MfD EEG/MEG Source Localization 4 th Feb 2009

Click here to load reader

  • date post

    03-Feb-2016
  • Category

    Documents

  • view

    38
  • download

    0

Embed Size (px)

description

MfD EEG/MEG Source Localization 4 th Feb 2009. Maro Machizawa Himn Sabir Expert: Vladimir Litvak. Inverse problem. Existence Unicity Stability. Inverse problem. Existence Unicity Stability. Inverse problem. Existence Unicity Stability. Introduction of prior knowledge is needed. - PowerPoint PPT Presentation

Transcript of MfD EEG/MEG Source Localization 4 th Feb 2009

  • MfD EEG/MEG Source Localization4th Feb 2009Maro MachizawaHimn Sabir

    Expert: Vladimir Litvak

  • ExistenceUnicityStability

  • ExistenceUnicityStability

  • ExistenceUnicityStabilityIntroduction of prior knowledge is needed

  • Spatio-temporal modeling

  • Spatio-temporal modeling step 1Load EEG/MEG file

  • Spatio-temporal modeling step 2Name the analysis (optional)

  • Spatio-temporal modeling step 3Create/load meshesBigger the parameter, better the resolution of the results

  • Spatio-temporal modeling step 4Coregister fiducial points with MRIChoose either of methods to coregisterselect from default locations (at FIL)type MNI coordinates directoryclick manually each fiducial point from MRI images

  • Spatio-temporal modeling step 4Coregister fiducial points with MRI

  • Spatio-temporal modeling step 5Forward model

  • Spatio-temporal modeling step 5Bayesian model inversion

  • Spatio-temporal modeling step 5Invert: alternative modelsGS (greedy search: default): iteratively add constraints (priors)ARD (automatic relevance determination): iteratively remove irrelevant constraintsCOH (coherence): LORETA-like smooth priorIID (independent identically distributed): minimum norm

  • Spatio-temporal modeling step 5Invert: alternative modelsThe bigger the number, the better the model-1893-1913-1913

  • Spatio-temporal modeling step 5Invert: visualization options1 digit (ms): map on that time(ms)2 digits (ms): video during the period 3 digits (x y z): max. voxel on that MNI coordinate

  • Spatio-temporal modeling step 6Window :Induced: localization on each single trial then averagedEvoked: localization on already averaged data

    INDUCED IMAGE

  • Spatio-temporal modeling step 7Image

  • Group analysis: same analysis on multiple subjects

  • (Optional step5)Variational Bayes Equivalent Current Dipole

  • Optional: time-voltage display