Notes for Biochemistry - PBworkstfssbio.pbworks.com/w/file/fetch/41658770/Biochemistry...

13
Notes for Biochemistry A. De Jong/TFSS 2011 1 of 13 The information in this document is meant to cover IB topic 3.13.3 and 7.5. Functional Groups A functional group is a group of atoms that confers highly specific properties to an organic molecule. The functional groups most common to biological molecules are: Acetyl group Phosphate group SS Disulfide group (bridge) Review of Bondage, I mean Bonding! Matter is anything that has volume and mass. Energy is the ability to do work. All atoms have electrons arranged in shells or energy levels around a nucleus made of 1 or more protons & 0 or more neutrons. All electrons have the same mass and charge – they differ in the amounts of potential energy they possess. Electrons have more potential energy the further they are from the nucleus (i.e. the higher the energy level). The valence electrons occupy the outermost energy level of an atom. The maximum number of valence electrons any atom may have is 8. These are the electrons involved in chemical bonding. Ionic bonds are formed when valence electrons move from one atom to another. Anions (e.g. Cl and OH ) are attracted to cations (e.g. Na + and NH 4 + ). Covalent bonds are formed when atoms share valence electrons. Nonpolar covalent bonds are formed when electrons are shared equally between atoms. They may be single (e.g. CH 4 ), double (e.g. O 2 ) or triple (e.g. N 2 ). Polar covalent bonds are formed when electrons are shared unequally between atoms. The molecule will have a positive end (where the electrons spend less time) and a negative end (where the electrons spend more time). The more electronegative an atom is, the greater the chance that electrons will be closer to it than a less electronegative atom. Water is a polar covalent molecule.

Transcript of Notes for Biochemistry - PBworkstfssbio.pbworks.com/w/file/fetch/41658770/Biochemistry...

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     1  of  13  

The  information  in  this  document  is  meant  to  cover  IB  topic  3.1-­‐3.3  and  7.5.    Functional  Groups    A  functional  group  is  a  group  of  atoms  that  confers  highly  specific  properties  to  an  organic  molecule.    The  functional  groups  most  common  to  biological  molecules  are:    

 

Acetyl  group    

     Phosphate  group      -­‐S-­‐S-­‐     Disulfide  group  (bridge)  

 Review  of  Bondage,  I  mean  Bonding!      Matter  is  anything  that  has  volume  and  mass.    Energy  is  the  ability  to  do  work.    All  atoms  have  electrons  arranged  in  shells  or  energy  levels  around  a  nucleus  made  of  1  or  more  protons  &  0  or  more  neutrons.    All  electrons  have  the  same  mass  and  charge  –  they  differ  in  the  amounts  of  potential  energy  they  possess.    Electrons  have  more  potential  energy  the  further  they  are  from  the  nucleus  (i.e.  the  higher  the  energy  level).    The  valence  electrons  occupy  the  outermost  energy  level  of  an  atom.    The  maximum  number  of  valence  electrons  any  atom  may  have  is  8.    These  are  the  electrons  involved  in  chemical  bonding.    Ionic  bonds  are  formed  when  valence  electrons  move  from  one  atom  to  another.    Anions  (e.g.  Cl-­‐  and  OH-­‐)  are  attracted  to  cations  (e.g.  Na+  and  NH4

+).    Covalent  bonds  are  formed  when  atoms  share  valence  electrons.  

• Non-­‐polar  covalent  bonds  are  formed  when  electrons  are  shared  equally  between  atoms.    They  may  be  single  (e.g.  CH4),  double  (e.g.  O2)  or  triple  (e.g.  N2).  

• Polar  covalent  bonds  are  formed  when  electrons  are  shared  unequally  between  atoms.    The  molecule  will  have  a  positive  end  (where  the  electrons  spend  less  time)  and  a  negative  end  (where  the  electrons  spend  more  time).    The  more  electronegative  an  atom  is,  the  greater  the  chance  that  electrons  will  be  closer  to  it  than  a  less  electronegative  atom.    Water  is  a  polar  covalent  molecule.  

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     2  of  13  

 Hydrogen  bonds  are  formed  when  a  hydrogen  atom  that  is  covalently  bonded  to  an  electronegative  atom  is  attracted  to  another  electronegative  atom  on  another  molecule.    Hydrogen  bonds  typically  form  between  hydrogen  and  oxygen  or  hydrogen  and  nitrogen.    Although  only  about  5%  as  strong  as  a  covalent  bond,  hydrogen  bonds  are  usually  present  in  high  enough  numbers  that  stability  is  achieved.  (For  example,  the  two  strands  of  the  DNA  double  helix  are  held  together  by  hydrogen  bonds  between  A=T  &  C≡G  pairs).    Van  der  Waals  interactions  are  non-­‐polar  bonds  caused  by  accumulations  of  positive  or  negative  charges  at  the  ends  of  molecules.  They  are  transient  forces  &  change  rapidly.  

 Image  from  http://www.columbia.edu/cu/biology/courses/c2005/images/vdw.gif  

 Hydrophobic  interactions  occur  when  hydrophobic  substances  such  as  oil  droplets  are  mixed  in  water.    Oil  is  non-­‐polar,  so  has  no  real  attraction  to  other  oil  molecules,  but  the  high  attraction  between  water  molecules  tends  to  squeeze  oil  droplets  together,  forming  larger  drops.  

 Image  from  http://staff.jccc.net/pdecell/chemistry/hydrophobic.gif  

 

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     3  of  13  

Chemical  Elements  &  Water    The  most  frequently  occurring  elements  in  organisms  are:    carbon   C   - forms  long  chains  with  other  carbons  

- forms  4  covalent  bonds  with  other  atoms  oxygen   O   - forms  2  covalent  bonds  with  other  atoms  hydrogen   H   - forms  1  covalent  bond  with  other  atoms  nitrogen   N   - found  in  all  proteins  and  nucleic  acids    Other  elements  required  by  organisms  include:    sulphur   S   - found  in  all  proteins  phosphorus   P   - found  in  nucleic  acids  &  ATP  iron   Fe   - found  in  the  oxygen-­‐carrying  proteins  in  RBC’s  (hemoglobin)  sodium   Na   - required  for  nerve  impulse  transmission  potassium   K   - required  for  nerve  impulse  transmission  calcium   Ca   - required  for  muscle  contraction  and  synaptic  transmission    Water  (H2O)  is  made  from  a  flammable  gas  (H)  and  one  that  supports  combustion  (O).    Together,  they  form  a  liquid  that  puts  out  a  fire.    What  makes  water  special??    Water  is  a  polar  molecule.    

   

- water  molecules  attract  each  other  - hydrogen  bonds  (+/-­‐  attractions)  keep  water  molecules  together  - melting  &  boiling  points  are  relatively  high  for  the  molecule’s  size  

 

hydrogen  bond  

slight  positive  charge  

slight  negative  charge  

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     4  of  13  

Why  is  water  important  to  life?  - Its  transparency  allows  plants  to  live  in  aquatic  environments.  - Its  cohesive  properties,  a  result  of  hydrogen  bonding,  allow  water  to  travel  up  a  plant’s  

stem.  - It  is  a  solvent  for  ions  and  polar  molecules,  particularly  those  with  hydrogen  bonded  to  

oxygen  or  nitrogen,  because  hydrogen  bonds  can  form  between  water  and  the  solute.  - Ice  floats,  leaving  a  liquid  environment  beneath  for  aquatic  organisms  to  inhabit  during  

the  winter.  - Its  high  heat  of  evaporation  (540  cal/g)  allows  it  to  act  as  a  coolant  (sweating,  panting).  - Its  high  heat  capacity  (1.0  cal/g°C)  means  that  it  can  absorb  a  lot  of  heat  without  

undergoing  a  large  change  in  temperature.    This  helps  stabilize  body  temperature  and  protects  our  cells  against  the  ill  effects  of  a  large  external  temperature  change.  

 Blood  is  50%  water.    Cells  are  about  70%  water.    The  human  body  is  about  60%  water  by  weight.    Carbohydrates    Carbohydrates  are  a  loosely  defined  group  of  molecules  containing  carbon,  hydrogen  &  oxygen:  

• energy  is  stored  in  the  many  C-­‐H  bonds  • simplest  are  monosaccharides  (single  sugars),  with  an  empirical  formula  of  (CH2O)n    

o glucose,  galactose  and  fructose  are  monosaccharides  • disaccharides  are  linked  monosaccharides  (complex  sugars)  

o maltose,  lactose  and  sucrose  are  disaccharides  - maltose  is  a  disaccharide  of  α-­‐glucose  - lactose  is  a  disaccharide  of  α-­‐glucose  and  galactose  - sucrose  is  a  disaccharide  of  α-­‐glucose  and  fructose  

• polysaccharides  are  polymers  of  monosaccharides,  normally  glucose  o starch,  glycogen  and  cellulose  are  polysaccharides  

- starch  is  a  linear  polymer  of  α-­‐glucose  - glycogen  is  a  branched  polymer  of  α-­‐glucose  - cellulose  is  a  linear  polymer  of  β-­‐glucose  

• branched  polysaccharides  are  more  water-­‐soluble  than  straight  polysaccharides      Functions  of  Carbohydrates    

• α-­‐glucose  is  the  main  source  of  energy  for  cells  o β-­‐glucose  is  not  used  by  most  cells,  because  they  cannot  break  down  cellulose  

• lactose  is  the  sugar  found  in  milk  &  dairy  products      • glycogen  is  an  energy  storage  molecule  for  animals  • fructose  (fruit  sugar)  is  produced  by  cellular  respiration,  and  is  used  to  make  sucrose  • sucrose  is  produced  by  photosynthesis  in  leaves  and  transported  in  the  phloem  to  other  

parts  of  a  plant  to  be  used  as  food  energy  • cellulose  is  the  primary  structural  component  of  the  cell  walls  of  plants  • starch  is  an  energy  storage  molecule  for  plants    • ribose  and  deoxyribose  are  structural  components  of  nucleic  acids  

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     5  of  13  

 Structure  of  Monosaccharides  

   Di-­‐  and  polysaccharides  are  produced  by  dehydration  synthesis  (condensation)  reactions.    Synthesis  of  Maltose  

   

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     6  of  13  

Synthesis  of  Cellulose  

     Lipids    Lipids   are   a   loosely   defined   group   of   hydrophobic  molecules   containing   carbon,   hydrogen   &  oxygen:  

• energy  is  stored  in  the  many  C-­‐H  bonds  • fats  and  oils  (triglycerides)  are  composite  molecules  built  from  two  different  sub-­‐units:  

o glycerol,   the   “backbone”   to   which   fatty   acids   are   attached   (IUPAC   name   is  propane-­‐1,2,3-­‐triol)  

o fatty   acids,   which   may   be   saturated   (all   single   -­‐C-­‐C-­‐   bonds)   or   unsaturated  (having  one  or  more  double  -­‐C=C-­‐  bonds)  

• fats  and  oils  are  also  called  neutral  fats  because  they  are  not  electrically  charged  o fats  are  solid  at  room  temperature;  oils  are  liquid  at  room  temperature  

• waxes   are   also   lipids   –   composite  molecules   built   from   fatty   acids   and   a   “backbone”  other  than  glycerol  

o waxes  form  protective  coatings  on  feathers,  leaves,  etc.  • phospholipids  are  composite  molecules  built  from  glycerol,  fatty  acids,  and  a  negatively-­‐

charged  phosphate  group  o phospholipids  form  the  bulk  of  the  cell  membrane  

• steroids  are  hydrophobic  molecules  composed  of  four  fused  carbon  rings  

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     7  of  13  

 Phospholipid    

 

 Steroid  (cholesterol)    

 **Both  of  these  molecules  are  components  of  biological  membranes.    Building  Blocks  of  Triglycerides      Glycerol    

 

 Fatty  Acids    

   Functions  of  Lipids  

• energy  storage  (triglycerides)  • thermal  insulation  (adipose  tissue,  primarily  triglycerides)  • structural  component  of  cell  membranes  (phospholipids  &  cholesterol)  • steroid  synthesis  (cholesterol  is  turned  into  vitamin  D  &  steroid  hormones)  • chemical  messengers  (testosterone,  estrogen,  progesterone)  • protection  (waxes  prevent  dehydration)  

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     8  of  13  

 Synthesis  of  Triglycerides    

     Proteins    Proteins  are  un-­‐branched  polymers  of   amino  acids   joined  by  peptide  bonds.     For   this   reason,  they  are  often  called  polypeptides.    Amino   acids   are   small   molecules   with   the   same  general  structure  (at  right).    The  “R”  group  can  be  as  simple  as  a  single  hydrogen  atom,  as  with  glycine,  or  as  complex  as  a  benzene  ring,  as  in  phenylalanine.    

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     9  of  13  

Synthesis  of  Dipeptides  Amino  acids  are  connected  together  by  peptide  bonds.    A  dipeptide  consists  of  two  amino  acids  connected  by  one  peptide  bond.  

                                     

     Synthesis  of  Tripeptides  A  tripeptide  consists  of  three  amino  acids  connected  in  a  chain  by  two  peptide  bonds.        

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     10  of  13  

Levels  of  Protein  Structure  1. Primary  structure  is  the  order  of  amino  acids  in  the  polypeptide,  as  determined  by  DNA:    

met-­‐ala-­‐gly-­‐phe-­‐cys-­‐  etc.    2. Secondary  structure  is  the  folding  (β-­‐pleated  sheet)  or  coiling  (α-­‐helix)  of  the  chain,  

caused  by  interactions  between  side  chains  (R-­‐groups):  

 Image  from  http://kvhs.nbed.nb.ca/gallant/biology/secondary_structure.jpg  

 3. Tertiary  structure  is  the  overall  three-­‐dimensional  shape  

of  the  polypeptide.  - Globular  proteins  have  a  spherical  structure.    

Enzymes  (e.g.  catalase)  and  some  hormones  (e.g.  insulin)  are  globular  proteins.  

- Fibrous  proteins  have  a  tertiary  structure  that  is  a  long,  coiled  chain  and  have  long,  narrow  shapes.    Keratin  (hair  &  nails),  collagen  (bone  &  tendon)  and  myosin  (muscle)  are  fibrous  proteins.  

 4. Quaternary  structure  occurs  in  some  proteins,  and  is  the  

interaction  of  two  or  more  polypeptide  chains  (e.g.  hemoglobin),  or  a  polypeptide  chain  and  a  prosthetic  group.  

Image  from  http://www.uccs.edu/~rmelamed/MicroFall2002/  Chapter%202/protein%20types.jpg  

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     11  of  13  

Polar  &  Non-­‐Polar  Side  Chains  Of  the  20  amino  acids,  8  have  non-­‐polar  side  chains,  and  12  have  polar  side  chains.    This  helps  drive  protein  structure:  

• non-­‐polar  AAs  cause  channel  proteins  to  embed  in  a  membrane,  while  polar  AAs  at  either  end  allow  it  to  retain  position  among  the  hydrophilic  heads  of  phospholipids  

• polar  AAs  line  the  pore  of  a  channel  protein  to  allow  charged  particles  like  ions  to  pass  through  a  hydrophilic  channel  and  bypass  the  hydrophobic  fatty  acid  tails  

• polar  AAs  on  the  surface  of  a  protein  (like  an  enzyme)  allow  it  to  dissolve  in  aqueous  solutions  such  as  cytoplasm  or  plasma.  

• polar  and  non-­‐polar  AAs  contribute  to  the  specificity  of  enzymes  ■ polar  AAs  on  the  active  site  attract  polar  substrates  ■ non-­‐polar  AAs  on  the  active  site  attract  non-­‐polar  substrates  

 Functions  of  Proteins  

• enzymes  are  biological  catalysts  • chemical  messengers  (e.g.  the  hormone  insulin)  • antibodies  (immune  response)  • structural  proteins  (e.g.  collagen  in  tendons  &  skin)  • transport  (e.g.  hemoglobin  transports  oxygen  in  blood)  

 Can  you  un-­‐fry  an  egg?    The  tertiary  structure  of  a  protein  is  the  result  of  different  types  of  bonds  between  R-­‐groups  of  its  amino  acids.  

• Hydrogen  bonds  form  between  H  &  O  or  H  &  N  • Van  der  Waals  &  hydrophobic  interactions  • Ionic  bonds  (salt  bridges)  • Disulfide  bonds  form  between  the  R-­‐groups  of  cysteine  

                                   

 Image  modified  from  http://www.westga.edu/~chem/courses/chem1152/lectures/112Fe2599/img023.JPG      

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     12  of  13  

When  “something”  causes  these  bonds  to  be  broken,  the  protein  is  denatured.    That  “something”  could  be:  

1. Heat  –  high  temperatures  break  hydrogen  bonds.    This  makes  a  globular  protein  more  linear,  decreasing  its  solubility  in  water.    Albumin  is  a  protein  in  egg  white,  and  it  is  soluble  until  it  is  heated  –  it  turns  white  when  you  cook  an  egg.  

2. High  or  Low  pH  –  changes  in  pH  disrupt  ionic  bonds  &  Van  der  Waals  forces  3. Reducing  Agents  –  break  disulfide  bonds  (e.g.  perming  your  hair  breaks  –S-­‐S-­‐  bonds  &  

then  reforms  them  in  new  places)    So…the  final  word  is,  NO,  you  can’t  un-­‐fry  an  egg.    DNA      Structure  of  DNA:  

• DNA  is  a  double  helix  –  it  looks  a  bit  like  a  twisted  ladder  • It  is  made  of  two  polynucleotide  strands  wound  around  each  other.  • The  “backbone”  of  the  molecule  consists  of  alternating  deoxyribose  (sugar)  and  

phosphate  groups  • The  “rungs”  of  the  molecule  are  pairs  of  nucleotides,  attached  to  the  deoxyribose  on  

each  strand.  o Each  base  pair  consists  of  one  purine  (adenine  or  guanine)  and  one  pyrimidine  

(thymine  or  cytosine).   Adenine  forms  two  hydrogen  bonds  with  thymine   Guanine  forms  three  hydrogen  bonds  with  cytosine   Within  one  full  turn  of  the  double  helix,  there  are  approximately  25  

hydrogen  bonds,  which  gives  the  molecule  a  great  degree  of  stability.  • Adjacent  nucleotides  in  the  DNA  molecule  are  connected  by  phosphodiester  linkages  

 These  are  the  monomers  that  make  up  the  DNA  molecule:  

 

Notes  for  Biochemistry  

A.  De  Jong/TFSS  2011     13  of  13  

A  nucleotide  is  made  up  of  one  sugar,  one  phosphate,  and  one  purine  or  pyrimidine.  

 Image  from  http://www.msu.edu/course/isb/202/ebertmay/drivers/  nucleotide.jpg    

 Image  from  http://www.accessexcellence.org/RC/VL/GG/images/  dna_molecule.gif    

 Energy  Storage  in  Food  Molecules    Lipids  and  carbohydrates,  while  both  composed  of  carbon,  hydrogen  and  oxygen,  are  very  different  with  regards  to  energy  storage  and  availability.    

Role   Lipids   Carbohydrates  - energy  storage  - more  energy  per  gram  than  from  

carbohydrates  - carbon  in  lipids  is  more  reduced  than  in  

carbohydrates  - 9  kcal/g  

- less  energy  per  gram  than  from  lipids  

- 4  kcal/g  

- metabolic  water  source  

- much  metabolic  water  is  produced  on  oxidation  

- desert  animals  such  as  the  camel  retain  most  of  this  water  when  there  is  none  available  for  drinking  

- less  metabolic  water  is  produced  on  oxidation  

- solubility   - insoluble  in  water  - does  not  cause  osmotic  water  uptake  

- highly  soluble  in  water  - cause  osmotic  water  uptake  

- ease  of  breakdown  

- not  quickly  ‘digested’  - digestion  does  not  begin  until  the  small  

intestine  

- more  easily  hydrolyzed  - energy  transferred  quickly  - digestion  begins  in  the  

mouth