ME2342_Sec5_DimensionalAnalysis

30
P. S. Krueger ME/CEE 2342 5 - 1 ME/CEE 2342: Paul S. Krueger Associate Professor Department of Mechanical Engineering Southern Methodist University Dallas, TX 75275 [email protected] (214) 768-1296 Office: 301G Embrey Fluid Mechanics Section 5 – Dimensional Analysis [Chapter 7 in the text book] 

Transcript of ME2342_Sec5_DimensionalAnalysis

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 1/30

P. S. Krueger ME/CEE 2342 5 - 1

ME/CEE 2342:

Paul S. Krueger 

Associate Professor 

Department of Mechanical Engineering

Southern Methodist UniversityDallas, TX 75275

[email protected]

(214) 768-1296Office: 301G Embrey

Fluid Mechanics

Section 5 – Dimensional Analysis

[Chapter 7 in the text book] 

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 2/30

P. S. Krueger ME/CEE 2342 5 - 2

Venturi Tube:

Objective: Find the flow rate Q as a function of Δ p and theother parameters in the problem, namely,

( )ρΔ= ,,, 21 A A p f Q

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 3/30

P. S. Krueger ME/CEE 2342 5 - 3

Using Bernoulli’s equation (μ ignored) and conservation of 

mass we found (see previous notes)

or 

Could we have guessed the functional dependence in

advance? Yes! – Using a theorem called …

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 4/30P. S. Krueger ME/CEE 2342 5 - 4

( )nvvvV v ,,, 321K=

The Buckingham Pi Theorem:

If there is a functional relationship involving n variables,

Then it can be reduced to a relationship among k = n – jindependent dimensionless parameters

( )k 

V  ΠΠΠ=Π ,,,~

321

K ( ) jnk  −=

where j is the minimum number of reference dimensions

(such as mass, length, time) required to describe the

dimensions of all the variables.

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 5/30P. S. Krueger ME/CEE 2342 5 - 5

Example: Venturi Tube

Specifically,

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 6/30P. S. Krueger ME/CEE 2342 5 - 6

• The principle behind the Pi theorem is that only so many

independent combinations of variables can be formedand one of these dimensionless parameters must be a

function of the others.

• The functional relationship between Pi terms isdetermined by physics (e.g., Bernoulli’s equation) or 

experiment. The advantage of the theorem is that is

reduces the number of independent variables involved inthe analysis of a problem.

• Pi terms are independent, but not unique.

Notes:

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 7/30P. S. Krueger ME/CEE 2342 5 - 7

Using the Pi Theorem: Method of Repeating Variables

Section 7-4 in the book gives 6 steps for determining the Piterms.

Example: Shear force to move a plate

Step 1: List the variables involved

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 8/30

P. S. Krueger ME/CEE 2342 5 - 8

Step 2: List dimensions of the terms

Step 3: Determine the number of required Pi terms

Step 4: Select repeating variables. That is, select j variables

that contain the reference dimensions and use these to non-

dimensionalize the remaining variables. Note: do not selectthe dependent variable as a repeating variable.

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 9/30

P. S. Krueger ME/CEE 2342 5 - 9

Step 5: Find the Pi terms by non-dimensionalizing the

remaining variables using the repeating variables.

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 10/30

P. S. Krueger ME/CEE 2342 5 - 10

Step 6: Check Pi terms

Conclude (‘Step 7’) by writing down the relationship among

Pi terms:

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 11/30

P. S. Krueger ME/CEE 2342 5 - 11

• We can rewrite Π4:

• Even though we don’t know the functional relationship,

we still have a lot of information…

Notes:

• We could have non-dimensionalized F  D

as

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 12/30

P. S. Krueger ME/CEE 2342 5 - 12

• Selection of Variables

[See section 7-3 in the textbook]

Notice that the key to dimensional analysis is knowing which

variables to include in the analysis. It isn’t always clear,

however, which variables we should choose to include. If we choose too many, we over-complicate the analysis. If we

choose too few, we may miss a key behavior. How do we

know which variables to include in our analysis?

- Experience

- Basic physical insight (knowledge of physics involved)

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 13/30

P. S. Krueger ME/CEE 2342 5 - 13

Example: Pendulum Bob

What parameters are involved?

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 14/30

P. S. Krueger ME/CEE 2342 5 - 14

What about aerodynamic drag?

What about θ?

What about moment of inertia I ?

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 15/30

P. S. Krueger ME/CEE 2342 5 - 15

Based on our observations so far, we expect

Pi term “by inspection”:

Note: mass is not involved. Dimensionless relationship:

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 16/30

P. S. Krueger ME/CEE 2342 5 - 16

• Common Dimensionless Parameters

[See also Table 7-5]

1) Reynolds Number:

For a physical interpretation of Reynolds number, consider the following:

Inertia “forces”/terms:

μ

ρ=

UL Re

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 17/30

P. S. Krueger ME/CEE 2342 5 - 17

Then:

Viscous Forces:

So,

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 18/30

P. S. Krueger ME/CEE 2342 5 - 18

Physical Interpretation:

 Re >> 1: Inertia effects (i.e., effects associated withacceleration or deceleration of fluid particles) dominate.

That is, it is difficult for viscosity to slow the fluid (flow has a

tendency to keep moving by inertia). Viscous effects

typically confined to a small region of the flow.

Examples:

 Re << 1: Viscous forces dominate everywhere in the flow. It

is difficult to keep the fluid moving (viscosity kills the motion).

Examples:

2) M h N b

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 19/30

P. S. Krueger ME/CEE 2342 5 - 19

2) Mach Number: cU  Ma =

Physical Interpretation:

 Ma << 1: Compressibility not important (i.e., assume

incompressible flow). If  Ma ≤ 0.3 we say flow is

incompressible.

Example:

 Ma >> 1: Compressibility important.

3) St h l N b (di i l f )

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 20/30

P. S. Krueger ME/CEE 2342 5 - 20

3) Strouhal Number (dimensionless frequency):

 L

St 

ω

=

Physical Interpretation:

St << 1: Unsteadiness not important relative to convective

effects.

St > 1: Unsteadiness important.

4) Euler Number (dimensionless pressure):

2U 

 p

 Eu ρ= or  22U 

 p

 Eu ρ=

Used in problems where pressure differences are important

(e.g, Bernoulli’s equation)

4) F d N b

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 21/30

P. S. Krueger ME/CEE 2342 5 - 21

4) Froude Number:

Important in problems with surface waves.

 gL

U  Fr =

or   gL

 Fr 

2

=

Th f M d l

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 22/30

P. S. Krueger ME/CEE 2342 5 - 22

• Theory of Models

[Section 7-3 (Dimensional analysis and similarity)]

Consider a case where we know a relationship exists

between parameters for a problem:

Then using dimensional analysis we arrive at

But the functional relationship is unknown and needs to be

determined by experiment. For cost and convenience, thisis often done using a scale model.

P t t M d l

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 23/30

P. S. Krueger ME/CEE 2342 5 - 23

Prototype

(full-scale system)

Model

(scaled system)

Thus, if we match all the independent Pi terms, we can

predict the dependent Pi term for the full-scale system

N t

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 24/30

P. S. Krueger ME/CEE 2342 5 - 24

• Matching Pi terms involving only geometric parameters

(length, shape, etc.) gives geometric similarity. Inparticular, the model must be a scale model of the

prototype (identical geometry to the prototype, except,

possibly, a different size).• Matching Pi terms involving ratios of forces enforces

dynamic similarity. For example, if Reynolds number 

is a Pi term, then Rem = Re p is required for dynamicsimilarity. Enforcing dynamic similarity ensures the flow

around the model is the same as the flow around the

prototype, just at a different scale.

Notes:

Example: Drag on an Airplane

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 25/30

P. S. Krueger ME/CEE 2342 5 - 25

Example: Drag on an Airplane

What static pressure in the wind tunnel is required to

achieve dynamic similarity? If the measured drag on the

model is F  Dm = 1 lbf , what would be the drag on the

prototype?

First we need to apply dimensional analysis to the

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 26/30

P. S. Krueger ME/CEE 2342 5 - 26

First, we need to apply dimensional analysis to the

relationship for drag on the airplane:

Result:

So the only Pi term that needs to be matched is Re Also

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 27/30

P. S. Krueger ME/CEE 2342 5 - 27

So, the only Pi term that needs to be matched is Re. Also,

the only Pi term involving ratios of forces is Re, so dynamic

similarity requires Re p = Rem, namely,

 AssumeThen dynamic similarity gives

Now use the ideal gas law:

Drag: When Re = Re dimensional analysis also requires

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 28/30

P. S. Krueger ME/CEE 2342 5 - 28

Drag: When Re p = Rem dimensional analysis also requires

that

Note: It isn’t always possible to achieve full dynamic

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 29/30

P. S. Krueger ME/CEE 2342 5 - 29

Note: It isn t always possible to achieve full dynamic

similarity with scale models. For example, for model ships

the flow involves a free surface and both Re and Fr areimportant. Then full dynamic similarity requires

It is nearly impossible to find two fluids with appropriate ν /ν

7/29/2019 ME2342_Sec5_DimensionalAnalysis

http://slidepdf.com/reader/full/me2342sec5dimensionalanalysis 30/30

P. S. Krueger ME/CEE 2342 5 - 30

It is nearly impossible to find two fluids with appropriate νm/ν pfor reasonable scales. For example,

Instead, ship designers typically utilize Re independence

when testing models. Here the strategy is to match Fr for the model and prototype, but keep the model large enough

so that Re independence is achieved. Under  Re

independence, the Re is large enough that the drag (or other fluid dynamic quantity) no longer depends on Re. Then,

even though Rem < Re p, the value(s) at Rem can still be used

to estimate the prototype quantities. See the discussion in

the textbook for a more complete analysis.