Quarkonium. La Couleur.Théories de jauge et le Modèle Standard :Structure globale et locale. Théories de Yang et Mills. La brisure spontanée de symétrie. La théorie Electro-Faible :SU(2)xU(1), le mécanisme du Higgs. GUTs, la grande unification

Compétences requises

Cours prérequis indicatifs

Cours de physique nucléaire et corpusculaire I et II, Physique quantique I et IIParticules élémentaires I

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Analyser les phénomènes physiques submicroscopiques

Méthode d'enseignement

Ex cathedra et exercices en classe

Méthode d'évaluation

examen oral (100%)

Ressources

Bibliographie

Polycopié

Sites web

2017-2018 LIVRET DE COURS

Particules élémentaires II Page 1 / 2

• http://lphe.epfl.ch/~bay

Préparation pour

Méthodes et concepts sont à large spectre d'utilisation; Introduction aux cours de 3ème cycle

2017-2018 LIVRET DE COURS

Particules élémentaires II Page 2 / 2

PHYS-411 Physics of atoms, nuclei and elementary particlesNakada Tatsuya

Cursus Sem. Type

Génie nucléaire MA1 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

In this lecture, symmetry and conservation law are applied to derive wave functions for elementary particles. Relativisticwave functions are analysed and applied for massive and massless particles. Different ideas on antiparticles areexplored.

Content

- Introduction to general concepts commonly used in atomic, nuclear and elementary particle physics.- Symmetry principles.- Description of forces.- Scaler, spinor and vector field- Relativic wave function

Learning Prerequisites

Required courses

Quantum MechanicsElectrodynamicsSpecial relativity

Recommended courses

Nuclear and particle physics

Important concepts to start the course

Symmetry and conservationLorentz invarianceSpin and statistics

Learning Outcomes

By the end of the course, the student must be able to:

• Sketch the basic concept of symmetry and conservation law

• Apply various hypothesises to a given problem

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

2017-2018 COURSE BOOKLET

Physics of atoms, nuclei and elementary particles Page 1 / 2

Teaching methods

Ex cathedra, exercises in class and assignment presentation

Expected student activities

Solving problems given as excersises

Assessment methods

Evaluating the Interaction during the courses

Resources

Notes/Handbook

Lecture notes and problems are haded out prior to the course

2017-2018 COURSE BOOKLET

Physics of atoms, nuclei and elementary particles Page 2 / 2

PHYS-307 Physics of materialsMari Daniele

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

This course illustrates some selected chapters of materials physics needed to understand the mechanical and structuralproperties of solids. This course deals in particular with the physics of dislocation. The diffusion and phasetransformations are complementary bases.

Content

1. Materials, definitions, structureBinding energy in metals, ceramics and polymers. Crystal structure and amorphous materials. Theory of elasticity: stressand strain fields.2. DiffusionDiffusion in alloys. Physical and chemical diffusion.3. Plastic deformation and dislocationsPhenomenology. Deformation of single crystals. Burgers' vector. Elasticity theory: interactions among dislocations.Creation and annihilation of dislocations.4. Dislocation dynamicsFriction forces due to the lattice, to point defects and to dislocations. Movement equations. Partial dislocations andstacking faults. Dissociation mechanisms: dislocations in face centred cubic metals.5. Dislocation kineticsThermal activation of plastic deformation. Dislocation climb. Deformation tests. Relaxation phenomena and mechanicalspectroscopy.6. Thermodynamics of phase transformationsThermodynamical principles of phase transformations.Phase diagrams. Alloy solidification. Solid-solid phasetransformations.

Keywords

dislocations, deformation, diffusion, elasticity, phase transformations, melting, precipitation crystallography

Learning Prerequisites

Recommended courses

linear algebra I,IIanalysis III, IVphysics I,II

Learning Outcomes

By the end of the course, the student must be able to:

• Develop the formalism of dislocation theory

• Model the plastic deformation of materials

2017-2018 COURSE BOOKLET

Physics of materials Page 1 / 2

• Sketch a phase diagram and its thermodynamic basis

Transversal skills

• Use a work methodology appropriate to the task.

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedra with exercises in the classroom

Assessment methods

Oral exam in French or English

Prerequisite for

Physics of new materials

2017-2018 COURSE BOOKLET

Physics of materials Page 2 / 2

PHYS-434 Physics of photonic semiconductor devicesButté Raphaël

Cursus Sem. Type

Génie électrique et électronique MA2, MA4 Obl.

Ing.-phys MA2, MA4 Opt.

Microtechnique MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam WrittenWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Series of lectures covering the optical properties of direct bandgap semiconductors including processes such asabsorption, spontaneous and stimulated emission; the physics of heterostructures and the properties of the main lightemitting devices that are light-emitting diodes and laser diodes.

Content

1. Semiconductor materials for optoelectronics2. Light-matter interaction in semiconductorsFermi's golden rule, absorption, optical susceptibility, Bernard-Duraffourg condition, spontaneous and stimulatedemission of radiation, dielectric function, optical constants, radiative lifetime, photoluminescence spectra3. Nanostructures and microcavitiesGrowth techniques, quantum wells, superlattices, quantum dots, microcavities, Purcell effect4. ElectroluminescenceLight-emitting diodes, quasi-Fermi levels, emission spectra, efficiency, radiative and nonradiative lifetimesApplications for displays and solid-state lighting5. Laser diodesStimulated emission, optical gain, transparency and threshold currents, spectral characteristics, far-field and near-fieldemission patterns, efficiency, waveguidesFabry-Perot laser diodes, distributed feedback and vertical cavity laser structuresBandgap engineering, quantum well laser diodes, separate confinement heterostructuresQuantum cascade lasersRelaxation oscillation frequency

Learning Prerequisites

Recommended courses

Semiconductor electronic devices

Learning Outcomes

By the end of the course, the student must be able to:

• Argue

• Contextualise

• Sketch

• Synthesize

• Generalize

• Structure

• Propose

• Assess / Evaluate

2017-2018 COURSE BOOKLET

Physics of photonic semiconductor devices Page 1 / 2

Transversal skills

• Use a work methodology appropriate to the task.

• Plan and carry out activities in a way which makes optimal use of available time and other resources.

• Communicate effectively with professionals from other disciplines.

• Take feedback (critique) and respond in an appropriate manner.

Teaching methods

Ex cathedra with exercises

Expected student activities

Read the bibliographical ressources in order to fully integrate and properly use the physical concepts seen in the lecturesand the exercicesBe able to generalize the above-mentioned concepts to a wide variety of systems/devices

Assessment methods

oral exam (100%)

Resources

Bibliography

"Optoelectronics", E. Rosencher & B. Vinter (Cambridge University Press, Cambridge, 2002)"Wave mechanics applied to semiconductor heterostructures", G. Bastard (Les éditions de physiques, LesUlis, 1991)"Optical processes in semiconductors", J. I. Pankove (Dover, New York, 1971)"Diode lasers and photonic integrated circuits", L. A. Coldren & S. W. Corzine (John Wiley & Sons, Inc.,New York, 1995)

Ressources en bibliothèque

• Optical processes in semiconductors / Pankove

• Diode lasers and photonic integrated circuits / Coldren

• Wave mechanics applied to semiconductor heterostructures / Bastard

• Optoelectronics / Rosencher

2017-2018 COURSE BOOKLET

Physics of photonic semiconductor devices Page 2 / 2

PHYS-328 Physique des nouveaux matériauxForró László, Magrez Arnaud

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Langue françaisCrédits 4Session EtéSemestre PrintempsExamen OralCharge 120hSemaines 14Heures 4 hebdo

Cours 2 hebdoExercices 2 hebdo

Résumé

Les nouveaux matériaux jouent un role central dans la physique des solides et dans le developpement de nouvellesfonctionalités. Ce cours abordera la synthese, la caracterisation et l'application de materiaux récemment découverts:graphene,nanotubes de carbone, systemes electroniques 2D...

Contenu

Les terminologies associées aux cours seront éclaircies lors de deux cours d'introduction, après quoi, les thèmessuivants seront abordés:

- L'intérêt de tels matériaux- La synthèse de ces matériaux- Leurs caractérisations- Leurs propriétés physiques- Leurs applications potentielles.

Le cours de 2 heures/semaine est suivi de 2 heures d'exercices assez simples, afin de bien intégrer les notions vues aucours.

Mots-clés

fullerenes, nanotubes de carbone, graphene, nanodiamant,sytemes électroniques bidimensionels (dichalcogenures, isolants topologiques)

Compétences requises

Cours prérequis obligatoires

Physique des solides

Cours prérequis indicatifs

methodes experimentales

Concepts importants à maîtriser

structure cristalline, strucure de bande, magnétisme de base, transport électronique

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Exposer

• Critiquer

2017-2018 LIVRET DE COURS

Physique des nouveaux matériaux Page 1 / 2

• Interpréter

• Optimiser

• Prévoir

• Décrire

Compétences transversales

• Fixer des objectifs et concevoir un plan d'action pour les atteindre.

• Planifier des actions et les mener à bien de façon à faire un usage optimal du temps et des ressources à disposition.

• Utiliser une méthodologie de travail appropriée, organiser un/son travail.

• Donner du feedback (une critique) de manière appropriée.

• Mettre à disposition la documentation appropriée pour les réunions de groupe.

• Etre responsable de sa propre santé et sécurité au travail ainsi que de celles des autres.

• Etre responsable des impacts environnementaux de ses actions et décisions.

Méthode d'enseignement

cours magistraleexercisesvisite de laboratoire

Travail attendu

3 heures par semaine

Méthode d'évaluation

Examen oral

Encadrement

Office hours OuiAssistants Oui

Ressources

Bibliographie

la bibliographie relevante est proposé pendant le cours.

Polycopiés

Support de cours sous forme de fichier powerpoint.

Liens Moodle

• http://moodle.epfl.ch/course/view.php?id=9991

2017-2018 LIVRET DE COURS

Physique des nouveaux matériaux Page 2 / 2

PHYS-419 Physique du solide IIIMila Frédéric

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Langue françaisCrédits 4Session HiverSemestre AutomneExamen OralCharge 120hSemaines 14Heures 4 hebdo

Cours 2 hebdoExercices 2 hebdo

Résumé

Le but de ce cours est de proposer une introduction à la théorie de quelques phénomènes remarquables en matièrecondensée tels que l'effet Hall quantique ou la supraconductivité.

Contenu

Magnétisme des isolants

- Rappels de théorie des bandes- Isolants de Mott et modèle de Hubbard- Modèle de Heisenberg- Théorie des ondes de spin pour les systèmes ferromagnétiques et antiferromagnétiques

Magnétisme orbital des métaux et des semiconducteurs

- Niveaux de Landau- Oscillations de De Haas-Van Alphen et de Shubnikov-De Haas- Gaz d'électrons 2D: effet Hall quantique entier et fractionnaire

Théorie de la supraconductivité

- Interaction électron-phonon- Théorie BCS- Théorie de Landau-Ginsburg- Quantification du flux et effet Josephson

Compétences requises

Cours prérequis indicatifs

Maîtrise de la physique quantique et de la physique du solide au niveau de "Lectures on quantummechanics" par Gordon Baym ou de "Solid state physics" par Ashcroft et Mermin

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Explorer les propriétés quantiques des solides

Compétences transversales

• Faire une présentation orale.

2017-2018 LIVRET DE COURS

Physique du solide III Page 1 / 2

• Accéder aux sources d'informations appropriées et les évaluer.

Méthode d'enseignement

Ex cathedra. Exercices en salle

Méthode d'évaluation

Examen oral. Exposés facultatifs en cours de semestre donnant le droit de choisir le premier sujet de l'examen oral.

Ressources

Bibliographie

Notes de cours rédigées par l'enseignant.

Préparation pour

Physique du solide IV

2017-2018 LIVRET DE COURS

Physique du solide III Page 2 / 2

CH-462 Physique moléculaireNagornova Boyarkine Natalia

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Langue françaisCrédits 4Session HiverSemestre AutomneExamen OralCharge 120hSemaines 14Heures 4 hebdo

Cours 2 hebdoExercices 2 hebdo

Résumé

Les bases de la physique moléculaire (structure vibrationnelle, rotationnelle et électronique)sont présentées afin decomprendre la spectroscopie infrarouge, Raman et visible-ultraviolette. Par ailleurs, un introduction aux propriétés desymétrie pour la description des molécules polyatomiques.

Contenu

- Structure des molécules (courbes et surfaces du potentiel)

- Spectres vibrationnels des molécules diatomiques et polyatomiques (spectres infrarouge, Raman). Règles de sélection

- Spectroscopie électronique des molécules. Approximation de Born-Oppenheimer, principe de Franck-Condon.

- Propriétés de symétrie des molécules

Compétences requises

Cours prérequis indicatifs

Physique quantique

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Argumenter

• Concevoir

• Critiquer

Compétences transversales

• Comparer l'état des réalisations avec le plan et l'adapter en conséquence.

• Fixer des objectifs et concevoir un plan d'action pour les atteindre.

• Planifier des actions et les mener à bien de façon à faire un usage optimal du temps et des ressources à disposition.

Méthode d'enseignement

Ex cathedra et exercices

Méthode d'évaluation

2017-2018 LIVRET DE COURS

Physique moléculaire Page 1 / 2

Examen oral

Ressources

Bibliographie

Polycopiés

Préparation pour

Master, thèse de doctorat

2017-2018 LIVRET DE COURS

Physique moléculaire Page 2 / 2

PHYS-423 Plasma physics IIRicci Paolo

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Mineur en Energie H Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Following an introduction of the main plasma properties, the fundamental concepts of the kinetic theory of plasmas areintroduced. Applications concerning laboratory, space, and astrophysical plasmas are discussed throughout the course.

Content

I Collisional and relaxation phenomena- Inelastic collisions: ionization and recombination, degree of ionization- Elastic collisions: Coulomb collisions- Isotropisation and thermalisation- Plasma resistivity and the runaway regimeII Transport in plasmas- Random walk and diffusion- Ambipolar and cross-field diffusion- Energy and particle confinementIII Waves in cold magnetized plasma- Dielectric tensor- Resonances and cut-offs- Parallel and perpendicular propagationIV Wave-particle interaction and kinetic description of waves in hotun-magnetized plasmas- The Vlasov-Maxwell model- Resonant wave-particle interaction and Landau damping- Stability criteria and streaming instabilities- Langmuir and ion-acoustic waves and instabilitiesV Waves in hot magnetized plasmasVI Examples of nonlinear effects

Learning Prerequisites

Recommended courses

Electrodynamics, Plasma Physics I

Learning Outcomes

By the end of the course, the student must be able to:

• Manipulate the fundamental elements of the plasma kinetic theory

Teaching methods

Ex cathedra and exercises in class

2017-2018 COURSE BOOKLET

Plasma physics II Page 1 / 2

Assessment methods

oral exam

2017-2018 COURSE BOOKLET

Plasma physics II Page 2 / 2

PHYS-424 Plasma physics IIIFurno Ivo, Reimerdes Holger

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Mineur en Energie E Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

This course completes the knowledge in plasma physics that students have acquired in the prevoious two courses, witha discussion of different applications, in the fields of controlled fusion and magnetic confinement, astrophysical andspace plasmas, and societal and industrial applications

Content

A. Fusion-Basics (the need for fusion, advantages, nuclear reactions, the Lawson criterion) AF-Design of a fusion reactor; Inertial confinement: physics issues and the reactor concept-Magnetic Confinement: MHD reminder, tokamak and other options (stellarator)-Magnetic Confinement: tokamak equilibrium, instabilities and operational limits-Magnetic Confinement: Heating and Current drive-Magnetic Confinement: Transport – theoretical basis and phenomenology-Magnetic Confinement: Burning plasmas, ITER and the reactor (safety, Tritium,…)

B. Plasma applications-The basics of plasma discharges for applications-Examples of plasma applications

C. Plasmas in nature (3 lessons - Dr. Ivo Furno)-Plasma astrophysics-Space plasmas-Joint problems of space and fusion plasmas – Magnetic reconnection and particle acceleration

Learning Prerequisites

Recommended courses

Electrodynamics, Plasma physics I and II

Learning Outcomes

By the end of the course, the student must be able to:

• Design the main elements of a magnetic confinement system

• Describe various applications of plasma physics

• Identify the main components and physics issues of a magnetic fusion reactor

• Describe the main scientific issues in space and astrophysical plasmas

• Describe the main scientific issues in plasma applications

Teaching methods

2017-2018 COURSE BOOKLET

Plasma physics III Page 1 / 2

Ex cathedra and exercises in class

Assessment methods

oral exam

Resources

Websites

• https://crppwww.epfl.ch/physplas3/

2017-2018 COURSE BOOKLET

Plasma physics III Page 2 / 2

PHYS-453 Quantum electrodynamics and quantum opticsDupertuis Marc-André

Cursus Sem. Type

Génie électrique et électronique MA1, MA3 Opt.

Ing.-phys MA1, MA3 Opt.

Microtechnique MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

This course on one hand develops the quantum theory of electromagnetic radiation from the principles of quantumelectrodynamics. On the other hand it explores the main consequences of light-matter interaction in applications likeoptical spectroscopies and devices.

Content

1. Introduction to quantum opticsFrom Einstein to our days : a historical perspective.

2. Classical and quantum fieldsQuantization of the radiation field in Coulomb gauge. Summary of second quantization formalism for fermions. Particularquantum states of radiation (Fock states, coherent states, thermal mixture, squeezed states)

3. Semi-classical theory of the light-matter interaction : optical resonances and non-linearities, the laserDynamics of the light-matter interaction. Optical Bloch equations. Classification of optical non-linearities. The laserequations. Static and dynamical phenomena.

4. Classical and quantum noise, quantum theory of measurement, quantum correlationsCorrelation functions of the radiation field and coherence. Quantum theory of measurement and photodetection.Interferometry and correlation functions. Entangled states of the electromagnetic field. Quantum spectroscopies

Learning Prerequisites

Recommended courses

Quantum physics

Learning Outcomes

By the end of the course, the student must be able to:

• Understand the quantum theory of electromagnetic radiation

• Understand the different effects of light-matter interaction

• Master the calculational techniques

Teaching methods

Ex cathedra with exercises, presentation of scientific articles by the students

Assessment methods

oral (75%), presentation and discussion of a scientific article in a team of two (25%)

2017-2018 COURSE BOOKLET

Quantum electrodynamics and quantum optics Page 1 / 2

2017-2018 COURSE BOOKLET

Quantum electrodynamics and quantum optics Page 2 / 2

PHYS-431 Quantum field theory IRattazzi Riccardo

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The goal of the course is to introduce relativistic quantum field theory as the framework to describe fundamentalinteractions.

Content

1. IntroductionConceptual foundations. Overview of particle physics. Units of measure in high energy physics.2. Classical Field TheoryLagrangian and Hamiltonian formulation. Noether's theorem.3. Symmetry PrinciplesElements of group theory and group representations. Lie groups. Lie Algebras. Lorentz and Poincaré groups. Parity, timereversal and charge conjugation.4. Free Quantum FieldsCanonical quantization. Creation and annihilation operators. Fock space. Free relativistic particles. Bosons andFermions. Symmetries in the quantum theory. Causality.5. Classification of quantum fieldsReal and complex scalar fields. Spinor field. Quantized electromagnetic field. Massive vector field.6. Interacting fieldsFormal theory of relativistic scattering. Asymptotic states. Lippmann-Schwinger equation. S-matrix and Feynmandiagrams. Cross sections and decay-rates.7. Fundamental interactionsQuantum electrodynamics. The weak force and parity violation. The strong force. Overview of the Standard Model.

Learning Prerequisites

Recommended courses

Electrodynamics, Special relativity, Quantum Mechanics I and II.Mathematical Physics warmly recommended.

Learning Outcomes

By the end of the course, the student must be able to:

• Expound the theory and its phenomenological consequences

• Formalize and solve the problems

Transversal skills

• Use a work methodology appropriate to the task.

Teaching methods

2017-2018 COURSE BOOKLET

Quantum field theory I Page 1 / 2

Ex cathedra and exercises in class

Assessment methods

oral

Resources

Bibliography

• "An introduction to quantum field theory / Michael E. Peskin, Daniel V. Schroeder". Année:1995.ISBN:0-201-50397-2

• "The quantum theory of fields / Steven Weinberg". Année:2005. ISBN:978-0-521-67053-1

• "Quantum field theory / Claude Itzykson, Jean-Bernard Zuber". Année:1980. ISBN:0-07-032071-3

• "Relativistic quantum mechanics / James D. Bjorken, Sidney D. Drell". Année:1964

• "A modern introduction to quantum field theory / Michele Maggiore". Année:2010.ISBN:978-0-19-852074-0

• "Théorie quantique des champs / Jean-Pierre Derendinger". Année:2001. ISBN:2-88074-491-1

Ressources en bibliothèque

• An Introduction to Quantum Field Theory / Peskin

• The Quantum Theory of Fields / Weinberg

• Quantum Field Theory / Itzykson

• Relativistic Quantum Mechanics / Drell

• A Modern Introduction to Quantum Field Theory / Maggiore

• Théorie quantique des champs / Derendinger

Websites

• http://itp.epfl.ch/page-60677-en.html

Prerequisite for

Recommended for Theoretical Physics and for Particle Physics

2017-2018 COURSE BOOKLET

Quantum field theory I Page 2 / 2

PHYS-432 Quantum field theory IIRattazzi Riccardo

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

The goal of the course is to introduce relativistic quantum field theory as the framework to describe fundamentalinteractions.

Content

1. IntroductionConceptual foundations. Overview of particle physics. Units of measure in high energy physics.2. Classical Field TheoryLagrangian and Hamiltonian formulation. Noether's theorem.3. Symmetry PrinciplesElements of group theory and group representations. Lie groups. Lie Algebras. Lorentz and Poincaré groups. Parity, timereversal and charge conjugation.4. Free Quantum FieldsCanonical quantization. Creation and annihilation operators. Fock space. Free relativistic particles. Bosons andFermions. Symmetries in the quantum theory. Causality.5. Classification of quantum fieldsReal and complex scalar fields. Spinor field. Quantized electromagnetic field. Massive vector field.6. Interacting fieldsFormal theory of relativistic scattering. Asymptotic states. Lippmann-Schwinger equation. S-matrix and Feynmandiagrams. Cross sections and decay-rates.7. Fundamental interactionsQuantum electrodynamics. The weak force and parity violation. The strong force. Overview of the Standard Model.

Learning Prerequisites

Recommended courses

Electrodynamics, Special relativity, Quantum Mechanics I and II, Mathematical Physics stronglyrecommended

Learning Outcomes

By the end of the course, the student must be able to:

• Expound the theory and its phenomenological consequences

• and solve the problems

Transversal skills

• Use a work methodology appropriate to the task.

Teaching methods

2017-2018 COURSE BOOKLET

Quantum field theory II Page 1 / 2

Ex cathedra and exercises in class

Assessment methods

oral exam

Resources

Bibliography

• "An introduction to quantum field theory / Michael E. Peskin, Daniel V. Schroeder". Année:1995.ISBN:0-201-50397-2

• "The quantum theory of fields / Steven Weinberg". Année:2005. ISBN:978-0-521-67053-1

• "Quantum field theory / Claude Itzykson, Jean-Bernard Zuber". Année:1980. ISBN:0-07-032071-3

• "Relativistic quantum mechanics / James D. Bjorken, Sidney D. Drell". Année:1964

• "A modern introduction to quantum field theory / Michele Maggiore". Année:2010.ISBN:978-0-19-852074-0

• "Théorie quantique des champs / Jean-Pierre Derendinger". Année:2001. ISBN:2-88074-491-1

Ressources en bibliothèque

• An Introduction to Quantum Field Theory / Peskin

• The Quantum Theory of Fields/ Weinberg

• Quantum Field Theory / Itzykson

• Relativistic Quantum Mechanics / Drell

• A Modern Introduction to Quantum Field Theory / Maggiore

• Théorie quantique des champs / Derendinger

Websites

• http://itp.epfl.ch/page-60688-en.html

2017-2018 COURSE BOOKLET

Quantum field theory II Page 2 / 2

PHYS-454 Quantum optics and quantum informationDupertuis Marc-André

Cursus Sem. Type

Génie électrique et électronique MA2, MA4 Opt.

Ing.-phys MA2, MA4 Opt.

Microtechnique MA2, MA4 Opt.

Photonique Obl.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Fully quantum theory of the light-matter interaction. Study of interacting quantum systems. Introduction to a few modernproblems in quantum optics. Introduction to quantum information. Quantum cryptography and quantum computing.

Content

5. Fully quantum theory of the light-matter interaction, and of the laser.Jaynes-Cummings model and spontaneous emission. Master equation for system-reservoir interaction within theBorn-Markov approximation. Fully quantum theory of the laser: photon statistics and laser linewidth.6. Introduction to many-body effects in semiconductors. Microcavities.Semiconductor Bloch equations. Excitons. « Incoherent » relaxation terms. Correlation phenomena in atoms andquantum boxes. Microcavities, strong coupling and polaritons.7. Mechanical effects in the light-matter interaction.Radiation pressure. Casimir effect.8. Introduction to quantum theory of information.The quantum bit. Entangled states and Bell inequalities. Quantum cryptography, Quantum teleportation, Quantumsimulation and quantum computers.

Learning Outcomes

By the end of the course, the student must be able to:

• Master the calculational techniques

Assessment methods

oral (75%), presentation in a team of two of a scientific article (25%)

2017-2018 COURSE BOOKLET

Quantum optics and quantum information Page 1 / 1

PHYS-425 Quantum physics IIIChapochnikov Mikhail

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

To introduce several advanced topics in quantum physics, including semiclassical approximation, path integral,scattering theory, and relativistic quantum mechanics

Content

1. Transition from quantum physics to classical mechanics: the coherentstates and the Ehrenfest theorem.

2. Semiclassical approximation in quantum mechanics: general form ofthe semiclassical wave function and matching conditions at turningpoints.

3. One-dimensional problems in semiclassical approximation:Bohr-Sommerfeld quantisation condition and the Planck formula,tunnelling probability through a potential barrier, lifetime of ametastable state, splitting of the energy levels in a double-wellpotential.

4. Path integral representation of quantum mechanics: Schrodingerequation from path integral, physical interpretation of the pathintegral and the principle of minimal action, Euclidean path integraland statistical physics, "instanton" and "bounce".

5. Scattering theory: cross-section, Moller operators and S-matrix,Green's functions and the scattering amplitude, the T-matrix and theLippmann-Schwinger formula, perturbation theory for amplitudes and theBorn approximation, scattering amplitude via stationary scatteringstates.

6. Relativistic quantum mechanics: the Dirac equation and itsnon-relativistic limit - the Pauli equation.

Learning Prerequisites

Required courses

Quantum physics I, II

Teaching methods

Ex cathedra and exercises

Assessment methods

2017-2018 COURSE BOOKLET

Quantum physics III Page 1 / 2

oral exam (100%)

Supervision

Office hours Yes

Resources

Bibliography

C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum MechanicsL. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theoryR. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path IntegralsJ. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic CollisionsJ. D. Bjorken, S. D. Drell, Relativistic Quantum MechanicsA. Messiah, Quantum Mechanics

Ressources en bibliothèque

• J. D. Bjorken, S. D. Drell, Relativistic Quantum Mechanics

• (Ebook) L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory

• C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics

• R. P. Feynman, A. R. Hibbs, Quantum Mechan

• J. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions

• A. Messiah, Quantum Mechanics

• L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=14069

Prerequisite for

Quantum Physics IV

2017-2018 COURSE BOOKLET

Quantum physics III Page 2 / 2

PHYS-426 Quantum physics IVVichi Alessandro

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green'sfunctions in terms of Feynman diagrams. Several applications will be presented, including non-perturbative effects, suchas tunneling and instantons.

Content

1. Path Integral formalism

• Introduction

• Propagators and Green's functions.

• Fluctuation determinants.

• Quantum mechanics in imaginary time and statistical mechanics.

2. Perturbation theory

• Green's functions: definition and general properties

• Functional methods

• perturbation theory by Feynman diagrams

3. Seminclassical approximation

• The semiclassical limit

4. Non perturbative effects

• reflection and tunneling through a barrier

• Instantons

5. Interaction with external magnetic field

• gauge invariance in quantum mechanics

• Landau levels.

• Aharonov-Bohm effect.

• Dirac's magnetic monopole and charge quantization.

Keywords

Path integral formalism. Green's function. Determinants. Feynman diagram. Feynman rules. Perturbation theory.Non-perturbative effects. Tunnelling. Instantons. Gauge-invariance.

Learning Prerequisites

2017-2018 COURSE BOOKLET

Quantum physics IV Page 1 / 3

Recommended courses

Quantum physics I and IIQuantum Field Theory I

Important concepts to start the course

Solid knowledge and practice of calculus (complex variable) and linear algebra

Learning Outcomes

By the end of the course, the student must be able to:

• Formulate a quantum mechanical problem in terms of a Path integral

• Compute gaussian path integral as determinants

• Express physical quantities in terms of the Green function

• Translate a Feynman diagram into a mathematical expression

• Compute a Feynman diagram

• Compute tunneling rates in simple quantum potentials

• Formulate the quantum theory of an particle interacting with an external electromagnetic field

Transversal skills

• Use a work methodology appropriate to the task.

• Set objectives and design an action plan to reach those objectives.

Teaching methods

Ex cathedra and exercises

Expected student activities

Participation to classes. Solving problem sets during exercise hours.

Assessment methods

Oral final exam

Supervision

Office hours YesAssistants YesForum NoOthers Office hours: Wednesday 14-15

Resources

Bibliography

"Quantum Mechanics and Path Integrals" , R.P. Feynman and A.R. Hibbs, McGraw-Hill, 1965."Techniques and applications of Path Integration'', L.S. Schulman, John Wiley & Sons Inc., 1981."Path Integral Methods and Applications", R. MacKenzie, arXiv:quant-ph/0004090."Modern Quantum Mechanics'', J.J. Sakurai, The Benjamin/Cummings Publishing Company, 1985."Aspects of Symmetry", S. Coleman, Cambridge University Press, 1985."Path Integrals in Quantum Mechanics, Statistics and Polymer Physics'', Hagen Kleinert, World Scientific,1995.

Ressources en bibliothèque

2017-2018 COURSE BOOKLET

Quantum physics IV Page 2 / 3

• Quantum Mechanics and Path Integrals

• Modern Quantum Mechanics

• Path Integrals in Quantum Mechanics, Statistics and Polymer Physics

• Path Integral Methods and Applications

• Techniques and applications of path integration

• Aspects of Symmetry

Notes/Handbook

Prof R. Rattazzi: Lecture Notes for Quantum Mechanics IVhttp://itp.epfl.ch/webdav/site/itp/users/174685/private/RevisedLectureNotesV2.pdf

2017-2018 COURSE BOOKLET

Quantum physics IV Page 3 / 3

PHYS-450 Radiation biology, protection and applicationsBochud François, Damet Jerome, Frajtag Pavel

Cursus Sem. Type

Génie nucléaire MA1 Obl.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

LangueCrédits 4Session HiverSemestre AutomneExamen OralCharge 120hSemaines 14Heures 3 hebdo

Cours 2 hebdoExercices 1 hebdo

Résumé

Un cours d'introduction aux concepts de base de la détection des radiations et des interactions et des dépôts d'énergiepar rayonnement ionisant à la matière, la production des radioisotopes et de ses applications dans la médecine, del'industrie et de la recherche.

Contenu

• Les notions de base: sources de rayonnement et d'interaction avec la matière, production de radioisotopes enutilisant des réacteurs et des accélérateurs, la radioprotection et le blindage.

• Les applications médicales: les outils de diagnostic, les produits radiopharmaceutiques, les méthodes de traitementdu cancer tels que la brachythérapie, la thérapie par capture de neutrons et la protonthérapie.

• Les applications industrielles: indicateurs basées sur les radiations, la radiochimie, les techniques de traçage,les batteries de radioisotopes, la stérilisation, etc.

• Les applications de la recherche: la datation par des méthodes nucléaires, les applications en sciences del'environnement et de la vie, etc.

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Expliquer les principes fondamentaux de physique qui sous-tendent la radiothérapie, par exemple types derayonnement, la structure atomique, etc.

• Expliquer les mécanismes d'interaction des rayonnements ionisants à énergies en keV et MeV avec la matière.

• Expliquer les principes de la dosimétrie des rayonnements.

• Expliquer les principes de la physique des radiations thérapeutiques, y compris les rayons X, physique de faisceaud'électrons et des sources radioactives, l'utilisation de sources non scellées et la curiethérapie.

• Décrire comment utiliser les appareils de radiothérapie pour une tumeur à la fois la localisation, de la planification etde traitement.

• Définir assurance qualité et de contrôle de la qualité, dans le cadre de la radiothérapie et aux exigences légales.

• Expliquer les principes et la pratique de la radioprotection, les limites de dose, le dépistage et les mécanismes deprotection.

• Expliquer l'utilisation des rayonnements dans les applications industrielles et de recherche.

Méthode d'enseignement

Lectures, numerical exercises

Méthode d'évaluation

2017-2018 LIVRET DE COURS

Radiation biology, protection and applications Page 1 / 2

oral exam

Ressources

Bibliographie

Les notes de cours seront distribuées

• James E. Martin, "Physics for Radiation Protection", Wiley-VCH (2nd edition, 2006)

• F.M. Khan, "The Physics of Radiation Therapy", Lippincott, Williams & Wilkins, (4th edition, 2010)

• G.C. Lowenthal, P.L. Airey, "Practical Applications of Radioactivity and Nuclear Reactions", CambridgeUniversity Press (2001)

• K.H. Lieser, "Nuclear and Radiochemistry", Wiley-VCH (2nd edition, 2001)

Ressources en bibliothèque

• Physics for Radiation Protection / Martin

• The Physics of Radiation Therapy / Khan

• Practical Applications of Radioactivity and Nuclear Reactions / Lowenthal

• Nuclear and Radiochemistry / Lieser

2017-2018 LIVRET DE COURS

Radiation biology, protection and applications Page 2 / 2

PHYS-452 Radiation detectionLamirand Vincent Pierre

Cursus Sem. Type

Génie nucléaire MA1 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 3Session WinterSemester FallExam OralWorkload 90hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

The course presents the detection of ionizing radiation in the keV and MeV energy ranges. It introduces the physicalprocesses of radiation/matter interaction. It covers the several steps of detection, and the detectors, instrumentations andmeasurements methods commonly used in the nuclear field.

Content

• Interaction of radiation with matter at low energies: X-rays/gammas, charged particles and neutrons up to MeVrange, ionisation, nuclear cross sections.

• Characteristics and types of detectors: gas detectors, semiconductor detectors, scintillators and optical fibers,fission chambers, meshed and pixel detectors

• Signal processing and analysis: types of electronics, signal collection and amplification, particle discrimination,spatial and time resolution

• Nuclear instrumentation and measurements: principle of measurements, spectrometry, common detectioninstrumentations, applications in nuclear engineering and R&D.

Keywords

radiation detection; radiation-matter interaction; ionizing radiation; detector; signal processing; nuclear instrumentation;measurement methods

Learning Outcomes

By the end of the course, the student must be able to:

• Explain interaction processes of ionising radiation and matter

• Describe the production of a detection signal and its processing

• Explain the operation of all types of commonly used detectors

• Assess / Evaluate the detection system and method required for a specific measurement

Transversal skills

• Communicate effectively with professionals from other disciplines.

Teaching methods

Lectures, exercices, presentations, practice.

Expected student activities

2017-2018 COURSE BOOKLET

Radiation detection Page 1 / 2

Attendance at lectures and excercices, short presentations.

Assessment methods

Oral exam

Supervision

Assistants Yes

Resources

Bibliography

Radiation detection and measurement, Glenn F. Knoll. Wiley 2010Practical Gamma-Ray Spectrometry, Gordon R. Gilmore, Wiley & Sons 2008

Ressources en bibliothèque

• Radiation detection and measurement, Glenn F. Knoll

• Practical Gamma-Ray Spectrometry, Gordon R. Gilmore

2017-2018 COURSE BOOKLET

Radiation detection Page 2 / 2

PHYS-447 Reactor TechnologyPrasser Horst-Michael

Cursus Sem. Type

Génie nucléaire MA1 Obl.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 3 weekly

Lecture 2 weeklyExercises 1 weekly

Summary

Reactor core cooling, power limits and technological consequences due to fuel, cladding and coolant properties, mainprinciples of reactor and power plant design including auxiliary systems are explained. System technology of mostimportant thermal and fast reactor types is introduced.

Content

- Fuel rod, LWR fuel elements- Temperature field in fuel rod- Reactor core, design- Flux and heat source distribution, cooling channel- Single-phase convective heat transfer, axial temperature profiles- Boiling crisis and DNB ratio- Pressurized water reactors, design- Primary circuit design- Steam generator heat transfer, steam generator types- Boiling water reactors- Reactor design- LWR power plant technology, main and auxiliary systems- Breeding and transmutation, purpose of generation IV systems- Properties of different coolants and technological consequences- Introduction into gas-cooled reactors, heavy water moderated reactors, sodium and led cooled fast reactors, molten saltreactors, accelerator driven systems

Learning Outcomes

By the end of the course, the student must be able to:

• Assess / Evaluate the performance of reactor types

• Systematize reactor system components

• Formulate safety requirements for reactor systems

Transversal skills

• Access and evaluate appropriate sources of information.

• Collect data.

Teaching methods

Lectures, numerical exercises

2017-2018 COURSE BOOKLET

Reactor Technology Page 1 / 2

Assessment methods

oral exam

2017-2018 COURSE BOOKLET

Reactor Technology Page 2 / 2

PHYS-427 Relativity and cosmology IChapochnikov Mikhail

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Introduce the students to general relativity and its classical tests.

Content

Special Relativity (Review):

• Lorentz transformations

• Energy-momentum tensor

General relativity:

• Equivalence principle

• Tensor analysis and physics in curved space-time

• Einstein's equations

• Schwarzschild solution

• Classical tests of Einstein's theory

• Gravitational waves

Learning Prerequisites

Required courses

Analytical mechanicsClassical Electrodynamics

Learning Outcomes

By the end of the course, the student must be able to:

• Explain the basic concepts of special and general relativity

• Describe physical phenomena in different coordinate systems

• Compute Christofell symbols and curvatures from a given line element

• Solve Einstein's field equations for static spherically symmetric problems

• Explain the observational effects at the scale of the Solar System that cannot be described by Newtonian gravity

Teaching methods

Ex cathedra and exercices in classroom

Assessment methods

2017-2018 COURSE BOOKLET

Relativity and cosmology I Page 1 / 2

final exam 100%

Supervision

Office hours YesAssistants No

Resources

Bibliography

-

Ressources en bibliothèque

• Gravitation and Cosmology / Weinberg

• Gravitation / Mizner

• The classical theory of fields / Landau

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=14022

2017-2018 COURSE BOOKLET

Relativity and cosmology I Page 2 / 2

PHYS-428 Relativity and cosmology IIChapochnikov Mikhail

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism ofcosmology, the observational status of Hot Big Bang theory and discusses major physical processes in the earlyUniverse.

Content

- Basic facts about the Universe- Red shift and Hubble expansion- Homogeneous spaces and Friedman-Robertson-Walker metric- Open, closed and spatially flat universe- Matter dominated and radiation dominated Universe- Cosmological constant and accelerated universe expansion- Physical processes in the early Universe and the cosmic microwave background radiation- Inflationary cosmology

Keywords

1. Expansion of the Universe2. Hot Big Bang theory3. Dark matter4. Accelerated expansion of the Universe5. Inflation6. Cosmic Microwave background radiation

Learning Prerequisites

Required courses

Analytical MechanicsClassical ElectrodynamicsStatistical Physics IRelativity and Cosmology I

Recommended courses

Quantum Physics IIIRelativistic quantum fields INuclear and Particle Physics I, II

Learning Outcomes

By the end of the course, the student must be able to:

2017-2018 COURSE BOOKLET

Relativity and cosmology II Page 1 / 2

• Estimate the lifetime of the Universe, knowing the cosmological parameters

• Formulate the main observational evidence for the hot Big Bang theory

• Describe basic cosmological epochs

Transversal skills

• Use a work methodology appropriate to the task.

Teaching methods

Ex cathedra and exercises

Assessment methods

final exam 100%

Supervision

Office hours Yes

Resources

Bibliography

1. L. Landau, Lifshitz, "The classical Theory of Fields"2. S. Weinberg, "Gravitation and Cosmology"3. E. Kolb, M. Turner, "The Early Universe"

Ressources en bibliothèque

• Gravitation and Cosmology / Weinberg

• The Early Universe / Kolb

• The classical Theory of Fields / Landau

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=14203

2017-2018 COURSE BOOKLET

Relativity and cosmology II Page 2 / 2

PHYS-400 Selected topics in nuclear and particle physicsBlanc Frédéric

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

This course presents de physical principles and the recent research developments on three topics of particle and nuclearphysics: the physics of neutrinos, dark matter, and plasmas of quark and gluons. An emphasis is given on experimentalaspects in these three fields.

Content

Neutrino physics:

• Absolute neutrino mass, beta and double beta desintegration experiments. Mass generation mechanism, Majoranaand Dirac particles.

• Neutrino oscillations, MNS matrix.

• Cosmic neutrinos : origin, energy spectrum and detection.

Dark matter:

• Evidence for dark matter from astronomical and cosmological data.

• Relic particles of the "Big bang". Candidates for dark matter, and link with particle physics beyond the StandardModel.

• Direct and indirect searches for dark matter.

Quark gluon plasma (QGP):

• Plasma of quark and gluons: properties, plasma signatures, production in the collisions of heavy ions. Implications incosmology.

Learning Prerequisites

Recommended courses

Nuclear and particle physics I and II, Quantum mechanics I and II, Elementary particle physics I, Physics ofatoms, nuclei and elementary particles

Learning Outcomes

By the end of the course, the student must be able to:

• Interpret fundamental results in neutrino, dark matter, and quark and gluon plasma physics

• Identify the physical observables in these three fields of research

• Judge the experimental methods and results presented in scientific publications

• Discuss the experimental principles in these fields

2017-2018 COURSE BOOKLET

Selected topics in nuclear and particle physics Page 1 / 2

• Assess / Evaluate the experimental sensitivity of experiments

Teaching methods

Ex cathedra and exercises in the classroom

Assessment methods

oral exam (100%)

Supervision

Office hours NoAssistants YesForum No

2017-2018 COURSE BOOKLET

Selected topics in nuclear and particle physics Page 2 / 2

PHYS-433 Semiconductor physics and fundamentals of electronic devicesButté Raphaël

Cursus Sem. Type

Génie électrique et électronique MA1, MA3 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam WrittenWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Series of lectures encompassing the fundamentals of semiconductors and the description of the main microelectronicdevices built from semiconductors going from the p-n junction to the MOSFETs, which are at the heart of theCMOS-technology with an emphasis on downscaling issues.

Content

1. Electronic properties of semiconductors- Crystalline structures and energy band diagrams- Impurities and doping- Carrier statistics in equilibrium and out-of-equilibrium- Electron transport in weak and strong fields- Generation and recombination processes2. Theory of junctions and interfaces- p-n and metal-semiconductor junctions- Oxide-semiconductor and heterojunction interfaces- Principles of bipolar transistor operation3. Field effect devices- MESFET, MOSFET and HEMT transistors- Downscaling principles- Submicron devices

Learning Prerequisites

Recommended courses

Introduction Solid State Physics

Learning Outcomes

By the end of the course, the student must be able to:

• Argue

• Contextualise

• Sketch

• Synthesize

• Generalize

• Structure

• Propose

• Assess / Evaluate

Transversal skills

2017-2018 COURSE BOOKLET

Semiconductor physics and fundamentals of electronic devices Page 1 / 2

• Use a work methodology appropriate to the task.

• Plan and carry out activities in a way which makes optimal use of available time and other resources.

• Take feedback (critique) and respond in an appropriate manner.

• Communicate effectively with professionals from other disciplines.

Teaching methods

Ex cathedra with exercises

Expected student activities

Read the bibliographical ressources in order to fully integrate and properly use the physical concepts seen in the lecturesand the exercicesBe able to generalize the above-mentioned concepts to a wide variety of systems/devices

Assessment methods

oral exam (100%)

Resources

Bibliography

S. M. Sze, "Physics of semiconductor devices" 2nd edition (John Whiley & Sons, New York, 1981)P. Y. Yu & M. Cardona, "Fundamentals of Semiconductors, Physics and Materials Properties" 2nd edition(ou > 2nd ed.) (Springer, Berlin, 1999)N. W. Ashcroft and N. D. Mermin, "Solid State Physics" (Saunders College Publishing, Fort Worth, 1976)

Ressources en bibliothèque

• Fundamentals of Semiconductors / Yu

• Physics of semiconductor devices / Sze

• Solid State Physics / Ashcroft

2017-2018 COURSE BOOKLET

Semiconductor physics and fundamentals of electronic devices Page 2 / 2

PHYS-420 Solid State Physics IVRønnow Henrik Moodysson

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Solid State Physics IV provides a materials and experimental technique oriented introduction to electronic and magneticproperties of strongly correlated electron systems. Established knowledge is complemented by current research trends,aiming to prepare the students for independent research.

Content

1. Scattering methods- Neutron scattering- Resonant X-ray scattering- Angular resolved photoemission2. Bulk methods- Transport, specific heat and susceptibility3. Strongly correlated electron materials- Transition metal oxides- Cuprates: high-temperature superconductivity- manganites: colossal magnetoresistance4. Quantum magnets- Low-dimensional magnetism- Rare-earth magnetism- Quantum phase transitions

Learning Prerequisites

Recommended courses

Solid state physics I and II or the equivalent to one of the book Aschroft&Mermin or Kittel

Learning Outcomes

By the end of the course, the student must be able to:

• Formulate the neutron scattering cross sections

• Decide which experimental technique is suited to investigate a certain phenomenon or property

• Interpret experimental data in the context of phenomena encountered during the course

• Sketch the key electronic and magnetic properties of transition metal material classes

Transversal skills

• Make an oral presentation.

• Summarize an article or a technical report.

2017-2018 COURSE BOOKLET

Solid State Physics IV Page 1 / 2

Teaching methods

Lectures, exercises, visit to Paul Scherrer Institut

Assessment methods

oral exam (100%)

Resources

Websites

• http://lqm.epfl.ch/

2017-2018 COURSE BOOKLET

Solid State Physics IV Page 2 / 2

PHYS-435 Statistical physics IIIWyart Matthieu

Cursus Sem. Type

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam WrittenWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety ofcomplex systems (random walks and polymers, liquid crystals, disordered systems, information theory and errorcorrecting codes).

Content

1. Introduction to statistical field theory2. Random walks and self-avoiding polymers3. Transition in liquid crystals4. Information theory and error correcting codes5. Disorded systems (glasses and jamming transition)

Learning Prerequisites

Recommended courses

Statistical Physics II

Learning Outcomes

By the end of the course, the student must be able to:

• Solve problems in complex systems

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedra. Exercises in class

Assessment methods

written exam

2017-2018 COURSE BOOKLET

Statistical physics III Page 1 / 1

PHYS-436 Statistical physics IVKippenberg Tobias

Cursus Sem. Type

Ing.-phys MA2, MA4 Opt.

Physicien MA2 Opt.

Language EnglishCredits 4Session SummerSemester SpringExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

his course covers non-equilibrium statistical processes in the classical regime and treats important historicaldevelopments by Einstein, Boltzmann and Kubo. The second part of this course covers modern Quantum Stochasticmethods and their application in modern Quantum Optics and Condensed Matter

Content

I. Introduction to classical non-equilibrium thermodynamics- Brownian Motion and Einstein relation- Fokker Planck Equation- Boltzmann Equation- Anomalous Diffusion, Levy Flights- Boltzmann EquationII. Statistical Mechanics of Linear Response- Kubo Formula- Fluctuation Dissipation Theorem- Markovian ProcessesIII. Open Quantum Systems: Quantum mechanical description of Dissipation- The quantum Master equation and open quantum systems- The damped quantum mechanical harmonic oscillator- Two level system in a heat bath, de-phasing processes.- Quantum stochastic Langevin equations- Examples: Dephasing of Josephson junction QubitsIV. Quantum Noise and Quantum Measurements

- Quantum Noise and basics of linear quantum measurements- Classical versus Quantum mechanical spectral densitiesIV. Special topics: stochastic quantum methods in Quantum Optics- Applications of quantum statistical processes and simulation thereof using the "MATLAB" Quantum Optical Toolbox- Input-output theory Gardiner and Collet- Applications of stochastic quantum Langevin equations in Quantum Optics:Master equation, Fokker Planck equation forOptical Parametric Oscillator, Ito formalism, Phase diffusion in Lasers- Thermodynamical noise in Physics and precision measurements

Learning Prerequisites

Recommended courses

Statistical physics I, II

Learning Outcomes

By the end of the course, the student must be able to:

2017-2018 COURSE BOOKLET

Statistical physics IV Page 1 / 2

• Formulate correct mathematical models of statistical processes

• Solve succesfully the quantum master equation

• Apply numerical simulation tools to non-equilibrium systems

• Explore the quantum optical numerical Toolbox (MATLAB)

• Visualize non-equilibrium processes numerically

• Elaborate modern examples from Literature of Non-Equilibrium Processes

Transversal skills

• Make an oral presentation.

• Summarize an article or a technical report.

• Take feedback (critique) and respond in an appropriate manner.

• Use both general and domain specific IT resources and tools

Expected student activities

Students are expected to give (as a Bonus) a final presentation about a published journal paper that is related tonon-equilibrium stastistical Physics in Biology, Sociology or Quantum Optics of Condensed Matter.

Assessment methods

Final presentationOral (or written exam)Homeworks

Resources

Ressources en bibliothèque

• Statistical Methods in Quantum Optics 1

• Input and Output in damped quantum systems / Gardiner

• Irreversibility and Generalized Noise / Callen

• Quantum Optics Toolbox

• Statistical Physics II: Nonequilibrium Statistical Mechanics / Kubo

• Quantum Noise

• Introduction to Quantum Noise, Measurement and Amplification / Clerk

• Nonequilibrium statistical mechanics / Zwangzig

Moodle Link

• http://moodle.epfl.ch/enrol/index.php?id=13933

2017-2018 COURSE BOOKLET

Statistical physics IV Page 2 / 2

PHYS-441 Statistical physics of biomacromoleculesDe Los Rios Paolo

Cursus Sem. Type

Bioingénierie MA1, MA3 Opt.

Ing.-phys MA1, MA3 Opt.

Physicien MA1, MA3 Opt.

Sciences du vivant MA1, MA3 Opt.

Language EnglishCredits 4Session WinterSemester FallExam OralWorkload 120hWeeks 14Hours 4 weekly

Lecture 2 weeklyExercises 2 weekly

Summary

Introduction to the application of the notions and methods of theoretical physics to problems in biology.

Content

1. Introduction to polymer theory: on and off-lattice polymers; statisticalproperties; exact, numerical and approximate results; correlation length;self-avoidance.2. Interacting polymers: experiments and models; analytical andnumerical solutions of the models; phase diagram.3. Proteins: their role in biology; basic components; experimental results;models; analytical and numerical results.

Learning Prerequisites

Recommended courses

Course of Statistical Physics

Learning Outcomes

By the end of the course, the student must be able to:

• Solve problems in polymers statistical physics

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedra. Exercises in class

Assessment methods

oral

2017-2018 COURSE BOOKLET

Statistical physics of biomacromolecules Page 1 / 1

PHYS-597 Travail de spécialisation pour master en physiqueProfs divers *

Cursus Sem. Type

Physicien MA1, MA2,MA3

Obl.Langue français /

anglaisCrédits 30Session Hiver, EtéSemestre AutomneExamen Pendant le

semestreCharge 900hSemainesHeures 680 hebdo

TP 680 hebdo

Remarque

Durée du travail de spécialisation interne : un semestre - Durée du travail de spécialisation externe: min. 4 mois, max. 6mois / Duration of a internal specialisation semester (EPFL): one semester. External specialisation semester: min. 4months, max. 6 months

Résumé

Les étudiants ont l'occasion de développer leurs connaissances dans un projet qui va contribuer à les spécialiser dansun domaine de la physique. Le projet peut avoir lieu dans un laboratoire externe, dans un laboratoire à l'EPFL ou dansun institut de recherche.

Contenu

Les étudiants développent un projet lié à la physique qui leur permet d’acquérir de nouvelles connaissances et del’expérience pratique dans un domaine spécifique sous la supervision d’un professeur de la section de physique. Leresponsable du travail peut demander à l’étudiant d’obtenir une formation spécifique.

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Développer un problème de physique complexe

• Défendre une solution

• Synthétiser la démarche pour solutionner le problème

• Modéliser un système ou un processus

• Appliquer des compétences à un concept ou une solution technique

Compétences transversales

• Comparer l'état des réalisations avec le plan et l'adapter en conséquence.

• Etre conscient et respecter les règles de l'institution dans laquelle vous travaillez.

• Gérer ses priorités.

• Ecrire un rapport scientifique ou technique.

• Communiquer efficacement et être compris y compris par des personnes de languages et cultures différentes.

• Recueillir des données.

• Accéder aux sources d'informations appropriées et les évaluer.

Méthode d'évaluation

2017-2018 LIVRET DE COURS

Travail de spécialisation pour master en physique Page 1 / 2

Rapport écrit et présentation orale devant le personnel concerné et devant un responsable de la section

2017-2018 LIVRET DE COURS

Travail de spécialisation pour master en physique Page 2 / 2