Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’...

22
Master Thesis in Mechanical Engineering DEVELOPMENT OF A TOOL FOR THE PREDICTION OF TRANSITION TO TURBULENCE OVER SMALL AIRCRAFT WINGS Candidate: MarinaBruzzone Advisor: Prof. Jan Pralits CoAdvisor: Ing. Christophe Favre CoAdvisor: Prof. Alessandro BoKaro University of Genoa Faculty of Engineering 13/12/2013

Transcript of Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’...

Page 1: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

Master  Thesis  in  Mechanical  Engineering  

DEVELOPMENT  OF  A  TOOL  FOR  THE  PREDICTION  OF  TRANSITION  TO  TURBULENCE  OVER  SMALL  

AIRCRAFT  WINGS    

 Candidate:  MarinaBruzzone  

Advisor:  Prof.  Jan  Pralits    Co-­‐Advisor:  Ing.  Christophe  Favre    Co-­‐Advisor:  Prof.  Alessandro  BoKaro    

University  of  Genoa  Faculty  of  Engineering    

13/12/2013  

Page 2: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

OUTLINE  Two  phases:  •  4    months  prepara;on  with  Professor  Jan  O.  Pralits,  Genoa  •  6  months  internship  at  Daher-­‐Socata,  Aéroport  de  Tarbes-­‐

Lourdes  

 

12/13/13   2  Marina  Bruzzone  

Page 3: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

OUTLINE    •  Introduc;on  and  Mo;va;on  •  Theory  •  Methodology  developed  •  Test  cases  valida;on  in  2D  •  Test  case  valida;on  in  3D  •  Conclusions  and  Future  Work  

12/13/13   3  Marina  Bruzzone  

Page 4: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

INTRODUCTION  &  MOTIVATION  •  Increase  of  aircraV  efficiency  to  improve                  the  performances.  

•  In  aerodynamics  fric;on  drag  predic;on                      is  important.  

•  Drag  is  directly  linked  to  transi;on  and  turbulence.  Laminar  flow  corresponds  to  low  drag  and  turbulent  flow  to  larger  drag.  

 •  Increasing  the  laminar  flow  on  the  wings,  winglets,  tail,  fin  and  nacelles  can  reduce                fuel  consump;on  of  15%  (poten;al  to  save  money  and  environment)    •  How  and  when  a  flow  becomes  turbulent  is  a  classic  unsolved  problem  in  fluid  

mechanics.  Simplified  methods  for  transi;on  predic;on  exist.  

•  Objec;ve:  Validate  a  transi;on  predic;on  process  on  2D  profiles  and  apply  it  on  a  3D  geometry,  as  applied  to  small  aircraV  wings.  

12/13/13   4  Marina  Bruzzone  

Page 5: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

 THEORY  

Page 6: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

THEORY  Transi;on  is  assumed  to  occur  when  the  amplitude  of  small  perturba;ons,  which  grow  as  they  propagate  downstream,  reaches  a  certain  value.    •  LAMINAR  FLOW  on  wings  means  lower  drag  and  reduced  fuel  consump;on  •  RECEPTIVITY:  disturbances  in  the  free  stream  enter  the  boundary  layer  as  

unsteady  fluctua;ons  

12/13/13   6  Marina  Bruzzone  

Page 7: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

THEORY  Due  to  recep;vity  mechanisms  disturbances  enter  the    laminar  boundary  layer,  and  might  trigger  unstable    disturbances  in  the  boundary  layer,  such  as:      

•  Tollmien-­‐Schlich;ng  waves:  (2D  flows)    

–  Instabili;es  develop  as  wave-­‐like  disturbances.    –  Their  periodic  form  grows  exponen;ally.  –  The  first  stage  can  be  studied  by  linear  theory.  –  AVer  they  reach  a  finite  amplitude  and  a  random  character.  

 •  CrossFlow  instabili;es:  (3D  flows)    

–  Typical  of  3D  flow  so,  for  instance  for  a  swept  wing.  –  Qualita;vely  the  same  phenomena  but  propagated    

 in  a  wide  range  of  direc;ons  –  CF  instabili;es  appear  as  co-­‐rota;ng  vor;ces  

12/13/13   7  Marina  Bruzzone  

Page 8: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

THEORY                          •  Considering  variables  composed  by  a  base  flow  part  and  a  fluctuaSng  one,  for    

–  parallel    –  two-­‐dimensional    –  incompressible  flow    

•  ConSnuity  and  Navier  Stokes  equaSons        are  simplified  considering:  

–  Non  linear  terms  of  disturbances      can  be  neglected.  

–  Mean  flow  quanSSes  scale  is      significantly  bigger  than  the      disturbances’  one.    

       

12/13/13   8  Marina  Bruzzone  

Viscosity  influences  a  very  thin  layer  in  the  immediate  neighborhood  of  the  solid  wall.  

Prandtl’s  idea  of  boundary  layer  is  to  divide  the  flow  into  two  regions,  the  outer  one  is  approximated  with  no  viscosity  and  one  internal  where  the  fric;on  must  be  taken  into  account.  

 

Page 9: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

THEORY  These  equa;ons  are  expressed    through  only  two  variables:    Knowing  that                                        ,  and  expressing  the  deriva;ve  in  y  as  D,  the  equa;ons  for  v’  and  for  η’  are:    

       SpaSal  Analysis          PerturbaSon  velocity:  

           

 

12/13/13   9  Marina  Bruzzone  

ω,β      ϵ      ℝ        α        ϵ      ℂ  

UNSTABLE  

STABLE  NEUTRAL  

Normal  Velocity  

Vor;city  

Orr  -­‐  Sommerfeld  EquaSon  

Squire  EquaSon  

Page 10: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

THEORY  At  a  given  sta;on,  the  total  amplifica;on  rate  of  a  spa;ally  growing  wave  can  be  

defined  as:    •  A  =  wave  amplitude    •  A0    =  X0  posi;on  (where  the  wave  begins  to  be  unstable)  

   The  envelope  of  the    total  amplifica;on  curves  is:  

12/13/13   10  Marina  Bruzzone  

Page 11: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

   

METHODOLOGY  DEVELOPED  

Page 12: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

METHODOLOGY  DEVELOPED  

12/13/13   12  Marina  Bruzzone  

RESULTS  MESH  WING  PROFILE  

Design  Modeler  GEOMETRY  profile  

Workbench  NO  INFLATION  

Fluent  INVISCID  MODEL  

Workbench  WITH  INFLATION  

Fluent  SST-­‐TRANSITION  

MODEL  

POST-­‐PROCESS  

Skin  FricSon  

bl3D  autoinit  NOLOT  

Page 13: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

   

TEST  CASES  2D    

Page 14: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

TEST  CASES  (2D)  

NACA0012        Mach  =  0.128,  T  =  288.15  K,  P=  101325  Pa,  Re  =3x10^6  

       N-­‐factor  plot,  amplificaSon  rate  for  AoA  =  0°  

                                             EXPERTIMENTS  vs  Nolot  

12/13/13   14  Marina  Bruzzone  

Transition location - Nolot - Fluent SST

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 0 2 4 6 8 10 12

AoA

X/C

Transition LocationO'Reilly

Nolot - Nfactor = 10

Nolot - Nfactor = 8

Page 15: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

TEST  CASES  (2D)  

NACA0012        Mach  =  0.128,  T  =  288.15  K,  P=  101325  Pa,  Re  =3x10^6  

Viscous  CalculaSon  Transi;on  loca;on  in  viscous  case  -­‐>  Cf  Rapid  growth  -­‐>  switch  from  laminar  to  turbulent  

           

12/13/13   15  Marina  Bruzzone  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 3 8

X/C

AoA

Transition location - Nolot - Fluent SST

Transition Location O'Reilly Nolot - Nfactor = 10

Nolot - Nfactor = 8

B.L. Separation

FLUENT - SST TRANSITION

Page 16: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

TEST  CASES  (2D)  

NLF0416          Mach  =  0.1,  T  =  288.15  K,  P=  101325  Pa,  Re  =4x10^6  

 Transi;on  loca;on  in    the  ar;cle  (“Transi;on-­‐Flow-­‐  Occurrence-­‐Es;ma;on    “A  New  Method”    by  Paul-­‐Dan  Silisteanu    and  Ruxandra  M.  Botez  )    is  actually  the    the  separa;on    loca;on.              

12/13/13   16  Marina  Bruzzone  

Page 17: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

   

TEST  CASE  3D  

Page 18: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

TEST  CASE  (3D)  

SPHEROID    MESH    and  PRESSURE  DISTRIBUTION    on  the  spheroid    (for  inviscid  calcula;on):  

       

12/13/13   18  Marina  Bruzzone  

Mach  =  0.3,  T  =  281.53  K,  P=  101325  Pa,  Re  =7.2x10^6  

Cp  distribu;on  on  the    symmetry  plane  for:      

Inviscid - Cp distribution

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-0.6 -0.4 -0.2 0 0.2 0.4 0.6x

Cp

Spheroid profileα = 0α = 5α = 10

Only  AoA=0°  case  à    ok    

Spheroid - Ma = 0.3 - Re = 7200000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10

AoAX/

C -

Tran

sitio

n N=7.2

N=5

Article N=7.2

Article N=5

Nolot  TransiSon  locaSon  

 VS    Experiments    

AoA=0°    AoA=5°      AoA=10°  

Page 19: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

TEST  CASE  (3D)  

SPHEROID    •  NEW  IDEA    à  study  along  the  streamlines  

•  No  crossflow  à  two-­‐dimensional  analysis  

   

   

12/13/13   19  Marina  Bruzzone  

Far  from  the  symmetry  plane                        à  Nolot  ok  For  N=7.2                                              à  Nolot  not  ok  

VISCOUS  CALCULATION:  Results  of  the  analysis  ALONG  THE  STREAMLINES:   AoA  =  10°      à  no  convergence    AoA  =  5°          à  Fluent  ok    AoA  =  0°          à  Fluent  not  ok  

Page 20: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

CONCLUSIONS  •  A  methodology  to  predict  transi;on  based  on  physical  mechanisms  has  

been  implemented  and  verified  in  an  industrial  fluid  solver  (soVware)  

•  ValidaSon  is  successful  for  2D  profiles,  as  NACA0012.    

•  For  the  NLF0416  profile  we  cannot  be  sure  of  the  results  since  the  literature  provide  us  only  the  boundary  layer  separa;on.    

•  ValidaSon  for  the  3D  geometries  is  more  complicated  for  3D  effects.    

•  Same  methodology  along  the  streamlines  is  ok  but  far  from  the  symmetry  plain.  

 •  For  the  moment  Nolot  code  works  only  on  simple  geometries  like  a  

spheroid  (axisymmetric),  infinite  swept  wings.    12/13/13   20  Marina  Bruzzone  

Page 21: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

FUTURE  WORK  

•  Manage  the  en;re  methodology  to  make  it  faster,  efficient  and  reliable.  

•  Make  a  study  of  the  enSre  spheroid  to  see  how  much  the  symmetry  plane  influences  the  flow  close  to  it.    

•  Improving  the  Nolot  code  to  use  it  along  the  streamlines  allows  to  extend  the  methodology  from  2D  to  3D  geometries.    

12/13/13   21  Marina  Bruzzone  

Page 22: Master’Thesis’in’ Mechanical’Engineering’ · Master’Thesis’in’ Mechanical’Engineering’ DEVELOPMENT*OFATOOL*FORTHE*PREDICTION* OFTRANSITION*TO*TURBULENCE*OVERSMALL*

   

THANKS  FOR  THE  ATTENTION