New Signaling pathways and cell cycle: modeling control...

32
Signaling pathways and cell cycle: modeling control mechanisms Nolwenn Le Meur J. Gruel ‐ M. Le Borgne ‐ N. Théret 6 ème journée de la plate‐forme GenOuest Rennes, 21 October 2008

Transcript of New Signaling pathways and cell cycle: modeling control...

  • Signaling
pathways
and
cell
cycle:
modeling
control
mechanisms

    Nolwenn
Le
MeurJ.
Gruel
‐
M.
Le
Borgne
‐
N.
Théret

    6ème
journée
de
la
plate‐forme
GenOuest

    Rennes,
21
October
2008

  • The
role
of
signaling
pathways
in
controling
cell
cycle

    M

    G2 S

    G1

    Adapté de ProteinLounge.com

  • Cell
cycle
[Basic]

    G2

    M

    G1

    S

    CyclinBCDK1

    CyclinACDK2

    CyclinDCDK4,6

    CyclinECDK2

  • Cell
cycle
and
signaling
pathway
[Basic]

    G2

    M

    G1

    S

    CyclinBCDK1

    CyclinACDK2

    CyclinECDK2

    CyclinDCDK4,6

    TGF‐βp15

    p16

    Rb

    E2F

    Rb

    E2F

    p27

    p21

  • Cell
cycle,
Signaling
and
Cancer

    Weinberg (2006) The biology of cancer. Garland

  • From
fibrosis
to
hepatocellular
carcinoma

    Bataller R. and Brenner D.A (2007). J. Clin. Inv.

  • TGF‐β
signaling
pathway

    • Extracellular matrix production

    • Cell proliferation

    • Functional differentiation

    • Cell motility

    • Apoptosis

  • ADAM12
and
TGF‐β
receptors

  • Smad2

    TGF‐β
signaling
pathways

    P

    IP

    Smad7II

    TGFβ

    ADAM12

    Smad2

    P

    IPII

    P

    IP

    Smad2

    II

    SARA

    TGFβ

    P

    SARA

    Proteasome

    Nucleus

    Clathrin-coated pit Caveolae

    Le Pabic et al. (2003) HepatologyAfti et al. (2006) J. Cell Biol

  • ADAM12
in
TGF‐β
receptor
trafficking

    Vilar et al. (2006) Plos ComputationZi et al. (2007) Plos One

    Afti et al. (2007) J Cell Bio.

  • ADAM12
and
TGF‐β
signal
strength

    J. Gruel et al. in preparation

    internalization towards the endosomerecycling from the endosomeconstitutive degradation

  • ADAM12
and
TGF‐β
signal
shape

    J. Gruel et al in preparation

    ConstitutiveCIRlike =

    Ligand-induced

    TGF-βsignalingactivity

    Time

  • FiNng
algorithm
as
a

exploratory
tool

    • Mathematical model

    • Differential equation

    • Solution space

    • Biological insigths

    • Signal strength

    • Signal shape

  • Signaling
pathways
and
cell
cycle

  • Cell
cycle
and
signaling
pathway
[Basic]

    G2

    M

    G1

    S

    CyclinBCDK1

    CyclinACDK2

    CyclinECDK2

    CyclinDCDK4,6

    TGF‐βp15

    p16

    Rb

    E2F

    Rb

    E2F

    p27

    p21

    p53

  • Modeling
the
Cell
Cycle

  • DifferentialStochasticsDiscrete Graphs

    dP/dt = Kev(E)+Kgv(G)+…

    P

    G

    H

    O

    --

    -

    ++

    Qualitative

    P

    EG H …

    DynamicQuantitative

    Network
Modeling
methods

  • Modeling
the
Cell
Cycle

  • Regulatory
Graph
of
Cell
Cycle

    Fauré
et
al.
(2006)
BioinformaLcs


  • Logical
States

    !

    G = g1,....gn{ }

    S = s1,...,sn( ) si " 0,...Maxi{ }

    Regulatory graphLogical state vector

    CycD Rb E2F CycE CycA P27 Cdc20 Chd1 UbcH10 CycB

    1 0 1 1 0 0 0 1 0 0

  • Davidich et al. (2006) Plos One

    Temporal
evoluUon
in
the
cell
cycle

  • Synchronous
versus
Asynchronous

    Fauré
et
al.
(2006)
BioinformaLcs


    Synchronous = parallel updatingAsynchronous = sequential updating

  • Discrete
dynamic
modeling

    • Signal
updaUng
in
the
model– Synchronous– Asynchronous– Interlacing

    • Answer
quesUons– Is
molecule
A
always
before
molecule
B?– Are
C
and
E
never
acUve
at
the
same
Ume?– …

  • Discrete
mulU‐clock
modeling:
a
new
formalism

    • Time
in
the
model• State
X
is
modified
by
a
signal
with
a
clock
hx

    hx

    hy

    X

    Y

    «
Tic……..Uc…
»

    «
Tic..Uc………..
»

    10

    1

    0

    hx
∨ hy

  • Discrete
mulU‐clock
modeling:
first
results

    State: D, f(), D0Clock: h_DF()= A and B when h_D

    synchronous asynchrone

  • Future
work

    • Temporal
constraints• Methods
and
metrics

    – analysis– diagnosUcs

    • ValidaUon– In
silico– In
vivo

    • Interface
biologist/computaUonal
model• Include
signaling
pathways

  • Plug‐ins:
Signaling
Pathways

    p15

    p16 TGFb

    p21

    Erk1/Erk2

    TransientacUvaUon

    ?

    Raf1+MEK1

    AP‐1
protein(Jos
+
Jun)

    Sustained
acUvaUon

    transcripUo

    n

    Meloche
and
Pouysségur
(2007)
Oncogene

  • Acknowledgements

    N. Théret G. Baffet Y. Arlot D. Lagadic-Gossmann

    M. Le Borgne J. Gruel O. Radulescu J. Nicolas

  • Shapiro G. (2006) Journal of Clinical Oncology

    Kinase
and
cell
cycle

  • P

    IP

    Smad4

    Raf

    ERK1/ERK2

    MEK’1/2

    PP

    PP

    PP

    Ras

    Sos GTPGrb2Smad2/3

    Smad2/3

    IISARA

    TAK1/TABMEKK1/4MLK3

    MEK/4

    P38/JNK

    P

    P

    P

    Ras/Rho

    PI3K

    EGFR

    EGF
and
TGF‐β

    TGFβEGF

    ProliferaUon

  • DegradaUonof
mitoUc
cyclin

    Cycline
Dcdk6

    KRP

    Cycline
Acdk2

    Cycline
Acdk1
(cdc2?)

    Cycline
Bcdk1
(cdc2)

    Cycline
Dcdk4

    Cycline
Dcdk6

    Cycline
ECdk2

    APCCSS52ubiquiUnylaUon

    Cycline
Bcdk1

    WEE1Cycline
B‐‐‐‐‐‐‐‐‐‐‐‐cdk1

    inacUve

    inacUve

    KRP

    cycline?cdk3

    TGFbeta

    p15p16

    RbE2F

    RbP

    P

    P

    E2F+

    p21

    p27

    p53p19 MDM2

    P

    The
role
of
signaling
pathways
in
controling
cell
cycle