Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials...

83
1 Nanometer-Scale III-V CMOS J. A. del Alamo Microsystems Technology Laboratories, MIT Acknowledgements: D. Antoniadis, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, N. Waldron, L. Xia Sponsors: Intel, FCRP-MSD Labs at MIT: MTL, NSL, SEBL Short Course on The Future of Semiconductor Devices and Integrated Circuits 34 th IEEE Compound Semiconductor IC Symposium Oct. 14th, 2012

Transcript of Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials...

Page 1: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

1

Nanometer-Scale III-V CMOS

J. A. del AlamoMicrosystems Technology Laboratories, MIT

Acknowledgements:

• D. Antoniadis, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, N. Waldron, L. Xia

• Sponsors: Intel, FCRP-MSD

• Labs at MIT: MTL, NSL, SEBL

Short Course on The Future of Semiconductor Devices and Integrated Circuits

34th IEEE Compound Semiconductor IC SymposiumOct. 14th, 2012

Page 2: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

1. The CMOS revolution2. Materials options for post-Si CMOS3. What have we learned from III-V HEMTs?4. III-V CMOS device design and challenges

– Critical issue #1: the gate stack– Critical issue #2: the ohmic contacts– Critical issue #3: the p-channel device– Critical issue #4: non-planar MOSFET designs– Critical issue #5: co-integration of nFETs and pFETs

5. Concluding remarks

2

Outline

Page 3: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

1. The CMOS Revolution: Smaller is Better!

Virtuous cycle of scaling exponential improvements in:– Transistor density (“Moore’s law”)– Performance – Power efficiency

Intel microprocessors Intel microprocessors

3

Page 4: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

The Si CMOS Revolution: Smaller is Better!

4

Koomey, Ann. Hist.

Computing 2011

Year of introduction

Page 5: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

CMOS scaling in the 21st century

Si CMOS has entered era of “power-constrained scaling”:– Microprocessor power density saturated at ~100 W/cm2

– Microprocessor clock speed saturated at ~ 4 GHz

5

Intel microprocessors

Pop, Nano Res 2010

Page 6: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Transistor scaling requires reduction in supply voltage

Consequences of Power Constrained Scaling

Power = active power + stand-by power

PA~ f CVDD2N N ↑ VDD ↓

6

#1 goal!clock frequency

transistor capacitance

operating voltage

transistor count

Page 7: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

CMOS power supply scaling

7

40 nm strained-Si MOSFET (Intel)

Dewey, IEDM 2009

Recently, VDD scaling very weakly…

… because Si performance degrades as VDD↓

Need scaling approach that allows VDD reduction while enhancing performance

Page 8: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

88

• Goals of scaling: – reduce transistor footprint – extract maximum ION

for given IOFF

How to enable further VDD reduction?

Page 9: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

99

How to enable further VDD reduction?

• Goals of scaling: – reduce transistor footprint – extract maximum ION

for given IOFF

• The path forward:– increasing electron velocity ION ↑ – tighter carrier confinement S ↓

VDD ↓

Page 10: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

10

2. Materials options for post-Si CMOS

Ideally want:• High electron and hole velocity

• Si: ve~1.5x107 cm/s, vh~1.2x107 cm/s

• High sheet-carrier concentration at low voltage

• Si: ~6x1012 cm-2 @1 V

• High enough bandgap energy

• Si: Eg=1.1 eV

• High-quality, reliable MOS gate stack

• Si: Dit~1011 eV-1.cm-2

• Same material for n-channel and p-channel device

• Easily integrable on Si substrate

• Manufacturable technology (top down, ex-situ dielectrics)

Page 11: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

11

Bandgap energy

~2x Si

~2x Si

InAs, InSb problematic but strong quantum confinement can be used to enhance effective bandgap

T=300 K

Ge

Si

GaAs

GaP

InPAlSb

GaSb

InAs

AlP

AlAs

0.8

0.4

1.2

1.6

2.0

2.4

2.8

0

5.4 5.6 5.8 6.0 6.2 6.4

Ene

rgy

Gap

(eV

)

Lattice Constant (Å)

InSb

adapted from Bennett

Ge

Si

GaAs

GaP

InPAlSb

GaSb

InAs

AlP

AlAs

0.8

0.4

1.2

1.6

2.0

2.4

2.8

0

0.8

0.4

1.2

1.6

2.0

2.4

2.8

0

5.4 5.6 5.8 6.0 6.2 6.45.4 5.6 5.8 6.0 6.2 6.4

Ene

rgy

Gap

(eV

)

Lattice Constant (Å)

InSb

adapted from Bennett

~0.5x Si

Page 12: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

12

Use mobility as proxy for velocity

~2x Si

~2x Si

GaAs, InP, GaSb: promising for nFETGe: borderline nFETGe, GaSb, InSb: borderline pFETGaAs: ruled out for pFET

300 K quantum-well or inversion layer mobility at any sheet carrier concentration:

del Alamo, Nature 2011

Page 13: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

13

The role of compressive biaxial strain

~2x Si InAs: hurts nFET (need tensile strain)Ge, GaSb, InSb: bigpFET improvement (µ>1,000 cm2.V.s)

~2x Si

Page 14: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

14

What about ternary III-Vs?

~2x Si

InGaAs: promising for nFETInGaSb: promising for pFETInGaAs: borderline for pFET

~2x Si

Page 15: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

15

Dit close to band edges

GaAs, GaSb: ruled out for nFETGaSb, InGaAs: ruled out for pFETLittle known about InAs or InSb

Buried-channel structures still possible for narrow-bandgap materials but need to provide appropriate band discontinuity

Dit(cm2/V.s)

Energy in bandgap

1013

1012

1011

GaAs

GaSb

GaAs

GaSb

InGaAs

InGaAs

InP

GeGe

Ev Ec

Page 16: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

16

InGaAs nFETInP nFETGe nFETInGaSb pFETGe pFET

Options for post-Si CMOS

~2x Si

~2x Si

Different lattice constants for n-channel and p-channel devices (except for Ge)

Page 17: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

1717

3. What have we learned from III-V HEMTs?

1717

The High Electron Mobility Transistor is now >30 years old!

Mimura, JJAPL 1980

Page 18: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

PHEMT ICs

18

Bipolar/E-D PHEMT process

Henderson, Mantech 2007

40 Gb/s modulator driver Tessmann, GaAs IC 1999

77 GHz transceiver

Carroll, MTT-S 2002

UMTS-LTE PA moduleChow, MTT-S 2008

Single-chip WLAN MMIC, Morkner, RFIC 2007 PHEMT MMIC market=$1.2B in 2011

Page 19: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Near-THz III-V FETs

fT in III-V FETs vs time:

19

(and MHEMT)

Current fmax record:fmax=1.25 THzKim IEDM 2010(Teledyne/MIT)

Current record:fT=688 GHzfmax=800 GHzKim IEDM 2011 (Teledyne/MIT)

(and MHEMT)

• For >20 years, record fT obtained on InGaAs-channel HEMTs• InGaAs-channel HEMTs offer record of balanced fT and fmax

Page 20: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

S D

Etch stopper

Barrier

Channel

Buffer

tins

Oxide

tch

Gate

Cap

2020

III-V HEMTs: excellent model system to explore logic suitability of III-Vs

2020

- QW channel (tch=10 nm):• InAs core (tInAs = 5 nm)• InGaAs cladding

n,Hall=13,200 cm2/V-sec- InAlAs barrier (tins=4 nm)- Ti/Pt/Au Schottky gate- Lg=30 nm Kim, EDL 2010

State-of-the-art: InAs HEMTs

Page 21: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

2121

Lg=30 nm InAs HEMT

21

• Large current drive: ION>0.5 mA/µm at VDD=0.5 V• High transconductance: gmpk= 1.9 mS/μm at VDD=0.5 V • VT = -0.15 V, RS=190 ohm.μm

21

Kim, EDL 2010

0.0 0.2 0.4 0.6 0.80.0

0.2

0.4

0.6

0.8

0.2 V

0.4 V

0 V

I D [m

A/

m]

VDS [V]

VGS =

-0.6 -0.4 -0.2 0.0 0.20.0

0.5

1.0

1.5

2.0

g m [m

S/m

]VGS [V]

VDS = 0.5 V

Page 22: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

109 1010 1011 10120

10

20

30

40

Frequency [Hz]

Gai

ns [d

B]

-1

0

1

2

3

K

H21

K

MSG/MAG

Ug

Lg=30 nm InAs HEMT

222222

• First transistor of any kind with both fT and fmax > 640 GHz• Current record is fT, fmax > 688 GHz from Teledyne/MIT

collaboration (Kim, IEDM 2011)22

Kim, EDL 2010

fT = 644 GHzfmax = 681 GHz

VDS=0.5 V, VGS=0.2 V

Page 23: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

30 nm InAs HEMT – Logic characteristics

232323

• S = 74 mV/dec, DIBL = 80 mV/V

23Kim, EDL 2010

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.410-9

10-8

10-7

10-6

10-5

10-4

10-3

VDS = 0.05 V

VDS = 0.5 V

IG

ID

VDS = 0.5 V

I D, I

G [A

/m

]

VGS [V]

VDS = 0.05 V

Page 24: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

30 nm InAs HEMT – Logic characteristics

242424

• S = 74 mV/dec, DIBL = 80 mV/V• At IOFF=100 nA/μm and VDD=0.5 V, ION=0.52 mA/μm

24

Kim, EDL 2010

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.410-9

10-8

10-7

10-6

10-5

10-4

10-3

VDS = 0.05 V

VDS = 0.5 V

IG

ID

VDS = 0.5 V

I D, I

G [A

/m

]

VGS [V]

VDS = 0.05 V

ION=0.52 mA/μm

IOFF=100 nA/μm

0.5 V

Page 25: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

FOM that integrates short-channel effects and transport: ION @ IOFF=100 nA/µm, VDD=0.5 V

InAs HEMTs: higher ION for same IOFF than Si. Why?

InAs HEMTs: Benchmarking with Si

25

KimIEDM 2008

Kim EDL 2010

Page 26: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

1. Very high electron injection velocity at the virtual source

EC

vinj

• vinj(InGaAs) increases with InAs fraction in channel

• vinj(InGaAs) > 2vinj(Si) at less than half VDD

• ~100% ballistic transport at Lg~30 nm

Why high ION?

Kim, IEDM 2009Liu, Springer 2010Khakifirooz, TED 2008del Alamo, Nature 2011

26

EV

Page 27: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

2. Quantum capacitance less of a bottleneck than previously believed

InAs channel: tch = 10 nm

-0.4 -0.2 0 0.2 0.40

10

20

30

40

VG [V]

Cap

acita

nce

[fF/

m2 ]

Experiment (CG)

Cins ( tins = 4 nm)

Ccent1

CQ1 (m||* = 0.026me )

CG (m||* = 0.026me )

CG ( 0.07 ) CG ( 0.05 )

Biaxial strain + non-parabolicity + strong quantization: m||

* ↑ CG ↑ ns ↑ ION ↑

Why high ION?

Jin, IEDM 2009

27

Page 28: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

3. Sharp subthreshold swing due to quantum-well channel

• Dramatic improvement in short-channel effects with thin channel• Thin channel does not degrade vinj at Lg~40 nm (Kim, IPRM 2011)

Why high ION?

Kim, IPRM 2010

28

60

70

80

90

16040 20012080

InAs HEMTs: tch = 5 nm

InAs HEMTs: tch = 10 nm

In0.7Ga0.3As HEMTs: tch = 13 nmSu

btre

shol

d sw

ing

[mV/

dec]

Lg [nm]

tins = 4 nm, Lside = 80 nm

state-of-the-art Si

Page 29: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.5010-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

VDS

= 0.5 V

I D, I G

[A/

m]

VGS [V]

tins

= 10 nm tins = 7 nm t

ins = 4 nm ID

IG

29

Limit to III-V HEMT Scaling: Gate Leakage Current

tins ↓ IG↑ Further scaling requires high-K gate dielectric

29

InAs HEMTLg = 30 nmtch = 10 nm

tins=4 nm

tins=7 nm

tins=10 nmdel Alamo. IPRM 2011

Page 30: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

30

4. III-V CMOS:device design and challenges

Intel’s 45 nm CMOSIII-V HEMT

• What do we preserve?

• What do we change?

~1 m

Modern III-V HEMT vs. modern Si MOSFET:

Page 31: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

III-V CMOS: HEMT features worth preserving

31

• Quantum-well channel: key to scalability

• Undoped channel:

• InAs-rich channel: for high mobility and velocity

• Buried-channel design:

• Raised source and drain regions: essential for scalability

• Undoped QW channel in extrinsic regions: key to low access resistance

Page 32: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

III-V CMOS: HEMT features to change

32

• Schottky gate: need MOS gate with very thin high-K dielectric

• T-gate: need rectangular gate

• Barrier under contacts: need to eliminate

• Alloyed ohmic contacts: change to refractory ohmic contacts

• Source and drain contacts: need self-aligned with gate

• Footprint: need to reduce by 1000x!

n+n+

QW-MOSFETHEMT

Page 33: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

III-V CMOS: other critical issues

33

• p-channel MOSFET: with performance >1/3 that of n-MOSFET

• Co-integration of n-FET and p-FET on Si: compact, planar surface

• Sub-10 nm MOSFET architectures

n-MOSFET p-MOSFET

Silicon

Page 34: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Focus on ION for fixed IOFF as FOM.Simple model:• Q-V characteristics from Poisson-Schrodinger simulations

(from subthreshold to strong inversion)• 2D ballistic velocity model (1 subband):

Lundstrom, TED 2002

• Add channel capacitance to match experimental S• Add ohmic drop on experimental RS

• No adjustable parameters beyond m*=0.05 mo

• Did not attempt to match VT

What can we expect from~10 nm III-V NMOS at 0.5 V?

34

Page 35: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Model validation: I-V characteristics of 30 nm InAs HEMT

35

ID(exp) > ID(sim): impact ionization?

VDS=0.5 VVDS=0.5 VRS=190 ohm.umS=74 mV/dec

• Excellent agreement through nearly five orders of magnitude of ID

• Residual disagreement due to impact ionization?

VDS=0.5 V

IOFF =100 nA/um

ION

ION

VDS=0.5 VIOFF

Page 36: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Projection to ~10 nm InAs NMOS at 0.5 V

36

Scale experimental 30 nm InAs HEMT by about 3x:

• Q-V characteristics from Poisson-Schrodinger simulator• Assume same short-channel effects: S=74 mV/dec• Examine impact of RS and Dit

tins=2.6 nm(=250)

tch=3 nmLg=10 nm

Page 37: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Role of RS

37

• RS depresses ION without changing IOFF

• To obtain ION>1 mA/µm, need RS<100 Ω.µm

VDS=0.5 V

IOFF =100 nA/um

ION

VDS=0.5 VIOFF

IONVDS=0.5 VLg=10 nmS=74 mV/dec

Page 38: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Role of Dit

38

• Dit in bandgap increase S ION↓• Dit inside conduction band further decrease ION

VDS=0.5 V

IOFF =100 nA/um

ION

VDS=0.5 VIOFF

Simple case: constant Dit throughout structureFor RS=100 ohm.um and S=74 mV/dec (for Dit=0):

ION

Page 39: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Role of Dit

39

• To obtain ION>1 mA/µm, need Dit<3x1012 eV-1.cm-2

• Relative insensitivity of ION to Dit due to high Cins:Cins=85 fF/µm2 ↔ Dit=5.3x1013 eV-1.cm-2

VDS=0.5 VLg=10 nmRS=100 ohm.umS=74 mV/dec (Dit=0)

Page 40: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Assumptions/concerns

• Aggressive vertical scaling possible: EOT=0.41 nm [EOT ≡ equivalent oxide thickness]

• Rigid 3X shrink preserves short-channel effects• Lside can be shrank without degrading SCE• RS<100 Ω.µm feasible at required footprint• Ballistic transport even with high-K dielectric + thin channel

40

tins=2.6 nm(=250)

tch=3 nmLg=10 nm

Page 41: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Critical issue #1: the gate stack

Challenge: metal/high-K oxide gate stack– Fabricated through ex-situ process– Very thin barrier (EOT<1 nm)– Low gate leakage (IG<1 A/cm2 at VGS=0.5 V)– Low Dit (<3x1012 eV-1.cm-2 in top ~0.3 eV of bandgap and inside

CB)– Reliable

41

n+n+

high-K dielectric

Page 42: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Problem: Fermi level pinning at oxide/III-V interfaces

III-V MOSFET: a >40 year pursuit!

42

Kohn, EL 1977

Mimura, EL 1978

Page 43: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Problem: Fermi level pinning at oxide/III-V interfaces

43Spicer, JVST 1979

Fermi level pinning due to interfacial defects– Even 1% of a monolayer of O at GaAs surface pins EF

– EF pinning produced by any foreign element at GaAs surface– EF pinning position largely independent of surface adatom

Page 44: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Recent breakthrough: oxide/III-V interfaces with unpinned Fermi level!

44

In-situ UHV Ga2O3-Gd2O3 on GaAs Ex-situ ALD Al2O3 on InGaAs

Ren, SSE 1997 Ye, EDL 2003

Page 45: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

“Self-cleaning” during ALD

45Huang, APL 2005

ALD largely eliminates surface oxides responsible for Fermi level pinning:

– Occurs during first exposure of III-V surface to ALD metal source– Surface robust to later exposure to ALD oxidant– First observed with Al2O3, then with other high-K dielectrics– First seen in GaAs, then in other III-Vs

Page 46: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Interface state density in high-K/III-V by ALD

46Brammertz, APL 2008

Dit hard to characterize reports vary widelyGeneral consensus for Dit:

– GaAs: high at midgap, medium close to Ecand Ev, large peak around midgap

– InGaAs: high close to Ev, low close to Ec

– InP: high close to Ev, very low close to Ec

Heyns, IRPS 2012

InP

GaAsInGaAs

Ec

Ec

Ec

Page 47: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Problem: low mobility in high-K/InGaAs structure

47Lin, IEDM 2008

In high-K/InGaAs surface-channel structure:– Low mobility (µe<2,000 cm2/V.s vs. µe~10,000 cm2/V.s in HEMT) – tox ↓ µe ↓– Mostly due to interface roughness scattering

Page 48: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Solution: buried-channel structure

48

Introduce thin wide bandgap semiconductor between dielectric and channel:

– For InGaAs, InP best choice (lattice matched, low Dit close to Ec) – Key trade-off: scalability vs. transport:

tbarr ↓ µe ↓ s ↑

Urabe, ME 2011

Page 49: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

49

The high-water mark: Intel’s InGaAs Quantum-Well MOSFET

• Direct MBE on Si substrate (1.5 m buffer thickness)• InGaAs buried-channel MOSFET (under 2 nm InP barrier)• 4 nm TaSiOx gate dielectric by ALD, Lg=75 nm• First III-V QW-MOSFET with better performance than Si

Radosavljevic, IEDM 2009

Page 50: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Critical issue #2: the ohmic contacts

50

Challenge: nanometer-scale ohmic contacts with low Rs– Low contact resistance (Rs<100 Ω.µm)– Raised above channel– Self-aligned to gate (Lside<10 nm)

Recessed gate Regrown source and drain

Page 51: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Key problem: ohmic contact scaling

Current contacts to III-V FETs are >100X off in required contact resistance 51

Waldron, TED 2010

Reduce contact resistivity + resistance of contact stack

HEMT Today: Rc~200 Ω.μmNeed: Rc~50 Ω.μm

Page 52: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Resistivity and contact resistance of n+-In0.53Ga0.47As

52

Mo

TiW

Cr

n+-Si

n=5x10-4 Ω.cm

n=1.4x10-4 Ω.cm

• n+-In0.53Ga0.47As vs. n+-Si:o μe: ~10X across doping range minimum ρn comparableo ρc comparable for various metals

• Fundamentally, contacts to InGaAs should be as good as to Si

Singisetti APL 2008Baraskar JVSTB 2009

Singisetti DRC 2007Crook APL 2007

Fujii EL 1986

Page 53: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Recessed-gate self-aligned InGaAs QW-MOSFET

53

Key features: • Buried channel design

• Inverted-delta doping

• Refractory ohmic contacts

• Ohmic contacts self-aligned to gate

• Gate-last process

• Lift-off free front-end process

• Extensive RIE

Process leverages self-aligned InGaAs HEMT for mmw applications

(Waldron, TED 2010; Kim, IEDM 2010)

Lin, APEX 2012

Page 54: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

54

Output and transfer characteristics: evidence of RIE damage and solution

• Lg=2 µm, Lside= 100 nm• RIE leads to extensive device damage• Damage annealed at 340oC for 15 min• gm=205 μS/μm at VDS=0.5 V for Lg=2 μm• VT=0.05 V

0.0 0.2 0.4 0.6 0.80

50

100

150

200 w/ annealing w/o annealing

I d (A

/m

)

Vds (V)

Vgs-Vt=0 to 1V in 0.2 V stepLg= 2 m

-0.8 -0.4 0.0 0.4 0.80

50

100

150

0

50

100

150

200

250

I d (A

/m

)Vgs (V)

: w/ annealing: w/o annealing

Lg= 2m, Vds= 0.5 V

Gm (

S/

m)

Page 55: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

55

Subthreshold and mobility characteristics

• S=95 mV/dec• Ion/Ioff=106

• μpeak=2800 cm2/V.s

-0.8 -0.4 0.0 0.4 0.810-4

10-3

10-2

10-1

100

101

102

S=300mV/dec

w/ annealing w/o annealing

Vds=0.5 and 0.05 VLg= 2m

S=95mV/dec

I d (A

/m

)

Vgs (V)0 2 4 6 8

0

1000

2000

3000 w/ annealing w/o annealing

Mob

ility

(cm

2 / V.s

)Ns(1012 cm-2)

W/L=200/200 m

Page 56: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

56

Source and drain resistance

• Rs=260 Ω.μm (our best result in HEMT ~140 Ω.μm)• Major component is lateral Mo resistance (Rsh=25 Ω/) • Vertical tunneling resistance greatly reduced wrt HEMT (50 Ω.μm vs.

>100 Ω.μm)

0 5 10 15 20 250

5

10

15

20

25

520m

Vg=1 V

Rsd

(K

m)

Lg (m)

Page 57: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Latest results: Dielectric scaling to EOT<1 nm

-0.2 0.0 0.2 0.4 0.610-11

10-10

10-9

10-8

10-7

10-6

S=69 mV/dec

Vds=0.5 and 0.05 VLg= 300m

I d (A

/m

)

Vgs (V)

57

• Long-channel In0.53Ga0.47As FET • InP scaled to 1 nm by Ar-based dry etching• S=69 mV/dec• Close to lowest S reported in any III-V MOSFET: 66 mV/dec (EOT=1.2 nm)

[Radosavljevic, IEDM 2011]

Lin, IEDM 2012

InP (1 nm) + Al2O3 (0.4 nm) + HfO2 (2 nm) EOT~0.9 nm

Page 58: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Latest results: Lg=60 nm QW-MOSFET

Many improvements:• Lg=60 nm• Improved gate recess process• Tight S/D spacing (Lside < 20 nm)• Scaled barrier (InP) and dielectric (high-K) thickness

SiO2

InGaAs channel-Si

InAlAs buffer

InP substrate

Pad

Mo (S/D)

n+ InGaAsInP

DielectricMo (G)

50 nm

Mo(S/D) Mo (G)Cap

SiO2

Lside~20 nm

Lg= 90 nm

Lin, IEDM 2012

58

Page 59: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Transfer and output characteristics

• S=145 mV/dec at 0.5 V• Ion = 120 mA/µm measured at Vdd= 0.5 V and Ioff= 100 nA/µm• Peak gm = 1250 µS/µm• Ig < 5x10-10 A/µm at maximum gate overdrive• Ron = 570 Ω.µm (at Vgs-Vt=0.7 V)

0.0 0.2 0.4 0.6 0.80

200

400

600

800

I d (A

/m

)

Vds (V)

Vgs-Vt=0 to 0.7 V in 0.1 V stepLg= 60 nm

Lin, IEDM 2012 59

Page 60: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Regrown source and drain self-aligned InGaAs QW-MOSFET

60

Key features: • n+-InGaAs raised source and drain regions grown by MOCVD

• Self-aligned to gate

• Surface quantum-well channel

• Gate oxide: Al2O3 (0.5 nm) + HfO2 (6.5 nm); EOT=1.3 nm

Egard, IEDM 2011

n+ n+

Page 61: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Characteristics of Lg=55 nm MOSFET

61

• gm=1900 µS/µm

• S=187 mV/dec

• RS=88 Ω.µm

Egard, IEDM 2011

Page 62: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

e,h(cm2/V.s)

a (nm)0.54

1,000

10,000

100

0.56 0.58 0.60 0.62 0.64 0.66

GaAs

Electrons

InGaAs

GaAs

InGaAs

InGaSbGaSb InSb

Holes

InSb

SiGeGe

Si

Si GeGaAs

InP AlSbGaSb

InAs InSb

increasingcompressivebiaxial stress

relaxed lattice constant

InAs

GaSbInP

Critical issue #3: the p-channel device

62

Challenge: high-performance p-type III-V MOSFETs– Antimonide channel– Incorporating strong compressive strain

del Alamo, Nature 2011

Page 63: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

III-V pFETs: the benefits of strain

63

MIT workThompson, IEDM 2006Weber, IEDM 2007

Xia, APL 2011Xia, TED 2011Xia, ISCS 2011Gomez, EDL 2010

Compressive biaxial strain + uniaxial strain μ↑↑

0

1sp

Uniaxial-strain piezoresistance coefficients in p-type Quantum Wells

Page 64: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

P-type InGaAs QW-FET with process-induced uniaxial strain + epitaxially-grown biaxial strain

64Anisotropic gm enhancement gm enhancement scales correctly

Xia, IEDM 2011

Page 65: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Strain-induced Δgm anisotropy

65

Result of band deformation + piezoelectric effect

Pz affects quantization in valence band m* anisotropy

Xia, IEDM 2011

-0.1 -0.05 0 0.05 0.1-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

Ev (e

V)

m*//↓m* ↑

Biaxial +[-110] uniaxial

Biaxial

hh1

lh1

hh2

k[110] k//[-110]

Polarizationfield

Page 66: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

InGaSb surface-channel MOSFET

66

InGaSb surface channel device problematic: high Dit close to valence band edge

• Al2O3 (10 nm) / In0.35Ga0.65Sb (7 nm) MOSFET• S=120 mV/dec in Lg=5 µm device

BiaxialGaSb

Nainani, IEDM 2010Nainani, TED 2011

Page 67: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

InGaSb buried-channel MOSFET

67

Need Al containing barrier (i.e. AlInSb) Also need cap: GaSb or InAs

Scalibility problems for buried-channel InGaSb MOSFETs

channel

barrier

structure lattice constant

Madisetti, DRC 2012

Page 68: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

InGaSb buried-channel MOSFET

68

Al2O3/GaSb/AlInSb/InGaSb buried-channel MOSFET:

No subthreshold swing data given

Yuan, VLSI Tech 2012

Page 69: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Critical issue #4: non-planar MOSFET designs

Challenge: small subthreshold swing on a small-footprint– Planar designs might not provide enough “electrostatic integrity”– Need higher carrier confinement through restricted dimensionality

designs

69

n+n+

FinFET Gate-all-around nanowire FETQW-MOSFET

Page 70: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Increased electrostatic control through multiple gates

As number of gates increases, electrostatic control of gate over channel improves S ↓

– Improved Lg scaling– Cross section ↓ S ↓

70

FinFETTrigate

Nanowire

Chen, ICSICT 2008

Page 71: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

InGaAs Trigate MOSFET

71Far improved S vs. planar quantum-well MOSFET

Radosavljevic, IEDM 2011

Page 72: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

InGaAs Gate-All-Around Nanowire MOSFET

72

Gu, IEDM 2011Gu, APL 2011

• Lch= 50-120 nm • WFin=30, 50 nm• HFin = 30 nm• LNW = 150-200 nm• tox = 10 nm Al2O3

• # wires = 1, 4, 9, 19

Surface-channel design

Page 73: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

InGaAs Gate-All-Around Nanowire MOSFET

73

-2 -1 0 1 210-2

10-1

100

101

102

103 Vds=1V

Vds=0.5V

I s (A

/m

)

Vgs (V)

Vds=0.05V

LG = 50nmWFin = 30nmNo. of wires = 4

Vth = -0.68VDIBL = 210mV/VSS = 150mV/dec

Ig @ Vds=1V

10-6

10-5

10-4

10-3

10-2

10-1

100

I g (A/c

m2 )

• Ion =720 μA/μm (86 μA/wire)

• gm =510 μS/μm (61 μS/wire) at VGS-VT=2 V

• S=150 mV/dec (EOT≈4.5 nm), Ig <10-7 A/cm2

• Low field µ~900 cm2/V.s (200 cm2/V.s in Si GAA NW from Samsung)

Gu, EDL 2012

Page 74: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

The challenge: cost-effective co-integration of nFETs and pFETs on Si substrate

– Different channel materials – Different lattice constants– Planar surface– Thin buffer layer– Compact– Low defectivity

74

Critical issue #5: co-integration of nFETs and pFETs

Fiorenza ECS 2010

Page 75: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

Direct Wafer Bonding

75

Yokoyama, VLSI Tech 2011

Device surfaces at two different levels

Dielectric bonding of InGaAs/InP wafer and Ge wafer

Page 76: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

III-V on Insulator (XOI)XOI platform: epitaxial layer transfer onto Si/SiO2 substrate

Produces freestanding materials on a receiver substrate

Ko, Nature 2010

• Single crystal material

• Strain preserved

• Void-free interfaces

76

Page 77: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

III-V CMOS on Si

77Nah, Nano Lett 2012

SiO2InAs cappedInGaSb photoresist

InAs

2-step transfer processnFET: InAs (8 nm)pFET: InAs/In0.3Ga0.7Sb/InAs: 2.5/7/2.5 nmBoth grown on GaSb wafer

Ni

Page 78: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

III-V CMOS on Si

78

Nah, NanoLett 2012

-1.0 -0.5 0.0 0.5 1.00

20

40

60

80

100

120

I p(A

)

Vd(V)

0

20

40

60

80

100

120

140 |Vg|= 0.2V |Vg|= 0.4V |Vg|= 0.6V |Vg|= 0.8V |Vg|= 1.0V

I n(A

)

LG = 2.9 m LG = 2.6 m

1st III-V CMOS on Si based on InAs n-FETs and InGaSb p-FETs

Page 79: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

79

Aspect Ratio Trapping

Fiorenza ECS 2010

Growth in high aspect ratio trenches: dislocations “trapped” at sidewalls

InP

GeGaAs

Ge

Page 80: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

80

Aspect Ratio Trapping+ Epitaxial Lateral Overgrowth

Fiorenza ECS 2010

Planar surfaces obtained by epitaxial lateral overgrowth following ART

GaAs MOSFETs demonstrated

Wu, APL 2008

Page 81: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

81

5. CMOS R&D roadmap*

*grossly oversimplified and biased towards Intel

Page 82: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

III-Vs in CMOS: narrow window of opportunity

82

V. Moroz, UCB Seminar 2011

Due to band-to-band tunneling

Page 83: Nanometer-Scale III-V CMOS slides.pdf · 10/14/2012  · 1. The CMOS revolution 2. Materials options for post-Si CMOS 3. What have we learned from III-V HEMTs? 4. III-V CMOS device

83

Conclusions

• New materials coming into CMOS roadmap:– InGaAs most promising III-V for n-MOSFET– InGaSb most promising III-V for p-MOSFET, also Ge

• Lots of fundamental research needed to chart a path for CMOS beyond Si:

– Interface physics and chemistry with III-Vs– Structures for sub-10 nm gate lengths– MOS gate stack reliability– Integration of n-channel and p-channel devices based on different

materials onto Si substrate