Masud - A FEM Formulation for Multi-layered Shells

download Masud - A FEM Formulation for Multi-layered Shells

of 24

Transcript of Masud - A FEM Formulation for Multi-layered Shells

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    1/24

    A FiniteElementFormulationofMulti-layeredShellsfortheAnalysisofLaminatedComposites

    by

    ArifMasud1

    DepartmentofCivil&MaterialsEngineeringTheUniversityofIllinoisofChicagoChicago,Illinois60607-7023

    and

    MohammadPanahandeh 2BerkeleyAppliedScience&Engineering,Inc.

    San Francisco,CA94103

    rx3Submittedto:

    Computers&StructuresJMSffflUOllONTATEMENTAppsrovdoraWtaotoxMj

    1AssistantProfessorofMechanics&Materials.orrespondingauthor.2Principal;BerkeleyAppliedScience&Engineering,Inc.DtlCQUALITYINSPECTED1

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    2/24

    AbstractThisaperresentsmulti-layered/multi-directorndhear-deformableinitele-

    mentormulationfshellsorhenalysisfcompositeaminates.heisplacementieldisassumedcontinuousacrossthefiniteelementlayersthroughthecompositethickness.Therotationields,owever,ayer-wiseontinuousndsssumediscontinuouscrossheselayers.hiskinematichypothesisesultsnndependentheardeformationfthedirectorassociatedwithachndividualayerndhusllowshewarpingftheompositeross-section.heresultingstrainfieldisdiscontinuouscrossthedifferentmaterialsets,herebycreatingtheprovisionthattheinter-laminartransversestressescomputedfromtheconstitu-tiveequationscanbecontinuous.Numericalresultsrepresentedtoshowtheperformanceofthemethod.

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    3/24

    ContentsAbstract

    1 .ntroduction .2.AssumptionsintheLayer-wiseShearDeformableShellTheory3.KinematicDescriptionofMulti-layeredShells

    3.1Kinematicsinthecontextoffiniteelementmethod4.GeometricDescriptionofMulti-layeredShells5.ConstitutiveRelations6.heVariationalFramework7.NumericalExamples 48.Conclusions 8

    Acknowledgement 9References 9

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    4/24

    A.MasudandM.Panahandehfiniteelementformulationforcomposites1.ntroductionInthelasttwodecades,ompositeshavefoundincreasingapplicationinmanyengineer-

    ingtructures.ecentdvancesnheechnologiesfmanufacturingndmaterialsaveenhancedthecurrentapplicationofcompositematerialsfrombeingusedassecondarystruc-turalelementstobecomingprimaryload-carryingstructural components.Duetotheinherentinhomogeneityandanisotropyofthematerials,analysisof thesecompositestructuresimposesnewchallengesonengineers1 0,1 ].

    Plateandshellstructuresmadeof laminatedcompositematerialshaveoftenbeenmodeledasanequivalentsinglelayerusingclassicallaminatetheory(C.L.T)5,8,2,3,6]inwhichthehicknesstressomponentsregnored.C.L.T.s directxtensionfclassicalplatetheorynwhichhewellnownKirchhoff-Loveinematicypothesissssumednforced.Thistheoryisadequatewhenthethicknesstosideorradiusratio)ssmall.owever,lami-natedplatesandshellsmadeofadvancedfilamentarycompositematerialsaresusceptibletothicknessffects,ecauseheirffectiveransversemodulireignificantlymallomparedtotheeffectiveelasticmodulusalongthefiberdirection.Furthermore,theclassicaltheoryofplates,whichassumesthatthenormalstothemid-planebeforedeformationremainstraightandnormaltotheplaneafterdeformation,underpredictsdeflectionsandoverpredictsnatu-ralfrequenciesandbucklingloads.Thesediscrepanciesariseduetotheneglectoftransverseshearstrains.TherangeofapplicabilityoftheC.L.T.solutionhasbeenwellestablishedfo rlaminatedlatlates1 0,2,0] .InrderovercomeheeficienciesnC.L.T.,efinedlaminatetheoriesavebeenproposed3,0,1 ,8 ,9,0,1 ,4].Theseresinglelayertheoriesinwhichthetransverseshearstressesaretakenintoaccount.Theyprovideimprovedglobalesponsestimatesoreflections,ibrationrequenciesnducklingoadsfmod-eratelyhickompositeswhenomparedohelassicalaminateheory. AMindlinypefirst-ordertransversesheardeformationtheoryS.D.T.)wasfirstdevelopedbyWhitneyandPagano24]ormulti-layeredanisotropicplates,ndbyDongandTso6 ]ormulti-layered

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    5/24

    A.MasudandM.Panahandehfiniteelementformulationforcompositesanisotropicshells.BothapproachesC.L.T.ndS.D.T.)onsideralllayersasoneequivalentsinglenisotropicayer,husheyannotmodelthewarpingofcross-sections,hats,hein-planedistortionftheeformedormalueoransverseheartresses.urthermore,theassumptionofanon-deformablenormalresultsinincompatibleshearingstressesbetweenadjacentlayers.helaterapproachalsorequirestheintroductionofanarbitraryshearcor-rectionactorwhichependsnheaminationparametersorobtainingccurateesults.Itswellstablishedhatuch heorysdequateoredictnlyhegrossehaviorflaminates.

    ThexactnalyseserformedyPagano1 2,3,6]nheompositeiatplatesaveindicatedthathein-planedistortionofthedeformednormaldependsnotnlyonthelam-inatehickness,butlsonherientationndheegreeforthotropyfthendividuallayers.hereforehehypothesisfnon-deformableormals,whilecceptableorsotropicplatesndhells,sftenquiteunacceptableormulti-layerednisotropicplatesndhellsthatave argeatiofYoung'smodulusohearmodulus,venfheyreelativelythin4,8,9,0] .hus ransversesheardeformationheorywhichalsoaccountsforthewarpingofthedeformednormalisequiredorccurateredictionfthelasticehavior(deflections,thicknessdistributionof thein-planedisplacements,naturalfrequencies,etc.)fmulti-layeredanisotropicplatesandshells.

    Inviewoftheseissuesavariationallysoundtheorythataccountsforthe3-Deffects,allowsthicknessvariation,andpermitsthewarpingofthedeformednormal,isrequiredfo rarefinedanalysisfthickndhinomposites.nhispaperweavendeavoredoddressheseissuesnddevelopanewfiniteelementformulationfo rlaminatedcomposites.Theassumeddisplacementieldsontinuoushroughthehickness,whiletheotationieldsayer-wisecontinuousin-D )ndaneiscontinuouscrossheinitelementayers.hisis-placementfieldfulfills priorithegeometriccontinuityconditionsbetweencontiguouslayers.Furthermore,theassumeddisplacementfieldiscapableofmodelingthein-planedistortionof

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    6/24

    A.MasudandM.Panahandehfiniteelementformulationforcompositesthedeformednormal,withoutncreasingtheorderofthepartialdifferentialequationswithrespectohefirst-orderransversesheardeformationtheory.nthisormulation,tmost,onlyfirstderivativesofdisplacementandrotationfieldsappearinthevariationalequations.ThepracticalconsequenceofthisfactisthatonlyCcontinuityoffiniteelementfunctionsisrequiredwhichisreadilysatisfiedbytheLagrangefamilyof elements7].Becauseofthe3-Dfeaturesintheformulation,tcanaccuratelymodeltheinter-laminarconditionsandpredictthe-Ddgeffects.inally,ikeheingle-layerheareformableheories,heproposedformulationprovidesflexibilityinthespecificationoftheboundaryconditions7].

    Asummaryofthepaperisasfollows.Section2presentstheassumptionsinherentintheproposedmodel.hegeometricndkinematicypothesisfthemulti-layeredhellshataccommodate,oanappropriatedegreeofapproximation,heeffectsftransversalwarpingofthecross-sectionduetosheardeformationaswellasfibercompressibilityarepresentedinSections3and4,respectively.Section5talksaboutthedevelopmentofconstitutivematricesfo rcomposite laminates.Theunderlyingvariationalframeworkandtheensuing finiteelementformulationftheproblemrepresentednSection.ection presentsomeumericalexamplestodemonstratetherangeofapplicabilityandaccuracyof theproposedtheory,ndconclusionsaredrawninSection8.2.AssumptionsnheLayer-wiseShearDeformableShellTheory1 .hedomainftsofthefollowingspecialform

    f t=\ x ,yz)e7 e 3 |z< 6 Y ]I)T= X> (0 ^y il G A(cn2\ (1)whereA stheareaofthereferencesurfacefo rlayerI,t sthethicknessoflayerIandTisthetotalthicknessof thecompositeshell.

    2.hedisplacementfieldisssumedtotakethefollowingformU2\x,y,z)=uW(x,y,z)+ZU9W(x,y) a1,22)

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    7/24

    A.MasudandM.Panahandehfiniteelementformulationforcompositeswhereu\x,y,z)arehen-planeranslationsnayer,9l,'(x,y)areheoutfplanedirectorrotationsforthereferencesurfacessociatedwithlayer,andZ s functionthatstablisheshepositionfapointwithespectoheeferenceurfacenayer.Thesecondtermontherighthandsideof(2)canbeviewedasanenhancementtothein-planecomponentsofthedisplacementfieldinlayerIwithrespecttothereferencesurfaceassociatedwiththeayer.onsequentlyhisnhancedieldbecomesdenticallyeronthereferencesurfaces.

    3.hedisplacementfieldinthethicknessdirectionisassumedtobeafunctionofz,.e.,Uil)(x,y,z)=uf{x,y,z) '3)

    therebyproducingthroughthethicknessstrainswhichresultinthicknessvariationintheshell.onsequenceftheboveelaxationshat33 .e.,weootnvokeheplanestresshypothesis.

    Remarks:1 .heontinuumequirementnheisplacementieldthenterfaceetweenthand

    (I+)stboundedayersecessitatesheatisfactionftheontactonditions;aUa+l fo ra=1,2),ndU^ l)=U^ l+1).heseconditionsreinherentlysatisfiedviathedefinitionoftheassumeddisplacementfieldasdefinedin2)nd3) .

    2.heinter-laminarstresscontinuityrequiresthesatisfactionofthefollowingconditionsattheinterfaceofIthand(l+l)stlayers;r =r ) fo ra=1,2),andT =T +1),where7 - ^ 3denotestheinter-laminarstressesfo rlayerI. tisimportanttonotethattheassumeddisplacementfield2)esultsinindependentnon-normalcross-sectionalrotationsineachfiniteelementlayerwhichisinaccordancewiththeMindlinkinematicassumption.Acon-sequenceistheindependentsheardeformationof thedirectorineachlayer,thusallowingthewarpingofthecompositecross-section.hereforetheresultingstrainfieldisdiscon-tinuousacrossdifferentmaterialsetsandcreatestheprovisionof stresscontinuityacrosstheinterfaces.Consequently,thetractioncontinuityequationsareinherentlysatisfied.

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    8/24

    A.MasudandM.Panahandehfiniteelementformulationforcomposites3.KinematicDescriptionof Multi-layeredShellsFigure hows ompositeaminatewithm'umberfmaterialayers.Forasefpresentation,nFig.,m=).onsequently,heotalhicknessTsividedntoWelementsthroughthethickness.Eachlayerofelementsisassociatedwithareferencesurfacewhich,orasefdiscussion,sssumedoeoincidentwithheowerurfacefthatlayer.tsmportantootehatheirectorotationaandhelope3)Q3shedisplacementield3projectedntoheeferenceurfaceorheayer)renotecessarilyequalndhusransverseheartrainsreccommodated.hissoeontrastedwiththeclassicallaminationtheoriesinwhich8a 3,a -Withineachlayerthedirectorrotatesby \generatingheartrain7^].onsequently,nheeformedonfiguration,ode(seeFig.)movesoocation2'.ow ,hedirectornthesecondlayerrotatesbynngle0a+l\generatingheartrainy Thiskinematicssepeatednsuccessiveayersnd,duetothecontinuityofthedisplacementieldinthethicknessdirection,weobtainthenewlocationsofnodalpoints(thatconstitutethelayerwisedirectors)asl',2','and4Thisnewlocationofpointsproducesahigher-ordervariationofthein-planedisplacementfieldthroughthehickness.ccordingly,rbitrarypolynomialxpressionsreotequiredomodelhehigher-orderin-planevariationofdisplacementthroughthethicknessofthecomposite.3.1Kinematicsofanindividuallayerintheontextofthefinitelementmethod

    ThedisplacementfieldofeachlayerIintheshellisdefinedbythefollowingrelationsuW( ,rj,0(l)&V )U ( ,7 7 ,C ) 4)(0( )=- a( )7 )(

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    9/24

    A.MasudandM.Panahandeh Afiniteelementformulationforcomposites

    nimnllll'imll

    Fig.. Shellkinematics.Variationoftransverseshearstrainsthroughthethickness.4= ^w>i i(i+cK+8

    whereu )+andu arethetranslationsoftheupperandlowersurfacesoflayerl,^ l)sthedisplacementofapointonthereferencesurfaceoflayerI,U{1)sthe'directordisplacement'fo rayer,Naepresentswo-dimensionalhapeunctionssociatedwithodea',nenarethenumberofelementnodes,ndZ sthethicknessfunctiondefinedas

    z?)(o=|(i+o)+-i-)2iI ) (9 )wherezil)+\(l-C )|Z||ndZ?{l+C )l^ll-ere< * >=

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    10/24

    A.MasudandM.Panahandehfiniteelementformulationforcompositesstretchasshownbyanadditivedecomposition:#=(2 +-2')e2/whereu{and.(*. ? 414)

    a=l

    a=lXil)(C)=ZP(C)X (nosum)1 6)

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    11/24

    A.MasudandM.Panahandeh Afiniteelementformulationforcomposites

    Fig. . Mesoandmacrostructureofthecomposite.

    taiit

    =constant

    Fig. . Geometricdescriptionofanindividuallayer.wherexshepositionectorfagenericpointnayer,xshepositionectorfapointnheeferenceurfaceorayer,X(Z)shepositionectorf genericointrelativetoxwhatdefinesthedirectorthroughthepointfo rlayerI, incomputationalshellliterature,Xisreferredtoasfiberdirection),xi)=Z /\\Z \\isaunitvectoremanatingfromnode'a'inthedirectordirection,andZ^}isthethicknessfunctionassociatedwithnode'a'sdefinedin9).hisfunctionisdefinedbythelocationofthereferencesurface.asthepositionvectorofnodalpointa'nlayerIandisdefinedas

    4)| i-c)*F+| i+ c)*if)+ (17)

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    12/24

    A.MasudandM.Panahandehfiniteelementformulationforcomposites5.ConstitutiveRelationsMostcompositesaremadeofarepeatedsequenceoflaminatesthat havethesamematerialpropertiesbutareorientedat+9and-6degreeswithrespecttotheextensiondirection.LetC'W epresentheinearonstitutivematrixornndividualaminatewithegardotsmutuallyperpendicularplanesfelasticsymmetry.hisconstitutivematrixfo r laminatecanbeprojectedfromitsmutuallyperpendicularplanesofelasticsymmetryontotheglobalcompositecoordinatesystemviaatransformationmatrixQ^>whichisafunctionoftheangle8.ThetransformedconstitutivematrixC sobtainedas

    CT(0=QW)C{i)Qd) 1 8 )6.heVariationalFramework

    WetartwithheHu-Washizuariationalrinciplehatsesheisplacement,trainandtressieldssndependentariablesndhusrovideshemostgeneralrameworktoformulateheroblemnderivetsweakorm.eenotehetrainieldy andtsvariationbya.imilarly,wedenotehetressieldyrandtsvariationby.inceoboundaryonditionsrepecifiednhetrainrtressields,heolutionpacendhespaceofadmissiblevariationscoincidefo rbothstrainsandstresses.

    5:={e|[L2(n)rdKd+1)/2}T:={

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    13/24

    A.MasudandM.Panahandehfiniteelementformulationforcomposites0field(2)-(3)resultsinanenhancedstrain fieldbecauselayerwiserotationsresultinenhancingtheheartrainomponents.Wewritehetrainields =Vsu+e,whereVsushesymmetriccompatiblestrainandiistheenhancedstrain.Thecorrespondingstrainvariationisa=Vsa;+,whereVu>isthecompatibleandistheenhancedstrainvariation.Sincenoboundaryconditionsreprescribedontheaugmentedstrainsswell,bothspaces.e.,iandconincide.

    :={|ee[L2(fi)p''(n a +1)/2}Weanowubstitutehisnhancedtrainieldn1 9)obtainnnhancedtrain

    versionoftheHu-Washizuformulation.nHW(e(0),< r ,u)=/(V3u+i(9)) C Vsu+e{9))du-r i

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    14/24

    A.MasudandM.Panahandehfiniteelementformulationforcomposites1g Yg- TU '*-1,h:ThIT'*-1,findu,9}Ssuchthatfo rall{w,V}V n(u,0;u>,)= fV au+&{9)):C:(Vau+i{0))dn- ufdu- uhd

    (24)whereVs(-)isthesymmetricgradientoperator,/denotesthebodyforcevectordefinedover0, epresentsheprescribedractionsnormalndhear)ve rboundaryTh,andgaretheprescribedisplacementsndotationsefinedverboundaryTg.ereTg=TuUTewithreingtheboundarywithprescribeddisplacementsandTebeingtheboundarywithprescribedrotations.

    Nowonsider shellonsistingof'm'generallydirectionalbutperfectlybondedayers,andeferenceurfacefeachlayer< z)iscretizedntorwei'initelements.ete =^e(0x[-t/2,t/2](l),fi(0=Ur=T'e('andfi=in'where e(istheelementdomaininlayerI.Wecanwritetheprincipleofvirtualwork(24)forthelayeredbutperfectlybondedanisotropiccompositelaminatesas

    fi(, 0;, t f )[J ( V so ,+())(Z C > (V'u+*(*) )d f t- / WWfMdSlY {l)h{l)dT25 )

    Let7=Vn3-0betheshearstrainvector,where3sthedisplacementfieldprojectedontoheeferenceurfaceorayer.imilarly,etK=Vs9beheurvature,whichsalsoefinedlayerwise.Weanwriteheenergyunctional25 )orheayerednisotropiclaminatessn(,;a,^)El/ (WCffW>+7(I)C ? >7(i)+*WC)d f l

    [=1n')_ fWdti-E/0 (/) f c (l)dr)

    where7Wnd

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    15/24

    A.MasudandM.Panahandehfiniteelementformulationforcomposites2surfaceforlayer I.Theassumeddisplacementfieldin(2)and(3)leadstoamodifiedfunctionalII,definedasn(u,0;u; )=f[f eWC7(Z )dAjr((JnwAW

    Tl,d+f*WCil) KdA- wf d-Y[ Wh^dT I (27)7^(0awzlJrWwhereJn(l)( )duisavolumeintegralndJA(l)()dArepresentsanareaintegral.Weddthefollowingboundaryconditionstotheenergyfunctional(27)sua=ua on TUa a=1 ,228 )u3=u3 on TU3 29)0a=a on ra a=1 ,2 30)whereTu=TUaU TU3epresentsheboundarywheretranslationboundaryconditionsreapplied,ndTga orrespondstotheboundarywithprescribedrotations,u^uajandoarep-resenttheprescribeddisplacementsandrotations,respectively.naddition,weprescribethetractionsas

    T n=T on rT 31 )qn= on Tq 32)m-n=h on Tm 33)

    randqrepresentthenormalndsheartractions,respectively,whilerhrepresentsthepre-scribedmoments.hisleadstoadecompositionofThasTh=rTurjUrmrrurrepresentstheoundarywhereractionboundaryonditionsrepplied,ndm orrespondsoheportionofboundarywithappliedmoments.

    Thestrainvectorsfortheproposedcompositeelementare.(011

    K{1) >oo / ) 22 [ ' ~ 1 (l ) f -2 2e33723 * W -12 e(/)ze12

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    16/24

    A.MasudandM.Panahandeh Afiniteelementformulationforcomposites 1 3where,7,/cnd epresenthen-plane,hear,endingndhrough-thicknesstrains,respectively.Wecancombinethein-planestrainswiththrough-thicknessstrainstoyield

    =4T3 5 )Thestressescorrespondingtothestrainsare

    11~22T33 r12

    9= =(011

    , 02 2 (0 12

    (36)

    wherer epresentsthecombinedin-planeandthethrough-thicknessstresses,ndqandmrepresenttheshearandbendingstresses,respectively.

    Theelementstiffnessmatricesandforcevectorsemanatingfromtheweakform,thatareobtainediaGalerkinpproximationndntroductionfelementhapeunctionsanewrittenas m

    1= 1whereAj*J shefiniteelementssemblyoperator.helementstiffnessmatrixcanex -plicitlybewrittenask(l )=f gfl)Cl)(D dn+f 7WCf7(0A+ * < * >CfWAin)/A>>vAWmodifiedmembrane shear bending (38)whereC$,Cl)andcjare themodified-membrane,shearandbendingconstitutivematricesforlayerI,respectively.Therighthandsideforcevectorcanbewrittenas

    = E{AS-(jf^ ( I )/( I )* > + 4,I )h dr } (39)wherethefirsttermistothebodyforcevectorandthesecondtermisthetractionvector.Remark:Wehaveusedselectivereducedintegrationconceptsfo rtheevaluationof theelementstiffnessmatrices.

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    17/24

    A.MasudandM.Panahandehfiniteelementformulationforcomposites4 7.NumericalExamples7.1Freedgeboundary-valueproblem. [45,-45]sTheirstumericalimulations prismaticymmetricaminateavingraction-free

    edgesatY=aandsurfacesZ=h,andissubjectedtostrainincrementonlyonitsendsatX=constant.Eachlayeriscomposedofuni-directionalfiber-reinforcedmaterialsuchthatthefiberdirectionisdefinedbyitsangle8withrespecttotheX-axis.TheelasticpropertiesusednthisimulationaretakenfromPagano12],..helaminateconsistsoffouruni-directionalfibrouscompositelayers,twowithaxisofelasticsymmetryat+45andtwoat 45tothelongitudinallaminate axis.SeeFig..)%straininoppositedirectionsisappliedatX=L,whileitisrestrainedtomoveintheaxial,lateralandthicknessdirectionsatX=0.ThephysicaldimensionsorhenumericalsimulationareX=60 ,Y=20 ,Z=2.5,with2elementsinXdirection,40elementsintheYdirectionand4elementsthroughthethickness.Forachinitelementayerhroughhehickness,heeferenceurfacesssumedoecoincidentwiththebottomsurfaceofthelayer.

    Figure howshexialdisplacementdistributionthetopreesurfacefthesectioncuttX ,ndheesultsreomparedwithMoirest l.ndPaganot l.12].Figure6presentstheinter-laminarshearstressatmaterialinterfaceandtheircorrespondingvaluesfromReddy20].Figure7showsthemajorstresscomponents

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    18/24

    A.MasudandM.Panahandeh Afiniteelementformulationforcomposites 1 5

    4hI

    Figure4.Laminategeometryandthecoordinatesystem.0.00500.00400.00300.00200.00100.0000

    -0.0010-0.0020-0.0030-0.0040-0.0050

    , resentmodels Moirest. lV'a

    aganot. d 's: /\- \ \

    - \\

    i-1-0.500.400.300.200.10 0.00 0.100.20 0.300.40 0.50NormalizedwidthFigure5 .Axialdisplacementdistributionatthetopfreesurface.

    7.2 Freedgeboundary-valueproblemwithacylindricalhole. [45,-45]sThecompositelaminateconsideredinthissimulationhasthesamephysicaldimensions,

    materialropertiesndoadingonditionssnhereviousase.oweverheresentlaminateas nitiameterylindricalolet0,0,0)withtsxisoincidentwithheZaxisseeFig.).heatiofthediameterftheoleohewidthftheaminates0.1.Traction-freeboundaryconditionsareappliedonthecylindricalsurfaceofthehole.The

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    19/24

    A.MasudandM.Panahandeh Afiniteelementformulationforcomposites 1 630-i resentmodel20- \\ .N.Reddy

    ~ IO - y -,CS 2 0. V>-- -10- *\ \

    -20--30- V -40.

    -0.500.400.300.200.10 0.00 0.10 0.20 0.30 0.40 0.50Normalizedwidth

    Figure6.nterlaminarshearstressatmaterialinterface.252150I 100

    w 9 50-5 0-100

    22E22ZXSXS- rrr-ggragSPg,

    tSSSSSSs-SBS- BWBWE2Z tggnn~ -gTT77g

    Cl2Pipest.l

    -0.500.400.300.200.100.00 0.10 0.20 0.30 0.40 0.50Normalizedwidth

    Figure7.Majorstresscomponentsinthetop+45aminate.laminateisconstrainedtomoveintheaxial,lateralandtransversedirectionsbyappropriatelyconstrainingthenodesalongthesymmetrylinesatX=0.

    Figure0presentshemajorstressomponentsan,ayz, ~ \zat-sectionuttX=0inheopayerwith+45egreeslyorientation.heseesultsavebeenomparedwithcomplete3Danisotropiccalculationsdonewithameshwhichistwiceasrefinedasthepresentmesh.ntheregionawayfromthefreeedgeboundaryandthetractionfreehole,theratioof

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    20/24

    A.MasudandM.Panahandeh Afiniteelementformulationforcomposites 1 7

    '.0.50-0.40-0.30-0.20-0.10 0.00 0.10 0.20 0.30 0.40 0.50Normalizedwidth

    Figure8 .Minorstresscomponentsinthetop+45laminate.anandc r12greescloselywiththatoftheprecedingnumericalsimulation.Figure1howstheminortressomponentswhichlsohow goodgreementwithheDnisotropicsimulation.

    4 h I

    Figure9.Laminategeometrywithacylindricalhole.

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    21/24

    A.MasudandM.Panahandeh Afiniteelementformulationforcomposites 1 840035 030 0

    ,- >50200

    3t/J 1 501 00500

    -5 0

    C\2| -13

    ..H.D-Anisotropicg i- =s55a -a a a HS 3 - a SaH -

    _g...B -g...a--ga a a g a a.-a- 'sgasg' .-0.00 0.05 0.10 0.150.20 0.25 0.30 0.35 0.40 0.45 0.50

    NormalizedwidthFigure0.Majorstresscomponentsinthetop+45laminate.

    72 2T3 3 23

    aD-Anisotropic

    n -5& 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

    Normalizedwidth

    Figure1 .Minorstresscomponentsnthetop+45laminate.8.Conclusions

    Inhisaperweaveresented initelementormulationwhichsuitableorheanalysisfmulti-layered/multi-directorandshear-deformablecompositelaminates.hege-ometricdescriptionemployedfo rthecompositeshellsfindsitsrootsintheso-calleddegener-atedshellapproach.Asetofkinematichypothesisisintroducedtoaccommodatetheeffectsoftransversewarpingftherossectionueoheareformationlongwithiberom -

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    22/24

    A.MasudandM.Panahandehfiniteelementformulationforcomposites9possibilitythatresultsfromtransversenormalstresses.Thekinematicsareindividuallyandindependentlyrepresentedfo reachlayerandarecoupledviatheconditionsofdisplacementcontinuitybetweencontiguouslayers.Therotationfieldishoweverlayer-wisecontinuousandisassumeddiscontinuousacrossthelayers.Transversalwarpingofthecompositecross-sectionisdescribedbyindividuallayerdirectorswhichsimultaneouslyrotatendstretch.hisre-sultsniscontinuoustrainieldscrossheifferentmaterialets,herebyreatingheprovisionfstressontinuitycrosshematerialnterfaces.inceheormulationesolvesal ltrains,lltressesreomputedhroughhehree-dimensionalonstitutivequationsandtheusual'zeronormalstress'shellhypothesisisnotemployed.ThevariationalequationcontainsonlythefirstderivativesofdisplacementandrotationfieldsthatrequirejusttheCcontinuityffinitelementunctions7].ndisplacementormulationfplatesndhells,specialttentionneedsoegiventoransverseshearandmembranetermsopreventheoccurrenceofmeshlocking.Wehaveemployedtheselective/reducedintegrationtechniquetoavoidthisproblem.Numericalresultsarepresentedthatdemonstratethegoodperformanceoftheproposedformulation.

    AcknowledgementsTheuthorswishohankProfessorsThomas.R.HughesndRobert.ayloror

    helpfulcomments.ThisresearchwassupportedbytheAirForceOfficeofScientificResearchunderContractF49620-94-C-0084,projectdirectorDr.WalterF.ones.

    References[ 1 ].Argyrisnd.Tenek,Anfficientndocking-freelatnisotropicplatendhell

    triangularelement ,orn-put.MethodsinAppl.Mech.Engrg.,118,3-119,994.[ 2 ]W.S.BurtonandA.K.Noor,Assessmentofcomputationalmodelsforsandwichpanels

    andshells ,Comput.MethodsinAppl.Mech.Engrg.,124,25-151995.[ 3 ].ByunandR.K.Kapania,Predictionofinterlaminarstressesinlaminatedplatesusing

    globalorthogonalinterpolationpolynomials ,AIAAJournal,30,No1 1 ,November1992.

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    23/24

    A.MasudandM.Panahandeh[4

    Afiniteelementformulationforcomposites 20

    [ 5

    [6

    [ T [ : [ 9

    [io;

    in[1 2

    [1 3

    [1 4

    [1 5

    [ie;

    [it[is;

    [1 9

    Fu-KuoChang,.L.PerezndK.Y.Chang,Analysisfthicklaminatedcomposites ,JournalofCompositeMaterials,24,801-822,August990.R.M.Christensen,MechanicsofCompositeMaterials,JohnWiley;Sons,NY1979.S.B.DongandF.K.WTso,Onalaminateorthotropicshelltheoryincludingtransversesheardeformation ,ournalofAppliedMechanics,39,972.T.J.R.Hughes,TheFiniteElementMethod:LinearStaticandDynamicFiniteElementAnalysis,Prentice-Hall,EnglewoodsCliffs,NJ,987.R.M.Jones,MechanicsofCompositeMaterials,McGraw-HillBookCo.,New York,975.S.S.Lekhnitskii,TheoryofElasticityofanAnisotropieBody,MirPublishers,Moscow,1981 .A.K.NoorandW.S.Burton,Assessmentofsheardeformationtheoriesfo rmulti-layeredcompositeplates ,AppliedMechanicsReview,42,No.,1-13,989.A.K.NoorndW.S.Burton,Assessmentfcomputationalmodelsormulti-layeredcompositeshells ,AppliedMechanicsReview,43,No.,67-971990.N.J.Pagano,nterlaminarresponseofcompositematerials,CompositeMaterialsSeries,Vol..,Elsevier,NewYork,NY,989.N.J.PaganondR.B.Pipes,Somebservationsnhenterlaminartrengthofcom-positelaminates ,nt. .Mech.Sei.,15,679,973.P.M.inskyndR.V.asti,Amixedinitelementoraminatedompositelatesbasedontheuseofbubblefunctions ,EngineeringComputations,6,16-330,989.P.M.PinskyandK.O.Kim,Amulti-directorformulationfo relastic-viscoelasticlayeredshells ,Internat. .Numer.MethodsEngrg.,23,2213-2244,986.R.B.PipesandN.J.Pagano,Interlaminarstressesincompositelaminatesunderuniformaxialextension ,.omp.Materials,4,38-548,970.L.Vu-QuocandH.Deng,Galerkinprojectionfo rgeometricallyexactsandwichbeamsallowingfo rplydrop-off ,.ofAppl.Mech.,62,No.2,79-488,995.J.N.Reddy,Aimplehigher-ordertheoryforlaminatedcompositeplates ,ournalofAppliedMechanics,51,745-752,December984.J.N.Reddy,Aefinedon-linearheoryfplateswithransverseheardeformation ,Int. .SolidsStruct,20,81-896,October1984 .

  • 8/12/2019 Masud - A FEM Formulation for Multi-layered Shells

    24/24

    A.MasudandM.Panahandehfiniteelementformulationforcomposites1[20].N.Reddy,Anevaluationofequivalent-single-layerandlayer-wisetheoriesofcompositelaminates ,CompositeStructures,25,21-35,993.[21]D.H.Robbins,J.N.ReddyandA.V.K.Murty,Onthemodelingofdelaminationinthick

    composites nEnhancedAnalysisechniquesforCompositeMaterials, d..chwer,J.N.ReddyndA.Mai,heWinterAnnualMeetingoftheAmericanSocietyofMe-chanicalEngineers,Atlanta,Georgia,December-6,991 .

    [22].C.imoandT.J.R.Hughes,Onthevariationalfoundationsofassumedstrainmeth-ods ,.ofAppl.Mech.,53,1-54,986.

    [23].M.Whitney,StructuralAnalysisofLaminatedAnisotropiePlates,TechnomicPublish-ingCompany,nc.PA,987.

    [24].M.WhitneyandN.J.Pagano,Sheardeformationinheterogeneousanisotropicplates,J .App.Mech.,37,031,970.