Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf ·...

337

Transcript of Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf ·...

Page 1: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
Page 2: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

L a bioquímica es una ciencia que se ha desarrollado con un ritmo muy acelerado en el presentesiglo. Los logros alcanzados en los últimos arios en el conocimiento de esta ciencia han influido decisivamente en el

progreso de numerosas ramas científicas afines, en particular en las biomédicas. Muchos hallazgos de la bioquímica han incidido directa o indirectamente en la teoría y la práctica médica; por ello resulta imprescindible el dominio de los aspectos fundamentales de esta disciplina por parte de médicos, estomatólogos, licenciados en enfermería, y en general por todo el personal profesional relaciona- do con la asistencia, docencia e investigación en el campo de las ciencias médi- cas.

El texto fue elaborado teniendo en cnenta los intereses de las diferentes especia- lidades de las ciencias médicas. De igual modo, éste puede ser de utilidad a estu- diantes de cualquier otra carrera biológica. En el Tomo IV se tratan, además, algunos aspectos especializados de la bioquímica de interés clínico actual, lo que permite a estudiantes de años superiores y graduados de las diferente ramas de las ciencias médica5 complementar y aplicar conocimientos adquiridos al cursar las ciencias básicas.

Nuestros propósitos son contrihuir a mejorar la comprensión de la disciplina Bioquímica y destacar su importancia en la formación de profesionales de las especialidades médicas. Corresponde principalmente a nuestros estudiantes eva- luar en qué medida ello se ha logrado.

Los autores

Page 3: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

CONTENIDO

CAP~TULO 1. La ciencia bioquúnica 3 Surgimiento y desarrollo de la bioquímica 3

Raíces y surgimiento de la bioquímica 4 Desarrollo y perspectiva de la bioquímica 6

Aportes de la bioquímica a otras ciencias biológicas 6 Aplicación de la bioquíinica a las ciencias médicas 9 Objeto de estudio de la bioquímica 12 Kesumen 12 Ejercicios 13

CAP~TWLO 2. La disciplina Bioquúnica 15 La disciplina Bioquímica en el plan de estudio del profesional de las ciencias médicas 15 Categorías, principios y conceptos generales 16 Método de estudio de la bioquímica 19 Resumen 20 E,jercicios 20

CAP~TULO 3. La materia viva 21 I,a materia viva como producto de la evolución de la materia iiiorgánica 21 Origen y evolución de la materia viva 26

Formación de las primeras moléculas biógeiias 27 Formación de bioinoléculas sencillas 28 Formación de las primeras macroinoléculas 29 Formación de las primeras estructuras vivas 32 Evolución de las células primitivas 33

Teorías evolucionistas 34 Evidencias en favor de la evolución de las especies 36 Resumen 36 Ejercicios 37

CAPfirrr,~ 4. Formas básicas de organización de la materia viva 39

Célula procariota 39 Célula eucariota 40 Virus 41 Proloplasma 41

Fnncionesdel protoplasma 42 Organización de una célula eucariota tipo 43 Organismos pluricelulares 44 Unión intercelular 46 Comunicación intercelnlar 47 Resumen 48 Ejercicios 49

CAPiTuLo 5. Intmducsión al estudio de las biomoléculas 55

El agua en los organismos vivos 55 Sustancias orgánicas en la materia viva 58 Composición elemental y características generales de las bionioléculas 58

Page 4: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Átomos en las hionioléciilas 58 Átomo de carbono 59

Enlaces químicos 60 Enlace iónico 60 Enlace covalente 60

Interaccioncs débiles 62 Puente de hidrógeno 62 lnteraccioiies hidrofóhicas 62 Iiiteracciones electrostáticas 63 Fuerias de Van der Waals 63

Hidrocarhuros 63 Hidrocarbiiros alifáticos 63 Hidrocarburos cíclicos 65

Agrupaciones o grupos funcionales en las hiomoléculas 67

Grupo hidroxilo 67 Grupocarhonilo 68 Grupo carboxilo 68 Grupo sulfidrilo 69 Grupo auiiiio 69 Amidas 70

Agrupaciones atóniicas derivadas 70 Hemiacetales 70 Acetales 70 Ésteres 71 Enlace éter 72 Tioésteres 72 Enlace amida 72 Anhídrido de ácido 72

Isomería 73 IsonieríaestmctiiraI 73 lsomería espacial 74

Conformaciones distintas de las moléculas 77 Sistemas dispersos 77 Formas de expresar la concentración 78 Resumen 79 Ejercicios 80

CAP~TULO 6. Aminoácidos 85 Concepto y características generales 85 Estructura de los amiiioácidos que constituyen las proteínas 86 Clasificación de los aminoácidos 90 Propiedades físicas de los aminoácidos 91

Propiedades ópticas de los aminoácidos. Series estéricas L y D 91 Propiedades eléctricas de los aniinoácidos 92

Especies iónicas de los aminoácidos 94 Importancia de los grupos en la cadena R de los aminoácidos 99 Reacciones químicas de los aniinoácidos 100

Reacción de la ninhidrina 100 Formación del enlace peptídico 100

Resumen 102 Ejercicios 102

CAF'hVL0 7. Monosaeándos 105 Concepto y clasificación 105

Monosacáridos simples 105 Interconvcrsiones entre aldosas y cetosas 107 Formas cíclicas de los moiiosacáridos: el hemi- acetal 108 Anómerosalfa y beta 110 Monosacáridos derivados 112

Derivados glicosídicos 115 Carácterreductor 116 Funciones de los monosaciiridos 1 16 Resiiinen 116 Ejercicios 117

CAP~TULO 8. Nucleótidos 119 Concepto 119 Clasificación 120

Según la base nitrogenada 120 Según el tipo de azúcar 121 Según el número de fosfatos 121

Nucleósidos 121 Nomenclatura 121 Propiedade.$ fisico-químicas de los nucleótidos 122

Carácter hidrofílico 122 Propiedades ácido-hásicas 122 Tautnmeria 123 Absorción de la luz ultravioleta 123

Otras características químicas y estructurales de los nucleótidos 123 Funciones de los nucleótidos 124 Resumen 125 E,jerrício 125

CAPÍTULO 9. Características generales de las macromoléculas 127

Característicasgeiierales 128 Elevado peso molecular 128 Carácter polimérico 129 Carácter uniforme 129 Carácter lineal 129 Carácter tridimensional 130 Carácter informacioiial 135 Tendencia a la agregación 137 Relación estructura-función 137

Propiedades generales 137 Difusión 138 Diálisis 138 Sedimentación 139 Visualización 140 Hidrólisis 140 Difracción de rayos X 140

Métodos empleados en el estudio de las macromoléculas 141

Page 5: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Obtención de la macromolécula 142 Separación de la macromolécula 142 Criterios de pureza 144 Caracterización de la macromolécula 144

Una incógnita 145 Resumen 145 E,jercciins 146

CAP~TULO 10. P o k f s n d o s 149 Oligosacáridos 149

Disacáridos 150 Importancia de los disacáridos 151 Glicoproteínas 152 Glicoesfingolípidos 153

Polisacáridos 153 Homopolisacáridos 153 Heteropolisacáridos 156

Resumen 160 Ejercicios 161

Cmfiur.0 11. Estructura de los Beidos nucleicos 163 Tipos y funciones 163 ADN como material genético 164 Estructura primariadelos ADN 165 Conformación de los nucleótidos 167

Relación base pentosa 167 Conformación de la pentosa 168 Relación pentosa fosfato 169

Estructurasecundaria de los ADN 169 Accidentes en la doble hélice 172 ADN 174

Otrasestructurasdel ADN 174 Estabilidad de la doble Iiélice 175 ADN superenrollado 177 Desnaturalización del ADN 177 Formas de presentación del ADN 178

ADN virales 178 Plásmidos 179 ADN mitocondrial 179 Cromosoma bacteriano 180 Cromosonla eucarionte 180

Métodos empleados en el estudio del ADN 180 Obtención del ADN 181 Separación de los AUN 181 Localización de ADN específicos 182

Estmctnra general de los ácidos ribonucleicos 183 ARN de transferencia 187 ARN ribosomal 189 ARN mensajero 190 ARN pequeños 191

Métodos empleados para el estudio de los ARN 191 ARN como material genético 192 Resumen 192 Ejercicios 193

C ~ ~ f i u r . 0 12. Proteínas 195 Péptidos y proteínas 195

Estructura de los péptidos 195 Funciones biológicas 197 Importancia biomédica 197

Proteínas 198 Clasificación de las proteínas 198 Estructura primaria 199 Organización tridiiiiensional 202 Estructura secundaria 202 Estmctura terciaria 206 Estructnra cnaternaria 21 1

Relación estructura-función de las proteínas 211 Desnaturalización 21 1 Proteínas alostéricas 212

Propiedades físico-químicas de las proteínas 213 Electroforesis 214

Aspectos estructurales de algunas proteínas fibrosas 215

Alfa-queratomas 215 Triple hélice o tropocolágena 215

Resumen 217 Ejercicios 217

CAP~TULO 13. Estnictura de los tipidos 219 Concepto y clasificación 219 Función biológica 220

Ácidos grasos 221 Propiedades físicas de los ácidos grasos 226 Propiedades químicas de los ácidos grasos 226 Ceras 228 Acilgliceroles 228 Fosfátidos de glicerina o glicerofosfátidos 229 Funciones de los fosfátidos de glicerina 229 Esfingolípidos 232 Funciones de los esfingolípidos 234 'Ierpenos 234 Esteroides 235

Resumen 238 Ejercicios 238

CAP~TULO 14. Reacciones químicas y catalizadores 245 Reacciones químicas 245 Energltica de las reacciones químicas 246

Page 6: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Energía libre 248 Reacciones acopladas 251 Velocidad de reacción 253 Orden de reacción 254 Reversibilidad y equilibrio 256 Energia de activación 259 Cataliiadores 261 Resumen 262 E,jercicios 263

CAP~TULO 15. EllZimSS y centro activo 265 Biocatalizadores 265 Mecanisnio básico de acción dc las enzimas 266 Centro activo 267 Formación del complejo cndina-sustrato 269 Mecanismo de la catálisis 270 Modificaciones de centro activo 272 Especificidad de las enziinas 272 Centro activode la quimotripsina y la tripsina 273 Clasificación y nomenclatura de las enzimas 276 Resumen 281 Ejercicios 282

CAP~TULO 16. Cinética enzimática 283 Condiciones para los estudios ciiiéticos 283 Efecto de la concentracióii de enzima 284 Efecto de la concentración de siistrato 285 Efecto de la concentración de cofactores 291 Efecto del pH 291 Efecto de la temperatura 292 Efecto de los activadores 292 Efecto de los inliibidores 293 I<esiimen 295 Ejercicios 296

CAP~TIJL.~ 17. Regulación de la actividad enzimhtica 299 Formas básicas de la regulación enzimática 299 Componentes de un sistema de regulación 300 Regulación alostérica 301

Modelo simétrico o concertado 302 Modelo secuencia1 304 Características generales de las enzimas alostéricas 305

Modificación covalente 306 Modificación por fosforilación desfosforilación 307 Modificación por adenilacióu desadenilación 310 Otros tipos de modificaciones 311

Fenómeno de amplificación 311 Otros mecanismos de regulación 312

Proteólisis limitada 312 Variación en el estado de agregación 312 Interacciónproteína-proteína 313 Translocación de enzimas 314 Cambios en la especificidad 314

lsoenzimas 316 Resunien 317 E,jercicios 318

CAPíTULo 18. Organización de las enzimas 321 Citotopografia de las enzimas 321 Formas básicas de existencia de las eniimas 322

Enziinas simples 323 Complejos multienzimáticos 323 Enzimas multifuncionales 324

Enzimai unidas a membranas 324 Asociaciónenzimas-proteínas 326

Fenómeno de canalizacibn 327 Asociaciones supraenzimáticas 328 Topografía de las enzimas 329 Resumen 330 Ejercicios 331

CAP~TULO 19. Cofaetom enzimáticoa 333 'Tipos de cofactores 333 Formas de actuar los cofactores inorgánicos 334 Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335

Piridín nucleótidos 335 Flaviii nucleótidos 337 Ácido lipoico 338 Glutatión 339 Porfirinas 339 Biotina 340 Pirofosfato de tianiina 341 Acido tetrahidrofólico 342 S-adenosil-metionina 343 Coenzima A 343 Fosfato de piridoxal 344 Coencima B,,(5'-adenosil-coba!amiiia) 346

Nucleósidos trifosfatados 347 Resumen 349 Ejercicios 350

Page 7: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

L La bioquimica es una ciencia relativamente nueva, pero Iia tenido un desarrollo vertiginoso en las últinias décadas de este siglo; las ciencias médicas se han I>eneficiado con los aportes que ésta les ha brindado.

La materiavivaseformb a partir delainor&ica. durante nn largopnwso evolu- tiuo, y aunque muclios elementos se encuentran forniando parte de ambas niaterias, la coniposición relativa de éstos y su organización niolecular son diferencias funda- nientales entre ellas. Las nioléculas características de la materia v i ~ a son las I>ioiiioléculas.

E1 esclarecimiento de la relacibn entre la composición y la conforiiiación de las biomoléculas,en especial delas niacro~iioléciilas,Iia permitido niejor coniprensión de su relaciún estriictura-función; todo ello ha contribuido a esclarecer el carácter inforniacional que &as poseen, en el cual se fundanientan sus funciones espccífi- ca..

En los capítulos de este primer tomo se tiene como ot),jetivo proveer nl lector de los conociinientos hásicos relacionados con la materia viva r su coninosición. Iiacien- do tnfasis en la rclaciún estructura-fuiicibn de las bionioléculas, como un requisito indispensal>lc para el estudio posterior de otros temas de la hioquíiiiica. SúIo un conocimiento profundo de la estructura y función de todas las bionioléculas, apor- tará al lector las bases moleculares necesarias para adentrarse en el estudio de todos y cada uno de los diferentes procesos bioquímicos que caracterizan a los organis- mos vivos.

Page 8: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Introducción a la sección

L a hioqníniica es laciencia que estudia la química de la vida. El extraordinario auge experimentado por esta ciencia en los últinios años Iia contrihnido mucho a la orofnndización del conociiniento de los orocesos ~ita1es.a sn vez. . .

ha impulsado el desarrollo de nunierosas ciencias afines, especialmente las hioniédicas y contrihuido a la introducción de numerosos adelantos tecnológicos en la práctica mtdica como: nuevos medicamentos, vacunas y ttcnicas diagnústicas, entre otros.

De todo ello se infiere la necesidad del estudio de la hioqiiiinica para los profcsiona- les de la medicina. Esta sección se propone adentrar al lector en los aspectos niás generales y básicos de esta ciencia, eii sus raíces y ohjcto de estndio y en las evidencias de su aplicaciún a las ciencias nibdicas; a este propósito se dedica el capitulo l. Eii el capítulo 2 se da una panorámica de la disciplina Bioquímica, de sn alcance, de la necesidad de su estudio para los profesionales de las ciencias médicas; se trata tanihitn en este capitulo de las categorias, principios y conceptos generales de esta disciplina. En el capítiilo3, se exponen las características y atributos esenciales de la materia viva, así como algunos aspectos sobre su gtnesis y evolución. Por último el capítulo 4 se dedica a las diversas formas de organización de la inateria viva, desde los virus hasta los organismos pluricelulares más coniplejos. Esta sección tieneel ohjetivo de prepa- rar, deforma preliminar, al lector para el estudio de las secciones siguientes.

Page 9: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

La palabra bioquímica significa etimológicamente «química de la vida», la cien- cia que se ocupa de las bases moleculares de la vida; por lo tanto, aborda el estudio de la composición química de la materia viva, la relación estmctura-función de las molé- culas caractensticas de los seres vivos, así como las transformaciones químicas que ocurren en ellos y además, los mecanismos moleculares que intervienen en la regula- ción de tales transformaciones.

La bioquímica es una ciencia que se consolida como tal a inicios del siglo xx y, aunque sus raíces pueden ubicarse a fines del xvm, es solamente en los últimos años del xm que comienza a periüarse como una ciencia independiente y, de hecho, el término bioquímica se emplea por primera vez en el año 1903.

La química orgánica, la ñsico-química, la biología general, la microbiología, las f~iología vegetal y en particular la humana aportaron elementos valiosos y fueron las fuentes científicas principales que contribuyeron al nacimiento de la bioquímica, la cual se fueconformando ooco a %o. Es de resaltar la interacción histórica existente ~ ~ ~~

entre la bioquímica y otras ciencias biológicas, ya que si bien éstas desempeñaron una función importanteen el surgimiento de aquélla,mmo fuera ya señalado,la bioquímica ha impulsado demanera considerable el desarrollo y avance de las demás ramas bioló- gicas, particularmente las biomédicas.

En los avances experimentados durante los últimos años en las ciencias médi- cas, los aportes de la bioquímica han desempeñado una función destacada, así la comprensión de las causas moleculares de numerosas enfermedades, el desarrollo de variadas técnicas diagnósticas de laboratorio y el empleo de algunos medicamentos en el tratamiento de determinadas afecciones son ejemplos de la aplicación directa de esta ciencia a la práctica médica.

Eneste capíhilo revisaremossomeramente el desando histórico dela bioquímica, sus aportes a otras ciencias biológicas y en parücular a las ciencias médicas, resaltando la importancia desu estudio para los profesionales de la medicina, además dedejar sentado el objetode estudio deesta importante rama de la ciencia.

Surgimiento y desarmiio de la bioquímica

El origen y desarrollo de la bioquímica son un proceso histórico continuo, aunque su mayor auge se alcanza en el siglo xx. Sólo con fines didácticos abordaremos el

Page 10: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

estudio del desarrollo histúrico de esta ciencia en 2 etapas: raíces y surgimiento; desarrollo y perspectivai.

En raíces y surgimiento nos referiremos a los estudios más tempranos realizados desde los tiempos de los alquimistas hasta el reconocimiento de la bioquímica como ciencia independiente, por lo queesta etapa se extiende,desde mediados del siglo xviii

basta inicios del siglo xx. En desarrollo y perspectivas trataremos de los estudios llevados a cabo en este

siglo hasta nuestros días y se plantearán algunos de los alcances probables de esta ciencia en los próximos años.

Las raíces u orígenes de la hioqnímica se relacionan con las primerai investigacio- nes llevadas a cabo por distintos científicos en relación con la composición quíiiiica de las sustancias naturales, así como con los estudios iniciales de algunas transforma- ciones químicas o procesos característicos de organismos vivos.

Los trabajos experimentales que se consideran pioneros en este sentido son los realizados a finales del siglo xvm por el farmacéutico sueco Karle Scheele, quien logró aislar e identificar a partir de tejidos vegetales y animales un grupo de conipues- tos como: glicerina (a partir de aceites vegetales),caseína (a partir de la leche) además de los ácidos cítrico, láctico, málico, tartárico y úrico, de fuentes diversas. Distintos investigadores, de forma independiente, obtuvieron variados compuestos biológicos a partir de diferentes productos naturales.

Estos trabajos iniciales, que abrieronwa etapa importante en el conocimiento de la composición química de los seres vivos, aportaron elementos básicos en el reconocimientodesu carácter material, y tambiénsuminiitraron evidenciasencuanto a la similitud entre los componentes químicos de especies distintas. Con el desarrollo de las técnicas del análisis químico, cuantitativo y elemental, los investigadores Jons Berzelius y Justils Liehig, en los primeros años del siglo xix, demostraron la presencia significativa de carhoiio en todos los compuestos aislados por Scheele, hecho funda- mental en la comprensión de la función del carbono en la química orgánica.

De los trabajos iniciales relacionados con el estudio de las transformaciones quí- micas que ocurren en los seres vivos, se les confiere importancia tundamental a 2 resultados que corresponden tanihién con los años finales del siglo xviii. El priinerode ellos realizado por AntoineLavoiser, en los años de 1779 a 1784, sohre la respiración celular. Lavoiserefectuó un estudio comparativo del calor desprendido en la respira- ciún de células vivas y en la combustión de algunos compuestos carbonados en una bombacalorimétrica, con lo cual llegó alaconclusiún de quela respiraciún celular era un proceso de combustiún del carbono con intervención del oxígeno molecular, es decir, un Droceso oxidativo. Estos trabaios se consideran coiiio las raíces del nietabo- . . "

lismo energético. Como consecuencia de estos resultados a principios del siglo six, se establecen los valores calúricos (calor desprendido por su combustión) por cada gramo de rdrhohidratos, graias y proteínas.

El segundo hallazgo, realizado en el año 1783 por LázaroSpallanzani, se con- sidera también ligado alnacimieiitode la bioquíinica y está relacio!uddo con el proce- so de la digestiún gástrica. En este trahajo se demuestra que el proceso digestivode lai proteínas ingeridas en la dieta consistía en transforinaciones químicas, que podían ser reproducidas con bastante similitud extracelularmente, si se utilizaban «ciertas sus- tancias gástricasa, obtenidas mcdiante fistulas quirúrgicas en animales de experinien- tación.

A partir del reconocimiento de la presencia de carbono en los distintos compues- tos obtenidos de la materia viva, se realizaron numerosos intentos para lograr su sinte- sisen el lahoratorio. Esto constituía por esa época un serio reto, pues la religión y determinadas corriente? oscurantistai,muy arraigadas lmr eva época, conio el vitalismo,

Page 11: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

que los compuestos orgánicos sólo podían ser producidos por los organis- mos vivos, ya que era necesariala presencia de una «fuerza o aliento vital» queexistía sólo en éstos.

Correspondió a Fiedrich Wohler el mérito de lograr, por vez primera en el laboratorio, en el año 1828, la síntesis de un compuesto biológico: la urea, una sustancia que se excreta por la orina, producto del metabolismo de compuestos nitrogenados; con esto aportó una evidencia importante en contra del vitalismo. Unos años más tarde, AdolfKolh sintetizaba también el ácido acético. Sin embar- go, fue sólo después de los trabajos de Marcellin Berthelot, quien obtuvo la síntesis química de varios compuestos existentes en los seres vivos, que la teoría vitalista quedó científicamente demolida.

Mucho le debe la bioquímica a las investigaciones sobre fermentación. Después que Theodor Schwann había identificado la fermentación alcohólica como un proceso biológico, Joseph Gay Lussac, en 1815, añadía que este proceso consistía en reaccio- nes químicas, y ya en 1839 Beneliusy Liebiglo identifican como un proceso catalítico. De particular relevancia fueron los aportes de LouisPasteur relacionados con los procesos fermentativos. En el año 1850, Pasteurplanteó que la fermentación de la glucasa por la levadura se debía a la acción catalítica de fermentos, nombre con el que comenzó a identificarse las biomoléculas que hoy reconocemos como enzimas; ade- más,& mismo investigador constató la existencia de organismos aembios y anaerobios y describió 1a.función inhibitoria del oxígeno molecular en el proceso fermentativo (Efecto Pasteur).

En 1893, Wiihem Friedrick Ostwaldexpone que los fermentos cumplen los ahibu- tos fisico-químicos de los catalizadores.

Años más tarde, en 1897, se obtiene un importante avance en este campo, cuando EduardBuchnery su hermano Hanslogran producir la fermentación en extractos übrerde células. Esto permitió la ideniühciónde las enzimas y reacciones involucradas en este proceso. Los estudios sobre la fermentación se pueden cousiderar como las bases de la enzimología y los procesos metabólicos.

Durante este siglox~u se formulan 3aportes fundamentales al conocimiento de la biología que influyeron notablemente en el pensamiento científicode la época. Estos aportes constituyeron verdaderas revoluciones biológicas, ellas son: La 'ibría Celu- lar, formulada por Mathias Jacok Schleiden y IlliwdorScha wann, en 1838; La % rla de la Evolución de Charles Darwin, en el año 1859 y Las Leyes de la Genética expuestas por GregorMendel, en 1865. Estos aportes trascendentales contribuyeron mucho a la comprensión de la unidad básica de la materia viva en toda la naturaleza.

Corresponde también a esta etapa,los estudios iniciales en relación conla estructura química de biomoléculas complejas. Al resperto merecen destacarse los trabqjos realiza- dos por Mchel Chemul, quien a partir de la reacción de saponiñcación (hidrólisis alcalina degmw), demostró que&& están formadas por glicerina y ácidas grasos.

En 1868, FriedrichMescheridentifica el primer ácido nucleico a partir de células de pus, procedentes de vendajes quirúrgicos y otras fuentes. Este resultado abrió el estudio de un nuevo campo, que ha sido sin lugar a dudas, uno de los que ha contribui- do decisivamente al desarrollo de la biología molecular, es decir, el estudio de la estructura y función delos ácidos nucleicos.

En el estudio de la estructurade las biomoléculas,merecen especial mención los aportes importantes de Emil Fischer, en relación con la estructura de carbobidratos, grasas y aminoácidos.

Un aporte también relevante fue la obtención de aminoácidos a partir de un bidrolizado de proteínas por Mulder, Liebig y otros, lo cual permitió que ya en 1902, apenas comenzado el siglo xx, Hobmeistery Fischerconcibieran a las proteínas como polímeros de aminoácidos.

Con todos estos resultados, la bioquímica se consolida como ciencia indepen- diente y, en efecto, en los inicios del siglo xx, el año 1903, CarlNeubergemplea por vez primera este térmúio para identificarla.

Page 12: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En el siglo xx seexperimenta un notable augeen las investigaciones relacionadas con la bioquímica,causado en gran parte por el desarrollo tecnológico alcanzado, lo que dio lugar a la introducción denuevas técnicas como: la microscopiaelectrónica, la difracción de rayos X, la ultracentrifugación, el uso de radioisótopos, la obtención de mutantes en nucroorganismos, la espectrofotometna, los métodos de determinación de secuencias en macromoléculas, y otrai.

Todo ello permitió un rápido avance en la elucidación de vías metabólicas. Así, en 1905, FranzKnoop describe el proceso de B oxidación de los ácidos grasos; en 1912, se realiza por Neuberg, la primera propuesta de lar secuenciar de reacciones del proce- so de fermentación, el que seríacompletado años más tarde por Gustav Embden, Otfo Meyerhofy otrus investigadores. En 1932, Hans Krebsy KurtHenseleit, describen las reacciones del ciclo de la ornitina, y en 1937, de nuevo Krebs y Knwp, conjuntamente con Carl Martius, describen las reacciones del ciclo de los ácidos tricarboxlicos, conocido también como ciclo de Krebs. Al año siguiente Alexander Braunsfein y K r i h a n n , caracterizan las reacciones de transaminación.

A partir del esclarecimiento de estas vías básicas y centrales del metabolismo, en los años siguientes, se fue completando el conocimiento de las distintas rutas metabólicas, lo cual ha significado un aporte valioso a la comprensión de los procesos vitales y a una mejor interpretacióu de las afecciones metabólicas que pueden presen- tarse durante una serie de enfermedades.

En los primeros lustros de este siglo se obtienen resultados importantes en rela- ción con las investigaciones enzimáticas y el metabolismo energético..A inicios del siglo xx, Fisrher efectúa los primeros estudios de especificidad enzimática. En 1926, se logra por JamesSumnerla cristalización de la primera enzima: la ureasa. Él com- prueba la naturaleza proteínica de ésta y postula que las enzimas son proteínas; sin embargo, esta proposición es muy rechazada por otros investigadores, los que sostie- nen que el resultado obtenido por Sunmerpodía ser causado por una contaminación. No es hasta el año 1930, en que John Northopy otros obtuvieron pepsina y tripsina cristalizadas y corroborarun los resultados de Sumner, que fuera aceptada de forma general la naturaleza proteínica de los biocatalizadores. En relación con el mecanismo de acción de las enzimas, y la cinética y regulación de su actividad, son muchos los hallazgos realizados durante estos últimos años; pero estos aspectos serán abordados en la sección dedicada a los biocatalizadores.

Otro descubrimiento notable fue el del adenosín trifosfato (ATP), realizado en el año 1925 por Lohmann, Fiskey Suhamwy el reconocimiento de éste como trans- portador principal y universal de energía, por Fritz Lipmann y Herman Kalckar, en 1941. Por otra parte, David Keilin aclara los mecanismos involucradar en las oxidacio- nes biológicas en el año 1934, y ya en 1961, PeterMitcl~ellpostula la primera versión del mecanismo quimiosmótico del proceso de síntesis mitocondrial del ATP (fosforilacion oxidativa), la cual ha sido enriquecida con experiencias ulteriores y esencialmente confirmada, por lo que en la actualidad es la teoría universalmente aceptada para explicar este proceso.

Los estudios sobre la estnictura primaria de las proteínas obtuvieron sus primeros resultados significativos con la determinación de la secuencia de aminoácidos de la hormona insulina, culminados por Frederick Sangeren el año 1953. Por esta época, los investigadores Linus Pauling y Robert Corey proponen el modelo en a hélice como estmctura regular presente en un gmpode proteínas,loquefuecomplementado después conla identificación de otros tipos de ordenamientos regulares y no regulares, presentes en el nivel secundario de las proteínas; años m;ís tarde, Jobn Kendrewy Max Perutzdeterminan la estmctura tridimensional de la? proteínas mioglohina y hemog- lobina, utilizando, fundamentalmente, la técnica de difracción de rayos X. En la actua- lidad, esos estudios se han profundizado y ampliado,por lo que seconoce la estmctura completa de numerosas proteínas tanto en lo referentealnúmero y disposiciónde los

Page 13: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Años más tarde el propio Milstein consigue producir, a partir de los hibridomas, los anticuerpos monoclonales, uno de los aportes de may ores perspectivas de la biolo- gía en los nltimos años. Estos anticuerpos nionoclonales han podido emplearse con éxito en la identificación de hormonas y en la detección de células cancerosas, entre otras muchas aplicaciones.

Pero los avances de la bioquímica han sido importantes no sólo para la genética y la ininunología, sino que abarcan muclios otros campos. Algunos hallazgos se han alcanzado en relación con la caracterización delas alteraciones del metabolismo lipidico en general, y particularmente en cuanto a los factores que favorecen la aparición de arteriosclerosis. En 1968 Glo~nsetpropone la teoría del transporte reversible de colesterol y el papelde IasHDLen el retorno de este esteroide al hígado; en el añode 1975 Bmwn y Goldstein describen la ruta de los receptores de LDL para estas lipoproteinas, vía importante en la regulación del colesterol sanguíneo. Por otra parte, también se han obtenido avances en el esclarecimiento de los cambios metabólicos aue ocurren en células cancerosas, lo que unido al descubrimiento de los oncogenes y a los estudios realizados del proceso de transformación celular, constituyen una esperanzadora pers- pectivaparaunfutumprometedor enlalucha contra esta terrible enferniedad.

El avance vertiginoso experimentado por la ingeniería genética y la biotecnología, así como la inmunología, en cuyos desarrollos ha contribuido significativamente la bioquímica, han permitido que sean posibles sus aplicaciones al diagnóstico, a la elaboración de vacunas y productos naturales y se señalen perspectivas futuras en el tratamiento de enfermedades hasta ahora incurables.

Aportes de la bioquúniea a otras ciencias biológicas

Por ser la bioquímica la ciencia que explica las bases moleculares de la vida, resulta fácil comprender cómo los logros y avances deaquélla,repercuten en las demás ciencias biológicas. Puede por tanto decirse que todos los descubrimientos, todo el progreso científico alcanzado por la bioquímica, ha implicado un aporte a las otras ramas dela biología, y en la medida queaquélla sedesarrollaba impulsaba el progreso de ciencias afines.

Así el conocimiento de la composición química de numerosas sustancias natura- les presentes en los seres vivos, el estudio de la estructura de las biomoléculas, sus propiedades y organización macromolecular, demostraron la relación indisoluble en- trela estructura de todas ellas y la función quedesempeñan.

La bioquímica ha aportado elementos importantes de apoyo a la teoría evolucionista, como son: la similitud estructural de moléculas que desempeñan las mismas funciones en especies distintas, la universalidad del código genético y la existencia de numerosas vías metabólicas semejantes en distintos organismos, por sólo citar algunos.

Experiencias de simulación en los laboratorios, que reproducen con cierta fideli- dad asDectos esenciales de las condiciones nresumiblemente existentes en la Tierra

~ ~

primitiva, han aportado valiosos datos a la teoría del origen abiótico de la vida y a la comprensión de los eventos que pudieran haber ocurrido en el largo proceso de la formación de la materia orgánica y de los primeros organismos vivos.

La dilucidación de la estructura tridimensional de biopolímeros permitió com- prender, además, los mecanismos moleculares de su función, lo que ha significado un avance tremendo en el conocimiento de la forma en que se realizan procesos tan fundamentales para la vida como la acción catalítica de las proteínas enzimáticas(los biocatalizadores) y entender la manera en que otras proteínas realizan su función.

El modelo de Watson y Crick en la estructura del ADN y el descifrado del código genético hicieron posible la comprensión de los mecanismos generales del almacena- miento, trasmisión y expresión de la información genética. El esclarecimiento de estos procesos en células procariotas y eucariotas ha permitido aplicar algunos de los conoci-

Page 14: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

,,,ientos adquiridos en ramas diversas cuino: la agricultura, la microbiología, las nicdi- tinas humana y veterinaria, etcétera: niuchos de los aportes de la hioqiiíinica en esta temática han sido de aplicación en la preparación de niedicanirntos variados, coiiio muchos antibióticos y citostúticos.

La comprensión al nivel inolecular de fenónieno~ biológicos de griin iiiiyortancia como mutación, duplicación y reconihinacióii de genes, ha yeriiiitido entender las fuentes de variacióii poblacional, Imse de la teoría cvolucioiiista, así como la rcsisteii- tia a antibiótieos desarrollada por algunas cepas de iiiicroorganisnios: a su vei qiie ha facilitado la identificación de enfermedades iuoleciilares y otras alteraciones Iieredita- rias,lo que ha significado un avance fiindamental a las ciencias niédieas, como vcre- mas más adelante con más detalle.

Los aportes de la bioquíiniea a la genética han sido niiiiierosns y trascendentales. El aislamiento y caracterización funcional de cicrtas enzinias y otros conipuestos importantes involucrados en la hiosíntesis de proteíiias y trasmisión de la información genética, han sido fundamentales para el siirginiiento de la ingeniería genétiea.

La dilucidación de las distintas vías nietahúlicas, conio la fotosíntesis y la respira- ción celular, así conio la fiineinn de la nioléciila de A.W en el alniacenamicnto y transferencia de encrgía en los distintos organismos vivos,lian permitido la conipreii- sión molecular de aspectos esenciales de la vida, coiiio el intercambio de sustancia y energía con el medio y la autorrcgiilación, así conio los mecanismos de la hiotransducción; esto es. la capacidad que tienen los orgaiiisnios vivos de eanihiar un tipo de energia en otro.

Tanto el connciiiiiento de la estriictiira tridiniensioiial dr las proteínas. con función de antieuerpos (las inmunoglobulinas).como el esclareciinieiito delos ineeaiiisnios de almacenaniiento y expmión de la iiiforinación genética han permitido sclarecer, en g n n medida, la capaeidad de sta~ iii«l&ula~ para reconocer compumtos variados y reaccio- nar específicamente con éstos. Ello ha contribuido al desarrollo de la inniunología y las ciencias relacionadas y constituye un \diuso ejeniplo del recoiioeimiento niolerular, que se maiiitiesta tanihién cn las intcracciones Iioriiioiia-receptor y cnzinva-siistrato.

El estudio de las asociaciones supranioleciilares ha significado un salto cualitativo en la b io lo~a celular Iia dado lugar al dc~arrollo de la biología inolecular; así, el estudio de la asnciaeión de distintos tipos de lípidos coiiiplrjos, proteínas y algunos glúcidos, permitió dilucidar la estnichira íntima de la7 iiienibranas hiológicas y coiiiprender niejor aleunas de sus Funchmcs. cuino cl traiisnorte selectivo dr sustancias. Por otra narte. la . , constitución de los rihosomas y la cromatina ha podido entenderse inucho mejor en la medida quese Iia profuiidi7~do en las interacciones de la5 proteínas y los úcidos niicleicos.

La mierohiología, la botánica. la agricultiira, la industria farniacéiitica, la hinlngía celular, la iiiui~inología, la genética, la ingeniería genética y la hiotecnología, así como las ciencias médicas, tanto la veterinaria como la hiiinaiia. han recibido impor- tantes beneficios en las aplicaciones concretas de numerosos descubriiiiient»s bioquíniicos a sus intereses yarticiilarcs, lo que Iia redundado en avances importantes deestas ciencias afines.

No podcinos olvidar el aporte tecnológico y metodológico que la hioqiiíiiiica ha entregado a otras ranias hiológicas, entre las que piiedcn nicncionarse: las técnicas cromatográficas, las electroforéticas, las de iiltraceiitrifugación, las enziiiiúticas, el marcajc radioisotópico, la síntesis dc niacromoléculas, el aislamiento de genes y su incliisióii en el niaterial gen&« dr iiiia célula ?jena y la amplificación y recomliinacióii de genes, por sólo citar algunas de las inás iini\~rrsaliiiente eniplradas.

Aplicación de la bioquímica a las ciencias médicas

En el acápite anterior tratamos los aportes deesiacicncia a otras ramas biológicas de forma general, ahora abordaremos el estudio de la contribución de la bioquíinica a las cicncias médicas de forma particular.

Page 15: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Desde la antigüedad se conocía que con el aporte de determinados alimentos a la dieta se lograba obtener la cura de algunas enfermedades, más tarde identificadas como enfermedades nutricionales. La hioquímica ha sido principalmente la que pudo esclarecer la función de cada lino de los distintos nutrientes eu el organismo, propor- cionando con ello m~ jo re s condiciones a la práctica médica, particularmente en la prevención y tratamiento de las enfermedades nutricionales por carencia y por exceso, al baherseestablecidolas cantidades requeridas decada uno de estos nutrientes para el desarrollo normal del individuo.

Algo similar pudiera decirse acerca de las enfermedades endocrinas, las que se presentan por carencia o exceso de las hormonas. Las hormonas son compues- tos biológicos que aunque poseen naturaleza química variada, desenipeñan todas ellas fuuciones de regulación en los organisnios pluricelulares. Para comprender mejor las endocrinopatías, se hizo necesario esclarecer las funciones de las hor- monas.

Ida diabetesmeüitus, enfermedad muy difundida en el mundo,se manifiesta por aumento de la glucosa sauguínea, la que puede también aparecer en la orina. Los enfermos diabéticos no tratados pueden sufrir múltiples coinplicaeiones, pero los sín- tomas se revierten en la mayoría de los easos, por la administración de la hormona insulina o compuestos que estimulan su secreción, y con una dieta apropiada. El diabético se reconoce como un enfermo que presenta déficit de acción insulínica, que resulta fundamental en la regulación del metaholisino.

Por disminución de la síntesis de Iiornioiia o por exceso se presentan una serie de enfermedades, las que han podido ser me,jor interpretadas y por lo tanto eficienteniente controladas, en la niisina medida en que se han ido conociendo la estructura, las propiedades y el mecanismo íntinio de acción de la hormona correspondiente. Por otra parte, el conocimiento de la estructura de las que presentan naturaleza proteíniea, como la insulina y la hormona del erecimiento, ha permitido su síntesis químiea, lo que también se ha logrado por medio de la ingeniería genétiea.

El conocimiento de las enfermedades inoleculares adquiere especial relieve, su causa radica en un déficit de algnna proteína (frecnenteiiiente una enzinia), o en la síntesis de proteínas anorinales, por presentar uno o niás aminoácidos diferentes en relación con la normal, tal es elcasode numerososcuadros que se trasmiten defoima hereditaria. Con el avance actual pueden ser detectados los portadores y realizarse, cuando proceda, el diagnbstico intraútero, lo que permite a los padres decidii;eoii la asesoría de un especialista, la interrupción o no del embarazo.

Existen muchas enfermedades de este tipo, ejemplo d e ellas es la drepanocitosis o anemia falciforme, enfermedad que se caracteriza por la presen- cia de una hemoglobina anormal, que provoca serias alteraciones del glóhulo rojo y sil eventual destrucción e iinplica cuadros hemolíticos que pueden ser muy severos. Estos casos son detectados en nuestro pais y se orientan a las parejas portadoras, de acuerdo con su descendencia.

Otras enfermedades inoleculares, conocidas tamhién coino "errores congéni- tos del nietabolismo", se presentan por un déficit de alguna enzima o la forniación de proteínas enzimáticas anormales. Un caso iinporlante de este tipo de enferine- dad es la oligofrenia fenilpiriivica o fenilcetoniiria, la cual se produce por la carencia de una cnzinia necesaria para el iiietaholis~no de algunos aiiiiiioácidos; ioiiio consecueiici;~ se fornian algunos nietaholitos colaterales en grandes canti- dades y se origina un significativo retraso niental. Estc retraso puede ser evitado si se realiza el diagn6stico precoz, después del naciniiento y se somete al nióo afectado a un tratamiento dietético especial. La prueba hioquíniica diagnóstica para detectar cslas cnfcrnietlades se realiza, en nuestro país, a todos los recién

Page 16: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

nacidos, 10 que permite su tratamiento oportuno y se evita así la aparición del

retraso mental. L~ imPortaiicia del conocimiento de las alteraciones bioquíiiiicas no se aplica

sólo a las enfermedades molecnlares, sino a muchas otras. En distintos paises dcl realizan numerosas investigaciones para estudiar lar bases nioleculares de la

transformación de una célula normal en cancerosa. A nuestras embarazadas se les determina de manera precoz la presencia en suero

sanguíneodeuna proteína fetal (ufeto proteína),la cual aumenta en cl suero materno cuando existen alteraciones en el desarrollo del feto; la positividad de esta prueba, con el estudio morfológico del feto por ultrasonido, pueden aconsejar la interrupción del embarazo, si se detecta alguna anomalía congénita severa, lo que brinda una mayor seguridad para la futura madre.

Estos programas de detección y tratamiento precoz de enibarazadas y reciéii naci- dos son parte del ambicioso plan de salud de nuestro país, y se caracterizan por poner en manos de nuestra población, de forma gratuita, la utilización del desarrollo cientí- fico y tecnológico, entre los que ocupan un lugar iiiiportaiite los aportados por la b iuqhica .

En el diagnóstico clínico sc utilizan iiiuclios indicadores bioquíniicos, enzimáticos n no, que iesiiitaii de apreciado valor. Como ejciiiplo piidiéraiiios citar el cstiidio dc ciertas transaminasas, las cuales se liberan al suero sanguíneo durante afecciones qne implican daño de las células hepáticas.

Igual principio se aplica eii la determinación dc un gran conjunto dc enzimas relacionadas con el da50 Iiístico cn diversos órganos, como es la determinación de las enzimas láctico desbidrogenasa, creatinoqninasa y las propias transaminasas en el diagnóstico del infarto del miocardio; ello no sólo es útil en el diagnóstico, adeiiiis permite seguir la evolución del paciente y a ineiindo tiene valor para poder predecir la respuesta del enfermo (valor pmnóstico).

Además de las iiivestigacioiies enziináticas, en los laboratorios clínicos se emplea de manera corriente, la deterniinación dc concentraciones de distintas sustancias qne pueden indicar alteraciones metal>ólicas y algunas complicaciones que se sobreañaden a un cuadro clínico. Así podemos ver cómo se deterniiiian las concentraciones de glucosa, cuerpos cetónicos, proteínas séricas, ácido láctico y lípidos, por sólo citar algunos indicadores de gran valor en la práctica médica.

Es de resaltar la rapidei coi1 la cual en los últimos años se logran Ileirar a la práctica médica los adelantos de la bioquíniica, que tienen relevancia en el diagiiósti- co o tratamiento de enfermedades.

La farmacología ha aplicado también de manera exitosa resultados obtenidos en bioquímica en la preparación de inedicanientos. Muchos inhil>idores de las enzimas y de la síntesis dc proteínas baii mostrado ser de utilidad en el trataniicii- tu médico, ejeniplo: prostaglandinas y otros derivados lipídicos, quimioterápicos. antibióticos y citostáticos.

La respuesta inmunológica ante agentes extraños, aspecto de fundamental importancia en la defensa del organismo, especialmente ante infeccioiies. ha po- dido ser mejor conipreiidida por los estudios de la estructura y niecaiiismos de síntesis de las inmuiioglobiili~ias, lo cual han favoiccido la interpretación de las respuestas inniuii«lógicas deficientes, las enfermedades altirgicas y la bistocoinpatibilidad.

Los avances de la biología molecular y especialmente de la ingeniería genética y la biotecnología eii los Últimos años, han abierto posibilidades insospechadas hace apenas unos años en las ramas biomédicas. Eii el 'lomo IV de este libro, en las secciones: "Alteraciones Eioquíinicas en la Patología Humana", "Probleiiias Ac-

Page 17: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

tirales de la Bioquíniica", "Bases Moleculares de la Nutrición Huinana" y en gcric- ral, a lo largo del texto, se irán tralaiido con mayor profundidad estos y otros aspectos relacioiiados con los aportes (le la hioquíniica a las ciencias médicas.

Objeto de estudio de la bioquímica

Después dc Iiaher realizado una revisión somera del surgimiento y ilcssrrollo dc 121 bioquiinica conlo ciencia y detallado algunos de sus aportes a las ciencias I>iológicas en general y a las ciencias médicas en particular, estarnos en condiciones de coiicretar su ob,jeto de estudio. La hioquíinica y en especial la hioquíniica huinana se ocupa del estudio de:

1. 1.a relacih coinposiciúii-i«iifo1'1naci6i1-funció11 de las biomoléculas, o sea, el esliidio de la coinposición elemental y estructura quíniica dc las iiiol6culas hioló- gicas, que iiicluyc~i su conforiiiación tridiinensional y la relación íiiliina entre ésta J la función específica de cada una de ellas.

2. Las asociaciones supramoleeulares que constituyen la hase de las estructuras celulares, los te,jidos y orpnismo, así conio las bases moleculares de la difercn- ciación y especialización de los tejidos en los organisiiios ploricelulaies.

3.1.0s inecanismos íntiinos de acción de los biocataüzadom y ski regulación. 4. La biotraasducción, o sea, los procesos mediante los cuales se produce el cambio

de un tipo de energía en otro en los organisiiios vivos. 5. Las bases moleculares de la conservación, transferencia y expresión de la infor-

mación genética y su regulación. 6. Los procesosmetabólim celulares e hísticos y sus niecanismos reguladores. 7.1% alteraciones bioquúnicasen diversas enfermedades.

Resumen

La bioquímica es una ciencia de este siglo, pues aunque sus raíces se ubican a finales del siglo XVIIi, se constituye como tal y alcanza su mayor auge en el siglo XX.

La bioquímica ha hecho aportes a otras ramas afmes y ha impulsado sus desa- rrolios. El eonoeimiento alcanzado en la composición, estructura quimica y fun- ción de las biomoléculas, el eselarecimiento de las distintas vías metabólicas y su regulación, la dilucidación de los mefanismas de la biocatálisis y la bioiransducción y de las bases moledares del almacenamiento, trasmisión y expresión de la infor- mación genética, han redundado en avances en todas las ramas de la biología.

Muchos descubrimientos en aspetos básicos fundamentales de la hioquímica han incidido directamente en el desiumlio de la genética, La iomunología, la micro- biología y la farmacología lo cual ha permitido numerosas aplicaciones de estas espeeiaüdades a la práctica médica, tanto en el diagnóstico p d o de una serie de enfermedades, preparación de vacunas y o- medicamentos, como en la mejor comprensión de las enfermedades moleculares, endocrinas, metabólicas y altera- ciones de la respuesta inmunológica, proporcionando la detección pmoz de estas enfermedades y la orientación de la conducta médica más apropiada en cada caso.

Los logros alcanzados, en los úlün~os años, por la ingeniería genética y la biotecnología, así como sus enormes pe~pectivas nos hacen presumir que en los años venideros se deben conseguir solusiones deñnitivas a problemas actuales de la medicina como la arteriasclerosis, algunas afecciones hunológicas y el cáncer, entre otros.

Page 18: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

1. Mencione 5 aportes de la bioquímica que hayan redundado en el desarrollo de la biología general.

2. Seleccione entre los aportes de la bioquímica a las ciencias biológicas, aquéllos que apoyan la teoría evolucionista.

3. Mencione los avances científicos de la bioquímica que han incidido en una mejor comprensión de las enfermedades moleculares.

4. iCnált-s resultados de la bioquímica han incidido directamente en el desarrollo de la inmunología y la genética?

5. Fundamente, empleando al menos 4 aspectos concretos, la importancia del estudio dela bioquímica para los alumnos de ciencias médicas.

6. Enuncie los aportes de la bioquímica que han contribuido al desarrollo de la ingeniería genética y la biotecnología.

7. Enuncie los distintos aspectos del objeto de estudio de la bioquímica.

Page 19: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En el capitulo anterior se expusieron numerosos aportes de la bioquimica al desarrollo de las ciencias médicas, resaltando varias aplicaciones priícticas al diagnóstico y al tratamiento de diversas enfermedades. De ello se infiere la uece- sidad del conocimiento de esta ciencia para los profesionales de la salud, por lo que su estudio se incluye en los planes de las distintas especialidades médicas.

Además, la Bioquímica brinda los conocimientos básicos que se requieren para la comprensión cabal de numerosos contenidos de otras disciplinas médicas como: Fisiología, Histología, Genética, Inmunología, ~Microbiología, Laborato- rio Clínico, Fisiopatología, entre otras.

La Bioauímica tiene un oerfil mnv amolio. como se deduce fácilmente de su . . objeto de estudio (capitulo 1). Por razones obvias, en los programas de esta disci- plina dirigidos a profesionales de las ciencias médicas, independientemente del plan de estudio qne se trate, incluyendo los niveles de pre y posgrado, es impres- cindible que se aborden aquellos aspectos básicos esenciales de la bioquíniica humana para dichos especialistas y que éstos se traten con nn enfoque euiiiiente- mente médico, así como deberán estar ajustados al tiempo asignado a la discipli- na según el plan de estudio.

En reserva del tipo de plan de estudio, de su inetodología, contenido, sistema de habilidades, etcétera, es conveniente realizar un enfoque en sistema de esta disciplina y conocer las leyes que la rigen como ciencia, así como las principales generalizaciones, lo cual constituye el objetivo de este capítulo.

La disciplina Bioquímica en el plan de estudio del profesional de las ciencias médicas

Ladisciplina Rioquímica tieneel propósito de proveer a los alun~nus de laidiferen- tes especialidades de las ciencias niédicas de los contenidos básicos generales de esta ciencia aplicables al ser humano, y en lo ponble, debe estar dirigida Iiacia los intereses de su perfil proksional, así como contribnir a la concepción científica del mundo y de la vida, a la consolidación de los valores éticos y morales de la sociedad, con un profundo sentido humanista acorde con el desarrollo de un pensamiento científico. Por ello al elaborar los planes y programas de estadisciplina esconveniente tener en cnenta:

1. Prestar atención preferencial a los aspectos más generales de esta especialidad, haciendo énfasis en la regularidades de mayor universalidxl para tratar de brindar

Page 20: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

a los estudiantes, en el menor contenido posihle, una visión actualirada y sobre todo lograr quese apropien de los métodos y procedimientos que los faculten para el análisis y la interpretación de los fenónienos bioquímicos.

2. Promover un aprendizaje activo, aplicando niétodos que contribuyan a formar un pensamiento creador en los alumnos, que los entrenen para incorpo- ra r de forma independiente nuevos conocimientos relacionados con esta u otra especialidad.

3. Ahordar de forma integral el estudio de los procesos celulares vinculados con la composición y organización supramolecular de las estrncturas subcelu- lares, donde aquéllos se llevan a cabo, concibiendo a ka célula como unidad funcional de los seres vivos.

4. Hacer énfasis especial en la significación biológica de los fenómenos bioquímicos, dedicando mucha atención a su vinculación con los aspectos niédicos, preventivos y de promoción de salud.

5. Utilizar las posibilidades que brinda esta ciencia, para contribuir a la concep- ción materialista del mundo y a la formación de valores morales en los estu- diantes, en consonancia con los intereses de nuestra sociedad.

Categorías, principios y conceptos generales

La disciplina Bioquímica, como toda ciencia, implica un sistema de conoci- mientos. Este sistema incluye conceptos y leyes de variados grados de generaliza- ción, desde los más particulares que se aplican sólo a aspectos específicos de la especialidad, hasta los más generales que son de aplicación a gran parte o a toda la disciplina. En los conocimientos de mayos grado de generalización que se aplican a toda la disciplina se incluyen las categorías, los conceptos generales y los principios.

Categorías

Son conceptos centrales que aharcan a toda la ciencia. Las categorías en la disciplina Bioquimica son:

1. Las biomol6culas. Se aplica a las formas de organización de las diversas nioléculas específicas de la materia viva. Refleja el carácter material de los constituyentes de los seres vivos.

2. La biocatáiisis. Refleja las características de todas y cada una de las transfor- maciones catalizadas por enzimas que ocurren en los organisnios vivos, tam- hién incluye su fundamento energético, la eficiencia y especificidad, así como su regulación.

3. La biotransducción. Manifiesta los múltiples procesos biológicos que impli- can la conversión de un tipo de energía cii otra, así como los niecanismos íntimos que producen diclia intercoiiversióii energética.

4. La bioinformación. Refleja la propiedad de los seres visos de mantener, reproducir y expresar, -mediante inecanisinos diversos- las características pro- pias de su especie, fuiidaiiieiito de un atributo esencial de los organismos vivos, la autoperpetuacióii.

5. Las biotransformaciones. Incluye el conjunto de reacciones químicas hiocatalizadas por medio de las cuales se realiza el intercambio de sustancia, energía c información de los seres vivos con el medio, es decir, el metaholis- nio, atrihiito esencial de la vida.

Page 21: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

LOS principios son leyes de carácter universal qiie se cumplen para toda la bh,quími~a:

1. principiodel recambio continuo. El intercambio continuo de sustancia, energía e información con el medio circundante es uiia condición iiidispensalile para la existencia de la vida. Este intercambio implica la renovación perinaiiente de todos los componentes del orjyaiiismo, lo que transcurre a velocidades distintas en de- I)endeiicia del organismo, tejido o conipuesto de que se trate.

2. Principio de la organización de las macmmolécuias. Conforman este principio todas aquellas regularidades que presentan las inacromoléculas. Incluye su condi- ción de polínieros de nionónieros o precursores sencillos, la unión estable de tipo covalente entre ellos, las iiiteracciones que se cstal>lecen entre grupos químicos presentes en éstos, lo que determina uiia c«iiforii~acióii tridimeiisional específica y estámuy relacionada con la función que desempeña cada macroniolécuki, entre oha i

3. Principio de la multiplicidad de utilización. Cada biomolécula desempeña, como regla, diversas funciones. Esta diversidad disminuye en la medida que auniciita la complejidad de dichas hionioléculas, ya que a mayor coniplejidad corresponde uiia mayor especificidad de función.

4. Principio de la máxima eficiencia. Los procesos que se Ilevaii a cabo en los organismos vivos soii reacciones químicas biocatalizadas. Los biocatalizadores soii muy específicos y eficientes, perniiteii la formación del mayor número posihle de moléculas de producto a partir del sustrato sin que se formen otros productos colaterales. Adeniás de la especificidad y la eficiencia catalítica de las eiizinias, influyen en este principio su inelnsión dentro de una secuencia nietabólica, así como la localización celular de cada proceso.

5. Principio de hmáximaeeonomía. Dentro del organismo eii su conjunto, en cada tejido o fluido biológico gen los diferentes compartimientos celulares, la concen- tración de sus distintos componentes se mantiene coiistaiite, dentro de ciertos límites; esto es consecuencia de los mecanismos eficientes de regulación qne garantizan los distintos procesos en la medida en que los productos sean requeri- dos, sólo con la cantidad de sustancia y energía necesarias, lo cual permite su óptimo aprovechamiento por el organismo.

6. Principio de los cambios graduales. Los procesos bioquímicos que se producen en los organismos vivos suceden en una secuencia ordenada de reacciones; las sustancias qiie se transfornian experimentan pequeiios cambios estructurales y variaciones discretas en cuanto a su contenido energético, en cada una de tales reacciones. Al final del proceso, el producto puede ser muy diferente del sustrato inicial, pero la transformación de uno en otrose produjode forma gradual.

7. Principio de la intemlación. Los organisnios vivos constituyen un todo único y armónico, donde cada uno de sus componentes, cada reacción o proceso metabólico que en él se realiza está vinculado con el resto directa o indirectaniente.'Ibdos los procesos inetabólicos están relacionados entre sí.

8. Principio del acoplamiento. Todos los procesos que ocurren en los seres vivos requieren de sustancia o energía,^ ambas, qiie pueden ser proveídas por el medio circundante o ser suniinistradas por otra pía uietabólica. De igual modo, los pro- ductoshrmados en uiia determinada ruta metabólica o su energía liberada suelen ser utilizados para el funcionainiciito dc otra.

9. Principio de la reciprocidad de las icansformaciones. En las transformaciones bioquímicasse constata coiiio una regularidad, quesi a partir de un sustratodeter- minado se forma un determinado producto, la reacción inversa, generalniente, es

Page 22: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

también posible. En reacciones sencillas esto puede suceder por la simple inver- sión de ella. Sin embargo, en los procesns nietal~ólicos que implican varias reac- ciones, la inversión procede por una rota nietabólica total o al menos parcialniente diferente.

10. Principio de hamferencia de información. Los organismos vivos se caracterizan por presentar un grado elevado de organización estructural y funcional, qiie es específico pam cada especie. La trasniisión de estas caracteristicos,necesaria para el mantenimiento de la especie, se produce por la capacidad de algunas macromoléculas qiie presentan cai'ácter inforiiiacional; este carácter pncde ser seeuencial o conformacional. La transferencia de información, independiente dc las etapas por las que atraviese, fluye desde tina molécula con inforniación secuencia1 hasta otra con inforniación omformacional.

Conceptos general-

Son elementos de conocimientos n nociones generales que se aplican a gran parte o a la totalidad de la disciplina, auiique no alcanzan el nivel de categorías. Los concep- tos generales de la Bioquiniica, constituyen pares dialécticos que resultan inscpara- bles para su interpretación y comprensión,éstos son:

l. hc iu ra - func ión . Este concepto refleja la relación indisolnhle entre 2 aspectos esenciales de los componentes constituyentes de los seres vivos y qne se cuniple en los diferentes niveles de organización, desde el nioleeular Iiasta el de organis- nio. Cada componente tiene una estructura específica, la cual viene deternihada por su coinposición molecular y las interacciones que se establecen entre los gru- pos químicos presentes y a esta estructura corresponde una función.

2. Conformación-transconformación. Refleja la propiedad que tienen ciertas hioinoléculas de presentar arios estados conformacionales interconvertihles, fre- cuentemente relacionados con actividades diferentes. El cambio de un confórniero a otro, es decir, la transconformación, responde con situaciones concretas del me- dio e implica una respuesta Rincional.

3. Sustrato-pmducto. Todas las transforniaciones que ocurren en los organismos vivos implican la transhrmación catalítiea de sustancias cnnocidas como siistratos en productos; pero conio las transforinaciones bioquiinicas se producen en seciien- cias metabólicas, el producto obtenido en una reacción llega a ser sustrato de la reacción siguiente.

4. Inhibición-acüvaci6n. Las diferentes transforniaciones bioquíinicas que se produ- cen en los organisnios vivos pueden modificar su intensidad, se activan o inhiben en un momento determinado, generalmente conio respuesta a una situación metabólica especifi~d. Estos conceptos son antagónicos entre si, y con bastante frecuencia la activación de un proceso implica la inactivación de otro, que muchas veces resulta el proceso inverso.

5. Anabolismo-catabolismo. Constitiiycn Lis 2 grandes vertientes de las biotraiisforinacioiies (nietaholisino). El aiiabolismo representa los procesos biosintéticos i.esponsal)les de la formación de los componentes del organismo y requieren energía. El catabolisiiio, por el contrario, representa los procesos degradativos de los que sc oI>tiene energía útil. Aunque son procesos contrarios, ambos funcionan coordioada y arniónicainente y constituyen una unidad biológi- ca esencial.

6. Medio-bioelemento. El térniino bioeleinento se refiere a t d o ente biológico, desde una biomolécula Iiasta un organismo completo; el de medio a todo lo que no siendo el biwlemento en cuestión, se relaciona directa o indirectamente con él. Estos térnii- nos son relativos, yaque aquéllo que puede constituir nn medio para deterniinado bioelemento, puede ser un I)ioelei~ieiito para un niedio de mayor aniplitud.

Page 23: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

A lo largo del texto y a niedida que se avance en el estudio de la disciplina nioquímica, se irán poiiiendo de nianifiesto y podrin ser mejor comprendido\y apli-

cados las categorías, los principios y los conceptos generales.

Método de estudio de la bioquímica

~n toda disciplina existen distintos niveles para la adquisición de un conoci-

miento: el reconocimiento, el reproductivo, el aplicativo y el creador. En la Bioquímica se debcn alcanzar al menos los 3 primeros niveles: el reconocimien- to, el reproductivo y el aplicativo, cuando se trata de ensefianza de pregrado y por supuesto en el caso de la enseñanza de posgrado es conveniente incluir, siempre que sea posible, el creativo.

Es conveniente esclarecer que el término reproductivo no se refiere a una reproducción iiiecánica y niemorística", sino a la capacidad del estudiante de exponer -coino resultado del análisis individual y de la síntesis- los aspectos esenciales de un fenúnieno estudiado. Para lograr alcanzar las etapas reproductiva y aplicativa en los distintos contenidos de la Bioquíinica, debe eniplearse el método de estndio apropiado de esta disciplina. Algunas reglas generales de este método son: El prinier requisito para apropiarse de un conocimiento es tener la certeza de que se Iia logrado su comprensión cabal; para ello debe realizarse el análisis de todos los factorcs involucrados y tcner en cuenta el orden y jerarquizaciún de éstos. Cuando corresponda, se establecerá la relación con otros conocimientos ya adquiridos, y si fuera posible se intentarií realizar una coiiipara- ción entreellos, al destacar lo que presenten en coniún y sus diferencias. UespuGs se procederá a representar con fórniulas quíiiiicas o con el auxilio de esquemas, modelos, tablas o gráficos, de acuerdo con el caso, las nociones fundamentales de cada aspecto estudiado. Ello le permitirá apropiarse del conociiiiieiito sin necesi- dad de realizar un esfuerzo nieniorístico, el c»iiocin~ieiito así adquirido tendrá una mayor calidad y doral>ilidad.

A continiiación se intentará definir cada uno <le los conceptos involucrados en el asunto estudiado, y de fornia independiente se reproducirán esquemas, mo- delos, fórmulas, etcétcra, de acuerdo con la temática de la cual se trate.

Al estudiar estructuras quíniicas se debe lograr distinguir las características comunes a todas ellas y las que son privativas de cada una, realizando una compa- ración siempre que ello sea pertinente.

Cuando se trate de un proceso bioquíniico. se debe precisar so funciúii y aiialii-ar la transforiiiaeióii que se lleva a cal)« en cada reacción. a partir de los compuestos iniciales, lo que le permitirií apropiarse del conociniiento integro. En cada proceso estudiado se dehe ser capaz de explicar su significación biológica, localización celular y en el 01-:anisnio, así como su interrelación con otros procesos.

Deben conocerse los objetivos de cada actividad docente, sea Gsta evalu. '1 t ' lva o no, lo que le indicará la Iiabilidad que debe alcanzar.

Ha de seguirse atentamente las orientaciones para el estudio independiente que bace el profesor y realizar los ejercicios del texto relacionados con el tenia estudiado.

Conviene efectoar una autoevaloació~~ o una coiifroi~tacióii entre distintos estudiantes acerca de los coiitcnidos estudiados, para deterniiiiar lo aprendido y dejar claro lo que aún no se doniina suficieiiteniente, así como puntualizai. aque- llos aspectos que necesitan ser aclarados.

En Bioquimica, para la coiiiprensiún y asiiiiilaciúii de un teina se requiere, de ordinario, el dominio de los precedentes, ya qne ellos guardan una relación más o nienos directa; de lo quese infiere la necesidad del estudio diario de esta discipli- na.

Page 24: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Resumen

La disciplina Bioquúnica en los planes y programas de estudio de los profesio- nales de las ciencias médicas deberá abordar el estudio de los aspectos básicos de esta ciencia, aplicados al ser humano y vinculados a los aspedos médicos.

Los niveles de reconocimiento, reproductivos y apiicativos deben ser alcaoza- dos para los contenidos de la dlscipüna Bioquúnica de pregrado y hasta el creativo, si fuera posible, en el caso del posgrado. En los elementos de conocimientos más generales de la Bioquúnica se incluyen las categorías, los principios y conceptos generales que abarcan a toda la disciplina

La asimilación de la Bioquúnica requiere de un método apropiado donde la comprensión cabal del asunto que se debe estudiar, el análisis, la comparación, la generalización y la integración desempeñen una función determinante. Por la es- trecha vinculación existente entre los distintos temas de cada asignatura el estudio sistemático FS una necesidad insoslayable.

Ejercicios

1. Explique la diferencia existente entre la ciencia y la disciplina Bioquímiea. 2. Fundamente la necesidad de incluir la disciplina Uioqiiímica en los planes de

estudio de las diferentes carreras para los profesionales de las ciencias médicas. 3. Enuncie el concepto de categoría g principio para la disciplina Rioquimica y

mencione, al menos, 3 categorías y 3 principios de ésta. 4. Enuncie 4 reglas necesarias que se dehcn tener en cuenta para el correcto estudio

y aprendiqje en la disciplina Rioquímica. 5. Fundamente por qué es imprescindible el estudio sistemitico de esta disciplina. 6. Cite los distintos niveles para la adquisición de un conocimiento y explique el

reproductivo.

Page 25: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

El avance alcanzado en el estudio de las sustancias propias de los seres vivos, su composición, organización estructural, propiedades y funciones, así como el conocimiento mayor de los fenómenos inherentes a la vida como el nietabolisino, la herencia y otros, han perniitido acercarnos a la comprensión científica de los procesos bióticos y a la determinación de las cualidades esenciales que distin- guen a los organismos vivos de la materia inorgánica. La esencia de la vida es el intercambio continuo de sustancia, energía e información con el medio; me- diante este intercambio los organismos vivos renuevan sus componentes, ga- rantizan su conservación y adaptación al medio y se antoperpetuan.

Para comprender la esencia de cualquier fenómeno se debe conocer su origen y desarrollo. Por ello son numerosas las investigaciones realizadas por científicos de distintos paises encaminadas a conocer la génesis y evolución de los seres vivos.

En este capítulo se estudia la materia viva como producto de la evolución de la materia inorgánica, y se presenta de manera resumida el desarrollo del conocimiento científico actual en relación con el origen y evolución de los organismos vivos.

La materia viva como producto de la evolución de la materia inorgánica

El movimiento es una forma de existencia de la materia, e incluye todos los procesos y cambios que se producen en el universo. A la diversidad de materiacorres- ponde diversos tipos de movimiento. El tipo ni& simple de movimiento de la materia es el mecánico, el desplazamiento de un cuerpo en el espacio; al movimiento físico que incluye la luz, el calor, las ondas electromagnéticas y otros le sigue en orden ascendente el químico, esto es, las reacciones químicas entre átomos y inol~culas. Este último tipo de movimiento incluye al precedente, pues las reacciones químicas depen- den de determinadas propiedades tisicas de los reaccionantes, como puede ser el nú- mero atómico o el estado tisico; pero el movimiento químico no es una simple sunia de éstos, es cualitativamente superior..

El movimiento biolGgico abarca todos los precedentes combinados de forma que constituyen nuevas propiedades y comprende todos los procesos que ocurren en los

Page 26: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

seres vivos y entre estos y el medio. Las características del movimiento biológico se pueden enunciar de forma general:

l. Es una forma de existencia de la materia. 2. Consecuencia del desarrollo de kds formas inferiores del movimiento (físico y qui-

mico). 3. Las biomoléculas son sus portadores materiales, principalmente las proteínas y los

ácidos nucleicos. 4. La esencia es el intercambio continuo de sustancias, energía e información con el

medio. 5. Manifestación mediante múltiples formas. 6. Tendencia al crecimiento y a la multiplicación. Se autoperpetuan.

El moviniiento social, que es el superior,contiene todas las demás formas anterio- res; incluye la sociedad y el pensaniiento y su portador material es el hombre.

Las distintas formasde movimiento de la materia no están aisladas unas de otras, sino niny relacionadas. Asíel moviniiento atómico puede provocar cambios energéti- cos y estos desencadenar reacciones químicas. Los procesos químicos en determinado nivel de desarrollo llevaron a la formación de la materia orgánica; la vida es un producto del desarrollo de la materia, on imdo por una serie de cambios cuantita- tivos graduales que condujeron a transformaciones cualitativas en un largo proee- so evolutivo.

Los estudios realizados sobre la composición elemental de los componentes quí- micos de los seres vivos son numerosos, muchos de ellos fueron expuestos de forma resumida en el capitulo 1,enel acápitede surgimiento y desarrollo de la bioquímica. Todos los resultados de las investigaciones realizadas en este sentido han puesto de manifiesto que la composición química de la materia viva difiere en muchos aspectos importantes de la composición de la materia inanimada que la rodea.

Por supuesto, al surgir la vida como un producto del desarrollo y como transfor- niación cualitativa de la materia inerte durante su complejo proceso de evolución, es obvio que todos los elementos que aparecen en el ser vivo provienen del mundo inorgánico. Sin embargo, no todos los elementos que están presentes en la litosfera o en la atmósfera aparecen en los organismos vivos. Ello sugiere quedurante el proceso de evolución de la materia que dio origen a los seres vivos,algunos elementos resulta- ron más adecuados para la vida que otros. De Iiecho,sólo unos 16 elementos forman parte permanente de todos los organismos vivos, aunque este número es mayor en algunos:

Elementos fundamentales: O, C, H, P y S. Otros elementos importantes: Ca, K, Na, C1, Mg y Fe. Oligoelementos (elementos trazas): Zn, Co, Mn, F e 1.

Resulta interesante señalar qne en general, la proporción en que se encuentran los diferentes elementos en los seres vivos difiere mucho de la que éstos presentan en el mundo inerte.

Al comparar la composición elemental del organismo humano con la del a y a d e mar y la corteza terrestre se punen de manifiesto numerosas diferencias. Por ejeniplo, el silicio y el aluminio que constituyen, respectivamente, los elementos 2do y 3ro más abundantes de la corteza, están ausentes en muchos organisnios vivos, y en aqntllos que aparecen, lo habitual es que se encuentren en cantidades ínfimas. El carbono,que existe en una proporción aproximada de 20 % en los mamíferos y de 50 % en los vegetales, se encuentra en una proporciún mucho menor que 1 %,tanto en la litosfera como en la hidrosfera o en la atmósfera. La composición elemental del cuerpo humano presenta mayor semejmza con la del aguade mar, lo qiieconstituye un dato Pavorable hacia el origen marino de la vida (tabla 3.1 ).

Page 27: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

mbb3.1. Composición elemental porcentual de la corteza terrestre, del agua de mar y del cuerpo humano

Corteza Agua de mar Cuerpo humano

Otros hasta 100 %

Las cifras se expresan en átomos por 100 000.

En el cuerpo humano existen más de 50 elementos diferentes, en la tabla 3.1 se muestran los más abundantes. Sólo 4 elementos constituyen alrededor del 99 % del contenido elemental total, ellos son: hidrógeno, oxígeno, carbono y nitrógeno. Los 4 son elementos pequeños y livianos; existen evidencias de haber sido los más ahundan- tes en el medio primitivo, donde se estima que hubo de formarse las primeras molécu- las biógenas. Dichos elementos tienen la posibilidad de formar entre sí uniones fuertes y estables de tipo covalente, así como establecerse enlaces múltiples, especialmente el carbono, el que además tiene la propiedad de formar polínieros lineales o ramifícados como se estudiará en el capítulo 5.

Además dediferir en ciianto al tipo y proporción de los distintos elementos en la materia viva y la inorgánica, existe la organización o forma en que se agrupan estos elementos para formar moléculas. En efecto, los compuestos orgánicos característicos de la materia viva poseen estructnras más complejas que las pequeñas y sencillas moléculas presentes en la materia inorgánica.

Desdeel puntode vista molecular, el agua constituye el compuesto predominante en los organismos vivos. Junto a ella aparecen diversos elementos químicos en estado iónico o formando comple,jos. Las moléculas que caracterizan a los organismos vivos (hiomoléculas) son compuestos carbonada9 que presentan frecuentemente oxígeno, hidrógeno y nitrógeno, y en algunos casos azufre y fósforo; éstas se agrupan en 3 categorías:

1. Moléculas de estructuras muy complejas y de peso molecular muy elevado, entre 10'a lo9 D (macromolécula~), como los polisacáridos, proteínas y áci- dos nucleicos.

2. Moléculas de peso molecular relativanlente pequeño (de 100 a 300 D) como aminoácidos, monosacáridos, nucleótidos y ácidos grasos, los que por polimerización forman las macron~oléculas o parte de otras moléculas com- plejas.

3. Moléculas que, como regla, presentan tamaño menor y estructura más simple que las anteriores y son intermediarios metabólicos importantes o precursores de la síntesis de otras biomoléciilas mayores, como el ácido pirúvico, el gliceraldehído 3 fosfato y el ácido cítrico, entre otras.

Existen los mismos tipos de bior~iacromoléculas en las distintas especies y para todas ellas se cumple el mi~ino principio de organización aunque con carac-

Page 28: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
Page 29: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

teristicas propiasal formar las sustancias inherentes a cada especie, de forma que cada organismo posee sus propias proteínas y ácidos nucleicos; pero formados por los mismos 20 aminoácidos y los misnios 5 nucleótidos, a funciones iguales, las biomolécolas presenten estructura similar en las distintas especies (Fig. 3.1). La insulina, por ejemplo,es una hormona proteíiiica secretada por el páncreas y que desempeña una función muy importante en la regulación del nietabolisnio, tiene una estructura bastantesemejanteen diferentesaniniales.

Sobre la base de sus características químicas y metabólicas, las biomoléculas se han clasificado en 4 grupos principales:

1. Los glúcidos incluyen a los monosacáridos, los oligosacáridos y los polisacáriclos; su función principal es ser fuente energética y carbonada.

2. Los prótidos agrupan a los aminoácidos, los péptidos y las proteínas. Las proteínas cumplen distintas e importantes hnciones en los seres vivos, una de las principa- les es constituir los hiocatalizadores, moléculas que hacen posihle las biotransfurmacioiies.

3. Dentro del grupo de los lípidos se incluye una gran variedad de coiiil~ucstos estmcturalmente disímilcs; pero que presentan una propiedad comíui, la solubilidad en solventes orgánicos g la insoluhilidad en los polares. Constituyen también fuenteenergética y forman parte importantedelas iiienibranas, ademásdedesein- peñar otras funciones.

4. El grupo de las sustancias nucleotídicas comprende a los nucleótidos y los ácidos nocleicos, -ácidos ribonucleicos (ARN) y desoxirriboniicleicos (ADN). Estos últimos vinculados funcionalniente a la trasniisióii de los caracteres hereditarios y los ARN relacionados con la expresión de dicha información, mediante la hiosíntesis de las proteínas. En general los nucleótidos trifosfatados desempeñan importantes funciones energéticas, especialmente el adenosín trifosfato (ATP), el cual constituye el portador principal y universal de ener- gía metabólicaiiiente útil.

'iübla3.2. Componentes moleculares de la bacteria EIchericllja coli

Porieiitoje del Dircrsidad

peso total ( % ) de nioléculas

Agua

Proteínas

Ácidos nuileieos

ADN

ARN

Palisaciridus

Lipidos

Otras nioléciilas or&icas

loncs inorgániros

En la tahla 3.2 se muestra la distribución porcentual de los componentes moleculares de la bacteria Esclicrichia coli y se presenta un valor aproximado de la cantidad de moléculas distintas de cada tipo. Es necesario señalar que las hiomoléculas pueden interactuar entre sí, formando asociaciones suprarnoleculares que dan origen a

Page 30: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

estructuras importantes conio membranas, ribosomas y otras que sirven de base a la organización de organelos y células. En el cuadro 3.1 se presenta un resumen de los distintos niveles de organización de la materia viva hasta el celular.

Cusdro3.1. Niveles de organización de la materia viva

Bionmléculas sencilla,. nionosadndos, precursores demacroniolé- an~inoicidor, culasoconiponcntcs de otras nucleótidoi, moléculas complejas ácidos graws y olrar

Hiopolínieros y otras poii~aciridos~ niolécolas complejas pmtcúias, y lipidos coinplcjos icidos nucleicos

Célula

nienihm, Agregados supramoleculare~ ril>osunia\,

cromatina y otros

niidco,niitwond,.ia. Organcla\cclulares reticulo eii~liipl;lsiii;ítico,

aparato de Golgi y otros

Origen y evolución de la materia viva

Las ciencias tiatiirales han demostrado qne en la Tierra primitiva no existía vida. ya que por sus condiciones ningún ser vivo podía habitarla. La niateria orgánica es el producto de una evolución niuy larga.

Estaafirmación acerca de laforniaci6ndelamateriaviva a partir de la i n ~ r ~ i n i c a ha sido científicamente sustentada y, sin diferencias esenciales, ha sido aceptada en el universo por las diferentes teorías que tienden a explicar la ei~olurióii moleciilar y biológica.

Duraiitc niuchoc años se pensiilambién quealgunas formas de vida podían snrgir cnntii~uaniente a pn?ir de la materia inorgánica por geiieracióii espontánea y súhita. Estas convicciones erróneas se producian por la iiicorrecta interpretaci6n de la apari- ciGn de giisanos e insectos en le carne en desconiposicióii, la harina de trigo y otros alinieiitos contaminados; de manera siniilar a conio se pensara durante ninclios siglos por la siiiiple observación de algunos fei ihenos naturales, que la Tierra nose iiioría y que el sol era el que giraba a sil alrededor.

La teoría de la generación espontdiiea, rechazada por un número apreciable de Iionihres de ciencia, pero defendida vehementemente por otros, fue ahandoiiada des- pués de los concluyentes experimentos de Imis Pzwteiii; quien demostró de manera irrebatible que no aparecen nuevasformas de iida en todas aquellas sustancias que por cualqnier método se preservaran de la contaniinación biológica, independientemente del tiempo que se mantuvieran en esas condiciones.

Page 31: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fue Alexander Ivanovicl~ Oparin, quien elaborara la priniera explicación cientí- fica del origen de la vida, en concordancia con las leyes y fenóiiienos de la naturaleza y con los conocimientos alcanzados por las ciencias contemporáneas. Esta teoría fne postulada por Oparin inicialmente en el año 1922 y en 1924 se publicó el trabajo donde exponía sn teoría sobre el origen de la vida. A partir de entonces, muclios científicos en diferentes paises se han consagrado a las investigaciones en este campo, porlo que se han ohteiiido nunierosos resultados que confirnian la teoría de Opariii. A&, JBSHaldarieexpresó ideas similares, enfatizando además qne la atmósfera primi- tiva debía haber sido reductora, sin oxígeno lihre, como un requerimiento para la evolución de la vida a partir de la materia inerte.

El avance de las ciencias geológicas, astronómicas, químicas, físicas y biológicas y el impetuoso desarrollo de la tecnología, han permitido el análisis retrospectivo de sucesos acaecidos hace muchos inilloiies de años y han propiciado qiie se efectíieii investigaciones en un tenia tan importante para el conociinieiito huiriano como éste, que estudia las raíces mismas de su génesis. De particnlar y fundamental importancia para estos estndios ha sido la determinación de la vida media de los radioisótopos por desintegración espontánea, lo que ha permitido estimar con bastante exactitud la edad de rocas y otros cuerpos terrestres y cósiiiicos.

El desarrollo de la tecnología del cosnios Iia sido de enorme valor en estas inves- tigaciones, ya que aporta numerosos datos de interés. Con el empleo de todos estos procedimientos tecnológicos y otras nietodologías, que han coiistitnido valiosa fuen- tede datos,se ha podidoestahlecer que nuestra galaxia tiene una existencia de 12 a 20 mil millones de anos; la edad del sol ha sido estimada en 5 niil millones de años y la Tierra de4,6 a 4,s mil millones, además se admite que al ignal qiie los demás planetas de nuestro sistema. se formó a partir de la condensación del halo de gases y niebla que rodeaba al sol.

Formación de las primeras moléculas biógenas

En la masa gaseosa que formó a nuestro planeta, predomiiiahan los átoiiios lihres de hidrógeno -el más abundante-, carbono, oxígeno, hierro, niagiiesio. silicio, aluiiii- nio,nitrógeiio, níquel, azufre y otros (Fig. 3.2). Estos átonios se fiieron distribuyendo en un orden detcriniiiado por su peso. de manera que los más pesados se localizaron en el centro.10~ más livianos en la periferia vlos de peso intermedio sesituaron entre mios y otros.

La formación de sustancias como el metano (CH,), el amoiiiaco (NH,), el agua (H,O) el cianuro de hidrógeno (HCN) y otras es consecuencia no sólo de la abundancia desus átomos constituyentes en la capa más externa, sino de sus propiedades qníini- cas, ya que pucden forinarcoiiipuestos estables entre ellos, y también de las condicio- nes energéticas del medio en esos nioiiientos. Fa1 es la composición que se considera tenia la atmósferaprimitiia,de carácter reductor y con predominio dc CO,, CO, H,O,

Page 32: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

~ ~

"es dc la atrnóskw primitiva y es- tudiar I i i iorniacibii de hiiirnelé- rulas scneillns a partir dr niol<:riilus bióeenas. En el niatraz se coloen agua que al ebiillir arrastra In mm- r h gaseosa r~arcierianie que se in- troduce por M. Coii el aporte de la eoercíade la chispa el6rtriea sc pro- diire la reactiói~ química, los pro- ductos se condensan y se rolrrtmi en T.

!

H , CH, y CNH entre otros, todos en estado gaseoso debidoa la elevada temperatura existente. En la actualidad se hacomprobado la presencia de conipnestos de carbono e hidrúgeno en los materiales cósmicos i i~ás diversos procedentes de regiones con condiciones de teniperatura y fuerzas gravitacioiiales diferentes.

Por esta tpoca inicial se acepta que no cxistíaoxígeno molecnlar libre y el oxíge- no presente estaba principalmente formandoagua y ówidosdemetales. En estos tiein- pos de carencia de oxígeno inolecular y ausencia de organisnios vivos, sesupoiie que los conipueslos permanecían estables por largos períodos.

En IaTierra priiiiitiv~existían,pues,coinpuestos<lue podían dar lugar a la forma- c i h de mol6culas orgánicas y se disponía de las fnentes de energía capaces de activar- los para que reaccionaran: altas temperaturas, erupción de volcanes, desintegracibn radiactiva,radiacibnsolar y descargas eléctricas, entreotras.

Fig. 3.3. Filuipo diseñado pat. S. I\lillcr y II. C. Urev para simular las eondicio-

Formación de biomoléeulas senciuas

En los esperinientos de laboratorio llevados a cabo en condiciones que simulan la Tierra primitiva, se logró la síntesis abiótica de aniinoácidos, nionwacáridos, bases purinicas y pirimidínicas, entre otros compnestos orgánicos que se sintetizan a partir de precursores inorgánicos seine,jantes a los presentes en nuestro planeta durante sus etapas tempranas.

S t a n h 1. Mijjer, en el año 1953, realizó un experimento de sirnulaciún que de- mostró la ti~riiiaci6n abi6tica dc algunos aminoácidos. Él hizo circnlar una niezcla de vapor de agiia, metano, amoníaco e hidrógeiio continuamente durante una semana, sobre una chispa eléctrica. Al finalizar la semana cuaiido realizaba su análisis por cromatogratia de papel, encontró una mezcla de aminoácidos: glicina. alaniiia, ácido 'jaminohntírico, fl alaiiina, ácidos aspártico y gliitimico, entre otros (Fig. 3.3).

Adición de 1;i iiierciii de gaes =

hl

Electrodo de tungsienu

Page 33: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Seha logrado también la formación de algunas bases purínicas y piriinidínicasen desimnlación. Oroy otros obtuvieron adenina por calentamiento niode-

rada deunamezcla de cianuro de hidrógeno, amonio y agua. La guanina fue identifi- cada a partir de una experiencia similar. Por otra parte S. Fox, calentando urca y ácido málico obtuvo uracilo.

Se considera que el azúcar (ribosa o desoxirribosa) presente en los ácidos nucleicos pudiera provenir del formaldeliído; y en cuanto al fósforo se estima que esteelemento existía disuelto en el agua primitiva.

Otros investigadores al modificar las sustancjas inorgánicas empleadas, así como las fuentes de energía, el tienipo y otros factores, han obtenido resultados esencial- mente similares, es decir, la formación de moléculas orgánicas a partir de precursores inorgánicos en condiciones que simulan la Tierra primitiva.

Estos resultados se han visto reforzados al descubrirse conipuestos orgánicos si- milares en nieteoritos carbonosos llegados a la Tierra. En el nieteorito Murcliison caído en Australia en el aiio 1969 se identificaron varios aniinoácidos, algunos de ellos no encontrados Iiasta el monieiito en nuestro planeta, y que a diferencia de los terrestres constituían niezclas racémicas ópticamente inactivas. También se encontra- ron en este meteorito ácidos mono y dicarbuxílicos: inalóiiico, succínico y fumárico. En otros meteoritos contemporáneos con la Tierra primitiva se ha podido demostrar la presencia de materia orgánica.

Por espectroscopia de radiofrecuencia se ha identificado en las nubes de polvo cósmico la presencia de agua, anioníaco, ácido ciaiiliídrico y otras sustancias qile se consideran componentes de la atniósfera primitiva de 121 Tierra, y que coiistituyen precursores de compuestos orgánicos lo que apoya la teoría del origen abiótico de la materia orgánica. La mayoría dc los precursores de las bioniacromoléculas han sido encontrados repetidamente en experinientos de simiilacióii, en rocas, esquistos, me- teoritos y materias de los espacios interestelares; esto indica la gran prolmhilidad de que Iiayan sido la secuencia de eventos en la evolución química de la materia viva.

Formación de las primeras macromoléculas

Como se sabe, en la síntesis biológica de las macronioltculas participa un conjun- to de proteínas enziináticas en procesos de alta complejidad, que implican elevados consumos energéticos, por lo qoc no resulta fácil explicar la foriiiación ahiótica de estos conipuestos.

Conviene recordar que las principales macroniol6culas características de los seres vivos son las proteínas y los ácidos nucleicos que constituyen hiopolíiiicros -las pri- meras de aminoácidos y los segundos de iiucleótidos. En ambos casos están unidos por enlaces de tipo covalente, que se forman por condensacih con la pérdida de una molécula de agiia. Dc particular importancia en la función de los ácidos nucleicos, tanto del ADN conio del AIW, son las bases nitrogenadas ~oiiteiiidas en los oucleólidos: son 4 distintas en cada unode estos compuestos: adciiina (A), giianina (G),citosiiia ( C ) y tiamina (T) en el ADN, y adenina, giianina,citosina y uracilo ( C l i en el ARN (Fig. 3.4). Entre estas bases sc producen interacciones que provocan un apareamiento selectivo: G-C y A-T en el ADN, y C.-C y A-U en el AKN. Estas bases al>areadas,con«cidas como complementarias tiei~eii extraordinaria iniportancia en las síntesis de los 2 tipos de ácidos nucleicos y de las proteínas.

Es bien conocido que los organismos vivos reqiiieren, para la síntesis de los ácidos nucleicos de un conjunto deenzinias y de otras proteínas; pero todas las proteí- nas se forman a partir de la inforniación genética del ADN, mediante un coniplejo proceso en el que participan los distintos tipos de ARN. Cada una de estas moléculas necesita la presencia de la otra para su síntesis. Uno de los aspectos más disciitidos en relación con la evolución de la niateria orgánica y biológica, ha estado vinculado a

Page 34: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

IKic. 3.4. ReprrsentaiiGn csqoeinhtic.~ de la estructura de los áridm iiueli.ici,s. a) Dohk rlideiia de un segtiicnto de iiiis ri~i,lécsla de ADN. El aziirar eii

cate caso es la llesoxii-ribora. las ba- b) se\ <Ir sinlim radeiins sr cnfrcntaii de niawra ioi»ylcnierit.ii-ia: .A-T y (;-C. 1 1 ) Seiti,r de w a cadeim dc ARN. 121 a r ú r w en este caso i r 1s rilma. : Grupo fosiiito A7.: Azúc~r A: Adeniiia C: Ciiaiiiiia T: Tiiiiliia C: Cirosiria U: Uracilo

responder ci6l de estas sustancias hubo de formarse primero. En relación con este prohleniase han postulado 3 variantes:

1. Los ácidos nucleicos se formaron primero que liis proteínas. 2. Las proteínasfuerun sintetizadas antes que los ácidos nucleicos. 3. Ambas sustancias se forniaroii siniultáneamente.

L. Orgel. en favor de la primera posihilidad'se apoya en que -ine<liaiite todas las hases pui-ínicas y pirimidínicas, fosfato, con el uso de urca y determinadosiones como catalizadores- logró sintetizar una cadena de polinockótidos que contenía 40 nucleótidos. Estas ca~lenas pudieron aparearse con cadenas compleiiientarias, si en el niedio existía inii~lazol; aunque el ADN obtenido no fue capaz de replicarse. Esta teoría ha ganado adeptos desde que se desciihrieron algiinos AKN con acción catalitica.

Los defensores de la segunda iariante se han basado en niiincrosas experiencias conlo las realizadas por S. Fos, quien logró la forniación de polimeros cortos de aminoácidos a partir del calentamiento de una niezcla de estos compuestos; también las efectiiadas por J. Sa~lles y S. Cl~ang, quienes obtuvieron cadenas polipeptídicas de unos 50 aniinoácidos que frieron considerados conio posibles precursoirs enzimáticos.

Los que están en favor de la tercera posibilidad sostienen que se formarían péptidos pequeños de 2 a 3 aniinoácidos y fragmentos cortos de ácidos nucleicos de 2 a 10 niicleótidos. Experiiuentos de simulación de este sistcnia Iian permitido poner de manifiesto algunas características de los organisinos vivos por la presencia conjunta de los 2 tipos de sustancias.

De cualquier manera la fornvación de pulímeros de aminoácidos y de nucleótidos en condiciones abióticas pndo producirse mediante las fuentes energ6ticas apropia- das, aun suponiendo la carencia total de catalizadores, pues, en última instanciii, estos lo que hacen es aumentar la velocidad (le la reacción. Sin embargo, es muy probable que en estos procesos participaran algunos catalizadores abióticos antes de qiie se formaran las primeras proteínas con actividad enziinática.

Se considera qiie la adsorción de los precursores en detcrininad.u: superficies (silica, arcilla, etc.) facilitó su condensación y favoreció la forinación de los primeros hiopolinieros por calentamiento (luz solar 11 otras fuentes energéticas), en presencia de compuestos orgánicos con acción deshidratante y probahlementc ante algún cataliza- dor inorgánico. En experiencias que simulan estas condiciones, efectuadas en algunos

Page 35: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

laboratorios, se obtienen péptidos y polinucleótidos con disposición azarosa de sus precursores, aminoácidos y bases nitrogenadas, respectivamente. Sin emhargo, des- pués deformado el primer polímero polinucleotídico, se puede influir en la secuencia de precursores de otra nueva cadena que se sintetice en su presencia. Si se añade el polinucleótido que tienesólo como base al uracilo (poli U) y se intenta la síntesis de una nueva cadena de ARN,sefavorecelaformación de un poli A, por lo que la cadena poli U actúa como molde y el compleniento de bases funcionaria aun en condiciones abióticas (Fig. 3.5). Las cadenas formadas pueden adquirir la capacidad de autorreplicarse y, en dependencia de su secuencia de bases, adoptarían una conforma- ción espacial, la cual puede a su vez influir en su estabilidad y eficiencia replicativa.

Molde (cadena poliU1

Fig. 3.5. Foriiiacibn abiútica de cadenas poliiiucle6tidir.a~. a ) Forniacióii de una iadeiin ron seciicneia uarosa la cual depende, cn gran medidsi. dc la rlisponihilirlari de los niidebtidus precurso- res. h) Fwmaeión "dirigida" de una cadena poliiiiicleetidica dc poli A, iitiliraiido como nioldc una cadena de poli U. Nbtese la incarporaeibn scleetiva del iiucle6tido de adenina a pesar de éste encontrarse en cantidades similares al resto de los n ~ d c ú t i d ~ s .

A. Katchalsky deniostró la formación de cadenas polipeptídicas a partir de aminoaciladenilatos; estos aniiuoaciladenilatos fueron sintetizados a partir de aminoácidos y adenosín monofosfato (AMP). La polimerizaciún se logró cuando los aminoaciladenilatos obtenidos se adsorbían a uiia superficie de cierto tipo de barro y se formaban cadenas polipeptídicas de 50 6 inás aminoácidos, con una eficiencia aproximada de 100 9%. Los aminoaciladenilatos son los precursores de la síntesis de proteínas en los organisnios vivos.

Page 36: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 3.6. RcpresentaciOn esquemática de go- tículaí de caaeervadm ohtcnidm eaperinicntalmente en el labors- torio de A1 Oparin, fonnados en solución acuosa de prutcinas y ácido poliadenilico. Este inves- tigador constató que talcs gotírulas pueden "sobrevivir" un tiempo niayor Fi seleaportan enziiiiasqur periiiitan efecluar rcaceiones de polinierizarión,

Pig. 3.7. Representación de algunas de las reacciuncs rcalizadus en el interior de una gotíciila de coacerradu en los ~xperinientos llevados a cabo por Al Oparin. El coaccrrado con- tiene en su interior el polisaeárid~ almidón y algunas enzinias. a) I,a presencia de la enzima glue6gcno Pusforilasa y dc glucosa-1-(P), fa- viirece las reacciones de poliinc- rirarión y la cadena de alniidón crece, liberándose fosfafo inorgA nico. b) I,a presencia dc la eniima nialtasa, la cual degrada al alnii- dún, proroes un efecto contrario al cxpucstu en a), 1s molécula de ulmidbii decrece y sc libera tirallosa.

Aun los polímeros de aminoácidos formados por síntesis abiótica podían presen- tar acción catalítica y es posible que una de esas acciones cataliticas fue la poliinerización de nucleótidos, lo que permitió la réplica de los ácidos nucleicos. Aunque no está claro cómo podría haberse iniciado la dirección de la síntesis de las proteínas por los bcidos nucleicos, no cabe duda que en algún momento tal evento Iiubo de ocurrir, y la mejor prueba es la existencia de un código genético universal.

Se sabe que las moléculas tienen la tendencia de formar agregados de manera espontánea, que esto favoreció su estabilidad y existió posiblemente un equilibrio entre las fonnas libres y agregadas:

PRECURSORES ---------> MACROMOI,ÉCUL,AS ---------->AGREGADOS

Estos agregados podrían ir sumando moléculas y creciendo en tamaño y comple- ,jidad.

Formación de las primeras ~~truchuas vivas

Se supone que las biornoléculas que se fueron sintetizando estarían probablemen- te en el agua de mares y océanos, formando una especie de "caldo" diluido y exento de oxígeno molecolar. Estas niolécnlas tenían la posibilidad de reaccionar entre sí, se producían nuevas combinacioiies y se formaban agregados multiinoleculara de tama- ño y complejidad crecientes.

Opariri y otrosobtuvieron agregados de polinucleótidos con proteínas, que for- maban complejos multimoleculares aislados de la solución, en fornia de sistemas indi- viduales, a los cuales llamaron gotas (gotículas) de coacervados o simplemente coacervados; a los queeste científicoles concedegran importancia en la evolución de la materia viva (Fig. 3.6).

El propio Oparinconsidera que laevolución Mológica planteada por Darwin, debe- ría empezar a actuar a este nivel; al formarse los agregadoscomo resultado dela reunión de las moléculas, estos comienzan a competir entre sí por la obtención de materiales y algunos llegan a ser dominantes. El demostró experimentalmente algunas pmpiedade. de los coacervados, comprobó la agregación de los polímeros en solución y la tendencia a formar una fase coloidal separada de laacuosa; lo cual secumplió para una ganiadivem decombinaciones de polímeros y además puso de manifiesto que la existencia de alguna actividad inetabólica en ellosfavorecia su estabiiidad (Fig. 3.7).

Ha quedado bien demostrado que las moléculas poseen la propiedad de autoordenarse de acuerdo con sus earacterísticas estructurales y sus propiedades. Se sabe que determinados tipos de lipidos,que poseen una porción polar y otra apolar, tienen la capacidad de disponerse en solución acuosa de manera que sus porciones apolares se nnan entresí y las polares interactúencon el agua, para formar estructuras laminares, características de las membranas biológicas.

Page 37: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
Page 38: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

oxígeno molecular transformó la atmósfera primitiva rediictora en la actual, que con- tiene O,,CO,, N, y H,O.

A partir de los primeros organismos vivos y en un largo proceso de millones de añosdc evoluci61i se desarrollaron las diversas formas de vida desde las ni& simples IiasCa las plautas, los animales superiores y el ser Innnano. La evoluciún biológica es eii la actualidad un proceso cientiticainentc demostrado y aceptado de forma general; pero antes de que fuera así, niuclio tuvo que avanzar el conocimiento biológico y niuclias trabas ideolúgicas tuvo que vencer el pensamiento científico y creador de minerosos Iioinbres de ciencia. En la figura3.9 se resumen los principales eventos en el proceso de formación de la niateria orgánica y primeros organismos vivos.

l 1

1 Formación de moléculas organogénicas ] Por i-eacciorics dc estos itoinoi lihres. coii iiportc

cncrgi'rico de viii-iad;is fuentes sc ioioii,: H2: O?: H,O: CH,; NH ;: C 0 2 y CNH. entic otra!,: qm foiniaion

la atrnósfcra priiniiiva l 1

de biomoléculas sencillas 1

Teorías evolucionistas

Dos aportes importantes qiir dc alguna foi-nia inflnyeron en el ~~cnsaii~ieiit« evulucioriista de su &poca fiieroii: 111s trdhajos geolúgicos de Jainesflutton, sobre el desarrollo de la Yieri-a -donde se ponc de nianifiesto que este fue un proceso lento caiisado por fuerias uaturales, no un evento caútico y súbito conio se admitía de forma general Iiasta ese nioiiiento- y la clasificación taxonómica de Carlos 1,inneo.

Page 39: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Resulta curioso que a pesar de ser Linneo un defensor de la teoría de la creación divinadel universo y de la vida, contribuyó notablemente a concebir la interrelación entre 10s distintos organismos vivos, al desarrollar su sistema de clasificación y no- menclatura para las especies biológicas que, además, puso de manifiesto la estructura jerárquica en él implícita.

~1 primer hombre de ciencia qne presentó una teoría sistemática sobre la evolu- fue Jean Baptiste de Monet, Caballero de Lamarck, quien en el año 1801 formula

que todas las especies incluido el hombre, descienden de otras especies. Lanarck organismos unicelulares e invertebrados, observó que las rocas antignas con-

tenían fósiles que correspondían a formas de vida más simples y dedujo de sus ohser- vaciones quelas formas superiores habían surgido de las más siniples por un tipode ~~progresión"; que ésta se producía conio resultado de 2 fuerzas distintas: la primera, la e h i ó n hereditaria de las características adquiridas y la segunda fuerza era un prin- cipiocreativo universal, un impulso inconsciente para ascender en la escala natural. Él consideraba que las formas más sencillas de vida surgían por generación espontánea.

Una parte muy conocidade la leona de Lamarckesla que concierne a sil explicación sobre la evolución de la jirafa. Él sostenía que la jirafa actual de cuello largo había evolucionado a partir de un antepasado de cuello corto; pera quelodesarrollaron median- te el ejercicio provocado por el esfuerzo mantenido para alcanzar las ramas altas de los arboles y poder aümentaise; también sostenia queesta característica adquiridase trasini- tió aladescendencia. Como puede apreciarse, a pesar del aspecto positivo de Laniarek de plantearse la evolución de las especies incluyendo el Iiombre. tiene las limitaciones de considerar que las características adquiridas se trasmiten hereditariamente; separa las distintas especies en su explicación del desarrollo evolutivo e incluso llega a admitir la generación espontánea para los organismos inferiores dentro de cada especie. Charles Darwin es considerado con toda justeza el fundulor de la teoria evolucionista. Darirk comenzóa estudiar medicina, carrera que abandonó después de 2 años par:idedicarse al sacerdocio e hizo estudios teológicos en la Universidad de Canibridge. Sin embargo, al culminar estos estudios, renuncia a dedicarse a la vida eclesiástica g acepta la oferta de incluirse a bordo del Beaglepara efectuar una larga travesía por todo el mundo, con el interécderealizar estudios como naturalista. Este via,je lesirvió a Danvinparaconstatar la grau variedad de la naturaleza, la diversidad de especies de los organismos vivos tanto vegetales como animales, observó numerosos restos fósiles y relacionó las distintas varie- dades existentes dentro de cada especie con la edad geológica de islas y continentes que constituían su hábitat. La duración de esta travesía fue de 5 años e influyó de forma notable en sus apreciaciones. A su regreso a Inglaterra se dedicó al estudio de variedades logradas por los criadores de plantas y animales, quienes por selección artificial, habían podido obtener una gran diversidad de aves, partiendo de la paloma común. Ademhs, observóel desarrollo denllevas plantas y animales por selección artificial. lo que lograba mejorarlascaracterkticas delas que les dieron origen, particularmente en su capacidad de adaptarse al niedio.

Él c&icluyó de este análisis que de la niisma forma que el hombre selecciona de forma artificial nuevas variedades de plantas y animales, procedía el niedio ambiente, por lo que se produce asíla selección natural.

Darwin parte de la existencia de la variabilidad indii,iduaI. y en su teoría postula que aquellos individuos que poseen cicrtas cai.acterís1icas que les permitan una iiie.jor adaptación al medio, tienen ventajas para sohrevivir; él planteó que estas variaciones delas especies eran fnrtuitas, no ias producía el ambiente ni ninguna fuerza creadora, ni el afán inconsciente del nrganisnio y de por sícarecían de ob,jetivo.

En 1859 se puhlici, su libro B Origen de las Especie.9 por medio de la Selección Natural, donde expone su teoría sobre la evolución dc las especies. Ilariiin no pudo explicar las causas de las ~ariacioncs de los individuos. Los aspectos de su teoría, que se refieren al papel de la lucha por la existencia como fuerza motriz importante en la evolución se ~oiisideraii que retlejan la influencia e,jercida sobre 41 del sociólogo reaccionario 7ho111a,siM~tItu~.

fS i<~ni~?l .C.c. i i l ; i~ 35

Page 40: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Darwin presentó algunos aspectos concordantes con los planteados por Laniarck, conio la concepción del inundo en permanente evolución, gradual y continua. Sin embargo, los aspectos nuevos que constituyeron aportes de Darwin tiieron el origen común de todas las especies, que es realmente la esencia de su teoría, y ademásexplirú el inecanisnio de esta evolución conio causada a partir de la variabilidad individual y la selección natural. Darwin no pudo dar una explicación científica a la causa de las variaciones individuales, lo yue se comprende fácilmente si se tiene en cuenta que eii su época muy poco se conocía sobre genbtica.

La evolución es un aspecto central de la biología. La teoria moderna unió los aportes de ciencias diversas cnino la paleontología, la ecología y la genética. Una contribución importante a la teoria de la euolución lo constituyó la aplicación por IIugo de Vries de las leyes de la genétim de Mendel, lo que permitiú interpretar las causas de la diversidad de individuos como v~riaciones genéticas provocadas por mutaciones; en la actualidad sabemos que las mutaciones, las recombinaciones y la duplicación de genes son las fuentes principales de variación de las especies.

Del análisis de la evolución de los individuos se llegó al estudio de Va evolución de las poblaciones. Las variaciones de las poblaciones constituyen la fuerza funda- mental del proceso evolutivo.

Evidencias en favor de la evolución de las especies

Numerosos elementos de variada naturaleza apoyan la teoría evolucionista. Estas evidencias están relacionadas con las más variadas ramas de las ciencias biológicas.

El estudio de varias ciencias coniparadas como la anatomía ha puesto de manifie to la relación estructural de órganos homólogos en especies distintas, lo que constitu- ye un fuerte apoyo a la tesis del origen común de éstas. La comparación de los primeros estadios del desarrollo embrionario de numerosas especies muestran muchos aspectos siniilares y refuerza el criterio de laexistencia de un antepasado coniún.

Los valiosos aportes de la paleontología niediante el estudio de muchos fósiles constituyen una iniportante prueba del proceso evolutivo, particularmcntc en la de- iiiostración de los eslabones intermedios entre especies diferentes.

La bioquíiiiica ha brindado numerosas evidencias a la teoría evolucionista: la similitud de hiomoléculas que desempeñan fiinciones iguales en distintos organis- mos; la existencia del código genético universal; las características generales cornu- nes de las reacciones rnetahólicas; la relación que puede establecerse en la composi- ción y estructura de determinadas biornoléculas homólogas en organismos diferentes (como por ejemplo la hemoglobina) y que ha perniitido establecer relaciones filogenéticas entre las especies, por sólo mencionar algunas de las más relevantes.

La genética, la inmunología y otras ciencias biológicas también aporta11 datos valiosos que apoyan la teoria de la evolución de las especies y confirman el origen común de éstas.

La vida es una forma del movimiento de la materia. El movimiento binl6gieo contiene a otros tipos de movimiento (&iw y químico) y abama a todos los proce- sos que ocurren en los s e ~ vivos; su esencia es e1 intercambio continuo de sustan- cia, energia e información con el medio. La vida es un producto del d e s m i i o de la materia inorgánica, originada por una serie de cambias cuantitativos y graduales que condujeron a saltos cualitativas en un largo proceso evolutivo.

La composición elemental de la materia viva difiere de la inorganica en los tipos de dtomos predominantes y en su organización para formar molécuias. Las

Page 41: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

biomolenilas son mayores y más complejas que las s e n d a s moléculas presentes ,la materia inerte.

El agua es el compuesto más abundante en los organismos vivos, también &&en iones inorghicm; pero las molénilas características de los seres vivos, las bfomoléeulss, son compuestos carbonadas que contienen además hidrógeno, oxíge- m, nibógeno y otros elementos, cuyos representantes más importantes son las pro te^, los deidos nucleieos, los glúddos y los Upidos.

El desarrollo hnol6gico alcanzado ha hecho posible el a n W i reimapedivo de aueesos acaecidos hace millones de años, Ligados a la formación de la materia niea ea y primeros organismos vivos. La teoría de Oparin ha sido confirmada esencialmente por numerosas observaciones y experiencias de simulaci611, lo que explica la formación abi6tica de las biomolénilas a partir de un grupo de molécu- las biógenas presentes en la atmósfera primitiva. h a s se condensarían, formarían las macromoléculas y la agregación de todas eUas daría lugar a los complejos muüímoleculares que al aislarse de la soludón forman los coacervados. La orga- nizaaón de una membrana, la aparición de proteínas enzimátirss y la réplica de los ácidos nucleicm son eventos que están ligados a la aparicib de la d111la primi- tiva A pa* de los primeros organismos vivos se produjeron todas las formas de vida en un largo proceso de millones de años.

El fundador de la teoría de la evolución fue Darwia. auien olante6 aue la . evolución se producía por un fenómeno de s e l d ó n nahiral, de manera que entre la p n diversidad individual dentro de cada especie, tendrían mayor sobrevivencia y produeiríaa mayor deseendenda aqn6llos que presentaran variaciones que les ~ e d t i e r a n mejor adaptad6n al medio. Las causas de la diversidad individual son ias mutaciones ; las reeombinaciones genéticas.

La teoría sint4üca moderna de la evolución integra a la paleontología, la ecología y la genética. E h t e n numerosas evidencias dentííieas que confirman el proeeso evolutivo y que han sido aportadas por la anatomía comparada, la embriología, la paleontologfa y la bioqnímica, entre otras.

Ejercidos

1. Cite las características del movimiento biológico. 2.Mencione datos aportados por la tecnología del cosmos que apoyen los criterios de

las condiciones de la atmósfera primitiva. 3. ;Qué es un experimento de simulación? Explique uno de ellos. 4. Justifique la existencia en el medio primitivo de metano, amoníaco, ácido

cianhídrico, dióxido de carbono y agua. 5. Explique la formación abiótica de los biopolímeros. - -

6. Haga un esquema delos niveles de organización de la materia viva. 7. Realice un estudio comparativo de los planteamientos hechos por Lamarck y por

Darwinsobre la evolución de las especies. Infiera de dicho estudio la razón de que sea Darwin el investigador considerado fundador de la teoría de la evolución.

8. Señale evidencias científicas aportadas por la bioquímica que apoyen la teoría evolucionista.

Page 42: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Existendistintas formasdeorganizaciónde la materia viva: los virus,los organis- mosunicelulares y los pluricelulares. La unidad básica estructural y funcional de los organismos vivos es la célula. Las células pueden ser eucariotas o procariotas.

Los organismos unicelulares pueden ser procariontes o eucariontes. Los pluricelulares están constituidos sólo por células de tipo eueariota y se organizan formando tejidos, órganos y sistemas. El funcionamiento armónico en estos organis- mos se garantiza mediante variados y complejos mecanismos de comunicación intercelular.

En este capítulo se tratarán, de manera suscinta, las formas básicas de organiza- ción de la materia viva, haciendo especial Iiincapié en la célula eucariota; además, se revisarán, de forma general, las características esenciales de los organismos pluricelulam.

La célula procariota es más siniple y primitiva que la eucariota, presenta pobre diferenciación. Este tipo de eélula mide entre 1 y l O p q es tipica de bacterias y algunas algas. La célula procariota más estudiada ha sido la bacteria Escherichia coliy debe señalarse que una parte considerable del conocimiento alcanzado en el campo de la biología celular y molecular está muy ligado a este organismo (Fig. 4.1).

Fig. 4.1. Representación esquemática de una célula procariota tipo y una eucariota. a) 1.a célula proeirriota carwr de núcleo y de ionipartimentación. b) La célula eucariota es más diferenciada, posee núcleo y organclus citoplasmáticos qiie implican su r~ni~ar t imentac ión .

Page 43: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

1,as células procariotas presentan memhrana plasmática que las individualizan y seliaran del medio, carecen de núeleos, aunque sí poseen una zona nuclear donde se eiiciienlra el material genético contenido eii una molécula de ADN circular. Estas ctlulas no presentan organelos citoplasrnáticos; las enzimas respiratorias y las de fotosíntesis se encuentran asociadas a la inenihreiia plasmática (Fig. 4.2).

Cblula eucanota

Las células eueariotas, características de los organisnios pluricelulares, iiiidcii entre 10 y 100 pq1)reseiitan un elevado grado de diferenciación sohceliilar; además de la iiieiiihrana plasmática que dcseiiipeña funciones similares a las procariotas, po- seen un sistenia de eiidoniernbranas que condiciona compartiniientos celulares. La envoltura nuclear perniite la deliiiiitacibn del núcleo, en su interior se encuentra el material geiiético iiiás ahui~d~iiite y presenta un niayor grado de organización que en la célula procariota.

En el citopkmina e localizan los organelos que sc relacionan con tunciones espc- cíficas de la c6lul;r: rctículo endoplasiiiiítico rugoso liso, aparato de Golgi, iiiitocon- drias, lisosomas y peroxisonias. Las iiiclusiones citoplasniáticas están muy relacioiia- rlas con el cúniulo de sustancias como los griiiulos de glucbgeno y goticulas de grasa, asíconio con las estructuras integranles del citt~esquelcto (Figs. 4.1 y 4.3).

Page 44: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Virus

[,os virus coiistitu~eii una f'oriiia de existencia de la iiiateria viva; son partículas de tamaño variable foriiiadas por un ácido iiucleico. que puede ser ácido des- oxirribonucleico o ril~oiiucleiro rodeado por proteínas. El 6cido iiucleico posee el material genético de esta partícula, la que súlo puede iniiltiplicarse cuando infecta previamente una dlula (célula hospedera), ya que carece de la maquiiiariii de síntesis de sus propias pi'oteíiias (F ig . 4.4 > 4.5).

Cuando los virus penetrair en la cclula, l a proteínas de la cubierta son degradadas (uricoating) y queda el niaterial genético expuet i~, entonces se iiiultiplica el virus dentro de la célula Iiospedera. Otras veces. como es el caso de los virus que iiikctaii a bacterias (I>acterii>fag«s~. la inkccii,ii ccliilar sc produce coi1 la incr~rporacibii del genoma v i d (Fig. 4.6).

Muchos vir~is son capaces de producir ciiferineda<les en los seres vivos; delx señalarse que se les reconoce, también, un papel iiiiportaiite en el proceso evolutivo.

La sustancia de la cual están foriiiadai todas las cblulas se conoce coino P m t o p h . El protoplasina es un sistenia coloidal foriiiado por los coinponentes del metaholismo y el material gei16tico celular, está niuy altaineiite organizado tanto es- tructural conlo fuiicioiialmeiite.

Page 45: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 4.6. Etapas de la replicación de un baetcriófago en su célula hospe- dera.

pioteinica

Ácido nucieico

$? unión del virus

Inyecci6n del ácido nucleico dentro de la célula

Funciones del protoplasma

Las funciones del protoplasma son: irritabilidad, asimilación y desasimilación, así como crecimiento y desarrollo. Se tratará cada una de éstas por separado y sus diferentes variantes de manifestación según el tipo de célula.

Page 46: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

initabiüdad. Es la capacidad de responder a un estímulo; es una propiedad universal característica de la materia viva, que desaparece con la muerte. La irritabili- dad se presenta en forma especializada, e x c i t a b i d , en determinados tejidos cono- cidos como tejidos excitables. Esta propiedad comprende la detección del estímulo y la respuestadesencadenada. Dicha respuesta depende del tipo de tejido y puede mani- festarse como:

1. Conductibilidad. Propiedad del protoplasmade trasmitir una señal a unsitio más o menos lejano de la célula. Se presenta enel tejido nervioso.

2. Contractilidad. Propiedad del protoplasma de cambiar de forma y tamaño (acorta- miento) en respuesta a un estímulo; respuesta típica del tejido muscular.

3. Secreción. Capacidad de responder a cambios en el medio con la liberación de sustancias útiles, productos de la síntesis de la célula; característico de las células glandulares.

Asimilación y desasimilación. Es también una propiedad universal del protoplasma y está muy relacionada con la esencia de la vida, que implica el intercam- bio constante de sustancia y energía con el medio. Existen 3 formas principales de manifestación de estas propiedades:

1. Absorción. Incorporacióndematerias diversas a través dela membrana plasmática. Este paso requiere habitualmente de determinadas estructuras especializadas, re- ceptores o transportadores o procesos de endocitosis (u otros).

2. Excreción. Eliminación de sustancias de desecho a través de exocitosis. 3. Biotransducción. Captación y cambio de un tipo de energía en otro directamente

utilizable. Existeu varios tipos de mecanismos biotransductores como la fotosín- tesis y la respiración celular. La respiración celular es el mecauismo de biotransducción fundamental de los organismos aerobios.

Crecimiento y reproducción. El crecimiento es el incremento de la cantidad de protoplasma, y la reproducción es el aumento de la cantidad de células. Al crecer la masa de protoplasma por encima de determinado límite se produce ladivisióncelular.

Organización de una célula eucariota tipo

El protoplasma que forma la célula eucariota está dividido por la envoltura nu- clear; aquel que se localiza entre la envoltura nuclear y la plasmática,se conoce como citoplasma. El material geuético de la célulase encuentra en el núcleo. En el citoplas- ma se hallan los organelos y las iuclusiones citoplasmáticas.

Los organelos sou unidades estructurales muy organizadas, relacionadas con funciones específicas de la célula. Como regla, sou estructuras membranosas de tama- ño y cantidad variables de acuerdocou el tipo de célula,^ inclusosu estado funcional, y presentan una localización característica dentro del Maloplasma. La presencia de los organelos implica la compartimentación celular.

En los organismos pluricelulares cada célula difiere de uu tejido a otro por la diferenciacióu celular y la especialización funcional, de manera que la célula tipo es una abstracción con fines didácticos.

La célula eucariota tipo posee la membraua plasmática, que está formada por Iípidos, proteíuas y algunos glúcidos con un elevado grado de organización estructu- ral; además presenta múltiples diferenciaciones como pueden ser microvellosidades, plegamientos, desmosomas, y otras. Esta membrana limita a la célula del medio y permite el pasoselectivo de sustancias. Está relacionadacon las fuucioues de irritabi- lidad, asimilación y desasimilación.

Page 47: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

1

I

1

\

i

I,a envoltura nuclear (de dohle inciiihrana) delimita al núcleo del citoplasma, presenta poros que coniunica~i el niicleoplasina con el Iiialoplasiiia. Dentro del núcleo seencuentra la croniatina (material genético li~rniado por ADN y proteínas), la cualse condensa y forma los croniosomas en el momento de la división celular, tamhién es frecuente ohwrvar uno o más iiucléolos, los que están relacionados con la formación de las ~>artículas ribosoniales. El núcleo está ligado con la fiinción de reproducció~~.

El rctículo eiidoplasiiiático es una red continua e iwcgylar, de ninalcs liniitados por niemhraiias. estructuras tuhulares miiificadai y sacos aplanados y paralelos, las cisteinw. El reticiik~ endoplasniático rugoso tiene asociado numen~sos rihosom;ls (partículas for- madas por ARNr y proteínas) y está involucrado cn la sintc~is de pn>teínas de secrc~ióii y de iiieiiihranas. El retículo endoplasniiítico liso no contiene ril>«soinas, son túhulos iiitercomiiiiicados, sin cisternai; está relacionado con la síntesis de sustancias lipídicas y reaccioiics de glicosilación. Los rihosomas lihres sintetizan las pr~tc ínas propias de la célula. El retículo y los rihosonias están relacio~iados con la función de secreción.

A continuación del retículo end»plasiii;ítico rugoso y liso, entre estos y la iiiern- hraiia plasinática se halla el aparato de Golgi, tamhién relacionado con la función de secreción, cstá formado por cisternas aplanadas, limitadas por ineml>ranas que fornian I(a dictioomas, los cuales se presentan en número variable. Esta estructura tiene la Liiiici6n de colectar y Concentrar los prnductns forniadns en el retículo endoplasmático, en eslc sitio e~periiiientan algunas transforniaciones y se distribuyen en el interior dc la célula o vierten su contenido al exterior por exocitosis.

Los lisosomas son corpúsculos ineinhranosos que contienen un conjunto de eiiziiiias Iiidrolíticas capaces de degradar iniiltiplcs compuestos. 1.0s lisosonias pi-iiiia- rios son aquéllos acabados de forniiir en el aparato de Golgi: los secunclarios, son los que ya se Iian unido a las vacuolas y se encuentran en proceso digestivo. Las vacuolas di,zcstivas formadas pueden ser hetcrúfagas, cuando el inatcrial que se encuentra de- gradándose es ajeno a la célula, y autóPagas si aquél es de la propia c6lula. La función (le los lisosonias cstá relaciouada con la asiniilacióii y desasiiiiilación.

1,os organclns, (loiicle se lleva a caho la respiración cclulai; son las iiiitocondrias. Estas soii c~tjtnich~ras iiiemhranosas en fornia de sacos,de tamaño y cantidad variables según el te,jido; poseen uiia doble nieinhrana interna y externa, y entre ellas se encoen- tra el espacio iiiternienihranoso. La memhrana interna se 1-epliega hacia el interior y forma las crestas, que delimitan la matriz.

El citoesqueleto tiene fiinción de sostí.ii y cstii conforiiiado por una red de iiiicrofilaiiiciitos y niicrotiihtilns. que atraviesa el citoplasma. Los iiiiii-ofilamentos son estructuras alargadas, presentes en número \ ariahle y Ii~calizados por dehqjo de la iiienihrana plasinática, intervienen en la locoiii«cióii y la endocitosis, y están ligados a la contractilidad. 1x1s iiiicrotúhulos sou tuhos 1-ectos o algo ci~rvos, iiunierosos en las cClulas en di~isiíni, que forman el aparato niitótico: están relacioiia<los con la fiinción de reproducción.

I m centríolos son estructurasen forma de varillas,coiistit~iidos por niicrotiil>ulos ion disposici61i especial y localiaados cerca del núcleo celular: éstos son I y se Iiallaii dispuestos de forma perpendicular entre sí: liciien función en la reproduccióii. específicaniente en la organización del aparato iiiitótico.

Con freciieiicia en el cituplasnia se presentan cúniulos de sustancia que suelen tener carácter tr;insitorio, éstas soii las iiiclusioiies citoplasniiiticas; son materiales extraños no digerihles o de depbsito, eiitrc estos iiltinios teneiiios los gránulos de g l i i c ó g ~ i ~ ~ y la5 g~ticulas d i grasa: en aiiihos casos constituyen formas de alniaceiia- miento (le energía.

Organismos pluricelulares

En un organisiiio ~~iiicelul;n; I:i ct.liila cmstituyente dehe ser capaz de efectuar todassus funcioues inherentes; si11 cnih;irgo. en un organisnio pluricelular las diversas

Page 48: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

células que lo integran se diferencian y cumplen distintx funciones. Las células que se especializan en la secreciún de proteínas presentan un retículoendoplasiiiático rugoso niuy desarrollado; las células de la niucosa intestinal presentan proyecciones que forinan las microvellosidades, que les permite aiiiiientiir niiiclio la superficie de contac- to con el medio, aspecto fundaniental en su funcibn, en la digestiún y absorción de nutrientes.

En los organismos pluricelulares, las células semejantes, las que Iian experimenta- do la misnia diferenciación y especialización se agregan y forniaii los te,jiclos, por e,iemplo: las células musculares, las nerviosas, de la mocosa intestina1,etcétera. Dife- rentes tejidos se asocian y forman los órgmos; el Iiígado está forniado por hepatocitos, vasos, nervios y te,jido conectivo. A su vez, diferentes órgaiios conforinari los aparatos y sistemas, como es el caso del aparato digestivo I'orniado por la boca, el esófago, el estómago y los intestinos. Todo ello permite al organismo una actividad más eficiente y con superiores coiicliciones de adap tac ih al niedio. Se denoniina difereniiacióii a los camliios en la organización estructural que experimentan las células de diferentes tejidos de los organisnios pluricelulares. A los caniliios funcionales asociados a aquk- llos se les reconoce conio especializacibn. De manera qne ambos procesos, diferenciaciún-especialización constituyen un par iiidisoliil)lcineiite ligado.

El proceso de diferenciacibn está programado de fornia genética y constituye un aspecto poco conocido desde el punto de vista in«leciilai: Sin embargo, se tienen algunas evidencias a partir cle estudios realizados durante eventos, que pueden consi- derarse como una diferenciacibn primitiva en ciertos orgaiiisiiios simples. Un ejemplo lo constituyen las micobacterias, pn~cariotas con coiiiportaiiiiento "social". En ki figu- ra 4.7 se puede obserwr un esqueina representativo del ciclo de vida de este microor- ganismo; en él se puede apreciar cóiiio la deprivación de nutrientes provoca la agrega- ción de las células, las cuales experimentan una diferenciaciún y foriiian un orgaiiisiiio plnricelular r~~climentario. Los estudios realizados en nintantes, que Iian perdido la facultad de formar ese orpanisnio pluricelular, revelan que las células se agregan en respuesla, por lo menos, a 4 sustancias secretadas por las propias células conio señales.

1 Oqnnisiiio ploiiceliilar prinim\o Fig. -1.7. Ciclo de $id;, dr las iiiiriibactrriac.

Agregac"iii L A agi'egaci6n celixlai- sc pri,dncr por la dqwinwi6~ de m~l~- ien tcse n el riicdii, de cultivo. y ?e hriiia iin oi-~aiiisiito ~iliii-iriliil;ir pririii- ti,,,.

La formación de la estructura pluricelular Iia siclo mejor coniprendida por el estu- dio de estos eventos en otro organisnio, el Dictyo.steliun1 discuideurir. eocarionte con genoma hastantesencillo, apenas algo mayor que el de la niicoliacteria antes tratada y unas 100 veces menor que el de los seres hunianos.

Estos organismos viven conio células independientes y, cuando la fuente de iilitricntes se agota, clejan de dividirse y empiezan a agregarse en un punto central (ceutro de agregación), se adhieren unas con otras por medio de moléculas específicas de su superficie para formar uiia estructura mi5 conipleja.

Esta agrepaciún parece estar directamente relacionada con la liheracibn de AMPc por las células, en respuesta a la falta de nutrientes del medio. Seobserva también la activación de numerosos penes, lo que induce la foriiiacibii de nuevas iiioli.culas con

Page 49: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 1.8. Foriiiaci6ii de cuerpoa rnullicelii- liires en el I>iclwsreliurii disroi- driim. La agregación celiilw, en este raso. parece esiar i-elaeionatla con la lihersci6ii al medio de h l P e por las propias células.

las que intervienen en la adhesión celular; como resultado, estos organismos se empie- zan a reunir en un centro y se produce una condensaciún radial de éstos hasta formar el cuerpo multicelular (Fig. 4.8).

La especialización y diferenciación hística de los organismos pluricelulares de- terminan mayor eficiencia funcional. La existencia de complejos mecanismos de regu- lación permiteel funcionamiento integral y armónicode tales organismos.

Podemos resumir que los organismar pluricelulare~ se caracterizan por:

1. La existencia de diferenciación y especialización celulares que están programadas genéticamente.

2. Las funciones del organismo se encuentran repartidas entre tejidos distintos, lo quesemeja una "división del trabajo".

3. Las células del mismo tipose agregan y forman tejidos. Distintos tejidos seasocian y forman órganos, los que a su vez se agrupan y constituyen los aparatos y sistemas.

4. Las ctlulas de estos organismos están intercomunicadas mediante diversos y efi- cientes mecanismos de regulación lo que permite su funcionan~iento en forma coordinada y armónica.

5. Estos aspectos provocan que los organismos multicelulares sean más eficientes.

Debe enfatizarse que la división de estas células no produce la duplicación det individuo, sino sólo la renovaciún de sus tejidos. En algunos tejidos las eélulas uo se dividen. La reproduccióu se lleva a cabo con la participaciún de órganos g células especializadas.

Como ya se ha señalado, los tejidos son con,juntos de células estructural y funcionalmente seme,jantes; estas células se adhieren o unen de formas diversas. La uniún iutercelular está presente en ta mayoría de los tejidos, como nervioso, muscular, adiposo, etcétera, auuque en algunos esta unión no existe, tal es el caso de la sangre.

Los mecanismos de unión de las células son básicamente de 2 tipos: los que favorecen la unión mecánica entrc ctlulas y los que favorecen la comunicación por contigüidad. Entre los del primer tipo tenemos los desmosomas, la unión

Page 50: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

intermedia y la unión estrecha, y entre los segundos tenemos las uniones en hen- didura o nexus (Fig. 4.9):

1. Desmosoinas. Constituyen zonas de adherencia entre células epiteliales que tienen una función mecánica; hacia ellos convergen filamentos.

2. Uniones intermedias. Son uniones similares a los desmosoinas pero carecen de filamentos.

3. Uniones estrechas. Las célulasal formar este tipo de uniones se fusionan de manera que no existe espacio intercelular.

4. Uniones en hendidura o nexus. Intervienen en las comunicacioiies intercelulares por contigüidad; existen canales de unión, a través de los cuales pueden pasar iones o moléculas pequeñas.

Fig. 4.9. Representación csquemítira de alfpnas tipos de uniones interrcliilarrs. a) Desniosomas sencillas cntre 2 cflulas cpiteliales. h) Unibn rstrrclis de las rneiiihraiias siipcrpiicstas que forman la rnieliii:i.

Comunicación celular

La comunieación entre la5 células de los organisinos pluricelulares es un requisito para el funcionamiento de éstos. Los sistemas de comunicación permiten el control del creeiniiento, desarrollo y reprodueción de ellos g hacen posible que funcionen armónicamente mediaute la regulación y coordinación de las diversas actividades del organismo.

La comunicación iiiterceliilar se puede ejercer de forma local o a distancia. La comunieación se produce mediante una señal, que no es más que cualquier cambio en la concentración de determiiiada sustancia en el medio. La coniunicación celular se produce a través de compuestos químicos, los que pueden ser de 3 tipos: 1. Mediadores químicos locales, por contigüidad. Estos sólo actúan en células conti-

guas y son rápidamente incorporados y degradados por ellas (Fig. 4.10). 2. Neurotrasmisores, mediadores locales. Las células nerviosas se comunican con sus

ctlulas "diana" en puntos de uniones específicas (las sinapsis), a través de los

Page 51: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 4.10. Represeiitaciúii esquciiiilica del mudo dc acción dc rncdiadui-es químicos. al Por contigüidad a ti'a- i.és de nerm I i ) Ncurofrasiiiisores. iiiediadurcs Incalcs.

Fig. 4.11. Sc pi-cscnta. de hrnia csqiieniáli- va. las ctapas pi.inripales del ciclo d r acción de 3 hoririunm. quc constituyen mediadores qiiíiiiiwr a distancia. Las I~orrnorins a, b y e soti sccrctadas por las gláiidirlas rndoiriiiai i.espcrti\as,! Iniiisper- Lada, cn I;i iaiigrc alcanzan sus tr- j i r lo "di;iiia". Se piiedc apreciar r6iiio la eClalas "diaiiri" "i-errnio- ccn" rspecitirsmeiitr ii r;ida liar- iiiona imediaiilc csli-iirliii-ai rspe- cializadils qur intrractiiaii c m ella5 (los rricplorei): iada rcccptor rr- coiiorr y sc une a tina 1ioriiiwi;i es~>eritirn.

mediadores quíniicos Ilaniados neurntrasn~isorcs los cuales actúan sólo en la rélu- la adyacente (Fig. 4.10).

3. Hormonas. Son sustancias de naturaleza quiiiiica variada, secretadas por las ci.liilas de tejidos especializados, y reconocidas por células "diana"(fargft celk). Estas células poseen los receptores específicos capaces de interactuarcon las Iiorinonas y formar el complejo hormona-receptoi; lo que prouoca uiia respuesta, la cual estará en concordancia con la especialización de la célula "diana" (Fig. 4.1 1 ).

Las señales quiniícas de hornion;ts y neurotrasmisores constituyen una forma muy especializada de coinunicación intercelular y son pn>ducidas por células endocrinas y nerviosas, respectivaniente. Es conveniente aclarar que además de estas seiínles espe- cificas, existen las universales que pueden ser reconocidas por todos los tejidos, como es el caso de uii canihio en la concenlraciún de glucosa. Uii aspecto importante de la coniunicación intercelular es el hecho de que las células pueden responder de forma distinta ante el mismo estímulo, ya que la respnesta es especializada. Ante la misma señal, por ejemplo, asetil colina, la respuesta de las células nerviosas es la trasmisión de un impulso nervioso, la célula muscular se contrae y las glándula5 salivalessecretan saliva.

Resumen

La materia viva se organiza bhsicamente en forma de virus, organismos unicelulares y organismos pluricelulares. Estos 2 Últimos presentan como unidad esbuchval y funcional a la célula. Las células están constituidas por el protoplasma, formado por los componentes químicos del metabolismo y la herencia, presentan las funciones universales típicas de los organismos vivos, como son: la irritación, la as idac ión y desmimilación, y el crecimiento y la reproducción, las cuales pueden adoptar características determinadas por la especialización celular.

Las células pueden ser p r d o t a s o eucariotas. Estas Últimas son muy desa- d a d a s y comparíhentadas; presentan el material genético en el núcleo celular, separado del citoplasma por la envoltura nuclear y, adenib, variados organelos citoplasdticos, cada uno relacionado con una función específica de tales células.

Page 52: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los organismos pluricelulares esián formados por células eucariotas dife- renciadas y especializadas, que se asocian para formar tejidos, órganos, aparatos y sistemas. La diferenciación y especialización toman más eficientes a los organis- mos pluricelulares.

La comunicación intercelular pennite que los organismos multicelulares fun- cionen coordinada y armónicamente. Esta comunicación puede ser local o a dis- tancia y se produce mediante mediadores químicos universales o especíñcos.

Las señales químicas que establecen la comunicación entre células distintas son de 3 tipos: mediadores químicos por contigüidad, l d e s (neurotrasmisores) y a distancia (hormonas).

Ejercicios

1. Represente esqueinaticameiitc uiia célula procariota y una cocariota y cstahlezca una comparación entreellar.

2. Descriha, mediante un esquema, d ciclo de replicación de un fago. 3. Elahore una tabla en que se relacionen los diferente? organelos suhcelulares con las

funciones del protoplasma. 4. Dibuje una célula eucariota tipo e indique todas sus partes, asícomo las funciones

con la que se relaciona cada una de sus partes. 5. Establezca una relación entre diferenciacióu y especialización y ejemplifiqiie con

tejidos diversos. 6. Defina el concepto de señal metahólica. 7. Defina el concepto de mediadores químicos. 8. Explique los distintos mecanismos de comunicación intereeliilar en los organis-

mos pluricelulares y diga la significación biológica de estos. 9. ¿Cómo usted explica qne ante una misma señal química se produzcan respuestas

distintas cn diferentes tejidos?

Page 53: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Introducción a la sección sta sección está dedicada al estudin de las hiomnlécolas, que son los coni- puestos quíniicos característicos de la materia viva. Las 1)iomoléculas se caracteri~an por su gran diversidad, a pesar de estar

constituidas por un escaso númerode átomos: carbono, hidrógeno, oxígeno y nitrúge- no en mayor cantidad, asícomo fósforo y ai.nfre,en menor cuantía. Los demás elemen- tos que pueden encontrarse en algunas I>iomoléculas se Iiallan en pequeña proporción.

La forma de asociarse dichos átomos, que explican la diversidad estructural de estas nioléculas y de sus propiedades, depende de las características de sus elementos cons- tituyentes, conio la disposición en que éstos se unen para formar los enlaces y ogrnpa ciones iiioleculares, aspecto que será tratado en el capítulo 5.

Las I)ionioléculas de niayor complejidad son las macroinoléciilas, biopolímeros forma- dos por la unión de otras biomoléculas niás sencillas, que constituyen sus monómeros o precursores. Las proteínas son polínieros de aminoácidos; los ácidos nncleicos, de nucleútidos y los polisacáridos, de monosacáridos.

En esta sección estudiaremos primero todos los monómeros que constituyen las unida- des estructurales de las diferentes niacromoltculas y después se procederá al estudio particular de la estructnra y propiedades de cada una de las macroinoléciilas. De mane- ra que los capítulos 6,7 y 8 se dedican al estudio de los aminoácidos, monosacáridos y nnclrótidos, respectivaniente; los capítulos 1U,11 y 12 tratarán de sus I>iopolímeros.

Por último en el capítulo 13 se tratará la estructura y propiedades de los lípidos, impor- tantes biomoléculas que no forman inacromoléculas, sino distintos tipos de lípidos

El lector deberá dominar todo lo concerniente con la estructura y propiedades de las Iioinoléculas, previo al estudio del metabolismo, por la importancia que tiene diclia estructura en sus funciones y propiedades.

Page 54: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

I,a composición química de los organismos vivos difiere considerablemente de la materia inanimada. Las moléculas que son específicas de los seres vivos son las biomoléculas; aunque es necesario aclarar que también forman parte de la materia viva. algunas snstancias de naturaleza inorgánica.

Una característica esencial de las biomoléculas es su diversidad, a pesar de estar constituidas fundamentahente por un grupo pequeño de átomos: carbono, nitrógeno, oxígeno,hidrógeno, y en menor cuantía fósforo y azufre, entre otros. Aun organismos tan sencillos como las bacterias están formados por una gran variedad de moléculas. Una característica fundamental de las biomoléculas es la especificidad de su función, que está condicionada a su estructura. En este capítulo considerarenios los aspectos más generales en relación con los principales átomos, grupos funcionales, enlaces e iiiteracciones presentes en las biomoléculas, que determinan sus características esen- ciales y sus propiedades, por lo cual su conocimiento previo resulta fundamental.

Sc hará una revisión somera de las propiedades de la molécula de agua, por ser éste el componente más abundante de los diferentes tejidos y fluidos biológicos, así como el principal disolvente de la mayoría de las hiomoléculas.

El agua en los organismos vivos

El agua es la sustancia más abundante en los organismos vivos, en el interior de las células, en los líquidos extracelulares y en todos los fluidos biológicos; ella constitu- ye el solvente natural en la materia viva. Son varias las propiedades que permiten que esta sustancia cumpla su función capital: elevado punto de ebullición, su bajo punto de fusión, elevada constante dieléctrica y gran capacidad calórica, hacen del agua el solvente más apropiado para la mayoría de las hiomoléculas, sales, iones y otras sustancias polares.

El agua es una mnlécula dipolary puedeestablecernumerosos puentes de hidró- geno entre sí; además, es capaz de incluir iones 11 otras moléculas polares disueltas en su seno. Cada molécula deagua puede asociarse a otras3 ó 4 por medio de los puentes de hidrógenos, lo que le confiere propiedades características. Dichos puentes se esta- blecen no sólo en el estado líquido, tamhién en la fase de vapor de agua y en su forma sólida. el hielo.

Page 55: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Es importante recalcar la importancia fundaniental que tienen los productos de ionizacióii del agua sobre el comportamiento y actividad de numerosas hininoléculas. La ioiiización del agua cumple la ecuación siguiente:

2 H,O -+ H,O' + OH-

o simplificadamente:

El agua pura tiene un pH 7 (neutro),condición cii que laconcentración de H+ y de OH-es la misma (IH'] = [OH-1); si en una disolucibn existe un predominio de [H'l en relación con la [OH-1, el valor de pH será menor que 7 (ácido); por el contrario, si la concentración mayor es la de OH~, el valor del pH es superior a 7 y el medio es alcalino o básico. El pH del agua se modifica si se le adiciona una sustancia ácida o I~ásica (alcalina).

Broristed y 1mvr.rdefiiiierou a los ácidos como aquellas sustancias que ceden protones, y I~ases a las que los captan; la especie ácida forma un par con su base conjugada. conio puede apreciarse:

AH e A- + H' ácido base conjugada

Para esta reacción se puede definir su constante de disoiiacibn Ki, que como ella consiste en la reacción de disociación ácida. seria Ka y por tanto:

Conlo es fácil inferir de esta relación. a mayor valor de Ka, mayor será la [H'l, lo cual significa que la especie cederá con mayor facilidad los protones, o sea, es un ácido niás fuerte: por el contrario. valores bajos de Ka corresponden a [AH] mayores, la especie no cede fácilniente los protones, sino por el contrario, tiene tendencia a captar- los, es un ácido niás débil o mia base más fuerte. A mi ácido más fuerte le corresponde una I)ase con,jugada drhil y viceversa.

I)espe,jando [H+] en la ecuación (1) y 1-eordenando, sc tiene:

y aplicando logaritnio en ambos miembros de la ecuación:

[ A H I 105 [H. 1 = log Ka + log -- [ A l

Cambiando el signo en ainl>os lados de la ecuación:

Page 56: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Pem:

y por definición:

- 101: Ka = pKa y - 1112 ils [ Hi 1 = pH. iustitiiyendu en (2):

I A I pH = pK + log --

[ A H I

donde A- corresponde con la forma disociada del grupo, y ,AH con la no disociada. Es obvio que dada la definiciún de pK, a menor pK más fuerte será el ácido y viceversa.

La ecuación (3) conocida como de Henderson Hasselbach, constituye tanil~ién la ecuación de las soluciones I>uffero tampón; la función de estas soluciones es la preser- vación del pH del medio y por su trascendencia las trataremos someramente aquí.

Un bufFer(tampríno amortiguador del pH) está constituido por una mezcla de un ácido o una base con su sal. Suponiendo que el ácido corresponda con el electrólito débil y su sal con el electrólito fuerte, como en el caso del bufferacetato, entonces:

CH,. COOH CH,- COO- + H' Acido acético

~ a ' CH,- COO- CH,. COO- + ~ a ' Acetato de sodio

La mezcla así formada del ácido y su sal, y donde el ión común es CH, - COO-, o sea, el ion acetato, constituye el bufferacetato. En este caso el electrolito débil es el ácido, éste se disociará poco y por tanto predominaráen la Forma no disociada, CH, - COOH; en tanto, que su sal, el acetato de socio será el electrólito fuerte y estará prácticamente toda en su Forma disociada,en formade ion acetato: CH, - COO-.

Por ello el CH, - COOH será la reserva ácida y protegerá el pH contra la adición de bases, mientras que la reserva alcalina será el CH, - COO-, y protegerá el pH contra la adición de ácidos. La ecuacih de Henderson Hasselbach se conoce también como la ecuación de los buffers y para estos casos suele escribirse:

(Sal1 pH = pK + log --

[Ácido]

donde el pK corresponde al pK del ácido y el pH del biifferdepende de la relación de las concentraciones de la sal y el ácido. Un bufferes más eficiente,si las concentracio- nes de la reserva ácida y la alcalina son similares, y ello se cumple en valores de pH cercanos al valor del pK del ácido. Para objetivos prácticos se acepta que un buffer es eficiente a valores de pH = pK del ácido + 1.

Utilizando el bufferacetato como ejemplo, veamos como éste responde ante adi- ciones de un ácido como el HCI. La reserva alcalina reacciona:

Page 57: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

con lo que el pH del medio no cambia. Si por el contrario, se añade un álcali como el hidróxido de sodio (OHNa), reacciona la reserva ácida:

y de esta forma el pH tampoco cambia. En la sangre y en otros fluidos biológicos y en todas las células vivas es funda-

mental el mantenimiento del pH dentro de ciertos límites, que permitan el desarrollo normal de las reacciones del metabolismo, y ello se garantiza por la existencia de diversos sistemas buffers.

Sustancias inorgánicas en la materia viva

En la composición de la materia viva se comprueba la presencia de algunos ele- mentos inorgánicos en forma de iones o de complejos. Los elementos inorgánicosmás abundantes son: fósforo, azufre, potasio, sodio, calcio y cloro, entre otros; algunos existen en cantidades mucho menores como el cobre. zinc. cobalto v flúor. conocidos como oligoelementos o elementos trazas. La función de estos iones inorgánicos está relacionada principalmente con la actividad catalitiea de muchas enzimas; además cumplen funciones osmóticas y contribuyen a la formación de estructuras comple,jas. Más adelante se estudiarán en detalle las funciones de los minerales en el organismo humano.

Composición elemental y características generales de las biomoléculas

Las biomoléculas existen en un grado variable de con~plejidad; están formadas principalmente por carhooo, hidrógeno, oxígeno y nitrógeno unidos por enlaces covalentes. Además, suelen contener azufre y fósforo, entre otros elementos.

Las hiomoléculasse pueden agrupar de acuerdo con su tamaño y complejidad en moléculas sencillas, de relativo bajo peso n~olecular, coino los aminoácidos, los monosacáridos, los ácidos grasos, los nucleótidos y otras; las moléculas de elevado peso molecular (macromoléculas) están formadas por la poiimerización de a l i n tipo de molécula sencilla: las proteínas son polimeros de aminoácidos; los polisacáridos, de monosacáridos y los ácidos nucleicos, de nucleótidos.

Algunos lipidos, aunque no constituyen macromoléculas, presentan estructuras coniple.jas integradas por la asociación de moléculas sencillas diversas.

Para tratar el estudio de las hiomolkulas necesario comprender antes las carac- terísticas y propiedades de los principales átomos que la7 constituyen, asícomo de los enlaces mediante los cuales se unen y asocian para formar las agrupaciones moleculares presentes en los distintos tipos de hioinoléculas.

Átomos en las biomolécuias

En la tabla 5.1 se presentan las características esenciales de los átomos más fre- cuentes en las biomoléculas, y de algunos otros que puedan ser utilizados como refe- rencia en el análisis de diversas propiedades de los átomos que pertenezcan al mismo grupo en la tabla periódica.

Page 58: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

lsbla 5.1. Algunas propiedades de los átomos más frecuentes en las biomoléculas y de otros que permitan comparar las propiedades de ciertos grupos de la tabla periódica

Símbolo Gmpo

H 1

Li 1

Na 1

Configuración Potencial Electronegatividad Radio atómico (A) electrónica de ionización (eV)

Comosabemos Z es el sínibolo del núnieroatómico, y corresponde con el número de protones en el núcleo y de electrones alrededor deél. Radio atómico es la distancia que existe entre el núcleo y la capa más externa de electrones de un átomo. Desde el punto de vista químico los electrones niás iniportanles son los de la última capa, pues determiiiaii el comportamiento reacciona1 del átomo. Los átomos con menos de 4 electrones en su última capa (grupo 1 de la tahla) tienen la tendencia a perderlos y convertirse en iones con carga positiva (catioiies), presentan carácter de metales, po- seen baja energía de ionización y baja electronegatividad. Los que tienen más de 4 electrones en su última capa (grupos V I y VI1 de la tabla) tienen la tendencia a captar electrones hasta completar 8 en la última capa (regla del octeto) y se convierten en iones con carga negativa (animes), poseen alta energía de ionización y elevada electronegatividad (carácter de no metales).

Los átomos intermedios entre ambos extremos de la tahla periódica (gmpos IV y V,especialmente el IV) no tienen tendencia a ceder ni a captar electroiics, j. por ello no forman iones fácilmente, sus valores de energía de ionización y de electronegatividad son intermedios y su tendencia esa coni~~artirsuselectrones.

htomo de carbono

El átomo decarbono es el primer elemento del4to. grupo dela tahla periódica,su número atómico e, 6 J ocupa un lugar intermedio entre el carácter metálico y no

Page 59: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

metálico, por lo tanto sil tendencia no es a gaiiar ni a perder electrones, sino a compar- tirlos. Los electrones de su rapa más externa son 4 y ocupan un orbital s y 3 orbitales p. Más adelante veremos cúnio estos or1)itales pueden asociarse para forniar distintos tipos de orbitales híbridos.

El átomo de carbono tiene la capacidad de unirseentresí y formar cadenas de longitud variable, que al unirse con átomos de hidrúgeiio forman cadenas Iiidrocarbonadas lineales o ramificadas, abiertas o cíclicas y saturadas o insatnradas. Las cadenas Iiidrocarbonadas son estables y constituyen la estructura básica de las biomoléculas.

Los átonios de oxígeno y nitrógeno pueden comhiiiarse entre sí y con el carbono, originando así variadas agrupaciones atómicas -los grupos funcionale+ con propie- dades niuy específicas que se ponen de nianifiesto en las moléculas que los contienen.

im átomos se unen para fonnar agiupaciones atómiws y niolécidas mediante los enlaces q"iicos.Trataremosahoraalgiuios de losaspaitm~ncial~dcI<~e~ilacesq~iúnicos.

Enlaces químicos

Los enlaces químicos son las fuerzas interatómicas que permiten la formación de moléculas; éstos pueden ser de varios tipos: iúuico, covalente y el metálico. Revisare- mos aquísonieramente los 2 primeros por ser los que se encuentran en las hiomoléculas.

Enlace iónico

Es un enlace de tipo electrostático, quese produce por la transferencia de un electrón desde un átomo de baja energía de ionimción hasta uno de alta afinidad electrónica. El Na por ejemplo, con carácter metálico (tabla 5.1) tiende a perder un electróii desu Última capa (hajaenergia de ionizacióii) y se fornia el ion Na'. Por otra parte,el CI tiene tendencia a captar un ~lectrón,completar con 8 electrones su última capa (alta afinidad electrónica) y queda como ion C1; los iones así formados se atraen por fuerzas electrostáticas y se lihera &Tan cantidad de energía. Las moléculas que presentan este tipo de enlace forman cristales iónicos y se caracterizan por ser sólidos, soliihles en agua o solventes polares, buenos condnctores de la corriente eléctrica, además poseen elevados puntos de fusión y ebullición. Este enlace, aunqne no es el predominante en las hionioléculas, se puede encontrar en sales orgánicas y en otras biomoléculas.

Enlace covalente

El enlace covalente se produce por el compartimiento de electrones entre los átomos; este tipo de enlace es característico de los elementos centrales de la tabla periódica, como el carbono. Los electrones compartidos ibrman el orbital molecular y se produce cuando interactúan electrones no pareados con spiilesopiiestos; el caso más simple lo podemos ver en el compartimiento del único electrbn del átonio de H para formar la molécula de H,. Este enlace covalente será apolar, pues los electrones estarán compartidos igualme&e entre ambos átomos.

Este enlacees degran fortaleza. estable y presenta libertad de giro. Los electrones compartidos en los enlaces covalentes puede11 pertenecer a orbitales s 6 p. La nube electrónica producida por el solapamiento de los orbitales compartidos se distribuirá más o menos de forma simétrica,en dependencia de la polaridad del enlace,alrededor del eje que va de uno al otro núcleo de los átomos involucrados. Es bueno señalar que la distribución de la nube electrónica será menos simétrica en las niolbculas polares,

Page 60: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

eii las que unode los átonios atrae más hacia silos electrones debido a que posee mayor electroafinidad; un e,jemplo de ello lo constituye la niolécula de agua, en la cnal los electrones son atraídos con mayor fortaleza por el oxígeno y menor por el hidrógeno, por ello la molécula de agua se comporta como un dipolo (Fig. 5.1).

Al enlace covalente en el que uno de los átomos iiivoliicraclos es el que aporta los 2 electrones coinpartidos con otro que los recibe, se le conoce con el nonihiu de enlace covalente de coordinación o coordiniido; esto sucede en la forniación del ion ainonio. ya que los 2 electrones que se comparten son aportados por el nitrógeno.

H H+ 6- I l

H N: + H'F H- N : H I'ig. 5.1. L;, iiiolécula de agua coniu dipoli,. I l

1.0s compuestos que presentan enlaces cuvaleiites pueden tener distinto esta- do físico; sus temperaturas de fiisióii y ebullicióii son nienores qne aqiibllas de los que poseen enlaces iónicos. La soluliilidad de estos conipiiestos estará en depen- dencia de su l~olaridad; los apolares soii pocos solulilcs en agua y niás solubles en solventes orgánicos; en tanto que los polares son más solubles en agita y solven- tes polares.

Sus disoluciones, conio regla. no son buenas conductoras de la electricidad, aun- que esta propiedad también dependerá de la polaridad del enlace: niientras niás polar sea una molécula, más se acercará a las propiedades (le aqnéllas formadas por enlaces iónicos.

En ocasiones resulta dificil la localización de la iiulie electrónica iiiolec~iliir \. eii muchos compnestos del carbono no es posible representarla como única estriictiira, esto se dehe ii la existencia de resonancia en algunos enlaces.

Resonancia

La resonancia constituye un concepto importante eii los compiiestos del car- bono conio es el caso de las hiomoléculas; está presente en aquellas moli.ciilas o iones poliatóniicos que pueden representarse por niás de una estructura de conte- nido e~iergttico, al>rosiniadaiiieiite igiial, y que se diferencian sólo en la Iocaliza- ción de sus electrones. De acuerdo con la configuración electrónica del carbono y del oxígeno, la estroctnra esperada para el dióaido de carhono (CO,) seria:

Asimismo la distancia entre los dobles enlaces seria alrededor de 1.21 A: pero se Iia podido determinar que ambos enlaces (C-O) tienen una distancia de 1,13 A, iiienor que la esperada y la niolécula adopta una disposición lineal. Esta contradicción se resnelve si e asume que el desplazaniiento electi-ónico al nivel de los dobles enlaces puede ocurrir en amhas direcciones. entonces la distrihncióii electrónica del CO, po- dría escrihirsede las maneras siguientes:

Page 61: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Ninguna estructura es la ideal para representar al CO,, pero se puede aceptar que entre las 2 posiciones extremas existen numerosas posiciones intermedias. La estructura de resonancia se puede representar ine,jor mediante la participación de los orbitales por los electrones en los 3 átomos (Fig. 5.2).

Fig. 5.2. Kepresfiitacih de los orl>itiller del

o C

Interacciones débiles

Además de los enlaces estudiados, entre los átomos pueden establecerse otras berzas intermoleculares débiles y variadas que tienen importancia en el mantenimien- to de las estructuras espaciales de las macromoléculas. Las interacciones débiles son uniones no cnvalentes de energía menor que 41 840 J. mol-' (10 kcal .mal-'1. Revisa- remos brevemente aspectos esenciales de algunas de estas interacciones.

Puente de hidrógeno

Los puentes de hidrógeno se estahleccn entre un átomo de hidrógeno que está unido a un elemento muy electronegativo, con radio iónico pequeño x o m o el oxíge- no y el nitrógenn- y que es atraído por un segundo elemento con características similares, de manera que el hidrógeno queda compartido cntre los 2 átomos electronegativos. En estas condiciones el átomo de H se eiicnentra casi desposeído de su electróii y se comporta como un H+. El puente de Iiidrógeno puede formarse entre moléculas diferentes y entre moléculas iguales.

El puente de hidrógeno puede alcanzar una energía alrededor de 10 kcal.mol-' y es una de las más fuertes entre las interacciones débiles; la forinacióii de puentes de hidrógeno entre moléculas de agua es un e,jemplo. Esta interacción desempeña una función fundamental en el mantenimiento de la estructura tridiniensional de las proteí- nas y de los ácidos nucleicos.

Puentes dc Iiidr6geno

entre niuléculas de agua

Puente de hidrógeno

eiitre un O y i i i i N

Interacciones hidrofóhicas

Las interacciones hidrofóbicas se producen cuando grupos o nioléculas apolares se encuentran en un medio acuoso; en esas condicionesestos grupos tienden a a~ociar-

Page 62: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

se entre si, de manera que ofrecen la menor superficie posible al niedio polar. Esta atracción de las cadenas apolares, como las hidrocarbonadas de los aminoácidos apolares,son de gran importancia en el mantenimientode la estructura espacial de las proteínas. Esta interacción es en cierta medidasimilar a la que experimentan lascade- nas apolares de los ácidos grasos cuando forman las niicelas.

También conocidas como uniones salinas, se establece entre iones cuando éstos se encuentran en disolución; si 2 iones poseen carga opuesta se atraerán y tende~íii a acercarse,mientras que si tienen carga igual se rcpelen y, por tanto, tienden a akjarse. Entre grupos básicoscon carga positiva y grupos ácidos con carga negativa,se presen- tará una fuerza de atracción electrostática. Este tipo deinteracción contribuye al man- tenimientodela estructura espacial delas protc' 'inas.

Fue= de Van der Waals

Son fuerzas electrostáticas transitorias que se establecen entre los electrones de la envoltura de unos átomos y los núcleos de otros, lo que provocadeformación momen- tánea de las nubes electrónicas y la aparición de un dipolo de carácter transitorio. Estos dipolos originan fuerzas de atracción entre los grupos o n~oléculas vecinas. Las fuerzas devan der Waals son importantes en el mantenimiento de la estructura tridiinensional de las proteínas.

Los átonios unidos por algún tipo de enlace estudiado, y en el caso de las biomoléculas +specialmente por el covalente-, originan las cadenas hidrocarbonadas. los distintos grupos funcionales y en general todas las agrupaciones atómicas que se nresentan en las diversas bionioléculas.

Pasarenios a revisar los compuestos formados por carbono e hidrógeno: los hidro- carhuros, y después trataremos los aspectos esenciales de aquellos grupos funcionales más frecuentes en las bioinoléculas.

Los hidrocarburos se clasifican en alifáticos, cuando presentan cadenas abiertas Iiidrocarbonadas que pueden ser saturadas o insaturadas, lineales o raniificadas y ade- más, pueden presentar algún grupo funcional; tamhién se clasifican en cíclicos o de cadenas cerradas, que a su vez pueden ser aliciclicos o aromáticos.

Hidrocarburos alifáücos A Los hidrocarburos saturados son aquéllos que contienen enlaces siniples y pue-

den ser lineales o ramificados. En la formación de los enlaces siniplcs C - C , que forman la estructura de los Iiidrocarburos saturados. los orhitales s y p de la última H: &. . . .H capa del átonio de carbono se hacen equivalentes y no existen orbitales s ó p puros sino híbridos; dada que en estas condiciones se han mezclado o fusionado 1 orbital s y 3 p, se conoce como sp2 a la hibridación resultante. En esta hibridación los orbitales se encuentran seoarados oor áneulos de 1U9" 28' v la disposición del átomo de

H .~.

carbono es la de un tetraedro, como puede apreciarse en la estructura del metano Fig. 53. I>isposiri6ti de los átunios de C c H

(CH,) que es el hidrocarburo niás simple (Fig. 5.3). en el incimu.

Page 63: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

A contiiiuacibn podrá11 olmrvarse alguiios ~jeiiiplos de liidrocarbun)~ saturados liiiealcs:

CH,- CHICH, Propano

CH,-CHI-CH,CH, Butano

CH. 1 "

C M 3 C - CH,- CH, I

CH,- CH,- C H I C t I ,

CH? I - y:

CI-1, 2. 7 d~nietil butano

Son Iiidrocarbiiros insatiirados ciiaiido coiitieiieii dobles o triples enlaces y tani- biéii pueden ser lineales o rainificaclos. Eii los Iiidrocarburos que presenta11 doliles eiilaces -los alqiienos- el tipo de hibridación que presentan los átomos de carliono es sp'; en este caso se Iiaii fuiidiclo 1 orhital s y 2 orbitales 11, el otro p que queda se inaiitiene corno orhital p puro 1 se ubica perpendicular a los híliridos sp'. El ángulo entre Ins brbitales Iiíbridos es de 120". El doble eiilace, c;iracterísticos de los alqiienos, se puede forinar entre otros átomos diierentes al C; pero con características siiiiilares - conlo el oxígeno y el iiitrbgeno. Uno de los eiilaces presentes es de tipo sigiiia (o), forniado por la uiiióii covalente deZorbitales híliridos sp'-sp2; el otro enlace es de tipo pi (x), que se fornia por la superposición de 2 orhitales p que originaii orbitales iiioleculares. La disposicióii de los eiilaces eii el eteno se presentan en la figura 5.4.

A contiiiiiacióii se preseiitan cjeniplos de Iiidrocarburos del tipo alquenos:

CH,-CH = CH,

2 propeno

1511 los Iiidrocarl~urns con enlace triple (alq~iinos) existe la liibridaciúii sp, forniada por la fusión de 1 orbital s y 1 orl~ital 11, y se itiaiitieiieii Zarhitales p puros. La ii~olécula resulta lineal, pues la disposición del enlace por orbitales sp formati Jngulos de 180". Los orbitalcs 11 puros se disponeii perpendicular uno con respecto al otro y tamliiéii

Page 64: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

con respecto al sp. Luego, puede apreciarse la disposición de los orbitales en la estrui- tura del etino. El enlace triple consta de u11 enlace o y del orbital inolecular p, cn el que intervienen los 2 orhitales 1) puros (Fig. 5.5).

Algnnos e,jenipl~s de alquinos aparecen a coiitii~uacióii:

Hidrocarburos cíclicos

Los Iiiclroc;irl>iin>s cíclicos son aquCllos que forman estructuras cerradas sin cxtre- nios lil~res. Son alicíclicos si foriiiaii anillos que. aunque puetlaii preseiitar iusaturacióii, no posean un elcvado grado de resoiiaiicia. Algunos e,jeiiiplos so11 el cicloprol>aiiu. el ciclopciitaiio y el ciclolieuerio, eiitrc oti-os, cuyas estructuras pueden aprcciarsc:

HIC CH,

l I H2C

\ Ct$, iHz

Los Iiidrocarhuros cíclicos son aroináticos si foruiaii anillos donde los enlaces dobles presentan un elevado grado de resonancia, el ejemplo iiiás ciásico es el heiiceno. 1,os átouios de carhoiio en el beiiceno presentan Iiihridación de tipo sp' y el orbital p puro de cada uno de los carl)oiios sc solapa con sus vecinos, formando una iiuhe

Page 65: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

electrónica p por encima y por debajo de los enlaces a que forman la estructura básica del benceno (Fig. 5.6).

Fig. 5.6. ikpasieián de las nuheb cleetróni- ras en el benccno.

El núcleo del benceno se suele representar de las formas como se observa en la figura 5.7.

Fig. 5.7. Reprcsentaciún del núcleo hencénieo.

En ocasiones los ciclos contienen átomos diferentes, en cuyo caso se conocen como heterociclos. Algunos heterociclos más frecuentes en las biomoléculas se mues- tran a continuación:

Purina Pirimidina Piridina

b o l Imidazol Indol

Algunos anillos principales que contienen nitrógeno en su estructura se encuen- tran en varias vitaminas, en determinados aminoácidos y en los ácidos nucleicos.

Algunos anillos que contienen átomos de oxígeno se representan de la forma "ir..in"tni ".~".C"LC.

Furano Pirano Cromano

Page 66: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Algunos monosacáridos adoptan estructuras cíclicas que forman anillos e inclu- yen al átomode oxígeno,formando ciclos del tipo del furano o del pirano. Se encuen- tran también anillos que contienen azufre:

Tiofeno Tiazol

El anillo de tiazol se encuentra formando parte de una coenzima.

Agrupaciones o grupos funcionales en las biomolénilas

En las biomoléculas se encuentran diversos grupos funcionales entre los que podemos citar: hidroxilo (OH), carbonilo (COI, carboxilo (COOH), amino (NH,), sulfidrilo (SH), entre otros. Dedicaremos la atención a revisar someramente las caracte- rísticas esenciales de los grupos citados y sus principales propiedades.

Los compuestos que poseen este grupo seconocen como alcoholes; éstos se clasi- fican en primarios, secundarios o terciarios, en dependencia del tipo de átomo de carbono al que se encuentran unidos. En forma abreviada se representan R- OH. Se nombran al añadir el sufijo ola1 nombre del hidrocarburo correspondiente. En las estructuras de alcoholes primarios, secundarios y terciarios se omiten los H que com- pletan la valencia de los átomos de carbono para simplificar su estructura.

Alcohol primario Alcohol secundario Alcohol terciario

Son ejemplos de alcoholes el etanol y el glicerol.

H,C - CH,OH

Etanol

Propanouiol (conocido como glicerol o glicerina)

El alcohol primario puede oxidarse y convertirse en aldehído y el secundario en cetona como se verá más adelante. Además, este grupo puede reaccionar con diferen- tes grupos y fomar diversos enlaces, lo cual será tratado al estudiar las agrupaciones derivadas. El grupo OH se encuentra en varios tipos de biomoléculas, como en azúca- res y aminoácidos, entre otras.

Page 67: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
Page 68: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

El grupo carboxilo se encuentra en los aininoácidos y ácidos grasos, entre otras bioinoléculas y les confiere carácter ácido a aquellos compuestos que lo contienen. El grupo carboxilo interviene en numerosas reacciones 1 CII la foi-mación de diversos enlaces e interacciones, como se verá más adelante.

La oxidación de nn aldehido da lugar a Va formación de un ácido carhoxilico

o 4 / H -2H o

// R-C + H20 R-C-OH + R-C ' H \

H \ OH

Gmpo suifidrilo

El grupo sulfidrilo, conocido también como mercaptán o ti01 (SH) se encuentra en varias biomoléculas coini) ainin~~áciclos y vitamiiias. Algunas de sus reacciones se parecen a las del grupo OH.

Dos y p o s SH pueden reaccionarentresiy perder H pa~xfonnarun enlacedisulfuro oditio (S-S). Este cnlacecs iiiipi)rtante CII laestructurade las proteíiias y se forma entre 2 aininoácidos que contieneii el grupo SH.

coo- coo- coo- -7H I

2 H,N+-k-H + H ~ N - C - H H,N'&-H l l l

CH,SH C H , - S S H , C

Cisteína Cistina

Gmpo amino

El grupo ainino se encuentra muy distribuido en la naturaleza, formando parte de diversas bionioléculas como en los aminoácidos, ácidos nucleicos, aniinoazúcares, etcétera.

En dependencia del número de sustituciones de los H del grupo aniino, se está cn presencia de una aiiiina primaria, secinidaria o terciaria:

El grupo aniino se coniporta coino una base porque el átomo dc nitrógeno poscc un orbital hiclcctrónico no compartido, qiic puccle coordinarse con iin M- para formar un ainonio cuaternario; este último grupo se comporta como un ácido débil en solución.

Page 69: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

1:

Por deshidrogenación de las aminas primarias se fornlan las iminas, que poseen un doble enlace entre el C y el N.

En a lpnas reacciones del metabolismo de los aminoácidos se forman compuestos intermedios que contienen este grupo funcional.

Cuando el grupo OH de los ácidos carboxilicos es reemplazado por un grupo amino, se origina una amida.

Este grupo se encuentra presente en algunos aminoácidos, vitaminas y otras muchas hiomoléculas. En el estudio de las agrupaciones derivadas veremos cómo se forma un enlace de tipoamida.

Agrupaciones atómicas derivadas

H OH H OR" \ / C + HO-R" e / \

\E' + H20 / \

R OR' R OR'

Los gmpos químicos que acabamosde estudiar son capaces de reaccionar entresí y originar nuevas agrupaciones nioleculares, las cuales tienen mayor complejidad y presentan caracterirticas propias.

Los hemiacetales se forman al reaccionar un grupo carbonilo (aldehído o cetona) con un alcohol. En la formación de este enlace no se pierde ningún átomo, SINO se produce una reorganización de ellos; se debe resaltar el cambio de tipo de enlace C = O (hibridación sp2),undohleenlace haciaun enlacesimple C- 0 ( hibdaciónsp').Esba agrupación es muy importante en los monosacáridos, que al formarse un hemiacetal interno las moléculas forman un ciclo.

Los acetales se forman al reaccionar un hemiacetal con un grupo OH. En la forma- ción de este enlace se pierde una molécnla de agua.

Page 70: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

1

I

El enlace acetal se encuentra en algiiiios azíicares deri\;idos y es el tipo de enlace que une los niionosacáridos para originar oligosacáridos 1 polisaciridos, en este íiltiino caso se le conoce coiiio enlace glicosídico.

Un coinpuesto que presenta IIII enlace Iieiniacetal piieclc reaccionar mediante dicha agriipacibii coii un griipo amino (o iiiiiiio) y originar así un enlace conocido como N-acetal. En el caso de que el lieiiiiacetal forme parte de un nioiiosacárido, el enlace formado se conoce como N glicosídico y, como veremos en el capitiilo 8, es el que une a las liases nitrogeiiadas coii los nioiiosacaridos en la foriiiacibii de niiclcbsidos v nucleótidos.

Los enlaces de tipo ésteres se forman al reaccionar un ácido con IIII alcohol. coii pérdida de una iiioléciil;~ de agua. Kstos enlaces se pueden formar entre icidns y alcn- Iiolesdistintns, dando lugar a la fornraci6ii de bslcres con algiiniis características dife- rentes. Nosotros aiializareinos 2 tipos de bsteres povsii iiiiportancia en la coiistitiicii,~~ de las I>ioiooléciilas: los hteres carbosílicos y los ktcres fosfhkos.

Se fornian entre 1111 g v q i ~ COOH y un alcoliol

O 4 O

4 1 - + H(>-R' # R-C + H20

\ \ OH O R'

Los ésteres carhosílicos pueden encontrarse en distintos tipos de I>ioiiii~li.c~ilas. como los acilgliceroles ) otros tipos de lípidos.

Se fornian al reacciimn- un ácido foifnrico ! nn alcoliol, con pérdida <Ir tina niolécula de agua.

o 4

O 4

H O P - O H + H O - R e H O - P O 1 3 + H:O I

OH O- K

1 ,os iiioiiosacárid,)~ rraccioiiaii coi1 el Jcido f»sfí>rico, li~riiiando diiersoi éstcres fosfbricos que tienen gran iiiiliortancia eii el destino inrtal>nlico de este tipo de I~ioinolbciila.

Es posible que 1111 &ter fosfhico, y foriiiado. reaccione con otro grupo OH para inrniai- LIII enlace fosfodiéster II diéstet. liafbrico. enlace que une ;I los iiucleiitidns para formar los ácidos iii~cleicos.

Page 71: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Enlace éter

Este eiilacese forma al reaccionar 2 grupos alcolioles con pérdida de unaniolécula de agua. Se encuentra en un tipo de lípidos, los plasnialógenos.

R C H , OH + R' - CH,- OH e R- CH,- O- CH,-R' + H 2 0

Los enlaces tioésteres, enlaces ricos en energía (liberan gran cantidad de energía libre al ser hiílrolizados) se forman coando reacciona un grupocarboxilo con un grupo SH, con pérdida de una inolécula de agua.

Los derivados tiokteres de los ácidos orgánicos, y en particular de los ácidos grasos, son conipuestos fundamentales de diversas vías nietáholicas.

Enlace amida

Las aiiiidas se forman al reaccionar un grupo carhoxilo con uno ainino, con pérdi- da de una molécula dc agua.

Este enlace de tipo amida sustituida une a los aminoácidos para fomiar los péptidos y las proteínas, en este caso se conoce como enlace peptídico; sus características y propiedades serán objeto de estudio con mayor detalle en el capítulo 6.

El anliídridode ácido se forma cuando reaccionan 2 ácidos, que pueden ser igna- les o diferentes, con pérdida de uiia molécula de agua. Utilizaremos como e,jemplo el caso de la reaccion de 2 ácidos fosfóricos.

Estos enlaces son enlaces ricos en energía, se encuentran en los nucleótidos y su hidrólisis está relacionada con la IiberaciGn de energía útil para la célula. En otras ocasiones se forman anliídridos mixtos, en los que intervienen 2 grupos ácidos

Page 72: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

diferentes; también los anhídridos mixtos constituyen enlaces ricos en energía. No debe confundirse este enlace con el enlace é~terfosfórico ni con el fosfodiéster.

Es frecuente que en las mismas biomoléculas se encuentren más de un grupo funcional, tal es el caso de los monosacáridos que contienen un grupo carbonilo y varios hidroxilos, o de los aminoácidos donde existen, al menos, un grupo amino y unocarboxilo. También es fmuente encontrar diversas agrupaciones derivadas en una misma biomolécula, un ejemplo de ello son algunos tipos de Iípidos (fosfátidos de glicerina) en los que se encuentran enlaces de tipos éster carboxílico y éster fosfórico; o un nucleótidocon enlaces N-glicosídicos, enlace éster fosfórico y del tipo de anhídrido de ácido. Todo ello contribuye a la inmensa diversidad de las biomoléculas.

La diversidad de estas moléculas también se incremeuta por el hecho de que éstas pueden existir en distintas formas isoméricas.

Son isómeros aquellos compuestos que presentan la misma fórmula global pero tienen pmpiedades distintas. La isomeríasedebe a que la distribución de los átomos y el tipo de enlace que se establece entre ellos determinan las propiedades de las molé- culas, y éstas no pueden inferirse de su fórmula global; los isómeros se diferencian en su estructura o su configuración, o en ambas características; es por ello que la isomería se clasificaen estructural o planar y espacial o estereoisomería.

Se debe a diferencias en la estructura de los distintos isómeros y puede ser de 3 tipos: cadena, posición y función.

L w m d de cadena

Este tipo de isomería estructural se debe a la distinta disposición que pueden adoptar los átomos de carbono en las cadenas carbonadas.

CH, - CH, - CH, - CH3 CH, - CH - CH, 1

Butano CH3 Isobutano (2 metil propano)

Esta variante de isomería estructural se produce por la existencia de compuestos, cuya Única diferenciaconsiste en la posición que ocupa un determinado grupofuncio- nal en la cadena.

CH,- CH, - CH,- OH

1 propanol

C H , C H - CH, I OH

2 propanol

Page 73: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Lsomená de fuocióo

Son isóineros de funciún aquéllos que presentan grupus funcionales diferentes, a pesar de presentar uiia misma fbrmula química. Un ejemplo lo constitiiyen el alcohol etflico y el Gter nietilico, anil>os con C,H,,O cnnio fóriiiula química.

C H , C H , - OH

Alcohol etílico (etaiiol)

C H , O - CH,

Étcr iiietílico

El primer caso es un alcohol (etanol) y el segundo se trata de un bter. Otroejemplo son el gliceraldeiiído (con tina funcibii aldehido) y 1a dihidroxiacetona (con una !un- ciún cetona).

O //

o //

CH,OH - CHOH C, CM,OH - C CH,OH H

Gliceraldchídu Dilidroxiacetona

Isomería espacial

Este tipo de isonieria la presentan aquellos conipuestos que se diferencian en so configuraci611 espacial. Esta isonieria coiiiprcnde 2 gropos priiicipdes: isonieria geonibtrica e isrmeria 6ptica.

Lsomería geométrica

Ciiando en una inolécula cstán nresentes dol~les enlaces o anillos. los átomos involucrados en estas estructuras tienen ciertas restricciones eii los giros. la rotación de los átoiiios de carbonoestá limitada y, por cnde, la posición de los giiipossustit~iyeiites iinidos a ellos queda fijada en el espacio, a uno 11 otro lado del anillo o doble enlace. Así el buteno-2 puede existir en 2 configuraciones geombtricas:

Cis Ti-eiis

Los grupos sustituyentes iinidos a los átoiiios de carl~ono en el isóincro cis se disponen Iiacia el mismo lado del dol)le enlace y Iiacia lados distintos en el isúniero trüns. Ambos tipos de isí>iiier»s pu(lciiios encontrarlos en las hioninlccnlas conio será estndiado oportunamente.

isomena óptica

La isorneria úptica se presenta en los coinpuestos qiie tienen algún cenlm (le asimetría, y se manifiesta por la rapacidad que ticnen estos isbinrros de desviar el

Page 74: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

plano de vibración de la luz polarizada, hacia la derecha o laizquierda. La actividad óptica se determina experimentalmente por medio de un equipo conocido como p0larúneh-o.

El polarímetro (Fig. 5.81, en esencia, consta de una fuente de luz monocromática, 2 lentes polaroides (o prismas de Nicol), queactúan iinocomo polarizador y el otro como analizador, y un tubo de vidrio donde se coloca la solnción de la siistancia que se debe analizar. Si la sustancia colocada en el tubo desvía el plano de la luz polarizada hacia la derecha, se dice que es dextrógira y se representa con el signo (+); si lo desvía hacia la izquierdaserálevbg¡ra y se representará con el s i p o (-). Lainagnitud dela dtwiación se mide por el ángulo a, que será el ángwlo de giro necesario que debe realiiar el analizador para restablecer la intensidad de luz al ináximo, es decir, corregirla desviación de la luz polarizada provocada por la siistancia ópticamente activa colocada en el tubo.

>R

El centro de asimetría que es causa de la actividad óptica se explica por las moléculas que carecen de planos o centros de simetría, y so configuración es tal, que no pueden superponerse. Analicemos esta situación para el caso del ácido láctico (Fig. 5.9).

La causa más frecnente de asimetría en las hioinoléculas es la presencia de los carbonos qiiirales o carbonos asiniétricos, o sea, aquellos carbonos cuyas 4 valencias están sirstituidas por grupos difcrentcs. La cantidad de kómeros ópticos de una molé- cula se puede calcular según 2", donde n es igual al número de carbonos asiniétricos presentes. Analicemos esta posibilidad para el caso del nionosacárido de 4 átomos de carbono, cuya estructura es la siguiente:

o CH,OH - CHOH- C H O H 8

\ H

Page 75: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

1

Esta molécula presenta 2 carbonos asimétricos que son aquellos marcados en negrita, si se aplica la fórmula, podemos deducir que existirán 2% 4 isómeros ópticos:

CHO CHO CHO CHO I l I

H-C - 0 H HO-C - H HO-C-H l

H- C O H

I H-C -0H

I HO-C - H

l I H-C-OH HO-C-H

l CH,OH

I CH,OH

I CH20H

I CH,OH

D(-)entrosa L(+)entrosa D(-)treosa L(+) treosa

Las 4 especies a, h, c y d son isómeros ópticos, es decir, son estereoisómeros entre si; además, (a) con respecto a O>), y (c) con respecto a (d) son enantiómeros o antípodas ópticos, por ser una la imagen ante el espejo de laotra; a en relación con (c) y (d), y en general cada especie en relación con aquéllas que no son sus enantiómeros, son diastereoisómeros. Los isómeros ópticos que sólo se diferencian en la disposición de un grupo y son idénticos con respecto a todos los demás, se conocen como epímeros. Para el caso que nos ocupa, las formas (a) y (b) son epímeros con respecto a (c) y (d); (c) y (d) lo son con respecto a la (a) y (b).

Los enantiómeros no difieren en sus propiedades tisicas ni químicas, con excep- ción de su actividad óptica; pero sus propiedades biológicas pueden variar mucho. Los diaterwisómeros se diferencian, además de su actividad óptica, en la mayoría de sus propiedades fisicas y biológicas, así como en determinadas propiedades químicas.

La mezcla equimolecular de los enantiómeros se denomina mezcla racémica y no presenta actividad óptica.

Series estéricas D y L

Utilizando al gliceraldehído como molécula de referencia se han establecido las series estéricas D y L. Para ello, se representa al gliceraldehído con el gmpo aldehído hacia arriba, el OH del gliceraldehído dextrógiro hacia la derecha y se le asigna la serie D; el OH del gliceraldehído levógiro hacia la izquierda y se la asigna la serie 1,.

CHO l

H- C- OH I CH,

CHO

D gliceraldehído L gliceraldehído

Al comparar la disposición de determinados grupos funcionales, unidos a carbo- nos asimétricos de los isómeros ópticos de diversos compuestos, con la del OH de cada gliceraldehído, se establece la serie L 6 D de dicho compuesto. Para el caso de los aminoácidos, el grupo que se debe comparar es el a amino, cuando el aminoácido se representa con su gmpo acarboxilo hacia arriba, que coincida con el grupo aldehído del gliceraldehído. El aminoácido representado en (A) es un D aminoácido, ya que su

Page 76: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

grupo a amino se dispone hacia el mismo lado del OH del D gliceraldehído, en tanto, que el aminoácido representado en (B) es un L aminoácido, pues su grnpo a amino está ubicado hacia el mismo Iado que el OH en el L gliceraldehído.

COOH COOH I

H- C - NH2 I

H , N C- H I

R R

D aminoácido L aminoácido

El poder rotatorio real de un compuesto determinado por el polarímetro no tiene quecorresponder con la serie D ó L a que él pertenezca. El aminoácido L gliitámico es dextrógiro, mientras que la L leucina es levúgira; la D glucosa es dextrógira y la D fructuosa es levógira. Recutrdese que la rotación especifica se determina experimrn- talmente en un polariinetro, mientras que la serie se determina por la comparación del compuesto en cuestión, con una n~olécula de referencia, el gliceraldehído.

Conformaciones distintas de las moléculas

A las distintas disposiciones que pueden adoptar los átoiiios en una molécula, cuino consecuencia de rotaciones de uiio o n ~ á s enlaces sin~ples, se conoce conlo conformaciones y no deben confundirse con los isómeros. Las rotaciones que pueden efectuarseen un enlacesiinple están restringidas por el tamaño y carga eltctrica de los átomos unidos al carbono. Un e,jemplo delas distintas conformaciones se puede apre- ciar para elcaso del etano,molécula que puede existir en 2 conformaciones (escalona- da o eclipsada), aunque la primera es más estable. Las diferentes conformaciones de una molécula representan simplen~ente posiciones que adoptan los átomos, al rotar sobre un enlacesimple y porquelas barreras energéticas son muy bajas; noconstituyen sustancias diferentes y pueden ser aislahles (Fig. 5.10).

( a ) ( h ) ( c ) ( d 1 Fig. 5.10. Confórnieros distintos en el etanu.

Conforiniicióii esciiloiiada Conformaciúii cclir>sa<la

Las bioinoléculas se encuentran en los distintos fluidos biológicos formando sistemas dispersos. Dedicaremos nuestra atención a definir qué es un sistema disperso y establecer su clasificación y principales características.

Sistemas dispersos

Un sistema disperso es aquél donde uno de sus componentes se encuentra fina- mente distribuido en el seno de otro. Se conocen 2 fases: la fase discontinua, se

Page 77: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

eucuentra distribuida en la fase dispersante, esta úllinia, es continua y niás al>uiidaiite, donde se distribuye la fase dispersa. Las fases de un sistema disperso puedeii estar en cualquier estado físico: sblido, líquido o gaseoso.

Atendiendo al tainaiio de las articulas dispersas, los sisteiiias dispersos se clnsifi- can en dispersiones groseras, disoluciones coloidales y ilisolociones ver(la<leras.

En las dispersiones groseras las jiartículas de la fase dispersa niiden niás de 100 iini de diámetro. La arena fina en agua coiistituye un <jeniplo (le estos sistemas en la materia inorgúnica, y los glbhiilos ro,jos eii la sangre son IIII I)ueii e,jenipl cn los organisnios vivos.

IIn las disuluciones coloidales el tamaño de las ~>artículas dispersas varía entre 1 y 100 nn1, como $jeinplo podenios citar las disoliiciones de las proteínas eii el plasniii sanguíneo.

Por iiltinio en las disolucioiies verdaderas, el tamaño de las partículas es menor que 1 nni, son Iiomogtneas y confi)rniaii una única fase. El azúcar ¡sacarosa) en agua. o la sal (cloriiro de sodio) en agua son qjeiiiplos de este caso.

Las disoluciones se caracteriziin por la naturaleca de soluto y solvente y por su coi~ceiiti.aciúii. La concentración de las s~~lucioiies puede expresarse de foriiias variadas.

Formas de expresar la concentración

La conceiitraciúii de uiia disoluciúii está dada por la cantidad de soliito ilisiielto en tina determinada cantidad de disolvenie o (le la disolución. Revisarenios las foriiias niás empleadas para expresar la coiicentracMn de las I)ioinoIéciilas, aunque debe acla- rarse que existen iiiuclias iiiis.

E n por ciento

La conce~itraciún en por ciento tiene variantes, eii <lependencia del eiiipleo del peso o el volumen:

l. Por ciento: volunie~i en voliuiieii (vlv). Expresa la cantidad desoloto medida en uuidades de voloiiien (iiiL), en 100 niL de disolucióii.

2. Por ciento: peso en volunien (plv). Ekpresa la cantidad de soliito niedida por su peso (en granlos), disueltos en 100 niL de disolución.

3. Por ciento: peso en peso (plp). Expresa Iw cantidad de gramos de soliitos disueltos en 100 g de la disoliicibn.

Soluciones molares. Se expresan por ci iiriiiiem de nioles del sol11111 en I 1, de disoli~ciWii. 1 s frecuciitc ciia)iiii'ar \;iriaiites de este tipo (le expresi6ii de la concentra- cibn: n~niol .l..': pni . L..'" mtrv o t ~ ~ s .

Soluciones rnolales. Se e\-pi-esan pot- el iiíiiiier~~ de nioles del soloto eii 1 kg del disol~ente.

Soiucioncs nomades Se eupresaii por ei nii~iiero ac cquivaienies gmiiios riei soiuio cii 1 1, clr ilisoii! .::,ii. 5 , delle reci>irl;ii. que ~ I I I equivalente gramo es la caiiti(lad de tina sost;incia ¡en si-:iii!is! <:sic dcydazi! \:ir ;itonio de Iiidrbgeuo en una reaccibn específicii. Para fines pricticos piwrle calciil:ri.sr. ri;r idieiido el peso niolecular de lasustancia entre sil valencia c?i la reacciiiii que se ;tii;ihi.,. ??wa cl ácido clorliídrico (HCI ),u11 eqiiivalenle g m i i i o s e ~ igii;il n su peso i i i ~k i i ; ii " . ~ W I I entre 1, y en esticaso coiiicide con el valor de la coiicentracibn expresad:! : v.<>leridad. Sin eiiibergo, para el caso del Beido siillüric~~ (SO,H,),uii eqiiivalenx : - f . - - . . : <~%íigual asu ~~eso~ii~~lecolnr<liuididoentir &lo que resulta dilerente a la coiiccwi- ~ * . i i i.;prcsxla conio niol;iri<lad.

Page 78: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

A reces la concentraciún se expresa de forma directa por las unidades de masa del disolvente en un volumen determinado de Is disolucióii, por e,jemplo: g . I,-'; mg . I;', etcétera.

Resumen

Las biomoléculas son las moléculas específicas de los seres vivos; en su estruc- hirs predominan los átomos de C, H, O y N, y en menor medida el P y S, entre otros. El agua es el disolvente universal en la materia viva y ello se debe a las propiedades de esta molécula que, por constituir un dipolo, resulta un magnífico disolvente para la mayoría de las biomoléculas. El agua pura tiene un pH neutro y en estas condi- ciones las concentraciones del ion H' es igual a la del ion OH-; si predomina la [ni], el pH es ácido y si predomina la [OH-1, el pH es alcalino. Un ácido es una sustancia capaz de ceder protones y una base es aquélla que los capta; aunque es frecuente que el comportamiento ácido o básico de una sustancia dependa del pH del medio en que se encuentre. Las mezclas de un ácido o una base con su sal originan los buffers o tampones, cuya función es preservar el pH del medio; la reserva alcalina defiende al medio contra la adición de ácidos, mientras que la reserva ácida lo hace contra la de álcaüs. La ecuación de Henderson-Hasselbach es La ecuación de los buffers, y de ella se desprende que un buffers es eficiente a valores de pH iguales al pK del ácido *l.

Los átomos de carbonos se unen entre sí y con átomos de hidrógeno para formar los hidrocarburos, que pueden ser saturados o insaturados, lineales o ramificados y alifáticos o cíclicos, estos Úitimos pueden ser alicíclicos o aromáti- cos; si los anillos están formados por átomos diferentes, se les conoce como heteroeidos. Los hidrocarburos saturados son los alcanos, los insaturados pueden presentar un doble enlace (alquenos) o un triple enlace (alquinos). Las cadenas hidrocarbonadas saturadas o insatnradas constituyen la estructura básica de las biomoléculas que tiene además, diversos gupos funcionales.

Los grupos funcionales más frecuentes en las biomoléeulas son el hidroxilo (OH), primario, secundario o terciario; el carbonilo (CO), que puede ser aldehído o cetona; el carboxilo (COOH), grupo que conñere carácter ácido a las biomoléculas que los presentan; el grupo amino (NHd, básico, que puede formar aminas prima- rias, secundarias o terciarias, y el grupo sulfidrilo {SH). Estos -pos al reaccionar entre sí forman agrupaciones derivadas, las cuales son también de gran importan- cia en las biomoléculas. Al reaccionar los ácidos con los alcoholes originan los ésteres, éstos pueden ser carboxiiicos o fosfóricos (en dependencia del ácido involucrado); los carbonilos con los alcoholes pueden originar hemiacetales y acetales. Los carbodos con los aminos forman el enlace amida, un grupo suíñdrilo y un ácido carboxílico dan origen a los tioésteres, y si los que reaccionan son 2 grupos ácidos, se forman los anhidridos de ácidos. Es frecuente encontrar en una misma biomnlécula varios grupos funcionales disiintos, así como diferentes a g m paciones derivadas.

A la gran diversidad que presentan las biomoléculas contribuye también la existencia de isómeros diferentes. Los isómeros son compuestos que presentan la misma fórmuia química giobai, pero tienen propiehies aiferenres, ya que pufflen presentar estructura disünta (isomería estructural) o diferente configuración espa- cial íestereoisomería). La isomería estructural a su vez ouede ser de cadena. de posición o de función, y la estereoisomeríapuede ser geométnca u óptica La isomería óptica se debe a la presencia de carbonos quirales o asimétricos y las moléculas pueden ser dextrógiras o levógiras en dependencia de que desvíen el plano de luz polarizada a la derecha o a la izquierda. Los isómeros ópticos pueden pertenecer a las series estéricas D 6 L, para ello se compara, la disposición de determinado grupo funcional con el OH del D y del L gliceraldehído, y en consecuencia se deter-

Page 79: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

l R'-

l ~ ! l

so I)iquhnrica M@

mina su serie D 6 L. Las biomoléeulas se encuentran en los distintos fluidos biológicos fonnando

sistemas dispersos. Los sistemas dispersos pueden ser de 3 tipos, de acuerdo mn el tamaño de las partícuias dispersas (fase dispersa) en el medio de dispersión (fase dispersante): suspensiones groseras (hematies en la sangre), disoluciones coloidales @mtehas en el plasma) o disoluciones verdaderas (sacarosa en agua); estas Ulti- mas son homogéneas.

La coneentradón de las disoluciones se puede expresar de formas d i v e m : por dento, uolizando unidades químicas (molares, molales o n o d e s ) y de otras formas en dependencia del íipo de moléculas y los propósitos que se persigan.

Ejercicios

1. ¿Cómo se llaman las moléculas específicas de los seres vivos? 2. ¿Cuál es el componente más abundante en los seres vivos? 3. Mencione las propiedades que hacen del agua el solvente fundamental de los

fluidos biológicos. 4. &Cuáles son los átomos más abundantes en las biomoléculas? 5. Compareel enlace iónico con el covalente en cuantoacaracterísticas delos átomos

que intervienen, participacion de los electrones de valencia y propiedades fuoda- mentales de los compuestos que presentan dichos enlaces.

6. Compare el enlacecovalente de lamólecula de hidrógeno con lade agua en cuanto a su polaridad.

7. ¿Qué son los hidrocarburos y cómo se clasifican? 8. ¿Quécaracteriza a los enlaces simples, a los doble y a los triples? Refiérase al tipo

de hibridación de los carbonos, a la disposición de los orbitales p, ángulos de enlace y tipo de enlace (p ó S).

9. Enumere los principales grupos funcionales presentes en las biomoléculas. 10. Identifique los grupos funcionales en las siguientes biomoléculas:

o II

COOH COOH C- H I

NHrC-H I

C = O I

CHOH l l

CH,SH I

CH, CHOH I

Cisteína Pirúvico (iHoH CH, OH

Ribosa

11. Identifique las agrupaciones derivadas en las biomoléculas siguientes:

? o II

o H2-C-O-C-R o H, C-O-C-R II I Il

C-O-CH I

FI R' -C-O-CH l I ? m,+

H, C-O-C-R" l

H, C-O-P-O-CH,-CH-COO- I 0-

Triacilglicerol Fosfátido de glicerina

(fosfatidil senna)

ia

Page 80: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

12. Forme un hemiacetal interno en fa molécula de glucosa entre el gmpo carbouilo y el OH del carbono número 5.

R C-H

1

D glucosa

13. ;Qué tipo de isomería es la que existe entre los aminoácidos leucina e isoleucina?

coo- coo- I

H,N+-C-H I

H,N+- c -H I I

CH2 CH-CH, I

CH-CH, 1

I CH2

CH, 1

CH3

Leucina Isoleucina

14. ¿Qué tipo de isomería es la que existe entre los ácidos cítrico e isocítrico?

CH,- COOH CH,-COOH 1 I

HO-C- COOH 1

CH - COOH I

CH,-COOH HO-CH- COOH

Ácido címco Ácido isocímco

Page 81: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

82 Biq

15. ¿Qué tipo de isoinería es la que existe entre la glucosa y la fructuosa?

o I I C-H CH, OH

I C =o I

HOCH I

HC OH

HC OH 1

D glucosa D fructuosa

16. ¿Qué tipo de isomería es la que existe entre los ácidos funiárico y nialeico?

Ácido maleico Ácido fiimánco

17. ¿Qut tipo de isoinería existe entre la inanosa y la galactosa?

O I I

o 1 1

C-H C-H 1

HO CH I

HC OH l

HO CH 1

HO CH I

HC OH I

HO CH I

HC OH I

HC OH l

CH2 OH I CHI OH

D manosa D galactosa

18. Observe la estructura del compuesto que se presenta a continuacióii y después señale los carbonos asiinélricos, calcule el núinero de estereoisómeros y escriba las estructuras de todos los isbnieros bpticos posil)les, indicando cuáles son enantiomnrfos y cuáles diatereoisómeros.

CHOH 1 CHOH

1 CHOH I

Ribosa

rímicr Médica

Page 82: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

19. Entre los isómeros incluidos en el ejercicio anterior :,Puede eucontrar 2 que sean epímeros entre sí?

20. Calcule la concentración de una solución de glucosa que contenga 2 gen 1000 mL de disolución:

a) en por ciento plv b) en concentración molar.

21. Calcule los gramos de glucosa en 1 000 niLde una disolución 4 3 inmolar. 22. ¿Cuántos gramos de ácido sulfúrico se requieren para preparar 100 mL de una

solución 0,s normal? 23. ¿Cuántos gramos de sodio hay en un litro de una soluci611 cuya concentración es

de 138 mEq.L-'?

Page 83: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los aminoácidos constituyen las unidades estructurales de las proteínas. Éstas son las macromoléculas con mayor grado de variabilidad estmctural, que desempeñan las funciones más diversas; muchas son enzimas, otras intervienen en el transporte de diferentes sustancias y constituyen los receptores de diversos ligandos; algunas for- man los anticuerpos, varias son hormonas. Estos hiopolímeros cumplen, además, mu- chas otras funciones disímiles.

La diversidad estmctnral y funcional viene dada por la variabilidad en la compo- sición y disposición de sus monómeros constituyentes o precursores: los aminoácidos. Son 20 los aminoácidos que conforman las unidades estmcturales de los péptidos y las proteínas; ellos poseen algunas regularidades estructurales que son comunes a la in- mensa mayoría, pero presentan otras que diferencian a un aminoácido de otro.

En este capítulo trataremos el estudio de los aminoácidos, tanto desde el punto de vista estructural como funcional y estudiaremos algunas de las principales propieda- des de estas hiomoléculas; también conoceremos cómo se unen para formar los péptidos y las proteínas, haciendo énfasis en las características de dicho enlace.

Concepto y características generales

Los aminoácidos pueden existir libres en los tejidos animales y vegetales; pero en su mayoría se encuentran formando parte de lospéptidos y de las proteínas. Estos compuestos constituyen ácidos orgánicos en los cuales, al menos un hidrógeno, ha sido sustituido por un grupo amino. De acuerdo con el Cal cual se une dicho grupo amino, estos aminoácidos se clasifican como a, b, y, 6, E, etc.

CH, CH CH, C COOH CH, CH, COOH

B alanina

a leucina

m,

CH, CH, C H , COOH

Ácido y amino butúico

Page 84: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los aniinoácidos cumplen diversas funciones:

1. Son precursores de las proteiiias. 2. Forman parte de vitaniiiias, ejemplo la P alanina forma parte del ácido pantoténico,

vitamina del complejo B.

3. Constituyen, por descarhoxilación, las aminas biógenas; compuestos que cumplen funciones importantes y que a su vez pueden formar parte de otras hiomoléculas; ejemplo la etalnolamina que se fornia por descarboxilacibn de la serine y forma parte de algunos Iípidos, la serotonina -producto de descarboxilación de un derivado del triptúfano- que es un poderoso vasoconstrictor.

4. Son precursoresen la síntesis de algunas hormonas; ejemplo la tiroxina, hormona secretada por la glándula tiroides. que se fonna a partir del aminoácido tirosina; la adrenalina y noradrenalina se forman también a partir de la tirosina.

5. Constituyen neurotrasmisores muchos de ellos, como la glicina, la histidina y el glutámico.

6. Son aminoácidos, algunos aiitibióticos; un ejemplo es el cloramfenicol. 7. Algunos son inetabolitos intermediarios de importantes vías metabólicas, ejemplo:

la ornitioa y la citrulina en el ciclo de la urea.

A pesar de las nunierosas y variadas funciones que desempeñan los aminoácidos, la más importante de todas es,sin duda alguna, constituir los precunores de los péptidos y las proteínas.

Los aminoácidos que se encuentran formando las proteínas son todos alfa aminoácidos, con la excepciún de la prolina y su derivado, la hidroxiprolina. La estructura general de los alfa aminoácidos es la siguiente:

coo- H,N+ c H

donde R representa un residuo que diferencia a un aminoácido de otro, que presenta naturaleza quíniica variada. R puede ser una cadena alifática, puede presentar anillos aron~áticos, heterociclos o tener distintos gmpos químicos como OH, SH, NH,, COOH y CONH,. El grupo carhoxilo suele representarse disociado (con carga negativa) y el amino sin disociar (con carga positiva), ya que esta forma es la que predomina a pH fisiolúgico.

Estructura de los aminoácidos que constituyen las proteínas

Para proceder al estudio de estos aminoácidos los ordenaremos de acuerdo con las características estructurales de la cadena lateral en R:

1. Aminoácidos con cadena alifática en su cadena lateral en R. En este grupo se incluyen aquéllos que poseen sólo una cadena hidrocarbonada en R y aquéllos que presentan además, un grupo OH o que contienen azufre.

Page 85: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

a) Aminoácidos con cadena hidrocatboiiada en R

coo- coo- c o o - coo- c o o - 1 I

H>N-C-H H,N-C-H l

H,N-C- H l

H,N+-c-H 1

H , N ~ C - H

I H

l CH,

l H -C -CH,

l I cH2 CH CH,

Alanina I

Glicina CH, I

CH CH, 1

l CH,

Valina CH, I

CH,

Leucina Isoleucina

b) Aminoácidos con grupos hidroxilos (OH) en R

coo- c o o -

H,N+ c H H,N+ c H

CH, OH H C OH

Serina CH3

Treonina

c) Aminoácidos que contienen átomos de azufre (S) en R

coo -

c o o - H,N+ c H

H,N+ C H CH,

CH$H CH,

m:-.-:-- 0 0.6 L..,LC,U'. * . A L 3

Metionina

Page 86: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
2. Aminoácidos con un anillo aromático en R. En este grupo se incluyen aquellosaminoácidos que presentan el anillo benceno, el fenol y el indol.

coo- coo- coo- + + 1 +

H,N -C-H H,N -A-H I I l

I Fenilalanina OH H

Tirosina Triptófano

3. Aminoácidos con un grupo carboxilo (COOH) o amida (CONH,) en R:

coo- coo-

Ácido aspánico COO-

Ácido glutámico

coo - coo- I

H , N ~ C - H H,N+ c H I l

CH2 I

CH2

CONH, CH,

Asparagina CONH,

Glutamina

4. Aminoácidos con grupos básicos:(NHJ, guanidino o anillo imidazol en R:

coo- + 1

H,N-C-H 1

CH, I

7% ' 3 ' 2 I

NH I

C = NH2 I

N%

Arginina

coo- H p c A - H

I CH, I

CH = CH

I I HN NH+

'CHJ

Page 87: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

cOO-

5. Aminoácidos cíclicos. En este grupo se incluyen al aminoácido prolina y su deriva- do la hidroxiprolina:

H I

"1 CH, HO-C

H2C \ H N/cH-cOO- N H iH-i"; Prolina Hidroxiprolina

Enla tabla 6.1 se presentan el nombre abreviado y el símbolo íJeúa) queideníiñcan a cada uno de los 20 aminoácidos que constituyen los precursores de las proteínas.

Rbln6.1. Nombre completo, abreviatura y símbolo para identificarlos aminoácidos

Nombre Abreviatura

Alanina a$

Símbolo de una letra

Page 88: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Clasiñcación de los aminoácidos

Es posible clasificar los aminoácidos sobre la base de distintos criterios, de acuer- do con el objetivo que se persiga. En el acápite anterior realizamos una clasificación para el estudio de sus estructuras particulares; el criterio quese seleccionófueron las características estructurales de sus cadenas laterales. Por el interés que tiene en la comprensión de la estructura y propiedades de péptidos y proteínas, seleccionaremos otros 2 criterios para su clasificación:

1. El número de grupos carboxilos y aminos (u otra agrupación há5ica) presentes enel aminoácido, de lo cual derivará el carácter ácido-básico de sus disoluciones. Sobre este criterio, los aminoácidos se clasificarán en neutros (monoamino- monocarboxílicos),bcidos(rnonoaminodicarboxílicos) y bhicm (diaminomono- carboxfiicoc) (tabla 6.2). Se puede apreciar de manera fácil que los aminoácidos ácidos son 2 (glutámico y aspártico); básicos son 3 (lisina, arginina e histidina); el resto son aminoácidos neutros.

%bla 62. Clasificación de los aminoácidos según número de grupos carboxilos p ami- nos en la molécula

Neutros Ácidos Básicos

Glicina Ckteína Ácidoglutámico Lkina

Alaniina Metionina Ácido aspártico m

2. La presencia o no de grupos químicos polares en su cadena lateral R. Sobre este criterio, los aminoácidos se clasifican en apolares si no poseen ningún grupo polar en R, y polares -si tienen algún grupo polar en R. Los polares, a su vez, se subclasifican en polares iónicos- si a valores de pH fisiológico, adquie- ren carga eléctrica apreciable- y polares poco iónicos- si a valores de pH fisio- lógico, no adquieren carga eléctrica apreciable. La tabla 6.3 muestra la ubica- ciúii Ur caii l aiiiiii&i<;~ i r acuri-Uu cuii r& Luiiiaiiiciiiu & c;abii';caciÚii. Se

puede observar que los polares iónicos son precisamente los 2 aminoácidos ácidos y los 3 básicos, según el criterio precedente de clasificación; son pola- res poco iónicos aquellos aminoácidos que presentan en R alguno de los gru- pos siguientes: hidroxilo (OH), sulfidrilo (SH), amida (CONH,) o el anillo indol; el resto de los aminoácidos son apolares.

Page 89: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

mbla 63. Clasificación de los aminoácidos según la polaridad de sus grupos en R

Polares Apolares -

Iónicos

Ácido aspártico

Ácidoglutámico

Lisina

W i n a

Histidim

Poco iónicos

Scrina

Tmnina

Timsim

Cisteha

Aspiililgbxa

Glutamin.1

Triptófano

Propiedades físicas de los aminoácidos

Los aminoácidos son sustancias cristalinas, por lo general, solubles en agua y en soluciones ácidas o básicas diluidas, e insolubles o muy poco solubles en ,alcohol y totalmente insolubles en éter. Sin embargo, alguno de ellos se comporta de forma contraria, como lacisteina, que es poco soluble en agua y la prolina, la cual es soluble en alcohol y éter. Los aminoácidos poseen un elevado punto de fusión que casi siem- presobrepasa los 200 "C y en algunos casos los 300 "C. Es frecuente que con valores por encima de estas temperaturas los aminoácidos se descompongan, por lo que no resulta útil su separación por destilación fraccionada.

1

Propiedades ópticas de los amino4cidos. Series estéricas L y D

Con excepción de la glicina, todos los aminoácidos presentan actividad óptica, son capaces de desviar el plano de vibración de la luz polarizada (capítulo 5). La actividad óptica de los aminoácidos se debe a que, al menos el carbono u de estos compuestos (excepto la glicina) está sustituido de forma asimétrica con 4 grupos químicos diferentes.

Por comparación con el gliceraldehído, respecto a la configuración espacial de su grupo a amino,los aminoácidos se clasifican en 2 series estéricas: L y D (capítulo 5) . A la serie L pertenecen aquellos aminoácidos cuyo gmpo u NH, está orientado hacia el mismo lado que el OH del L gliceraldehído. Si el u NH, está orientado hacia el mismo lado que el OH del D gliceraldeliido, el aminoácido seiá de la serie D.

Como regla general, los aminoácidos naturales pertenecen a la serie L, lo que se ciimple particularmente para los a~ninoácidos que forman las proteínar. Sin embargo, en algunos péptidos naturales se encuentran, conlo excepción, aminoácidos de la serie D; un ejemplo lo constituye la pre~encia dela D fenilalanina en sustancias antibióticas como los péptidos gramicidina y tirocidina.

Por convención se acostumbra a c5docar eri la fórmula en proyección el grupo u amino de los 1, aminoácidos hacia la izquierda del grupo u carboxilo, cuando este

Page 90: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

último se haya colocado hacia arriba y el cx amino de los L aminoácidos hacia arriba, cuando el grupo a carboxilo se dispone hacia la derecha.

Los aminoácidos pueden constituir mezclas racémicas, que no son más que disoluciones equimoleculares de las series L y D, las que no presentan actividad óptica. Para identificar una mezcla racémica se le anteponen las letras DL al nombre del aminoácido; ejemplo: DL tirosina. En la tabla 6.4 se presentan los valores de rotación específica (sentido y magnitud de la actividad óptica) de algunos aminoácidos.

lhbla 6.4. Rotación especií<ica de las disoluciones acuosas de algunos L aminoácidos

Aminoácido Rotación específica

GAlanina + la0

Los aminoácidos deben sus propiedades eléctricas a la presencia de grupos disociables en su molécula: los grupos carboxilos y aminos, el grupo guanidino presente en la arginina, el anillo imidazol de la histidina, el anillo fenol de la tirosina y el sulfidrilo de la cisteína. La disociación (como ácido) de cada uno de estos grupos se presenta de la forma siguiente:

Grnpo carboxilo

- COOH - COO- + H'

Grupo amino

Page 91: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Anillo imidazol

I l CH- CH CH- CH

1 - 1 1 + H+ ?N ,F. HN ' CH

Gmpo guanidho

Gmpo fenólico

Estos grupos pueden estar en su forma disociada o no disociada, según el pH del medio en que se encuentre disuelto el aminoácido; debido a ello estos compuestos pueden existir en distintas formas iónicas. La relación entre la disociación de un gmpo y el pH del medio viene dada por la fórmula de Henderson-Hasselbach (capítulo 5):

Forma disociada] pH=pK + log

Forma no disociada]

Es conveniente recordar que a mayor Ka, mayor será la acidez del gmpo y, por el conhmio, amenor valor de su pK,mayor serála acidez de un grupo. En los aminoácidos se han ordenado sus pK de menor a mayor: (pK,, pK, y pKJ, del grupo más ácido al menos ácido. A partir de la fórmula de Henderson-Hasselbach,se puede esümar la dación de las

Page 92: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

concentraciones de las formas disociadas y no disociadas para cada gmpo disociable de los aminoácidos, pero, para fines prácticos se puede asumir que:

Si pA del medio= pK del grupo [forma disociada]=[fornia no disociada]

Si pH del medio es > pK del grupo entonces predomina la forma disociada y [forma disociada]>[forma no disociada]

Si pH del medio es < pK del grupo entonces predomina la forma no disociada y [forma no disociada] > [forma disociada]

Especies ióniras de los aminoácidos

De acuerdo con lo antes expuesto, acerca de la disociación de los gmpos disociables de los aminoácidos, éstos podrán existir en forma de especies iónicas distintas según el valor del pH del medio en que se encuentren disueltos. El comportamiento de los aminoácidos en cuanto a cantidad y variedad de sus especies iónicas depende del número y tipo de sus grupos disociahles, es por elloconveniente analizarlos por sepa- rado para los aminoácidos neutros, ácidos y básicos.

Especies i6niu1.s de las aminoácidas neutros

Para estos aminoácidos,el pK, corresponde al pK del gmpo a carboxilo y el pK, al pKdel grnpo o. amino. Analizaremos las especies iónicas para este tipo de aminoácido a partir de valores bajos de pH, menores al valor de su pK,, situación en la que para todos los grupos predomiiiará la fonna no disociada, ya que será pH<pK para ambos grupos, especie (a): en esta condición el grupo carboxilo no presentará carga eléctrica y el grupo amino presentará carga eléctrica de +1, por lo que el aminoácido tendrá carga eléctrica neta positiva (+1) y situado en u11 campo eléctrico sería atraído por el polo negativo (cátodo).

Si se aumenta el pH del medio de disolución del aminoácido hasta un valor de pH que sea mayor que pK,, pero menor que pK, (pK, < pH < pKJ, el grnpo carboxilo predominará en su forma disociada y por tanto presentará carga eléctrica de -1; mien- tras el grupo amino predominará en su forma no disociada (carga eléctrica de +l),de donde la carga neta del aminoácido será igual a cero, especie (h); en tal condición el aminoácido no mostrará afinidad por ninguno de los polos de un campo eléctrico y, por tanto, no sena atraído por ninguno de ellos; esta especie iónica se conoce como ion dipolar.

Si se continúa aumentando el pH del medio hasta lograr que su valor sea mayor que el valor de pK,,entonces para ambos grupos predominará la forma disociada y p a n tal situación el gripe carboxilo presentará carga eléctrica negativa (-l), en tanto que el

Page 93: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

grupo amino no presentará carga eléctrica alguna. po r ello el arnin»ácido tendrá carga eléctrica neta negativa 1- I ! y seria atraído p o r e l polo piisitivo o áiiodo especie lc!.

Se pucdc aumentar o disi i i i i iuir de i i iai iera fácil c l p l l del i i ietlio po r l a adicióii ei i el pri i i ier casode 1111 álcali í+ 011.) y eii el segundo caso de u n Jcido i+ Ir). -\uiique para realizar este aiiálisis I i e i i i ~ ~ s pii.li<l~~ de \aloi'es Iia,ios de pH. los qi ie se I ia i i i do i i icre i i ie i i ta i id~i po r l a adicióii <le u i i álcali a l iiiediu: es p~is i l l le de igual Foriiia realizar el aiiálisis i i i terso. a pa r t i r de los talores ii iás elevados de p l l y disi i i i i iuir los p o r l a adiciúii de u i i ácido; po r ello. ei i las eciiaciuiies <le las esliecics ióiiicas ae esir i l iei i las flechas en anil>os senticlos con la arlicióii, segiiii corresponda. de u n ácido o u n álcali.

Especies ióNcas de los amhoáeidos ácidos

Se delieii aiializiii' 3 :i-iipos d isnr ia l~ lc i : c l t a l w de IIK, c i~ r i ' c sp~~ i i dc ;iI p K del grupo o caibouilo; el p K J a l ot ro gr i ipo carboxi l i~ presriite c i i la cadciia U iIj carhosilo ei i e l caso del ácido aspártico y j ca r lmx i l o en e l del ácido glotáiii ico! y po r i i l t i i i io el p K , s t 4 el valordul p K del gr i ipo 1.1 ;iiiiiiio. ( 'CIIIIII piiede ;il>reri;ii.sc c i i e\tc c i i w las especies iónicas scrái i 1. I n uii i i icd io con valor de 1111 < pK,. i i i i ig i i i io de los grupos estará disociado. la carga neta del aiii i i ioácidoserá posiliva y en iiii canipoelé i t r ico sería atraído y se desplazariii Iiacia el polo i i cga t iw o cátotlo, especie ( a ) . Si se aumeii- ta el pH.dei i iodoqiie rea ii iayoi-que p K , pero i i ie i iorq i i r pK . i p K , < p T 1 < ~>K.!.estaiia predoiiiiiiaiileiiic~ite d i w c i a d t ~ e l g rupo IL c a r l ~ u d ~ ~ ! los dciiiás gi'iipus se i i iai i tci i - d r ian sin disociar. l a carga e l k t r i c a neta seria U ( - I dc l a carboxilo y + I del o ;iiiiiiio!. por l o que i io se desplazaría hacia i i i i ig i i i i polo. si se soiiielieia a l a acciuii de iiii caiiipo elbctrico, espccic (11).

Alcoi i t i i iuar clc\;iiido cl talorclcl p l l Iiasta lograr que su ta lo r supere al pK,,pcro sca inferior a l ph,, especie (E) (pK, < p H < ph,!. se consigue que sc disocicii áii ibos grupos carliosilos y que el a in ino se ii iaiiteiiga si i i disociar: ei i tal r~ i i i d i c i ó i i la i a r g a i icta dcl aii i i i ioácido scní -1 y. soiiictido a l u acciuii dc u n caiiipo clktrico,sc dcsplara- r ia hacia el áiiodo. I'or i i lt i i i io, a l conti i i i iar i i icreiiientaiido el p H del i i iedio hasta que p H > p K , se lograría l a disociaci6ii dc todos los grupos, especie Id), el a i i i i w i c i d o presentaría cargx iiet;i de - ' y se desplazaría Iiacia el polo positi! o i~ ic l i i so coi1 i i iayor wlocidatl qiie l a cspecic niiterior, debido a i i i i a i i iayor af inidad po r cl6i iodo a l poseer mayor carga i i e g a t i ~ i .

Especies iónicas de los aminoácidos básicos

No5 i~;isarciiios c i i e l a i i i i i ioácido l is i i ie ) p o r ú l t i i i i o Iiai'ciiios li is c ~ ~ i i s i d e r i i - r i ~ n i e s iicccsari;ir p;ir;i los cnsou de l a ai-giiiina y l a I i ist idi i i i i . I l a i i i i i i o ic ido l i s i i i ; ~

posee 3 grupos ioii izahles. c l p K , currcspoi ide a l g r i i po a cari>«xil». e l pK , a l CL anii i io y el pK, a l g r u p i ~ ;IIII~IIO prc ic i i tc eii su cacleiia lateral (E aiiiiiio). b:ii s a l n i u de pfi < p l i , i i i i igú i i gri ipu es tar i disociado y po r tanto l a espccic ióii ica s c r i l a especie la!

Page 94: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

y la carga iieta del aiiiiiioácido sería igual a +2. por lo quese desplazaría al cátodo en iiii caiiipueltctric~~. Si se aiiiiieiita el valor del pH del iiiedio.de iiiaiiera qiir sea iiiayi~r que pK, y iiieiior que pK, (pK, < pll < [>ti,), la especie iúiiica sería la (h), la carga eléctrica de +1 y taiiibiéii se desplazaría Iiacíael cátodo, pero a iiieiior velocidad que la especic aiiterior. A1 iiicreiiiciilar ;iúii iiiás el pH del iiicdio, hasta lograr que éste sea mayor qiie el p k . pero menor que cl pK; ípK, < pH < pK,). estaríaii disoriados los griiposcarhoxilo y el aamino especie (c).ésta presenta carga neta cero (-1 por el grupo carbosilo y +1 por el E aiiiiiio), sería el ioii dipolar y iio se desplazaría en uii caiiipo eléctrico. Por último, al coiitiiiuar auiiieiitaiido el pll hasta quesea mayor queel pK,, todos los grupos se disociariaii, especie Id), ésta con carga eléctrica neta dc -1 se coiiip(wlaría rnnio i i i i a n i h y por t;into se deyhcaríii hacia el polo positivo o ánocln.

Es coiiveiiieiile aclarar que el coiiiportaiiiieiito cii cuaiito a las especies iúiiicas según el pH dcl iiicdio. esiniilarpara la aryiiiina y la lisiiia. con la difcreiici;~ de qiie el pk, corresponde al grupo giianidin~~. Sin eml>argo.eii el caso del aminoácido histidina el comportainiento resulta diferente, ya qiie el anillo imidazol posee un valor de pK menor (pK,) queel del oamino (pk,) y por tantosedisociará antes el anillo imidazol que el o! amino: s?lw esta difcrcncia el rcsto del análisis para el caso de la Iiistidina. resulta similar al de los deiiiás aniiiioácidos básicos.

Punto isoeléctrico de los aminoácidos

Como consecuencia del coinportamiento eléctrico de los aminoácidos nos referi- mos al concepto de piiiito isoeléctrico (1'1). KI punto isoeléctrico de un aiiiiiio5cido es el i-alor del p11 al riial éste preseiitn carga iicta cero y no es atraído por iiiiigúii polo,si se Ic soiiictc a la acción de uii caiiipo eléctrico. La especie ióiiica predoii~iiiaiite eii el PI será la de ioii dipolai: El piiiito isoeléctrico se calcula diferente segúii ei tipo de aiiiinoácido como se iiiiiestra a coptiniiacióii:

- Paw los aiiiiiio6cidos iieiitros

Page 95: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

.Para los aminoácidos ácidos

donde el pK, es el del grupo u carboxüo y el pK, corresponde al pK del otro grupo carboxilo presente en R. Como puede apreciarse para el cálculo del PI de los aminoácidos neutros y ácidos estas expresiones matemáticas son similares, sin embargo, se debe recordar que aunque el pK, en ambos casos corresponde al grupo a carboxilo, no sucede así para el pK,, el cual corresponde para el grupo a amino en el caso de los aminoácidos neutros, y para el otro grupo carboxilo presente en la cadena lateral R de este tipo de aminoácidos (p carboxilo si se trata del ácido aspártico y y carboxilo, del ácido glutámico), para los aminoácidos ácidos.

-Para los aminoácidos básicos

El pK, es el pK del grupo u amino y el pK, es el pK del otro grupo básico presente en R (E amino para el caso de la lisina y guanidino para el de la arginina), debe recordme que el aminoácido histidina constituye una excepción entre los aminoácidos básicos; su pK, corresponde al pK del anillo imidazol y su pK, al del grupo a amino, aunque es obvio que para el cálculo del valor del PI esto no implica ninguna conse- cuencia.

Se puede inferir la carga eléctrica neta de un aminoácido al comparar el pH del medio con el valor de su punto isoeléctrico. Si sabemos que el pH del medio coincide con el de su PI, el aminoácido presenta carga neta cero, y resulta claro que a valores de pHmenores quesu PI, su carga neta sería positiva, pues los grupos hásicos predomi- narán sindisociar, con carga positiva y los gmpos carboxilos sin disociar (sin carga); si el pH es mayor que su PI, la carga eléctrica neta sería negativa, pues todos los grupos carboxilos estarán disociados (carga negativa) y predominarán los grupos básicos ya disociados (carga eléctrica cero). De manera que se puede resumir:

-Si pH del medio = PI del aminoácido carga eléctrica neta = O y no se desplaza en un campo eléctrico

-Si pH del medio < PI del aminoácido carga eléctrica neta positiva y se desplaza al cátodo en un campo eléctrico

-Si pH del medio > PI del aminoácido carga eléctrica neta negativa y se desplaza al ánodo en un campo eléctrico

En la tabla 6.5 aparecen los valores de pK de todos los grupos de los diferentes aminoácidos, así como el valor de su punto isoeléctrico.

Page 96: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

lsbla 65. Valores de pK y del puiito isoeléctrico de los aminoácidos

G i u p

Glicina u carboxilo

Alanina a carbosilo

Valina o carhoxilo

1,euciiia n carbosilo

Isoleiicina n carhoxilo

Seiina n carlwxilo

Treoniiia u carboxilo

Fenilalanina

Triptófano

Metioiiina

Prolina

Asparagiiia

Glutainha

Tirosina

Idsina

Histidiiia

hrginina

Ácido aspártico

hdog lu t ámico

Cisteína

u carboxilo

n carboxilo

a carboxilo

u carhoxilo

u carhoxilo

a carboxilo

a carhoxilo

u carboxilo

u carboxilo

u carboxilo

n carhoxilo

a carhoxilo

u carboxilo

Valor

2,34

2,35

2,32

2,36

2,36

2,21

2,63

G N ~

v. amino

n amiiio

u amino

<yamino

n aniiiio

n aniino

tx ariiiiio

n aniiiio

a ainiiio

o. amino

n ainiiio

u amino

u aniino

uaiiiino

n aniino

Iniidazol

u amino

carhoxilo

y carboxilo

Sulfidrilo

Valor

9,60

9,69

9,62

9,60

9,68

9.15

10,43

G m p Valor

5,97

6,02

597

538

6,02

5,68

6 5 3

fenólico

E amino

a amino

guanidino

u ainino

uamino

a ainino

Electroforesis de los aminoácidos

Los aniinokidos por su carácter de anfolilo, inolGciilas cuya carga eléctrica depende del pH del medio en el que se eiicneiitren disueltas, pueden ser separadas mediante la técnica deelectroforesis. ksta consiste en someter

Page 97: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

bajo la acción de un campo eléctrico, a un valor de pH determinado, una mezcla de varios aminoácidos. En dependencia fundamentalmente de su carga, los aminoácidos se separan al desplazarse hacia polos distintos y con velocidades diferentes.

Para realizar esta técnica se utilizan distintos soportes, en los que se coloca la solución de aminoácidos que se desea separar; los soportes pueden ser papel, agarosa, almidón, poliacrilanuda, etcétera.

El voltaje que se debe aplicar y el tienipo de corrida dependen de las cargas eléctricas y el peso molecular de los anfolitos que se van a separar. Al finalizar la corrida, la tira de papel -o el soporte utilizado- se revela por coloraciÚn,frecuentc- mente con ninliidrina, para visualizar la separación.

Importancia de los grupos en la cadena R de los aminoácidos

En las cadenas laterales de los aminoácidos están presentes diferentes grupos químicos según el aminoácido específico que se trate. Estos grupos tienen in~portancia en la determiiiaciún de la estructura tridimensional que adopten las proteínas. Así, la glicina que es un aminoácido pequeño puede localizarse en sitios inaccesibles para otros aminoácidos; los aminoácidos de cadeiia larga perturban las estructuras en hélice alfa y en hoja plegada; los aniinoácidos con cadeuas laterales hidrofóbicas son abun- dantes en proteínas intrínsecas de membrana en las zouas de dichas proteíiias que se hallan en contacto estrecho con la doble capa lipídica,la prolina seencuentra en zonas de giros o de fallas de la estructura en hélice de las proteinas; los aminoácidos polares iónicos se disponen hacia &era en la estructura de proteínas globulares, pues interactúan con mayor efectividad que otros con el medio amhiente acuoso.

El anillo imidazúlico de la histidina desenipefia una función importante en el mantenimiento del pH sanguíneo debido asu valor de pK cercanoa 7. Los grupos OH delaserina y la tirosina tiene11 importancia en la funciún catalítica dealgunas enziinas, así como en la unibn covalente a grupos fosfatos que interviene11 en procesos de regulación de la actividad de determinadas enzimas.

Entre varios de estos grupos presentes en las cadenas laterales de los aminoácidos se establecen determinados enlaces o interacciones que influyen en la estructura espa- cial de las proteíiias, entre los más frecuentes se encuentran los siguientes:

G ~ P O S Enlace o interacción

Entre un grupo básico con carga + .............. y un grupo ácido coi1 carga -. .Unión saliiia

Entre las cadenas Iiidrocarbonadas de 2 aminoácidos apolares ................. Unión hidrofóbica

Entre el -COO'de un aminoácido ácido ...................... y otro con OH en R . . .Puente de hidrógeno

Entre el NH,'de un aminoácido bisico ...................... y otro con OH en R . . .Puente de hidrógeuo

Entre 2 aniinoácidos con grupos OH en R . . ................................ Puente de hidrógeno

Entre 2 grupos SH ................................ Puente disulfuro Entredos anillos aromáticos

presentes en R.. ........................... Fuerzas de Van der Waals que en estos casos se conocen con

el nombre de apilamiento o sti~cking

Page 98: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Reacciones químicas de los aminoácidos

Púmura de Ruhemann

Fig. 6.1 Fórmulas de la ninhidrina y de la púrpura de Ruhemann.

Los aminoácidos pueden participar en numerosas reacciones químicas, po- seen grupos que son capaces de intervenir en diferentes tipos de reacciones: me- diante el grupo amino pueden formar bases de Schiff-de importancia en algunas vías metabólicas de estos compuestos- también mediante el grupo amino reaccio- nan con el dinitrofluorobenceno o el ácido nitroso o con el fenilisotiocianato (reacción de Edman), entre otras muchas reacciones que han sido de utilidad en la identificación de los grupos aminos terminales, y por ello empleadas en la deter- minación de la secuencia de péptidos y proteínas.

Por su grupo carboxilo los aminoácidos pueden formar ésteres o descarboxilarse y dar lugar a las llamadas aminas biógenas, muchas de ellas son compuestos con importantes funciones biológicas. Los aminoácidos pueden for- mar sales si reacciona el grupo carboxilo con un álcali, por ejemplo con el OHNa se formaría la sal sódica del aminoácido; si reacciona el grupo amino con un ácido, por ejemplo el HCI, se obtendría el clorhidrato del aminoácido. Por supuesto los aminoácidos también pueden reaccionar por los diferentes grupos que poseen en R, incluso algunas de estas reacciones han sido empledas para identificar a los diferentes aminoácidos. Estudiaremos sólo 2 reacciones, la reac- ción de la ninhidrina por su amplio uso en la identificación y cuantificación de los aminoácidos y la formación del enlace peptídico por su trascendencia en la formación de los péptidos y las proteínas.

Reaefi6n de la ninhidrina

Esta reacción es unade las másempleadas para la identificación de los aminoácidos. Ella transcurre a elevadas temperaturas (ebullición) y reaccionan 2 moléculas de ninhidrina por cada molécula del aminoácido, se forma un complejo de color violeta (púrpura deRuhemann) y se libera CO, y NH,. La estructura dela ninhidrina y ladel complejocoloreado de púrpura de Ruhemann se muestran en la figura 6.1.

Fomaci6n del enlace peptídico

El enlace peptídico es una amida sustituida que se forma al reaccionar el grupo carboxilo de un aminoácido con el grupo amino de otro y pérdida de una molécula de agua:

El grupo peptídico formado está constituido por el carbono carbonflico y el N amídico, ambos unidos al carbono alfa. En el enlace peptídico se establece una reso- nancia electrónica, debido a la posibilidad que presentan los electrones del enlace para desplazarse entre el C y el N, por las interacciones que se establecen entre los orbitales p del N, el C y el O (Fig 6.2).

Debido a la resonancia el enlace peptídico presenta características de doble enla- ce, comprobado mediante la espectroscopia, ya que la distancie entre el átomo de carbono y el oxígeno es 0,02 gmayor que la distancia promedio de enlaces dobles C=O de aldebídos y cetonas; asícomo el C-N peptídico es 0,13R menor queel enlace simple N-Ca; por consecuencia se dice que el enlace peptídico posee carácter parcial de doble enlace. El enlace Ca-N es el enlace @, y el Ca-C es el (Fig 6.3).

Page 99: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Esta característica determina que los elementos del enlace peptídico se encuen- tren en un mismo plano y los giros se establezcan sólo al nivel de los carbono alfa; además, debido a las limitaciunes de giros que condiciona este cáracter de doble enlace existe la posibilidad de la presencia de isomería geométrica (cidtrans). La configuración predominante en los péptidos y proteínas es la trans, donde los átomos de Ca sucesivos se disponen a los lados opuestos del grupo peptídico (Fig 6.4). La energía de resonancia alcanza su valor máximo cuando el grupo peptídico es coplanar, ya que el sobresolapamiento de los orbitales p es máximo en esta conformación. Este sobresolapamiento y, por tanto, la energía de resonancia se hacen cero, si el enlace peptídico realiza un giro que lo aleje 90' de la planaridad, lo cual explica la rigidez planar del grupo peptidico.

Fig.6.3 Representación de dos cnlsrcs peptidicos contiguos. 1.0s clcincntos dcl enlace pcptídico se eneiicntran en un mismo plano dehido a las limitaeioncs en el giro del enlace C-N ( earáctcr parcial de doble cnlacc). Los giros se producen a nivel dc los earhonos o; enlace C-Cm (yrl y del C,;N ($1.

Fig. 6.2 Representaci6ii de la estructura dcl enlace peptídieo; a) cstruetura re- senaiitc; Iil solapamiento de los orbitales p del C, cl O y cl N.

Fig. 6.4. Rcpresentacibn dc los cnlaces peptidicos de un segmento de una cadena polipeptidirii. Pueden ohscrrarse los elementos del eiilacc peptídico en un mismo plano y la disposición trans dc los grupos laterales R de las rcsiduas de los aiiiino:ieidor y del propia grupo peptídico.

Page 100: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Resumen

Los aminoácidos son ácidos orgánicos en los que un H ha sido reemplazado por un grupo amino. Los aminoácidos cumplen funciones variadas, pero la más importante es constituir las unidades estructurales de los péptidos y las proteínas. Los aminoácidos que forman las proteínas son todos alfa aminoácidos, excepto la pmlina y La hidroxipmlina.

Los aminoácidos que forman las proteínas pertenecen a la serie L. La cadena lateral en R diferencia un aminoácido de otro y puede estar constituida por cade- nas aüfáticas que contengan grupos qnúnicos diversos o por d o s aromáticos.

Los aminoácidos pueden clasificarse según diferentes criterios. De acuerdo con el número de grupos carboxilos y aminos se clasüican en neutros, ácidos y básicos; de acuerdo con la polaridad de su grupo R se clasiñcan en apolares y polares - estos Úitimos a su vez pueden ser polares iónicos o polares poco iónicos.

Entre los grupos presentes en los radicales R se pueden establecer diferentes interacciones como: uniones salinas, uniones hidrofóbicas, puentes de hidrógeno, puentes disulfuro y apiiamiento, que desempeñan una función muy importante en la determinación de la estructura espacial de las proteínas.

Los aminoácidos presentan propiedades eléctricas debido a la presencia de grupos disociables; la disociación de estos grupos depende del valor de su pK y del pH del medio en que se encuentren disueltos, por ello los aminoácidos pueden existir en diversas especies iónicas y presentar carga neta distinta. De acuerdo con su carga eléctrica serán atraídos por el ánodo o el cátodo si son sometidos a la acción de un campo eléctrico y se desplazarán en unou otro sentido. Al valor del pH al cual el aminoácido presenta carga neta cero y no se desplaza en un campo elédrico se le denomina punto isoeléctrico (Po. De la relación entre el pH del medio y el PI de un aminoácido se puede predecir su comportamiento electrnforético. Las técnicas de electroforesis basadas en las propiedades eléctricas de los aminoácidos son de ualidad en la separauón e identificación de estas biomolécuias.

Los aminoácidos se unen por medio del enlace peptidico para originar los péptidos y las proteínas. El enlace peptídieo es un enlace de tipo amida sustituida, y se forma cuando reacciona el gmpo carbodo de un aminoácido con el anúnico de otro y se elimina una moléeuia de agua. Este enlace posee carácter parcial de doble enlace y limita el giro de los elementos constituyentes que se encuentran todos en un mismo plano y en disposición trans.

Ejercicios

1. Defina el concepto de aminoácido. 2. Cite 2 criterios de clasificacibn de los aininoácidos. 3. Clasifique los aminoácidos siguientes de acncrdo con el numero de grupos carbori-

los y aminos que poseen: alanina ualina gliitiiniico Iiistidiria .serina glicina arginina fenilalanina cisteína aspáiiico lisina tirosiiia

4. Clasifique los aininoácidos del ejercicio anterior de acuerdo con la polaridad de 5'11s grupos 1<.

5. Calcule el punto isocléctrico de la Iiidroxiproliiia si usted sabe que su pK,=1,<)2 y su pK,=Y,73.

6. ¿Cíiai sera la especie ibnica predomiiiaiite de la alanina a un valor de pl-1=8,5? 1Sscril)n la estructura de la especie, señale su carga neta y prediga su c«niportanien- to elcctrofor6tico.

7. ,Cuál será laespecie ibnica predominante de la histidina a iin pH=7,2? Ikriba la estructura de la especie, seíiale sil carga neta y prediga su con~portainicnlo electroforttico.

Page 101: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

g. ;Cuál será la especie iónica predominante del ácido glutámico a un pH=3,0? Escribala estructura dela especie, seiialesu carga neta y predigasu comportamien- to electroforético.

9. Identifique la interacción que puede establecerse entre los gmpos en las cadenas laterales en R de las siguientes parejas de aminoácidos: ala-ile glu-tir val-leu cis-cis fen-fen lis-ser asp-lis tir-tk @u-ser @u-=¡?

10. iQué tipo de interacción usted considera que pueda establecerse entre los gmpos en R de las siguientes parejas.de aminoácidos? Fundamente su respuesta. glu-glu glu-asp lis-lis lis-arg

11. Si se realiza una electroforesis a una mezcla de los aminoácidos hipotéticos A (PI=3,00), B (PI=6,00) y C (PI=9,00) utilizando un medio con pH=6 ¿Cuál será el comportamiento eleetroforético de cada aminoácido y por qué? Asuma que todos tienen similar peso molecular.

12. Enumere las características del enlace peptídico.

Page 102: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los monosacáridos forman parte del grupo de los carbohidratos o glúcidos, algu- nos desus componentes son dulces y de ahíel término sacárido, que deriva del término latino sacchamm (dulce). Los monosacáridos son los componentes más sencillos de los glúcidos que comprenden además a oligosacáridos y polisacáridos.

Los monosacáridos cumplen múltiples funciones: son energéticos, cofactores y precursores de muchas biomoléculas. Como se puede inferir de sus nombres,la unidad eshuctural de los oligo y polisacáridos son los monosacáridos.

Puede existir gran variedad de monosacáridos, sin embargo, durante el periodo evolutivo, sólo unos cuantos quedaron formando parte de los organismos vivos.

A partir de los monosacáridos, mediante la formación de enlaces covalentes, se constituyen los otigo y polisacáridos, según el número de unidades quese condensen.

Estudiaremos los monosacáridos más abundantes y los que forman los poüsacáridos.

Concepto y clasificaci6n

Los monosacáridos son polihidroxialdehídos y polihidroxiacetonas, así como sus derivados. De aquí que pueden clasificarse en monosacáridos simples y derivados.

Monosaeáridos simples

Los monosacáridos simples son compuestos que poseen un grupo carbonilo y una cadena carbonada polihidroxilada. El grupo carbonilo puede ser aldehído o cetona, en dependencia de la posición que ocupe en la cadena carbonada; aldehído, si el grupo carbonilo está en el carbono primario, y cetona si lo posee en el carbono secundario.

De la estructura de los siguientes monosacáridos simples, podemos clasificarlos de diferentes formas.

Page 103: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

I I I - C -011

I 1 1 - c - O H

I I I - C - OH

I CH,Oll

I 11-C - OH

I I I - C -011

1

I IH - C - OH 1 1

l 110 - C - 1 1 11-C-011

110-C - 1 1 I l 110-C - Il HO-C - H

I IO-C - H 1

1. Según su función carbonilo. Se clasifican en aldosas si poseen el grupo aldehído (los compuestos 1,3,4, S y 8 de las estructuras anteriores y en cetosas si tienen el grupo cetona (los compuestos 2,6 y 7 de las estructuras anteriores.

2.SegúndnúmemdecarbonmEnlasgUraanteiiorpodwnosverquednúmemdecarhonos delacadena carbonada vana: pueden ser triosas (3 carbonos), t e t m (4),pentw (S), hexosas (6) o de mayor númem decarboncs,pem Ics más Frrcuenta son los menaonadm Coniiderando la función y el númem de carbonos, Ics m o n ~ ~ ~ c á n d o s simples podrán ser aldotriosas o cetotriosas, aldohptosas o cetntrrima$ y asísucesivamente.

3. Por la disposición del grupo hidroxilo, unido al carbono asimétrico, más alejado del grupo carbonilo, se clasifican en las series D y L.

En el año 1891, EmilFiscI~erescogió al gliceraldehído como referencia para la representación de las series estereoquímicas D y L.

Cada uno de estos compuestos es la imagen especular del otro, son isómeros Úpticos o enantiomorfos y tienen un sólo carbono asimétrico, el central. Anibos tienen iguales propiedades fisicas y qnímicas, con la excepción de que giran el plano de vihraciún de la luz polarizada, en el poleiímetro, con igual número de grados, pero uno en sentido contrario al otro; uno es dextrógiro (+) y el otro levógiro (-). Al dextrógiro, Fischer lo representó en el plano con el hidroxilo a la derecha y lo designú D-gliceraldehído, y al levógiro, con el grupo hidroxilo a la izquierda, lo denominú L-gliceraldehído.

A partir de éstos, designaron como monosacáridos de la serie D a los que tienen Iiacia la derecha la disposiciún del grupo hidroxilo, unido al carbono asimétrico, mis

Page 104: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

dejado del gmpo carhodo y son los compuestos representados anteriormente marca- dos con los números 1,3,4 y 7; así como de la serie L, si lo tienen hacia la izquierda, ,presentados con los números 5,6 y 8. Sin embargo, ya no coincide que los de la serie D sean dextrógiros y los de la L sean levógiros, pues en las tetrosas, pentosas y hexosas

a encontrar má5 de un carbono asimétrico; esto hace que el poder rotatorio neto de cada monosacárido sea el resultado del poder rotatorio de cada uno de los carbonos

que ese compuesto contenga. En las figuras 7.1 y 7.2 están representadas respectivamente, las aldosas y cetosas

de la serie D. El antípoda óptico o enantiomorfo de cada uno de los compuestos en estas 2 figuras estaría representado en las series L de las aldosas y cetosas que no se muestran. Por ejemplo,los antípodas ópticos de la D glucosa y la D fructosa serían la L-glucosa y la L-fmctosa.

Como se ha visto hay gran diversidad de monosacáridos simples, y pueden existir con7,8ó más carbonos. Sin embargo,en los sistemas vivos prevalecen los de la serie D de los cuales sólo abundan algunos de ellos. Las hexosas más abundantes son D-glucosa, D-manosa, D-galactosa y D-fructosa (Figs. 7.1 y 7.2).

Los monosacáridos se diferencian también por la disposición espacial de los hidroxilos. Son diastereoisómeros (capítulo S): glucosa, manosa y galactosa.

Son epímeros (capítulo 5): la D-glucosa de la D-manosa en el carbono 2 y la D-glucosadela D-galactosa en el carbono 4. La D-glucosa y la D-golosa son diferentes en la posición de 2 de sus hidroxilos, por lo que no pueden ser epímeros, son diastereoisómeros.

Interconversiones entre aldosas y cetosas

Las aldosas se pueden interconvertir en cetosas y viceversa, siempre que los 2 monosacáridos posean igual número de carbonos e igual disposición espacial de los gmpos hidroxilos de los carbonos 3 en adelante. En estas reacciones de isomerización se forma un compuesto intermediario, el enodiol. Las D-glucosa y D-manosa pueden ambas isomerizarse a D-fructosa.

II O \ 0

C l

H - C - O I I I

ItK- C - ltl l

H - C - O t l I

11-C - OIE I CH,OH

D-gliicosa

II O \ 4

C I

t10-c - 1 1 I

Itl - C - 011 I

t l o - C - 11 1

110-C -11 1 CI 1101 I

L-gliicus;,

H - C - 0 H l

IHO- C - 1 l l

110-C - 1H l

Page 105: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

H-c -OH l

H -C - O H

H C - O H I

H - C - OH l

CH,OH

D-ribosa

H O - C - H I

I I I - C - O H

l CH,OII

D-atabinosa

HO-C - 1-1

H -C - O I I

H - C - O H HO-c -1-1 l

HO-C - H I

H-C - O H l

CH,OII

D-xilosa

H - C - O H l

CH,OH

D-lixosa

/ \ / \ / \ / \ II O H O \ D

II O \ D l C D \ D H \ 40

II O H O H O H O C C C C

\ D C

\ D C

\ 4 C

l I I l I l I 1 t l - C -011 110-C - 11 H - c - O l i FlO-C - 11 H - C - O H H O - C - H H- C - O1H HO- C - II

l I l l I I I l I l - C - 0 I l l b - C - O l ~ l HO- C - R HO- C - H H - C - O t i t i - C - O H H O - C - H I I O - C - H

l I 1 l I l l l H-C - O H 11-C -011 H - C - 0 1 1 H - C - O H 110 -C- I I H O - C - H I i O - C - H 110 -C-H

I l 1 1 I 1 1 l F I -C -OH I I - C - O H H - C - O H H - C - O H H - C - O l i t i - C - O l l I I -C-014 I l -C -O11

I 1 I 1 1 I I I CH'OH CH,OII CII,OH CH,OIi CH@ C1 1@1 CH,OlH C I l p

Fig.7.1. Representación de las aldosas de la serie D (de 3 a 6 carbonos). Observe que 1 3 tnosas tienen un carhono asirnétrico, las tetrosas 2, las pentasm 3. respondiendo a la fórmula: No. de carbonos asirnélricos = No. de carbonos - 2.

Fonnas cícücas de los monasacáridos: el hemiaeetal

Los monosacáridos de 5 o más carbonos se encuentran en forma cíclica. Esto se debe a los ángulos de enlace que forman los carbonos de la cadena, lo que favorece la interacción entreel grnpocarbonilo y un grupo hidroxilo alejado a 3 ó 4 carbonos de aquel (Fig. 7.3).

Page 106: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
Page 107: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

~wedarmn4sustituyentesdiferentg.W hacequesefonnen2nuevosesterroisómem que gUan el plano de la luz polarizada en diferentes números de grados y se les denomina anómemsalfa y beta. Al carbono que corresponde este nuevo centrode asimetría se le denmnh carbono anonIérico, y al hidroxiio unido a éste se le Uama hidrodo anomérico. ~n larepresentaciónde Haworth, el anómem alfa se repmnta con el hidroxiioanomérico ha& abajo del plano del anillo, y el beta con éste hacia arriba.

Veamos cómo se representa el equilibrio entre las formas a y P de la D.glucopiranosa, cuando se encuentran en una solución.

H O CH,OH

\ 0 C CH,OH

I I I H - C - OH

H - C - O H I

H I

OH I

H-C - 0 H I

H l

OH

Cuando los 2 anómeros de un monosacárido se encuentran disueltos en agua, ellosse encuentran en equilibrio mediante su forma Lineal. En este equilibrio se ohser- va que el poder óptico no es del anómero alfa ni del anómero beta.

En el caso representado de la D-glucosa, el poder rotatorio de la mezcla de sus 2 anómeros en equilibrio es de 52,7O. El equilibrio de este estado depende de la estahili- dad de cada anómero. En este caso la P-D-glucosa es la más estable, y por ello existe 63 % de ésta en solución, la alfa es menos estable y existe de ella 37 %,y una mínima d d a d de la forma Lineal. Los anómeros de la D-glucosa tienen propiedades físicas diferentes (tabla 7.1).

'hbL 7.1. Propiedades fisicas de los anómeros de la D-glucosa

Alfa (+) 112,Z" 146

Beta (+) 18,70 150

A continuación represehtamos los 2 anómeros de la D-fmctosa, y también una representación más simplificada queuolizaremos de aquíen adelante. En el vértice de los ángulos están los carbonos cuyo símbolo se omite. Cada carbono tiene como siempre4 sustituyentes, sin embargo,no se representa al hidrógeno. El grupo hidmdo está rrpresentadopor un trazo que parte del carbono. El resto de los grupos se presenta con todos sus elementos.

Page 108: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

c = o c = » I l

H-C - 0 1 1 li0 -C - H 1 I

CH@H Cl 11011 Cl llOIH iH,Oll I 1 I ! c = o C' = 0 [ ' = O < = o I l I l

H -C - WI 110-(' - t l IH - C - 0 1 l 110-C - II I l l l

H-C - O H 11-C -011 110-c - I I l o - - i i 1 l I 1

H -C - O H I l - C - 0 1 1 11-C-011 11 -C-O i l 1 l C l i p

I Cl 1101 1 CHI0H C l l J l i

D- alulosa D. fructosa D. sorbosa D- tagatosa

El enlace que se forma al reaccionar el grupo carbonilo con el Iiidroxilo se le denomina enlace hemiacetal (capítulo 5). A continuación se representan 2 heiniacetales posibles de la D-glucosa.

1 H-C l

W. M. Haworth en 1926 hizo otra representación en el plano de estos ciclos, una que se acercaba más a la realidad, la que denominó de acuerdo con su parecido al pirano (anillo de 5 carbonos y 1 oxígeno) y al furano (4 carbonos y 1 oxígeno) (capí- tulo 5).

Fig. 7.3 Repi-esentaciún de las cetosas dc la serie I> (dc 3 a 6 c;irlionusl. 011- serve que la tr i i~sa no ticric rarho- no asiinétrieo. Las tett.osm tienen 1, las peiitosas tienen 3. y las Iierosas 5 . respimdiwido a la fh- iiiula: No.de carbonos nsiniéti.icos = N,. de carhoiios - 3.

Page 109: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En su forma cíclica, los monosacáridos son poliliidroxiacetales en vez de polihidroxialdehídos y polihidroxicetales en vez de polihidroxicetonas.

En realidad,los elementos que componen los d o s furanósicos, y en mayor medida los piranósicos, no se encuentran en un plano. En el espacio, los piranósicos tienen 2 formas: de silla, más rígida y estable, y de bote. En cada vértice se encuentran los sustituyentes del carbono en las posiciones espaciales como se indica en la figura 7.4.

--\?(-- Bote

Fig. 7.4 Representación en silla y bote de las aldohexosas. En rada vértice, el carbono sc encuentra en el ángulo, y sus rualru enlaces parten de él, cn diferentes direcciones, ocupando las posiciones má5 estables en cada configuración. Los sustituyenles m l a . fórmulas de Haworlh sc representaban hacia arriba u hacia abajo, no respondiendo a la realidad. En estas cstrue- turas, las posiciones de los sustituycntes son de tipo axiales- y ecuafarialcs - - , y se asemejan mis a la walidad, aunque se representen en el plano.

Monoaactúidos derivados

Se llaman monosacáridos derivados a los monosacáridos que han sufrido trans- formaciones en sus grupos funcionales. Estas transformaciones pueden ser por oxida- ción, reducción y sustitución.

Page 110: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Son aquellos monosacándos que tienen alguno de sus grupos funcionales oxida- dos. Casi siempre los monosacBridos ácidos se encuentran oxidados en su función carbcinilo o en la función hidroxilo que se ubica en su último carbono; así se forman 10s ácidos aldónicos, ácidos urónicos y ácidos aldáricos. Los ácidos aldónicos tienen, en vez del gmpo aldehído, un grupo carboxilo; los ácidos urónicos tienen en el último carbono un grupo carboxilo en vez del hidroxilo terminal, y los ácidos aldáricos presentan un gmpo carboxilo en cada extremo.

I I OX. l H-C - OH H-C - OH f H - C - O H

I 1 l HO-C - H HO-C - H HO-C - H

l OX. l l H-C - 0 H H-C -OH H-C - 0 H

I ' 'I H y ,o l

H-C - 0 H H-C -OH H - C - O H

C I

C , A CH20H

1 CH20H

HO' 'O H-c - OH 1 Ácido D-gulónico Ácido D-glucurónico D-glucosa

H O - C - H (&ido aldóniro) (&ido urónico)

l H-C - OH

H-C - 0 H l

Ácido D-ald&ico (ácido sacánco)

Algunos de estos anicares ácidos, aparte de formar oligosacáridos y polisacáridos, tienen funciones especiales. La vitamina C se relaciona con los ácidos aldónicos. Esta vitamina o ácido L-ascórhico puede deshidrogenarse y formar el ácido L-deshidroascórhico. Estas 2 formas son activas, pero si este último se bidrata y se transforma en el ácido L-dicetogulónico, pierde su actividad.

'1 l H-C 13-C -OH

l I 1 HO-C - t i HO-C-II I I O - C - H

I I I

Esta vitamina o ácido L-deshidroascórbico no se sintetiza en algunos animales como en el cobaya, el mono y el hombre, por lo que hay que ingerirla con los alimen- tos; su carencia ocasiona una enfermedad llamada escorbuto (capítulo 73).

Entre los ácidos urónicos debemos señalar al ácido glucurónico; éste se une a diversos productos catabólicos que son poco solubles en solventes acuosos, unidos a

Page 111: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

wlc compueilo son s~~luhlcs en la sangre! pueden ser rliminados del organismt, non facilidad niediantr la orina; ejemplo de ello es la bilirruhina,que e% insoluhl'en la sangre. sin embargo, como diglucurunato de hilirruhina puede 5er eliminada por la orina a Ira\& del riñón. Asimismu ocurre con diversni productos catabólic~~s dralgu- nds hormonas eslrroides ode ciertassust;tndas deorigen exógeno. 1.a conjugaciún dc ~ I O S cumpuestos con el icido glucurhiw son parte dc lus prwesos de drtouificiición.

Se forman por la reducción del grupo carbonilo de los monosacáridos, como consecuencia se forman los polialcoholes; uno de ellos es el mioinositol, que forma parte de moléculaS lipídicas. Un derivado de éste, el trisfosfato de inositol interviene en algunos mecanismos de trasmisión de señales que provocan algunas hormonas. Otro polialcohol es el glicerol, derivado del gliceraldehído; como producto de la reducción de la ribosa en el carbono 2, se forma la desoximbosa.

Mioinosital Glicerol P-D. 2-desaximibosa

Se forman por la reacción de los monosacáridos con el amoníaco; los más abun- dantes son los derivados aminados de la glucosa y de la galactosa; la sustitución del hidroxilo anomérico da lugar a la glucosilamina o a la galactosilamina; si la sustitu- ción ocurre en cualquier otro hidrodo se forman compuestos como la glucosamina o la galactosamina.

NH, a-D-glucosilamina P-D-galactosilamina P -D, 2 - glucosamina aC-D. Cgalactosamina

De estos compuestos los 2 últimos son componentes frecuentes de los oligo y poüsaeándos.

A su vez el grupo amino puede acetilarse y se forman los N-aceül monosacándos.

CHzOH

0 N l

O=C-CH,

a-D-ZN-acetil glucosamina

Page 112: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Éstos se forman al reaccionar el ácido fosfórico con algunos de los hidroxilos de los monosacárid~

Glucosa -1-P Glucosa - 6 - P Fnictosa -2.6-bis P

Es en forma de ésteres fosfórim como los monosaeáridos se metabolizan dentro dela céinla. La primera handonnación que sufre cualquier monosacándo, al entrar a la célula, es su conversión en &ter fosfórico; así es como lo reconocen las enzimas para ser uolizados en sus diversas bciones.

La micción que experimenta el hidroxiio anomérico con otro hidrolelo de cual- quier compuesto da lugar a un acetal, y si este hidroxüo pertenece a o h m o d d o , el enlace acetálíco toma el nombre de enlace glicosídico, al cual debemos prestarle atendón por ser el que une los monosacáridos simples o derivados entre sí y da origen a los disacáridos (2 monosacáridos unidos entre sí), los oligosacáridos (unión de 10 o menos monosacáridos) y a los polisaeáridos.

La nomenelaiura del disacárido se conforma de la manera siguiente:

1. Senombra primem, con la terminación piranosil o furanosil,al monasacárido que aporta el hidroxüo anomérieo.

2. Se señala ordenadamente,el número de los 2 carbonos queintervienen en el enlace, separados por un guión.

3. El segundo monosacárido, si no interviene su carbono anomérico en el enlace, no cunb'isu nombre; perosi además, interviene en el enlace, también su terminación es piranosil o tinanasil.

Se pueden formar diversos tipos de enlace glicosídim en dependencia de que el OH anomérico sea a o p y de la posición del carbono donde seencuentre el hidroxiio

Page 113: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

que va a formar parte del enlace. Así se tienen enlaces alfa 1-4 glicosídicos como en la figura anterior, a 1-3, a 1-P 2 y otros.

Carácter reductor

Cuando se interconvierten las aldosai en cetosas y viceversa, en medio alcalino, se forma un compuesto intermedio, el enodiol; estasustanciaes reductora. Los azúca- res que pueden formar enodioles reducen a los iones de Cu2+ en medio alcalino; esta propiedad se utiliza en algunas reacciones para identificarlos y cuantificarlos. Sobre esta base se fundamenta la reacción con el reactivo de Benedict, cuyos iones Cn" resultan reducidos a Cu" en presencia de un azúcarreductor. La mcción de Benedict es muy utilizada por los diabéticos para conocer sus nivelesde glucosa en orina y saber las cantidades de iusulina que deben inyectarse y qué alimentos deben ingerir en el día.

Estos cumpuatos pierden su carácter reductor cuando el OH del carbono anomérico se encuentra sustituido o comprometido en un enlace, como es el caso del enlace glicosídico.

Funciones de los monosadridos

En los organismos vivos, los monosacáridos cumplen divenas funciones: se utili- zan como fuente deenerg(a,puesensu oxidación completa hasta CO, + H,O se forman cantidades apreciables de ATP. Durante este proceso oxidativo se forman compuestos no glucídicos y cuando existen excesos de glúcidos de la dieta, estos compuestos pueden ser transformados en Iípidos, que se almacenan en el tejido adiposo, o en aminoácidos. Pueden formar parte de otras estructuras más complejas (glicoproteínas, glicolípidos y nucleótidos) y son los precursores de los digo y polisacáridos.

Como cada monosacárido puede realizar diversas funciones en el organismo, se dice que estos compuestos cumplen con el principio de multiplicidad de utilización.

Resumen

Los monosacáridos sonlos glúcidos más simples, y a su vez las unidades estruc- turales de los de& componentes de los glúcidos: oügasacáridos y poltpacáridos. Los monosscáridos se elasiñcan en simples y derivad&

Los monosae8iidos simples son poühidroxialdehldos o poübidromiacetonas, pueden tener 3 o más unidades cubonadas. LoB & abundantes en los organismos

Page 114: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

dvos timen 3,4,5 y 6 Btomos de carbono y pertenecen a la serie D. Poseen carbo- nos &6hieo~, por lo que desvían el plano de luz polarizada' los de igual número de -bonos y función carbonilo son esterwisómeros entre sí.

Los monosac4ridos simples forman ciclos cuando constituyen un hemia- cetal interno; esto genera un nuevo centro de asimetría, y se forman los anómeros alfa y beta.

Los monosae8iidos derivados son los que se forman por la oxidación de sus g ~ p o s funcionales (monosac4ridos 4cidos), por la reducción de sus gmpos -bonüos (polialcoholes), por sustituciones de sus grupos funcionales en grupos aminos (azúcares aminados) y por adición de grupos fosfatos mediante enlaces &eres (azú- fasfatados). Los monosadridos pueden reaccionar entre sí y for- mar el enlace gli~s1'dico que originan los digo y polisaesridos.

Los monosacáridos cumplen con el p ~ c i p i 0 de multiplicidad de utilización: al oxidarse brindan energía, pueden formar parte de otros compuestos m& com- plejos, parte de su cadena puede transformarse en compuestos no glucídicos, como Upidos y mino4cidos, así como constituyen los precursores de los oligo y polisa&dos.

Ejercicios

1. ¿Qué relación existe entre monosacáridos, oligosacáridos y polisacáridos? 2. ¿Qué características estructurales tienen los monosacáridos simples? 3. ¿Cuáles son las fuentes de variación que permiten clasificar a los monosacáridos

simples? Atendiendo aestas fuentes de variacibn describa cómo se clasifican estas biomoMculas.

4. ¿A qué serie estereoquímica pertenecen los monosacáridos presentes en mayor abundancia en la naturaleza?

S. ¿Cuáles de los siguientes monosacáridos pertenecen a la serie D?

H - 6 - 0 1 1 I I- c - 011 HO-c -13 I I 1 CH?OH NO-¿. - H 11-C - 014 HO-C - 1 1

I I l CIl,OH 110-C - 1 1 H-C -OH

I

6. Represente 2 diastereoisómeros y 2 epímeros de la D-gulosa. 7. Represente la isomerización de la D-sorbosa en D-idosa y D- gulosa. 8. Transforme la D-galactosa y la D-ribulosa a su forma cíclica. 9. Represente los anómeros alfa y beta de la D-manosa.

10. Diga qué se entiende por monosacáridos derivados y cite ejemplos particulares de cada tipo.

11. Forme el enlace glicosídico P-1-4 entre la D-galactosa y laD-glucosa; y el a-1-P-2, entre la D-glucosa y la D-fructosa.

12. Fundamente por qué la. monosacáridos cumplen con el principio de multiplicidad funcional.

Page 115: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los nucleótidos son los precursores de los ácidos nucleicos. Comparándolos con los demás monómeros de macromoléculas, los monosacáridos y aminoácidos, los nucleótidos son más complejos, pues están formados por una base uitrogenada, un azúcar y uno o varios grupas fdato .

Al formar los ácidos nucleicos, los nucleótidos se unen entre sí por enlaces covalentes. Hay 2 tipos de ácidos nucleicos: los ácidos desoxirribonucleicos (ADN) y losácidos ribonucleim (ARN). Los nucleótidos que forman al ADN son losnudeótidos de desoxirribosa y los del ARN son los de ribosa

Una de las funciones relevantes de los nucleótidos es formar parte de los poümem antes mencionados, responsables de la conservación, h;Umisán y expresión de la S o r - mación g e n é h Estas precursores tienen también otwsfunaones: son donantes de gru- pos y bmñeren compuestos al sintetivvse oíras biomoléculas; son acíivadores e inhíbidoresennmáticos; forman parte de k eshuctura de obns compuestos bidógieos

EInuestroobjetivo estudiar su estnictura, clasiñcación, propiedades y funciones.

L o s n d e ó o d a s s o n ~ f ~ p o r ~ l l i l b a r e n i h o s e n a a a , u n ~ y p o r u n o ovariasgniposf~taLa~nitrogenadaestáimwlaalazúcarmedianteunenkce bN@m&b, y el enlace que une a la pei~tara con el gnipo f&to es un éster fmfato. Si el

, . m d e o b d o p o s e e & d e u n g n i p o f ~ ~ s e u r r n e n t r e s p o r ~ ~ d e á Q d o s

En l a f w a 8.1 se observan 2 nucleótidos, en ambos se encuentran los 3 compo- nentes antes mencionados, y se observa que existen diferencias enire ellos, hay fuentes de variación. En estas desigualdadesse basan las clasificaciones.

Fig.ü.1. SP r n u m lm 3 componentes de 10s nucleótidos: la base nitrogenada (BN), el azúcar (A) y los grupos foslato. Los enlaces entre los cornponcntes están repre- sentados por: a) enlaces N-glinisídieos, b) enlaces ester losfato y c) anhidrido de ácidos. Se omiten los carbonos de Im ani- llos y los hid+nos que satkla- gan la cuarta valeneia de estas enr- bonos (así K representarán las 5- guras del reto del capítulo.)

Page 116: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Clasificación

Si secomparan los nucleótidos anterior= se puede observar que la base nitrogenada noesla misma, que el azúcar es diferente y que el número degrupos fosfatoes distinto, por tanto, se pueden clasificar de3 maneras de acuerdo con estas diferencias.

Se clasifican en nucleótidos purínicos y pirimidínicos, según el tipo de base nitrogenada que contengan; estos anillos de purina y pirimidina son heterociclos formados por carbono y nitrógeno. Comose puede ver en la siguiente figura, la nume- ración comienza en ambos anillos por uno de los nitrógenos. Los azúcares se unen a estos anillos por el N-1 en los nucleótidos pirimidínicos y por el N-9 en los purínicos.

Hay 3 tipos de bases nitrogenadas pirimidínicas y 2 tipos purínicas que se presen- tan con mayor frecuencia.

Se les llama amínicas a la citosina y la adenina porque tienen un gmpo amino: en el carbono 4, la primera, y en el carbono 6, la segunda. Se les denomina cetónicas al uracilo, timina y guanina,si tienen grupo cetónicn: en el carbono 4 las pirimidínicas y en el 6,las purínicas.

Hay otras bases menos frecuentes, bases raras, que se presentan en algunos tipos de ácidos nucleicos:

Además, exkten algunas no pmentg en los ácidos nucleicos que tienen otras funciong.

La cafeína y la teobromina están en el café y el té, respectivamente, son una de las sustancias activas presentes en ellos. El ácido úrico es un producto del catabdismn de las purinas, pero además tiene propiedades antioxidantes. La 8-azaguanina es un antimetabolito; esta droga frena el desarrollo de algunos tipos de cáncer.

Page 117: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Se clasifican en nucleótidos de ribosa y de desoxirribosa, en dependencia del tipo de monosaeáridos que contengan, los primeros forman parte del ARN y los segundos del ADN.

La ribosa y la desoxirnbosa son aldopentosas de la serie D y, al formarse el enlace con la base nitrogenada, el hidroxilo anomérico queda en posición P (capítulo 7). La numeración de los carbonos en estos anillos se señala con una comilla para diferenciar- lo de la numeración de los elementos del heterociclo. La numeración comienza por el carbono anomérico (capítulo 7). El enlace P-N-glicosídico se establece entre el carbo- no f de las pentosas con el nitrógeno 1 en las bases pirimidínicas y con el nitrógeno 9 en las bases p u ~ i c a s (Fig. 8.1).

Segúa el número de fosfatos

Pueden ser mono, di o trifosfatados si presentan en el carbono uno, dos o tres gniposfosfato (Fig. 8.1). El primerfosfato se une al carbono 3 , el segundo fosfato se uneal primer fosfato y a su vez el tercero al segundo. También existen otros nucleótidos en los cuales la posición del fosfato puede variar, por lo que se encuentra en el carbono 2' ó 3 :Dos nucleótidos cíclicos desempeñan una función importantísima en la regula- ción del organismo: el 3 ' 3 adenosín monofosfato (AMPc) y el 3 - 5 gnanosíu monofosfato (GMP?), segundos mensajeros en la acción hormonal.

AMP, GMP,

Formados por la unión de la base nitrogenada y el azúcar, pero carecen de fosfato. Algunos antibióticos como la puromicina, producto de un hongo, son nucleósidos (capítulo 35).

Nomenclatura

HO-CH,

En la tabla 8.1 semuestra la nomenclaturade Ias S bases nitrogenadas máscomu- nes, con la nomenclatura de los nucleósidos y nucleótidos que ellas forman.

Page 118: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

1

I

l I

i l

1

mbk al. Nomenclatura de los nucleósidos y nucleótidos comunes

Base NuclWsido 1 fosfato 2 fosfatos 3 fosfatos

Adenina Adenosina Adenosúi monofwfato AdenaFúl difosfato Adend trifosfato AMP ADP AIP

(áeido adenilico)

Guanina Guan- Guanosín monofwfato Guanosh difosfato Guanosúitrifosfato GMP GDP GIP

(ácido guanidiiico)

Hipoxsntina lnobins Inosín monofosfato Inosín difosfato Ioosúitrifosfato IMP m p m

(ácidoinmúiico)

Uracilo Uiidima Uridui monofwfato Un& difosfato Uridúitr%miato UMP UDP UTP

(ácidouridíüco)

Citosina Cltidina Citidín monofadato Ciüdíndifasfato Citi& Waáato CMP CDP CIP

(áado citidíüco)

T m h TEmidirra Desoxiomidín ~esoatimidúi Desoxiomidín monofosfato difosfato tnfañato

rmMP dTDP m (ácidodgoxiomidíbw)

En la tabla 8.1 se asume que el azúcar es la ribosa,excepto para la base timina. Si el azúcar es dmxirribosa, debe consigname como en el caso de la timina,ejemplo, desoxiadenocín trifosfato (dATP).

Propiedades ñsicoquSmirag de los nncieótidos

Estas propiedades dependen de sus 3 componentes.

El azúcar como la base nitrogenada posee gmpos polares que hacen que estos compuestos sean solubles en solventes polares. A esta propiedad contribuye también el o los gmpos fosfatos.

Sus propiedades ácidas dependen de los grnpos fosfato. Éste es un ácido fuerte y a pH fiológico, estos gmpos se encuentran d k i a d o s y le brindan cargas negativas al nncleótido, por lo que son aniones.

Sus propiedades básicas débiles dependen de los nitrógenos de los aniUos de purina y pirimidina. En la tabla 8.2 se pueden ver los pK de algunos de estos grupos.

Page 119: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

~ b a z Vdores de pKde losgrupos disociables de las bases puríuicas y pirimidínic%

Base Grupodisociable Valor de pK

Los N-1 de los anillos de pirimidina no muestran este carácter básico al hallarse este nitrógeno comprometido en el enlace con la pentosa. El- N,-C,-OH de la guanina se encuentra sin disociar en el pH fisiológico, por lo que no aporta carga, asícomo los grupos amino de la citosina, adenina y guanina.

Por poseer en los heterociclos hidroxilos y dobles enlaces, estos compuestos pre- sentan cambios de sus formas enólicas (lactimas) a cetónicas (lactamas). En solución y en el pH cercano a la neutralidad son más estables las iactamas. A contiuuacióu ejemplif~camos este tipo de isomería con el uracilo.

Absorción de la luz uitravioleta O\,./ H o 4 2 1

N

Esta propiedad se debe a los anillos aromáticos que pertenecen a las bases H

nitrogenadas. Estos anillos absorben la luz ultravioleta a longitudes de onda de 260 Forma ~ o m a nm. Esta propiedad permite identificarlos y cuantificarlos en solución, así como detec- crtónica cnd ica

(laclama) (lactiiiial tar su presencia en cromatogramas y electroferogramas (capítulo 9) sobre papel o acetato de celulosa; se observan como manchas oscuras sobre la fluorescencia que toma el papel irradiadocon este tipo de longitud de onda. Parte de esta absorción se pierde cuando estos anillos están formando parte de los ácidos nucleicos (capítulo 11).

Otras características quúnicas y esirueairales de los nucieótidos

Los nncleótidos pueden formar enlaces covalentes o interacciones con diversos compuestos, y entre ellos. Pueden formar enlaces &ter por los hidroxilos del azúcar o por los grnpos fosfato. Cuando son aniones, pueden formar interacciones salinas con diversa^ ca!iones (proteínas catiónicas). Un requisito en su participación como sustmtos o cofactores en reacciones eniimáticas es su unión con iones divalentes, como el Mg".

La presencia en sus heterociclos de elementos como el oxígeno y el nitrógeno, que poseen pares de electrones Libres, les posibilita formar puentes de hidrógenos con diversos compuestos, incluso entre ellos. Así, una de las interacciones que mantiene la ? /+ estructura del ADN es la formación de puentes de hidrógeno entre las bases comple-

Otl OH mentarias de sus 2 cadenas (capítulo 11).

Como estas bases nitrogenadas son anillos aromáticos, tienen la propiedad de atraerse mediante fuenas de Van der Waals, apilándaseunos d o s sobre otros; ésta es

Page 120: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

la base delasinteracciones hidrofóbicas quese forman en el ADN y que también son importantes para mantener la estructura de esta macromolécula (capítulo 11).

Una de las características estructurales en los nucleótidos es la posición relativa que ocupan en el espacio tridimensional los 2 anillos que lo forman: el anillo del azúcar y el de la base nitrogenada. Cada uno de estos anillos, casi aplanado, no ocupa el mismo plano espacial, son perpendiculares entre sí, de forma que el hidroxilo o hidrógeno de la posición 2 d e la pentosa queda cerca del nitrógeno 3de las purinas,~ del oxígeno 2 de las pirimidinas (Fig. 8.2).

/ Fig. 8.2: Relaeiún cspacial entre los anillos de la b a ~ e nitrogenada y del azú-

l ear. En el espacio, los dos anillos seeneuentrancasi perpendkulares entre si, encontrándose la posición 2 de la hase nitrogenadr cercana a la posieiún 2 del aiúcar.

Muchas de estas propiedades son determinantes en la conformaciónestruclural de las macromoléculas (ADN y ARN) que ellos forman.

Funciones de los nucleótidos

Los nucleótidos cumplen con el principio de multiplicidad de utilización. Una parte de su estruclura, la ribosa, al catabolizarse puede ir a la formación de energía y parte del anillo de las pirimidinas al catabolizarse,también.

Pueden formar parte de otros conipuestos máscomplejos,en este caso el ácido adenflico (AMP) es parte de la estructura de varios cofactores enzimáticos,compuestos que intervienen con las enzimas en llevar a cabo las reacciones que ocurren en las células.

Son transportadores de grupos al ser sintetizadas diversas biomoléculas, asíel UDP-glucosa aporta glucosa al sintetizarse el glucógeno y la colina es transportada por el CDP-colina en lasíntesis de los fosfoglicéridos.

En diferentes reacciones pueden ceder parte de su molécula: grupos fosfatos, pirofosfatos, adenilo o adenosilo.

Algunos son reguladores del metaboliino al ser segundos mensajeros en la acción Iiormonal o actúan como activadores o inhibidores en la acción enzimática.

También, como ya sabemos, son las unidades estructurales de los ácidos nucleicos, y se unen entre sí mediante el enlace fosfodiéster o enlace 3'- 5 Idiéster fosfato. Este enlace se forma al reaccionar el fosfato del carbono 5 de nn nucleótido con el 3' Iiidroxilo del otro nucleótido, con la pérdida de agua (Fig. 8.3).

Oti 011 Oli Otl

0-

O OH l

O-P-O-CH,

Fig.8.3. Formación del enlace fosfodiéster entre 2 nuelcútidos. Al formarse el enlace, ehscrve eúino por cada uno de los extremos pueden condensarse más moléculas de nueleótidos, pues por una de los extremos queda un fuifato en 5 , y par el otro un hidroxilo en 3'libres de ahí que se refiera en los oliganurleótidos a las extremos 3'y S!

Page 121: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Este enlace es covalente g fuerte, los compuestos que se forman son estables en solución acuosa, y mantienen la característica de segnir siendo aniones.

Resumen

Los nudeótidos son biomolénilas formadas por una base nitrogeuada, un azú- m y uno o varios grupos fosfato. Las bases nitrogenadas más abundantes son la a&,,i,,a y guanina (bares púricas) y la citosina, urado y timina (bases pirimidínim). ~1 azúcar que las forma es generalmente la ribosa y la desonirribosa El enlace que une el heteroeiclo con el azúcar es el N-güeosídico, y el azúcar al fosfato, el enlace &r fosfato. El enlace entre grupos fosfato es el anbídndo de ácido.

Los nudeótidos tienen diversas propiedades: son solubles en soluciones amo- s ~ ; pregeuúm tantomería ceto-enóüca; son aniones y dcidos fuertes debido a los fdatos; son bases débiles debido a los nitrógenos de sus beterocidos, pueden for- mar diversos tipos de enlaces e interacciones débiles (enlaces éster, salinos y puen- tes de hidrógeno), absorben luz W. Estas propiedades van a ser determinantes en Ls estniciwa y propiedades de los ácidos nudeicos de los cuales ellos van a formar m

Los uudeótidos cumplen con el principio de multiplicidad de uoüzación. Al catabolizarse a COZ y %O Liberan energía; forman parte estructural de otros compuestos; ceden parte de mi estrnchua en la síntesis de otras biomolkulas; trans- fieren compuestos para sinteiizar otros más complejos; algunos son reguladores del metabolismo y son las nnidades estructurales del ADN y ARN.

Ejercicios

1. Represente la estructura del ATP y CDP. 2. Los nucleótidos anteriores serían los mismos que se encontrarían en el ADN y en el

ARN. 3. Analice la estructura de los nucleótidos siguientes:

a) ¿Cuáles son sus características comunes? b) ¿Cuáles son sus características diferentes? c) ¿Cómo los clasificaría? d) Nómbrelos.

4. Represente el dinuclebtido que se fornia al unirse el AMP con el dTMP en un enlace 3-5'diéster fosfato.

5. ¿Por qué cumplen los nucleótidos con el principio de multiplicidad de utiliza- ción?

6. Forme 2 puentes de hidrógeno entre la adenina del AMP y el nracilo del UMP.

Page 122: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Muchas son las características que distinguen a los seres vivos de la materia inanimada y que fueron estudiadas en los capítulos iniciales de este libro. Desde el punto de vista de su composición lo más sobresaliente es la existencia de las macromoléculas, que son organizaciones en las cuales participan cientos o miles de átomos con una compleja distribución tridimensional. Esta extraordinaria compleji- dad escapa a las concepciones estructurales de la química tradicional, y su estudio es por derecho propio patrimonio exclusivo de la bioquímica.

El desarrollo del conocimiento bioquímico ha marchado paralelo al conocimien- to de las macromoléculas y viceversa. En el transcurso de los años, cada vez fue más evidente que los métodos y procedimientos de las químicas general y orgánica eran insuficientes para tratar este problema. Los bioquímicos han tenido que diseñar méto- dos específicos de análisis de las macromoléculas y, en muchas ocasiones, contribuir directa o indirectamente a la producción de equipos de laboratorio que les permitieran ensanchar la potencia de sus sentidos para penetrar en este complejo campo. Esto trajo como coasecuencia que en esa lucha por desentrañar la estructura de la7 macromoléculai, la hioquúnica fuera creando su propio "arsenal" metodológico e instrumental, lo que equivale a decir que se fue haciendo cada vez más una ciencia independiente.

Los primeros resultados rxitosos mostraron una realidad más que asombrosa. Las primeras imágenes reconstruidas a partir de los datos experimentales, mostraban unas moléculas de tamaño enorme con plegainientos y replegamientos a cuya organización parecía imposible aplicar lógica alguna; pero los intentos se repitieron, los métodos se ampliaron, los instrumentos se perfeccionaron y cada año se describía, al menos, la estructura tridimensional de un miembro más del grupo. Si los trabajos iniciales impli- caronaños,losactualesse hacen en meses y tal vez en el futurose realicen en días. Hoy existe gran colección de conocidas estructuras tridiniensioiiales de macromoléculas, lo cual ha permitido penetrar en los secretos de su estructura o, al menos, en los principios generales que rigen su organización estructural y, a partir de ellos, conocer las formas peculiares de su funcionamiento.

En términos bioquímicos se identifican 3 grandes familias de macromoléculas: las proteínas, los polisacáridos y los ácidos nucleicos. Para su estudio están dedicados los próximos capítulos. En éste se presentarán aquellas características que, en mayor o menor grado,son comunes a todas ellas. Se tratará de presentar aquellas regularidades que subyacen en la organización estructural y hasta dondesea posible funcional de las macromoléculas. Como sucede siempre en la vida, muchas de estas reglas tienen sus excepciones, las cuales en los casos necesarios también serán resaltadas, no como una

Page 123: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

muestra más de la biodiversidad al nivel molecular, sino también con el propósito lógico del empleo de la excepción para hacer más valedera la regla.

Esta? característica$ generales serán presentadas, acompañadas de algunos proce- dimientos experinientales que Iian perniitido su comprobación a través de la historia. No en todos los casos se evidenciará cómo el carácter explicado se cumple en todas y cada una de las niacromoléculas, pero sienipre se hará referencia por lo menos a una de ellas. Algnnas de estas características no son tan evidentes en unas macromoléculas como en otras, por tanto, es preferible que en este momento sólo queden enunciadas como generales y que puedan demostrarse después, al estudiar el capítulo correspon- diente a cada una de ellas.

Características generales

Las hiomacromoléculas poseen un conjnnto de características que son comunes a todas ellas, lo cnal permite un estudio sistemático del grupo que debe conipletarse después con el estudio de las especificidades de cada una; estas características son:

l. Elevado peso molecular. 2. Carácter polimérico. 3. Carácter uniforme. 4. Carácter lineal. 5. Carácter tridimensional. h. Carácter inforniacional. 7. Tendencia a la agregación. 8. Kelación estructura-función.

Éstas son las que serán estudiadas en este capítulo. Las específicas serán tratadas en los 3 capítulos siguientes.

Elevado peso molecular

Parece superfluo decir que las macronioléculas tienen elevado peso molecular, es una tautología; sólo escribirlo pretende resaltar este carácter, pues se trata posiblemen- te del más importante de todos los aspectos que se debe considerar en este tipo de componente molecular de los seres vivos.

La química tradicional estudia moléculas pequeñas, cuyos pesos moleculares alcanzan apenas cientos de unidades de masa atómica y en la mayoría de los casos el volumen molecular es poco iniportante para el estudio de las propiedades químicas de esos compuestos. La realidad de las macromoléculas es totalmente diferente.

El sistema internacional de medidas establece como unidad de masa atómica el dalton que es equivalente a 1112 del peso atómico del isótopo más abundante del carbono. Como todas las unidades, ésta admite múltiples y submúltiplos de los cuales el más utilizado eii bioquíinica es el kilodalton (kD), que es igual a 1000 daltous. Mientras los químicos trabajan con sustancias cuyas masas apenas alcanzan 1 kn , los bioquímicos enfrentan el estudio de sustancias con masas de más de 500 kD que son precisamente las inacron~olé~ulas. Aunque no existe un límite inferior bien definido, se consideran dentro del grupo de las macroinolécnlas aquellas sustancias con masas moleculares superiores a los 5 kD. Estos tamaños se manifiestan por propiedades que distinguen a este grupo de sustancias de forma muy especial, las cuales serán estudiadas posteriormente.

Page 124: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Un polímero es unasustancia quese forma por launión de varias moléculas más pequeñas, que reciben el nombre de monómeros. Para ambos existe la relación entre el todo y la parte; de ahí que las propiedades del polímero dependen en gran medida del tipo y la cantidad de los monómeros que lo constituye, pero no exclusivamente de eso. En el polímero aparecen propiedades que no pueden deducirse directamente de las propiedades de los monómeros, y que se deben en gran parte a la forma en que estos monómeros están organizados en la formación del polúnero. En la estmctura del polímero se crean interacciones de atracción o de repulsión qnele dan a éste detenni. nadas propiedades que los monómemspor separado no exhiben. Cuando2 monómeros se unen forman un dímero que en realidad se diferencia poco del monómero, con 3 se forma un trímem que tampocose dife~nciamucho. Perocuandoel cúmulocuantitativo de monómems sobrepasa determinadolímite aparecen caractehiicas cualitativas nuevac que son ya las pmpias del polúnero. De todo lo anterior se deduce que las macromolécuks, al poseer carácter polimérico, van a guardar con sus pmursores relaciones similares a las descritasy por tanto tendrán propiedades que no pueden explicarse directamente a partir de los monómeros constitnyentes, y hace falta conocer la organización estruc- tural del polímero para tener una idea exacta de ellas.

Carácter nniforme

Todas las biomacromoléculas son polímeros de sus monómeros constituyentes o precursores. Las proteínas son polímeros de aminoácidos, los polisacáridos de monosacándos y los ácidos nucleicos de nucleótidos. Esta forma de organización les c o n d e carácter uniforme,pues cada biomacromolécula se fonna por la polimerización de precursores de la misma clase. Estos precursores se unen mediante una reacción de condensación, con pérdida de una molécula de agua, y quedan enlazados de forma covalente, lo cual le concede fortaleza a la estructura.

Este enlace polimerizante es el más fuerte de todas las interacciones que se esta- blecen entre los monómeros para formar la estructuradel polímero, por eso resulta el más dificil de romper. En las proteínas es el enlace peptídico, en los polisacáridos el glicosídico y en los ácidos nucleicos el fosfodiéster.

Estos tipos de enlaces no son particulares de la$ biomacromoléculas, pues apare- cen en otros grupos de compuestos orgánicos, aquí reciben nombres específicos para realzar su importancia; el enlace peptídico es de tipo amida y el glicosídico, un acetálico. La sucesión de estos enlaces y los grupos entre los cuales se forman, determinan la existencia en la macromolécula de un eje cavalente principal, que viene a ser algo así como la columna vertebral de su estrnctura.

Estos enlaces son como ya sedijo de tipo covalente, y tienen al menos 3 propieda- des muy importantes para la existencia de las macromoléculas: son fuertes, con una energía de enlace superior a las 50 kcal.mo1-'; muy estables en agua o disoluciones acuosas, por lo cual las macromoléculas suelen ser muy estables en los organismos vivientes cuyo componente mayoritario es el agua, y poseen orientaciones espaciales definidas de acuerdo con el elementoquímicode que se trate, por ejemploen el átomo de carbono con hibridación sp3, las valenciasestán orientadas hacia los vértices de un tebedm regular.

Las característicasespecíficas de estos enlaces y su función en la estmctnra de las macromoléculas correspondientes serán estudiadas en los capítulos posteriores.

Carácter lineal

Aun cuando en su estructura existen otras posibilidades, casi siempre las macromoléculas son Lineales. En este momento, esta palabra tiene el sentido de carecer

Page 125: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 9.1. El cariicter poliniérico. En a ) sc representa u n esquema de u n polímero formado por precurso- res de Iü iiiisma clase, caráctcr uni- f'ornic. 1.a radctia rniicstra de igual hriiis s u caricter lineal, pues ea- rece de rnniifieaeioiies. Como pue- de oliscrvarse cl extrenio niimera- do timo 1 es diferente del h. por tanto cl polírncro posee polaridad. La cslriictiira general del prccu~.- sur sr riiiiestrn en b), donde se dis- tingue el rivalo azul (2) qiic repre- senta una parte de 13 cstructurndel prrcurmr, coinún a todos los de su clase; la zona R representa la partede la estmctilra diferente para cada prcriirsor de una clase dada. Taiiiliíéii en b) se iiiuestran los prii- pos ilc enlace identificados con los números l y 3. Sc pucrle ohscnsr qiie en a) el precursor iiiimero 1 tiene lilirc el grupo 1, mientras el 6 tiene libre el grupo 3. Se puede afirmar que la iiioléei8la tiene po- laridad 1 4 3.

de ramificaciones y no se refiere a la forma de la molécula en el espacio. El carácter lineal se debe a que los monómeros se unen uno a continuación del otro y forman largas cadenas poliméricas sin la existencia de ramificaciones. La única excepción a esta regla aparece entre los polisacáricos, pues algunos tipos de estos compuestos presentan ramificaciones y en ocasiones muy abundantes. Es una ventaja la carencia de ramificaciones en proteínas y ácidos nucleicos, pero también es ventajoso la exis- tencia de ramificaciones en algunos polisacáridos.

La formación del enlace polimerizante ocurre siempre entre 2 grupos bien d e f ~ - dos de la estructura de los precursores; esto hace que todos los precursores que forman parte de la cadena polimérica tengan comprometidos sus 2 grupos de enlace, uno con el precursor que le antecede y otro con el que le sucede,excepto el primero y el último que exhiben libre uno de los 2 grupos. Como estos gmpos libres son diferentes en cada extremo, las macromoléculas se caracterizan porque sus extremos no son iguales, lo cual expresa que tienen polaridad. Por lo general los extremos se nombran señalando cuál es el grupo libre.

Esta característica permite definir una dirección en la estructura del polímero, pues permite identificar cuál es el primer precursor y cuál es el último. Cuando 2 cadenas poliméricas del mismo tipo se encuentran acomodadas una al lado de la otra, lo pueden hacer de 2 formas: si el priiner precursor de una molécula coincide con el primerodela otra (y por tanto coinciden los 2 últimos) se dice quelas cadenas tienen una disposición paralela; en caso contrario se les denomina antiparalelas. Cuando entre2 macromoléculas existe una relación funcional, de forma tal, que dado un orden para los precursores en iina de ellas es posible determinar el orden delos precursores de la otra, se dice que existe colinealidad entre ambas.

Tanto el carácter polimérico, como el uniforme y el lineal se resumen en la figura 9.1.

.'i

Carácter tridimensional

Las macromoléculas preseutan una estructura compleja con una organización espacial que se extiende en 3 dimensiones; por supuesto que todos los cuerpos desde los más pequeños son tridimensiondes, pero como en los casos anteriores se trata aquí de resaltar esta característica, pues merece especial atención para comprender la mtmc- tiira y el funcionamiento de estas moléculas. Tal es la complejidad de estas moléculas que para estudiar su organización tridimensional ba sido necesario introducir un siste- ma de estudios por niveles,que van desde el primario hasta el cuateriiario, dondecada uno de ellos expresa un grado diferente de organización estructural. No en todas las inacromoléculas estos niveles cstán perfectaniente establecidos y se tonian a las proteí- nas como sistema de referencia para el estudio de todas ellas.

Nivel primario

El nivel primario, también llamado estructura primaria, se refiere al orden o suce- sión de los monómeros en el políniero. Se origina coino consecuencia de la reacción de

130

Page 126: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

polimerización y, por tanto, la interacción que lo mantiene es el enlace polimerizante. ya se dijo que este enlace es el más fuerte de todos los que se forman en las macromoléculas, de lo cual se deduce que el nivel primario es el más estable de todos los niveles estmcturales de las macromoléculas.

Teniendo en cuenta lasdiferencias entre los precursores que integran el polímem, las macromoléculas pueden dividirse en 2 grandes grupos. El primer grupo estaría integrado por aquéllas queestán formadas por un solo precursor; recuérdese que el carácter uniforme establece que las macmmoléculas están formadas por precursores de la misma clase, por ejemplo, las proteínas por aminoácidos; pero en este caso se trata no del mismo tipo, sino del mismo precursor, o sea, una proteína hipotética que estu- viera formada por lapolimerización del mismo aminoácido. Este tipo de macmmolécula sólo se ha encontrado entre los polisacáridos, por ejemplo, laquitina que forma parte del exoesqueleto de algunos invertebrados, formada por la polimerización de la N- acetil glucosamina; otros ejemplos son el almidón, el glucógeno y la celulosa que están formados sólopor glucosa. En estos casos las moléculas exhiben una monotonía estructural total, pues todos sus sectores son esencialmente iguales.

En otras ocasiones se produce la polimerización de un dímero como se observa en las glicosaminoglicanas, por e,jemplo, el ácido hialurónico es un polímero de ácido glucurónico y N-acetil glucosamina, en tanto, el dermatán sulfato resulta de la polimerixación del disacárido formado por el ácido L-idurónico y la N-acetil glucosamina-4-sulfato. También en este caso se presenta la monotonía estructural, aunque menos marcada que en el anterior.

Por último, existe la polimerización de trímeros de lo cual el mejor ejemplo es la colágena, formada esencialmente por glicina-prolina-hidroxiprolina que se repite cientos de veces a lo largo de la cadena polimérica. Las macromoléculas de este tipo generalmente cumplen funciones más elementales, como las de servir de soporte es- tructural a los tejidos o estructuras más complejas y en general (excepto el almidón y el glucógeno) adoptan forma de fibras o filamentos que es la que más se adapta a la función que deben cumplir.

Antes de pasar al otro gmpo es bueno señalar que en realidad la monotonía no es total,pues existen pequenas variaciones en la estructura aunque la mencionada es la predominante en casi e1 90 % de la longitud del polímero.

E1 seguudo grupo lo integran aquellas macromoléculas que no poseen un patrón regular de polimerización y en ellas sus precursoressealternan sin queexista ninguna ley que pueda predecir la posición de cada uno, por ejemplo, en el caso del ácido hialurónico, si se sabe que la posición está ocupada por la N-acetil glucosamina, inmediatamente se deduce que la «n+l» será el ácido glucurónico. En las macromoléculas del segundo grupo, saber que un precursor ocupa la posición en» no permite conocer el «n+l», ya que puede ser cualquiera de los otros. A este grupo pertenece la mayoría de las macromoléculas (Fig. 9.2).

En las macromoléculas se puede distinguir una zona compuesta por los ele- mentos que integran el enlace, que como es siempre el mismo, por el carácter

Fig. 9.2. Tipos de polimeros por lo compo- sición de precursora. La línea sii-

pcrior muestra un sector de un polimero formado por el iiiisino precursor, la cual da al políniero una monotonía lofal. 1.a lima icn- tral prn~cnta un poliiiiera también nionát<ino pero can la coml>ina- ~ i i i i i de 2 precursores. La línea in- fcrior ~>msentil un polimero total- jiientc diverso. Ohsérvcsc qiic no criste regularidad alguna, después del precursor representado por el cii.eiilo azul sc puede encontrar cualqiiiera de loa precursores, el iiiisnio azul, cl verde o el rajo.

Page 127: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

uniforme, genera una zona de monotonía estructural. Pero a la par existe una zona quevaríaen cada punto dela cadena debido a las características estructurales del precursor que esté presente en ese punto; asíse genera una zona de variabilidad. Esto significa que en la estructura de las macromoléculas se da la unión de lo monótono y lo diverso (Fig. 9.3).

Fig. 93. Zonas en la estructura de la macromolécula. En la estructura de la macromolécula se pueden distinguir 2 zonas. En a) aparece representado en m1 la zona monótona de la estructura que origina el eje covalente principal de la macromoléeula. Observe que estructuralmente todos los sectores de esta zona son iguales. Aparecen marcados los extremos p y q, pues esta molécula tiene polaridad p6q. En b) w representa en color rojo la zona variable debido a que cada uno de las precursom presenta una estructura diferrnte. De esta forma se eviden- cia que en la estructura de las rnaeromolé-culai w da la unidad de la monótono y lo diveno.

La estructura de lamna monótona diferencia los tipos de macmmolécula, es decir, las proteínas de los polisacáridos y éstos de los ácidos nncleicos. La zona variable diierencia una macromolécula de otra del mismo tipo, por ejemplo, el glucagón de la insulina. Los métodos para el estudio de la estructura primaria de las macromoléculas del segundo grupo serán estudiados en los capítulos donde se trate cada una de ellas.

La distinción entre las 2 zonas estructurales de las macromoléculas es importante para entender la génesis de los demás niveles de organización, pues ellos van a depen- der del establecimiento de interacciones entre elementos químicos localizados en una zona u otra. En líneas generales se puede afirmar que si las interacciones se forman entre elementos localizados en la zona monótona, se van a originar estmcturas regula- res con patrones bien definidos, pero si dependen de la zona variable se formarán organizaciones más bien irregulares.

Como ya se señaló, las macromoléculas del primer grupo donde la monotonía es total tienden a tomar formas fibrilares o filamentosas, en la$ cuales el largo predomina sobre el ancho y la profundidad. Sin embargo, las del segundo grupo tienden a adop- tar formas esféricas como consecuencia de los plegarnientos y replegamientos sobre sí de la cadena polimérica.

Los estudios de las estructuras de numerosas macromoléculas en los Úitimos años, han permitido pmfundizar en la wmplejidad de estas estnicturas y advertir que a h en lai más irregulares existen determinados patmnes que se repiten, como si eestiera una ley general que gobernara la forma en queseorganizan las macromoléculas biológicas.

Nivel sesundario

Al nivel primario ya estudiado le sigue el nivel secundario o estructura secnnda- ria. Este término se refiere a la forma particular que adopta la cadena polimérica en pequeños sectores de su estructura, pudiera ser un secior formado por 10 a 20 precurso- res consecutivos. Estos sectom pueden tener una disposición ~ g u l a r o ir~gular. Se ha podido determinar que existen 2 formas fundamentales de estructuras secundarias rrgulares a saber, las helicoidales y las plegadas. Las estructuras plegadas se caracteri- zan porque el eje covalente primario de la molécula va describiendo una línea en forma de zigzag, con ángulos bien definidos, y en ocasiones diferentes sectores de la

Page 128: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
Page 129: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

El nivel terciario de organización o estructura terciaria se refiere a la estructura tridimensional total de la macromolécnla. En su estudio se ha de tener en cuenta no sólo las formas secundarias mencionadas, sino la topología del eje covalente principal de la macromolécnla, o sea. cómo se van conectando unos con otros los diferentes seetores de estrncturassecundarias o supersecundanas. El nivel cuaternario se ha defi- nido en proteínas, y se usa para caracterizar aquéllas que están formadas por más de una cadena polipepiídica que a los efectos reciben el nombre de subunidades (Fig. 9.7).

Fig.9.7. ihtructun3S lcreiarias y cuatemarias. En a) se representa la estructura tercisria de una maeromolécula en la cual las estructuras helicoidales aparecen en forma de cilindros y las plegadas en forma de saetas. El eje cavalente principal va forman- do giros que permiten a la mrerornoléeula adoptar una for- ma que tiende a lo esférico. En b) se presenta un esquema de la es- tructura cuateruaria de una proleí- na que está formada por 4 sub- unidades iguales 2 a 2 (las 2 rojas son iguales, entre sí, así como las 2 arules).

Estas organizaciones espacialesse mantienen gracias i i la formación de interacciones - débiles entre diferentes grupos químicos de las macromoléculas. Las principales son los puentes de hidrógeno, las interacciones salinas y las llamadas fuerzas de Van der Waals. Estas interacciones tienen una fortaleza que va desde 10 kcal.mol.', para las primeras hasta menos de 1 kcal.mol-', para las últimas, por tanto su importancia no radica en su fortaleza, sino en el número extraordinario de ellas que pueden formarse en una macromolécula.

La fuerza de los puentes de hidrógeno esmás variable, pues es mayor en ambien- tes anhidros que cuando están expuestos a la acción del agua. Debido a la propia dinámica de formación de la estructura tridimensional de las macromoléculas, cada nivel deorganización se mantiene por interacciones queson cada vez más débileso,lo que es lo mismo, los niveles superiores siempre son más inestables que los inferiores.

Este conocimiento no sólo es importante desde el punto de vista biológico, per- mite comprender por qué la vida tiene que desarrollarse en condiciones ambientales muy limitadas, también tiene importancia desde el punto de vista experimental, ya que siempre debe tenerse en cuenta que pequeñas variaciones en las condiciones con las cuales se trabaja, con una de estas macromoléculas, puede afectar considerablemente sus propiedades, que son las manifestaciones externas de su estructura.

Cuandouna macromolécnla pierde su estructura tridimensional, pero conserva la estructura primaria, se dice que ha sufrido un proceso de desnaturalización. Los agen-

Page 130: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

tes desnaturalizantes interfieren con la formación de las interacciones débiles y por eso son capaces de desorganizar a la molécula. Un agente desnaturalizante universal es el calor, de ahí que los seres vivos en general tienden a vivir en medios donde los cambios de temperatura no sean drásticos, incluso, los organismos superio- res han creado evolutivamente mecanismos para mantener constante la temperatura corporal con independencia de la ambiental.

El fenómeno de desnaturalización puede ser reversible, si la macromolécula des- naturalizada es llevada de nuevo a las condiciones adecuadas, por lo que puede recu- perar su estructura tridimensional original. Esta renaturalización es una evidencia importante de que la estmctura tridimensional está determinada por el nivel primario de organización. Desde el punto de vi~ta práctico, esta propiedad de las macromoléculas sirve de fundamento a las técnicas de hibridación de los ácidos nncleicos como se verá en el capítulo 11 (Fig. 9.8).

Una de las características más importantes de las macromoléculas biológicas es que ellas poseen información. La información molecular está relacionada con la varie- dad estmctural y permite la realización de interacciones específicas entre las diferentes macromoléculas, o entre ellas y moléculas pequeñas.

La información permite discriminar con un elevado grado de precisión con cuál molécula se interactúa, en qué sitio y ba,jo cuáles circunstancias. Teniendo en cuenta la forma en quese presenta lainformación molecular pnedeser de 2 tipos: la secuencial y la conformacional.

La información secuencial está contenida en la estructura primaria de las macromoléculas que presentan secuencias irregulares, de forma que mientras mayor es la irregularidad de la secuencia mayor puede ser el contenido de información y vice- versa. En la secuencia de los precursores de una macromolécula la información está codificada linealmente en forma de mensajes, con un contenido preciso; tal vez una alegoría sirva para esclarecer este concepto. Si se parte de la secuencia de aminoácidos de un péptido y se escribe utilizando el código de unasola letra (capítulo 6) se pueden obtener situaciones como:

ala - met - ile - ser - tre - ala - asp A M I S T A D

ala - met -ala - arg - glu - ser - val - ilc - val - ile - arg A M A R E S V I V I R

Por supuesto que las largas cadenas poliméricas de las macromolécula~ contienen mensajes mucho más complejos que los mostrados. Estos mensajes generalmente in- forman sobre cómo constrnir una estructura hidimensional,cómo ordenar precursores durante la síntesis de las macromoléculas, dónde comenzar o terminar un proceso, etcétera. La información secuencial es muy estable, ya que está asociada con el nivel primario de organización, que es el más estable en la estructura de una macromolécula cualquiera que ésta sea. Pero este tipo de información no permite interacciones tridimensionales específicas, pues ella aparece en forma lineal.

La información conformacional por su parte está contenida precisamente en la estmctura tridimensional, es decir, en la conformación general de la macromolécula y sí permite interacciones específicai en el espacio. La forma característica que adopta una macromolécula le permite ir creando sobre so superficie sitios con una forma y distribución de grupos químicos orientados, de tal manera que permite la ubicación y fijación de otras moléculas cuya forma y distribución de grupos químicos sean com- plementarias al sitio superficial de la macromolécula. Estos sitios tienen un arreglo tan

+ Agente desnaturalizanle

Fig. 9.8. Desiiaturalizarión y renaturaliza- ciún. En i) se muestra In estructu- ra tridimcnsional de una niacronio- Iéiula que, al ser sometida a ia ac- ción dc un ncente drsnaturalirmte, adquiere una forma tutalniente desordenada coiiservando sólo cl nivel primario de oreaniracióti como sc muestra en b). En iiiu-

chas ocasiones cuando cl agenle desnaturalizante es retirado, la nio- Iéeula adopta de nuevo su forma original como se miiestru cn rl. El primer paso representa la dcsna- t i r r a l i z a r i h y el segundo la renatinralizaciún. E s t e segundo paso no sienipre es posible.

Page 131: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

estricto que algunas moléculas son capaces de alojarse en ellos y, una vez allí, permi- ten a la inacromolécula realizar sobre ellos una función específica.

Este fenómeno de interacción específica entre una inacromoléculii y otra biomolPcula recibe el nombre de reconocimiento niolecular y el sitio por donde se realiza sitio de reconocimiento, un ejemplo se muestra en la figura 9.9. La sustancia que se une a la macroniolécula recibe el nombre genérico de ligando.

Los sitios de reconocimiento tienen algunas propiedades comunes como: estar ubicados en la superficie de la inacromolécula, lo cual posibilita el acceso del ligando: poseer tina estructiira tridimensional derivada de la estructura tridiniensional general de la macroniolécula, que debe ser complementaria a la estructura del ligando; tener grupos químicos orientados en forma conveniente para interactuar con los grupos

químicos de la sustancia reconocida. y Iiacer que ésta permanezca unida a la macroinolécula.

La unión del ligando provoca canil>ios conforinacionales en la niacromolécula, los cuales permiten qiie se realice su función o iiiodulan la intensidad de ésta. Los ligandos pueden ser también macr»iiinléciilas, pero en ese caso la zona de contacto se limita a un sector preciso de la estructni.:~ y no a toda ella.

Al tratar el carácter tridiniensional qnerl6 estal>lecido qiie las estructuras de orden superior de las macronioléculas, sil conforniación general estaba deterniinada por la esti-iictura priniaria. Acaba de estal>lcceise que esas estructuras expresan un deteniiina- do tipo de información molecular. La primaria está vinculada a la secnencial, y las dc orden snperior a la conformacional; se infiere qiie la información conformacional está deterniiiiada por la inforinació~i secuencial. Se había señalado que tina de las fnncio- nes de la información secnencial era cómo construir determinadas estructuras tridiiiieiisioiiales que son las que albergan la información conforniacional; esta rela- ción entre los tipos de información inolecolar es uno de los fnndanientos más iiiipor- tantes en el f~iiicionaniicnto de los seres vivos.

Page 132: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Como fenómeno general, las macromoléculas tienden a agregarse unas con otras formando grandes estructnras supramacromoleculares, de una gran complejidad es- tructural y funcional cuyas masas molecolares alcanzan los d o n e s de daltons. Estas asociaciones pueden realizarse deforma covalente o no covalente y pueden formarse de manera espontánea o mediante un proceso asistido por otras macromoléculas. La existencia de estos agregados no contradice el carácter de uniformidad, pues las macromoléculas que se asocian no lo hacen con interrupción del eje covalente princi- pal, emplean grupos químicos laterales para el enlace. Caqi siempre en estos agregados se encuentran proteínas, de ahíque muchos se describan como formas conjugadas de las proteínas y resalten en el nombre el componente no proteínico; así existen nu&oproteínas, glicoproteínas y lipoproteínas.

La asaciación de moléculas de proteínas para formar grandes agregados supera el eoncepto de estructnra cuaternaria que es más Limitado. No puedeconsiderarse que los sistemasde microtúbulos o microfüamentos sean proteínas con estructura cuaternaria, sino verdaderos agregados mnltiproteínicos. Muchos de estos ejemplos serán estudia- dos en este libro. Las proteínas se asocian con ácidos nucleicos para formar los cromosomas, los ribosomas, los corpúsculos de procesamiento de los ARN y diferentes estructuras particuladas que intervienen en el proceso desíntesis y procesamiento de las proteínas.

La asociación de proteínas con polisacáridos produce h s glicoproteínas, de las cuales los ejemplos más sobresalientes son las que forman parte de la matriz extracelular.

Por último, pueden producirse agregados de proteínas con Iípidos que son las lipoproteínas. Aun cuando en realidad los Iípidos no son macromoléculas, éstos se encuentran asociados en forma de grandes complejos lipídicos, parecidos a como lo hacen las macromoléculas. La estructura de las membranas biológicas y de las grandes lipoproteínas sanguíneas constituyen ejemplos de agregados lipoproteínicos.

Como ya se ha visto, una de las propiedades más sobresalientes de las biomoléculas es qneaellas puede atribuirseles onafunción, a esto no escapan las macromoléculas; lo importante es que esta función está directamente vinculada con la estructura. Este vínculo es casi una ley del comportamiento de las macromoléculas biológicas.

El estudio cada vez más profundo de la organización estructural de las macromoléculas ha permitido ir identificando determinados patrones estructurales que están siempre relacionados con una función particular. Las modernas técnicas de secuenciación de los ADN en ocasiones ha llevado a tener completa la secuencia de aminoácidos de una proteína desconocida, pero a partir de esta secuencia se han deter- minado algunas características estructurales y funcionales de la proteína incógnita. Se ha sabido que son proteínas transmembranales, o que tienen sitios de unión con nucleótidos,o queactúan como proteínas quinasas, o quese unen con el ADN, etcéte- ra. Numerosos son los aspectos funcionales que pueden deducirsede la secuencia de aminoácidos, basados en el principio de la relación entre la estructura primaria, la conformación y la función. ES posible que llegue el día en que de una estructura pueda saberse su función o viceversa, ese ha sido el sueño de todos los bioqoímicos desde Los albores de esta ciencia.

Propiedades generales

Estas características generales antes mencionadas se manifiestan de formas dife- rentes en las macromoléculas, esas son las propiedades generales. A partir de esas

Page 133: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

prnpiedades Iia sido posible ir profundizando en el conocimiento de sus caracterís- ticas estructurales. A continiiación se estudiarán algunas de esas propiedades y se de,jará claro con cuál o cuáles de las características estructurales generales están relacionadas.

Difusión

Todas las moléculas ciiando son colocadas en el seno de un fluido experimentan iiioviiiiientos de traslación de un lugar a otro en todas las direcciones del espacio; este fenómeno recibe el iiombre de difusión. La velocidad de difusión está influida por diversos factores como la masa de la partícula. Cnando todos los demás factores se mantienen constante, la velocidad de difusión es una función decreciente de la masa dela partícula, osea.la velocidiid disminuye a medida quelaniasa aumenta: por lo que las macromoléculas exhiben velocidades niuy lentas de difiisiún; incluso existen equi- pos especialmente diseñados que permiten una estimación aproxinia(la de la masa iiiolecular a partir de las medidas de la velocidad de difusión.

La diálisis es el proceso mediante el cual una sustancia disuelta en un fluidn,que está dividido en 2 compartimentos separados por una membrana, es capaz de pasar de un compartimento al otro hasta que la concentración se i p d e en anibos coniparliinentos. La diferencia de conccntracidn en ambos lados de la membra~ia crea un gradiente de potencial químico que impulsa el nio\irniento de la sustancia a través de la menil~rana: esto es posible gracias a que la memlirana posee poros de tamaños muy pequehs, por kis cuales lasustancia puede pasar. El gran ~olunien niolwuiar de las inacromoléculas les impide pasar a travts de esos poros y por tanto no pueden dializar (Fig. 9.10).

Esta propiedad de las macromoléculas tiene importancia desde los puntos de vista biológico y del trabajo experimental.

Como se sabe, los organismos vivientes presentan conipartinientos que están separados unos de otros por membranas. Las células que son la unidad estructural y funcional de todos los seres vivos están separadas de su entorno por la membrana plasmática y aun dentro de las células existen compartinientos como el núcleo, las mitoconclrias, etcbtera, que están separados por niembranas del resto de la célula.

La imposibilidad de diálisis de las niacromoléculas permite que cada célula y cada compartimento subcelular posea su propia dotación de niacromoléculas, sin obli- gación de compartir el co~ijunto total de macroinoléculas del organismo, como seria el caso si estas sustancias atravesaran libreniente las niembranas.

Page 134: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Desde el punto de vista experimental la diálisis se usa en la purificación de macromoléculas de contaminantes de baja masa molecular. Para ello la preparaciún que contiene la niacromolécula que se está purificando se coloca en una bolsita de celofán y ésta en un recipiente por donde fluye agua; se genera así un gradiente de potencial químico para cada una de las sustancias que están disueltas dentro de la bolsita que las inipulsa a salir de ella; pero comoel líquido en el exterior está fluyendo, laconcentración en él deesasustancia essiempre cero y por muchasustancia quesalga las concentraciones en ambos lados del celofán no logran igualarse, sólo la macroniolécula no sale. Con un tienipo de diálisis lo suficienteniente prolongado íuiias 24 h) se puedc lograr un grado de purificación aceptable.

Sedimentación

La física establece que el peso de uiia sustancia es igual al producto de so masa inercia1 por Ia aceleración de la gravedad. Cuando sustancias niuy pesadas se colocaii en un fluido, con el transcurso del tienipo tienden a ir hacia el fondo del recipiente, o sea, sedimentan. Si se toma un poco de arena y .se dispersa en agua, al poco tiempo casi toda la arena Iiahrásedimentado. Si se quiere aumentar la velocidad de sedinientación se puede colocar el recipienteen tina centrífuga y hacerlo girar agran velocidad: citosedebe a que el movimiento giratorio que realiza la centrífuga incrementa el valor del campo gravitacional. Si en lugar de granitos de arena Iiubiera en el recipiente partículas más pequeñas, bastaría aumentar la velocidad de la centntiiga para sedimentarlas; esto signi- fio?que,en principio al menos3cualquier sustancia por pequeña quesea puedeser sedi- mentada siempre y cuando se disponga de una centnfnga capaz de alcanzar la velocidad iiecesarka. En estos momentos existe un límite práctico para ese objetivo y en los equipos modernos sólo se han alcanzado velocidades suficientes para la sedinientaciúli de las macromoléculas, por ser precisamente las niuléculas mas grandes.

En las centrífugas la velocidad de sedimentación depende de nunierosos factores, como la forma y niasade la ~iarticula. En general la velocidad de sedimentación cs una función creciente de la masa de la partícula. Corno unidad dc velocidad de sedimenta- ciún se usa el coeficiente de sedimentación S, en honor de TheSvedDerg, pionero en este campo,quees igual a 10-'%. Mientras niiiyor sea el valor de la niasa de la partícula niayor será el valor de S. En la tabla 9.1 se relacionan algunas macroinoléciilas bioló- gicas con su peso molecular y su coeficiente de sedinientación.

Tabla 9.1. Masa5 n~oleculares M) y coeficiente de sedimentación (S) de alg~inasproteín;~

Proteína

Citocromo c

Mioglohina

Page 135: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En muchas ocasiones se emplea el valor del coeficiente de sedimentación S como indicativo de masa molecular. La figura 9.11 presenta un resumen esquemático del procedimiento. Esta propiedad delas macromoléculas también ha sido empleada en el proceso de purificación.

Fig. 9.11. Centrifugarión. Una solución que contiene "ni rnacramolécula (eír- culos rojos) y otras moléculas más pequeñas se colocan en un tubo de centrífuga. El tubo se hace 8- rar a gran velocidad, con lo cual se aurnenfa considerablemente el campo gravitacional. Después de un tiempo prudencial las mairomoléeulas han ido a sedi- P, . mentarse en el fondo del tubo, mientras las moléculas pequeñas permanecen en solución.

Quizás la más sobresaliente manifestación del carácter macromolecular es que estas moléculas pueden ser visualizadas por medios ópticos especiales, como el mi- croscopio electrónico. Con el grado de perfeccionamiento alcanzado por estos equi- pos ha sido posible la obtención de microfotografias, donde puede observarse la forma de algunas macromoléculas, especialmente las más grandes, como algunas enzimas, el ácido desomrribonucleico. etcétera.

Los caracteres polimérico y unsonne se pueden evidenciar mediante la hidrólisis. La adición catalítica de agua al enlace polimerizante provoca la ruptura de éste, que con un tiempo prolongado y condiciones adecuadas puede lograrse la descomposi- ción total del polímero en sus monómeros constituyentes.

Para la hidrólisis se pueden emplear 3 tipos de procedimiento en dependencia del catalizador empleado, y en cada uno se obtienen resultados diferentes. La hidrólisis puede realizarse en medio ácido para los 3 tipos de macromoléculas y es el medio más empleado; sólo produce alteraciones de algunos aminoácidos durante la hidrólisis de las proteínas.

La hidrólisis alcalina produce mayores alteraciones deaminoácidos y noafecta a los ácidos desoxirribonucleicos. La hidrólisis enzimática suele ser parcial, pues la especificidad de las enzimas no le permite a éstas actuar sobre todos los enlaces presen- tes en una molécula. Aun cuando nin guno de estos procedimientos por separado per- mite en todos los casos la hidrólisis total de la macromolécula,una adecuadacombina- ción de todos ellos puede dar los resultados deseados.

Difraea6n de rayos X

La técnica más empleada para el estudio de la estructura tridimensional de las marromoléculas esla cristalografia de rayos X; para su empleo se requiere la obtención de la macromolécula en estado cristalino y después el cristal obtenido se somete a la acción de los rayos X durante un tiempo prolongado (72 h). Durante su recorrido por el interior del cristal la trayectoria de los rayos se desvía por los núcleos delos átomos

Page 136: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

que componen el cristal y esa desviación es mayor mientras mayor sea el tamaño del núcleo. Una vez que los rayos X atraviesan el cristal van a incidir sobre una placa recubierta de una emulsión fotográfica que se vela por la incidencia del rayo. Las placas se cambian cada un número de minutos fijados de antemano, además, durante ese tiempo el cristal se hace girar de forma que se obtienen vistas desde diferentes ángulos. Al concluir el experimento se obtiene una colección de placas con numerosos Diintos que indican los sitios donde incidieron los rayos X desviados, comose muestra en la figura 9.12.

E1 análisis de estos puntos para deducir la estructura tridimensional es extreniada- mente comple,jo y en los primeros años de aplicarse esta técnica podía dorar rncses, pero hoy los cálculos se hacen niuclio ni5s rápido con el empleo de las computadoras. Las imágenes que se obtienen presentan un nivel de resolución de varios nanónietros, cuando se dice que una imagen tiene un nivel dc resolución de un nanóinetro, esto significa que2 puntosque estén separados por una distancia menor que un nanómetro, en la figura se verán como uno solo. Hoy di¿ se cuenta con u11 huen núniero de macromoléculas estudiadas por este procediniiento.

Métodos empleados en el estudio de las macromoléculas

Numerosos son los métodos empleados en el estudio de las macronioléculas de los cuales sólo se esbozarán los principales. Lo primero es separar la inacroniolécula del

Page 137: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

142 fMnqairrPnca Mádicn

resto de los componentes celulares, después purificarla lo más posible y, por último, caracterizarla. A continuación se describirácómo se lleva a cabo cada etapa en líneas generales.

1. Seleccionar el material biológico con el cual se ha de trabajar; se obtiene algún fragmento deun tejido de un organismo viviente que sea particularmente rico en la macroniolécula que se pretende purificar. Cuando se trata de macromoléculas muy especificas se debe obtener el organismo que la sintetice, aunque no sea muy rico en ella.

2. Poseer un método que permita siempre localizar dónde está la macromolécula que se pretende purificar; esto es necesario, pues en general todos los procedimientos de purificación consisten en separar la preparación original en2 o más fracciones, por lo que se requiere localizar en cuál de ellas está la macron~ulécula de interés.

Se procede a la ruptura de las células por los métodos habituales de homogeneización. El material biológico se puede triturar con la ayuda de un mortero o con equipos diseñados para eso, cuyo objetivo fundamental es romper las paredes o membranas celulares y dejar expuesto el contenido intracelular. Este proceso siempre se realiza a bajas temperaturas, en un líquido de incubación con una composición salina adecuada y un bufferque asegure la constanciadel pH durante todo el proceso. Al material obtenido como resultado de este proceso sele da el nombre de homogenato. Es conveniente el empleo de inhibidores de lasenzimas que h i d m b la macromolécula que se pretende purificar, pues una vez rnta la estructnra celular estas ennmas pueden atacar a la macromolécula deseada.

Separación de la macromoléeula

Los métodos más usados con este propósito son la ultracentrifugación, la cromatografia y la electroforesis.

En la ultracentrifugación el homogenato se coloca en un tubo de centrífuga que se hace girar a velocidad elevada, con lo cual se produce un incremento notable del campo gravitacional. Bajo la acción de este campo las moléculas pesadas son impulsa- das hacia el fondo del tubo, con una velocidad que es una función de varios factores como la forma y el peso molecular. Al final el homogenato queda dividido en 2 fraccio- nes: el sedimento y el s0brenadante.E~ necesario entonces localizar en cuál de ellas se encuentra la macromolécula buscada.

Una variante del método puede ser más útil. Se procede a realizar una primera centrifugaciún a velocidad baja para eliminar los restos de membranas o paredes celu- lares que deben sedimentar. El sobrenadante se somete a una nueva centrifiigacibn pero ahora a velocidad mayor, Si la macromolécula buscada queda en el snbrenadante se puede repetir el procedimiento a velocidad mayor aún. La lógica del procedimiento consiste en ir eliminando los componentescelulares que noson de interés y ohtener una preparación en la cual la concenkación de la macromolécula buscada sea cada vez mayor.

Otra variante del método permite obtener mejores resultados. Si a la soluciún donde va a centrifugarsese le añadeuna molécula pequeña de rápida difusión, como el CsCl o la sacarosa, ésta se distribuye en el tubo y crea un gradiente de densidad. En esas condiciones los componentes iiiacromoleculares del homogenato se moverán en el tubo de centrífuga hasta qne su densidad coincida con la del medio. Moléciilas con diferente densidad se equilibrarán en diferentes posiciones y se pueden obtener con el sencillo procedimiento de perforar el fondo del tubo y recoger pequeñas alícuotas de la solución.

Page 138: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

de esperar que sólo con el empleo de la ultracentrifugación no se logre la puficación total de la macromolécula y se recurre entonces a la cromatografía.

En la cromatografia, la fracción obtenida por ultracentrifugación, que contiene la macromolécula, se adsorbe sobre un sólido embebido en un solvente adecuado y ,empaquetado» en un cilindro de vidrio de manera que se forme una columna. El &do empleado, la longihid y el diámetro de la columna dependen de la macromolécula quese purificar. Una vez depositada lamuestra en la columna se hace pasar

solución apropiada para separar los componentes de la mezcla. Este procedimieo- - - to recibe el nombre de elusión y al líquido que sale de la columna se le da el nombre de &ato. Pequeñas alícuotas del eluato se van recolectando en tubos de ensayo, de manera que al finalizar, se pueden tener varias docenas de estos tubos. Un registro general, como puede ser la absorción luminosa en determinada longitud de onda, indica dónde se encuentran las macromoléculas del mismo tipo de la que se está purificando. Si los resultados son llevados a una gráfica se obtiene una curva con vanos picos (Fig. 9.131.

Fracción del civaiu

Fig. 9.13. Cromatografia. En a), a In irquierda se vc una columna que eontienc un soporte sólido sobre el cual se ha colocado una solución que contiene varios componentes. Ir.1 tubo está conectado a un recipiente que contiene una siiluribn para la elusión. A medida que el liquido del recipiente superior pasa a trav& dc lii coliimna arraslra consigo los componentes de la mezcla, a vciacidades diferentes, can lo cual Fe logra sir scpararibn. En b) se miicstra la gráfica formada por varias picos, la que sc obtiene cuando sc determina la concentración de mocramoléculas en cada fraicUn del elunto. Un método específico permitirá identificar en cuál de esos picos se encuentra la niarromolécula que se trata de purificar.

Es necesario entonces utilizar el método de identificación de la macromolécula Para determinar en cuáles de los hibas se encuentra, pues casi siemprees en más de uno. Los elnatos que contienen la macromolécula pueden reunirse en uno solo y realizar un nuevo procedimiento cromatográfico, variando el sólido empleado y las condiciones de elusión.

Page 139: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 9.14. Electroforesis. Sohre un soporte sólido se coloca la mezcla dc va- rios componentes. El soporte está en contacto ron 2 cubetac, donde sc ha depositado una solución hu- Rer para mantener d pH constan- te. En cada cubeta está sumergido un electrodo. Alaplicar la corriente eléctrica los componentes de la nlezrla se niueven según la inten- sidad de su carga eléctrica, y pur- den separarse ronio se muestra en la parte inferior de ¡u. figura.

La electroforesis es parecida a la cromatografía, también la mezcla se adsorbe sobre un soporte que en este caso es un gel en contacto con un bufferde pH fijo. La fuerza que hacemover Iss partículas es un campo eléctrico generado por una fuente de poder, conectado a través de electrodos que están colocados en los extremos del gel.

Este procedimiento puede ser empleado en la separación de macromoléculas. porque las proteínas, los ácidos nucleicos y los polisacáridos poseen grupos químicos ionizables que les conceden carga eléctrica. Estas técnicas están muy desarrolladas para las proteínas y los ácidos nucleicos. La movilidad de las moléculas varía inversamente con su masa molecular y directamente con su carga eléctrica neta.

Los geles más usados son los de agar, almidón, poliacrilamida y agarosa en depen- dencia de la macromolécula que se debe purificar. Paralocalizar las moléculas, el gel se tiñe con algún reactivo específico que dé coloración visihle o sea transiluminado con luz ultravioleta. Después de revelar la electroforesis existen vanas bandas que indican la posición de un número igual de macromolécnlas en la solución de partida. Hay que emplear entonces el método de determinación específico para la macromolécula bus- cada (Fig. 9.14).

En muchas ocasiones las macromoléculas se obtienen en forma de soluciones muy diluidas y es necesario concentrarlas; para ello existen equipos especiales de ultrafiltración o puede recurrirse a la diálisis, como ya fue descrito. Para conservar la macromolécula purificada se puede aplicar el proceso de liofilización.

Criterios de pureza

Una vez tenninado el procedimiento de purificación hay que tenerla certeza de la pureza de la macromolécula obtenida; para ello pueden emplearse los mismos procedi- mientos ya descritos de purificación, pero en todos los casos se deben obtener resulta- dos que confirmen que la macromolécnla está pura. Por ejemplo, en la ultracentrifugación con gradiente de densidad se debe obtener una sola banda con una densidad precisa; en la cromatografía se debe obtener un pico único, y una sola banda en la electroforesis, asícomo de igual forma en todos los procedimientos realizados. No existe un criterio de pureza mejor que los demás, sólo la utilización de varios de ellos puede llevar a la certidumbre de los resultados.

Caracterizar la macromolécula significa describir sus propiedades más sobresa- lientes. Uno de los primeros pasos es la determinación del peso molecular, que puede hacerse por ultracentrifugación analítica o por métodos especiales de electroforesis.

144 M@dicr

Page 140: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

~ ~ ~ ~ u é s se pasa al estudio de la estructura tridimensional. Para el estudio de la se utilizan varios procedimientos que son diferentes para cada tipo

de macromolécula y que serán estudiados en los capítulos correspondientes. En rela- ,idn con la estructura tridimensional se utilizan métodos de espectroscopia y, por a h o , la difracción de rayos X o la resonancia magnética nuclear que aportan elemen- tos suficientes para el conocimiento de la organización espacial de la macromolécula.

Es conveniente la construcción de un modelo de la macromolécula para compa- rarlo con losdatos obtenidos, de forma que se tenga una idea cada vez más aproximada de la estructura tridimensional de la macromolécula purificada. En este momento se puedeintentarlacorrela~iÓn entre la estructura y la función de la macromolécula, para ello es necesario la realización de otro conjunto de procedimientos que evidencien los aspectos funcionales. No es el momento de describir esos procedimientos; muchos de ellos serán estudiados en otros capítulos.

Una incógnita

Una pregunta que siempre se han hecho los investigadores es jpor qué Ias macromoléculas son tan grandes?

Una primera respuesta tiene que ver con un aspecto fisico del problema. Los seres vivos están formados por células separadas de su entorno por una membrana a través de lacual se establece constantemente un flujo deagua. Este flujo estágobernado por la presión osmótica en ambos lados de la membrana y, a su vez, la presión osmótica depende del número de partículas disueltas. Una macromolécula por muy grande que sea es una partícula y por tanto ejerce una presión osmótica mínima; sin embargo, ella puede contener miles de precursores unidos, cada uno de los cuales si estuvieran independientes se wmportarían como una partícula y generarían una presión osmótica elevada, por ejemplo, una molécula de glocógeno puede contener unidas 3 000 molé- culas de glucosa; de no estar unidas las moléculas de glucosa generarían una presión osmótica 3 000 veces superior al glucógeno que las contiene a todas. De esta forma las macromoléculas contribuyen a regular el flujo de agua entre la célula y su entorno.

Otro aspecto tiene que ver con la forma de funcionar de estas moléculas. El meca- nismo básico es el reconocimiento molecular. Las proteínas, por ejemplo, para crear un sitio de reconocimiento requieren dela participación de no menos de 22 aminoácidos; para mantener en posiciones espaciales hien definidas a esos aminoácidos se requiere el concurso de otros muchos. Si se tiene en cuenta que una misma proteína puede poseer varios sitios de reconocimientos, entonces se entenderá por qué son necesarios tantos precursores en su estructura. Por otra parte el ADN para codificar uno de los rwJnoácidos de una proteína necesita de 3 nucleótidos, lo cual significa que para un sitio de reconocimiento requiere al menos 66, pero el ADN tamhién requiere de se- cuencias específicas de nucleótidos que funcionan como señales que indican los pun- tos donde comienza y donde termina la síntesis de los ARN, así como de motivos estructurales que sirven de lugar de unión para proteínas que controlan su actividad. Igual sucede con otras moléculas informacionales como los ARN. En resumen que son las características tridimensionales y multifuncionales las que condicionan el tamaño que tienen estas moléculas, funciones que al no ser necesarias en los cuerpos carentes de vida hacen que las macromoléculas sean componentes exclusivos de los seres vivos.

Resumen

El aspecio m&F s o b d e n t e en la composición de los seres vivos es la existen- cia de las macromoléculas; éstas presentan una estructura tridimensional muy compleja que, a primera vista, parece inaccesible al entendimiento humano. Las th i ras experimentales aplicadas a su estudio en las Últimas décadas han hecho

Page 141: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

posible idenüticar algunas regularidades en su organización estructural, lo que se ha denominado principio de organización de las macromolénilas.

Todas las biomammoléculas presentan una masa molecular elevada que se evidencia por su bqja velocidad de difusión, su imposibiüdad de di&¡¡, poder de sedimentación al aumentar el a m p o gravitacional y ser visible por métodos ópti- cos wmo el microscopio electróniw. Todas ellas se forman por la polimerización de precursores de la misma clase, mediante un enlace covalente que crea un eje covalente principal, con una estruetura monótona que diferencia una mammolécula de otra.

Por otra parte la variedad de los prenirsores c m una zona de diversidad que diferencia a una macromolénila de otra del mismo tipo. Los diferentes procedi- mientos de hidróllsis pueden separar los precursor& comprobando el &cter polimérico y el uniforme. Las macromoleeulas presentan estruchu9s espaciales que, si se forman por interacciones entre los elementos de la zona monótona, tienden a adoptar formas regulares con patrones bien establecidos como los plegarnientos y las hélices, pero, si dependen de la zona variable, tienden a hacerse irregulares y conñeren a la macromolécula una estructura tridimeosional única.

Los experimentos de desnaturaüzación y renaturaüzación wnñrman que en la mayoría de los casos la estructura tndimensional está determinada por la es- tructura primaria. A estos niveles estructurales está asociada la información moleeular, que puede ser de tipo secuenaal o conformacional, esia última, opera mediante el mecanismo del reeooocimiento molenilar. Las macromolénilas tien- den a agregarse formando estructuras supramacromoleculares de una gran com- plejidad, lo que permite la realización de funciones muy especializadas.

Para el estudio de las mammoléculas se emplean numerosos métodos, que consisten en la obtención de un hornogenato a partir de un material biológico, que después se va fraccionando por ulíracentrifngación, cmmatograña y electmforesis hasta tener la macmmoléeula en estado de pureza La caracterización estructural comienza con la determinación del peso molecular, seguida del estudio de la estruc- tura primarla y de la organización iridimensional. La wnstrueeión de modelos a partir de los datos experimentales permite aproximarse cada vez más a la estruc- tura real de la macmmoléeula y comenzar la correlación entre la estructura y la función.

La organización molenilar en forma de macromoléfulas le proporciona a los seres vivos determinadas ventajas como: la regulación del flujo de Líquidos entre el organismo y el entorno, así como la realización de funciones múltiples que wn estructuras más simples no se lograrían.

Ejercicios

1. ¿En qué orden de magnitud se encuentra el peso molecular de las macromoléculas? 2. ;Qué significa que las macromoléculas tienen carácter polimérico? ¿Cuál es la

importancia de ese carácter? 3. ¿Por qué se dice que la5 niacromoléculas tienen carácter unifornie? 4. ¿,cómo pueden demostrarse experimentalmente los caracteres poliinérico y

uniforme? 5. Una estructura biológica está compuesta de 2 subunidades de 8 S y 14 S, respecti-

vamente. ¿,Al centrifugar la partícula completa debe obtenerse un coeficiente de sedimentación de 22 S? Explique su respuesta.

6. ¿Por qué cree usted que como regla, las macromoléculas biológicas no presentan ramüicacioues?

7. ¿En quéconsiste la información molecular y cuáles son sus formas principales?

Page 142: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

8. ¿Pudiera una niacromolécula que no tenga informaciún secueiicial poseer informa- ción conformacional? :.Sería válido igualmente el caso contrario?

9. ¿En qué consiste el fenómeno de reconocimiento niolecular? ;Con cuáles de los tipos de inforniación molecular está vinculado directamente?

10. La tendencia a la agregaciún es unacaracterística general de las macromoléculas. ¿La existencia de las nucleoproteínas, glicoproteinas y lipoproteíiias no contradi- ce el carácter uniforme de las macromoléculas? Explique su respuesta.

11. Si usted desea purificar una macroinolécula, cuáles son los requisitos previos que debeconocer antes decomenzar el procedimiento.

12. En los3 capítulos que siguen se estudian en detalle las niacromoléculas. Cuando estudie cada uno de ellos diseñe un procedimiento para la purificaciún de una proteína,de un ácido nucleico y de un polisacárido.

Page 143: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los glúcidos son las biomoléculas más abnndantes en la naturaleza, en particular los polisacáridos cuyas funciones más generales son: almacenamiento, estructural y reconocimiento.

En el reino vegetal representan la niayor parte de su peso seco, no asíen los tejidos animales. En el hombre reoresentan menos del 1 %.

Se denominan polisacáridos aquellos polímeros que por hidrólisis rinden más de 10 moléculas de monosaeáridos. Oligosacáridos cuando rinden de 2 a 10 moléculas.

Los polisacáridos con función de almacenamiento son: el almidón, en los vegeta- les y el glueógeno, en los animales. Entre los que poseen función estructural se en- cuentran: la celulosa, en los vegetales; la quitina, en los artrópodos, y los glicosaminoglicanos, en los vertebrados. Estos últimos confieren protección y soporte a las células, tejidos y órganos. Los que fornian parte de las membranas biológicas tienen función de reconocimiento;participan tanto en el reconocimiento interccliilar, como en el de sustaucias ajenas al organismo. Cuando se alteran los mecanismos de reconocimiento, pueden dejar de identificarse como propias determinadas moléculas del organismo.

Las importancias biológica y médica de los polisacáridos,justifican el estudio de sus estructuras. funciones y ubicación.

Un oligosacárido está constituido por diferentes monosacáridos, generalmente sustituidos, unidos mediante diferentes enlacesde los tipos a J. P; ambas caracte- rísticas determinan su secuencia informacional, por ejemplo, 3 hexosas diferen- tes, enlazadas por enlaces glic.osídicos diferentes, pueden formar más de 1 000 trisacáridos diferentes.

A pesar de ser millones las posibilidades teóricas que predicen la existencia de moléculas diferentes de oligosacáridos, en la realidad existe un número limitado,conio consecuencia de la especificidad y poca variedad de las enziinas que los sintetizan.

Los oligosacáridos, moléculas que poseen desde 3 hasta 10 monosacáridos, casi siempre aparecen unidos a proteínas y a lipidos, formando las glicoproteínas y los glicolípidos, a los cuales alteran su polaridad y solubilidad, debido a que contienen agmpaciones altamente hidrofilicas.

Page 144: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los oligosacáridos constituidos por 2 monosacáridos o disacáridos constituyen la unidad básica estructural de los homopolisacáridos y de los glicosaminoglicanos o mucopolisacáridos ácidos.

Los disacáridos están constituidos por2 monosacáridos unidos mediante enlace glicosídico (capítulo 7).

Los homodisacáridos rinden por hidrólisis 2 monosacáridos del mismo tipo, a este grupo pertenecen la maltosa, la isomaltosa, la celobiosa y la trealosa. En los heterodisacáridos, se obtienen monosacáridos diferentes, aquí encontramos la lactosa y la sacarosa.

Maltosa. Es un disacárido integrado por 2 moléculas de a-D-glucosa unidas por enlace glicosídico a 1-4; es un glucósido, su fuente principal es la hidrólisis parcial del almidón y del glucógeno, que se produce en el tracto gastrointestinal del organis- mo animal, durante el proceso de digestión.

Jsomaltosa. Es un disacárido integrado por 2 moléculas de a-D-glucosa unidas por enlace glicosídico a 1-6; es un glucósido, su fuente al igual que la maltosa, es la hidrólisis parcial del almidón y del glucógeno.

Lactasa La lactosa es un disacárido integrado por una molécula de P-D-galactosa y otra de a-D-glucosa unidas por enlace glicosídico P 1-4; es un galactósido, porque la galactosa brinda su hidroxilo anomérico al enlace acetálico. Su fuente es la leche, donde existe en forma libre entre 2 y 6 %. Sólo se sintetiza en la glándula mamaria durante la lactancia.

CH20H CH20H

Page 145: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Sseanrsa. Es un disacárido formado por una molécula de a-D-glucosa y otra de p-D-fmctosa, esta última en su forma furanósica, unidas por enlace glicosídico a 1-2 ó p 2-1; o sea, ambos hidroxilos anoméricos forman parte del enlace acetálico, por lo que esasu vez un a-glucósido y un p-fructósido. Su fuente principal es la caria de azúcar y la remolacha, también está en el resto de las plantas, pero en cantidades menores. En muchas plantas constituye la forma principal de transporte de azÓcar,desde las hojas hacia otras partes. Los animales superiores nola pueden sinte-. Es importante en la dieta humana, usada como edulcorante.

Celohiosa Es un disacárido integrado por 2 moléculas de P-D-glucosa unidas por enlace glicosídico P 1-4. En este caso el enlace es de tipo P, a diferencia de la maltosa, por ejemplo. Su fuente es la hidrólisis de la celulosa.

'Ikalw. Es un disacárido integrado por2 moléculas de a-D-glucosa, unidas por enlace glicosídico a 1-1; es uno de los principales constituyentes de la hemolinfa de los insectos, en los que actúa como reserva energética.

CH20H HOCH,

OH

a-D-~IUCOS~

Importan& de los disaciúidos

Los disacáridos maltosa. isomaltosa, Jactosa v sacarosa son I hidrolizados a nivel del intestino delgado, por enzimas disacaridasas específicas, localizadas en el borde en "cepillo del enterocito", desde donde sus monosacáridos constitnyentes ingresan al organismo y sirven principalmente de fuente de energía.

Page 146: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Son proteínas con,jiigadas, cuyo contenido glucidico puede ser desde 1 % a más de 85 Yo del peso, ya que pueden contener desde varios residuos glucídicos basta numerosas cadenas laterales de oligosacáridos lineales o raniificados unidos por enla- ce covalente.

Muchas de las proteínas de las membranas plasmáticas son glicoproteínas, por ejemplo la glicoforina dela membrana eritrocitana y el receptor de insulina; también son glicoproteínas algunas hormonas, como la goiiadotropina coriónica y todas las proteínas plasmáticas de los humanos, excepto la albúmina. En el caso de las glicoproteínas soluhles,la cadena oligosacárida de la mayoría termina en ácido siálico. La pérdida del ácido siálico determina el reconocimiento por receptores hepáticos específicos de estas asialoglicoproteínas, su captación y posterior degradación intralisosomal.

Por ejemplo,la ceruloplasmina es una sialoglicoproteína plasmática que trans- porta cobre; la pérdida del ácido siálico la convierte en una asialoglicoproteína, que permite su eliminación de la sangre por ser un probable signo de envejecimiento molecular que determina su destrucción y posterior reemplazo.

En otros casos, durante la síntesis de proteínas, la unión de un oligosacárido en particular eslo que va a determinar su destino ulterior, que puede ser hacia un organelo subcelular específico o en la superficie externa de la membrana plasmática; por ejem- plo, la adición de manosa-6-fosfato al extremo de la cadeua oligosacárida de determi- nadas glicoproteínas enzimáticas condiciona que sean transportadas a los lisosomas.

Principales funciones de las cadenas de oligosacáridos en las glicoproteínas:

1. Modulan propiedades fisico-químicas como solubilidad, viscosidad, carga y desnaturalización.

2. Protegen contra la proteílisis (intra y extracelular). 3. Intervienenenla inserción dentrodelas memhranas,en lamigración celular,distri-

bución y en la secreción. 4. Intervienen en el desarrollo embrionario y en la diferenciación (interacción entre

células normales). 5: Pueden intervenir en los sitios de metástasis, proliferación cancerosa en tejidos

diferentes al portador del cáncer primario (interacción entre célula normal y célula cancerosa).

Existen enfermedades por deficiencias genéticas en la actividad de glicoproteiiias hidrolasas lisosómicas específicas; entre ellas se encuentran la nianosidosis, fucosidosis y sialidosis, que tienen como denoniinador común el retardo mental. Otro ejemplo es la enfermedad de células 1 , los pacientes no poseen la enzima que añadc la manosa-6-fosfato a las enzimas lisosoniales; estas glicoproteína~, al no poseer la señal de reconocimiento, no pueden ser orientadas correctamente, por lo que los lisosomas deestos pacientes carecen de casi la totalidad de sus enzimas.

Page 147: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En los gangliósidos, los oligosacáridos constituyen la parte polar de su cabeza (capítulo 13). Estos oligosacáridos también son informacionales y contienen ácido siálico; al formar parte de los Iípidos de las membranas plasmáticas pueden ser impor- tantes en la comunicación, el contacto intercelnlar, formando parte de receptores celu- lares y como antígenos, por ejemplo, los grupos sanguíneos ABO (capítulo 63).

Los polisacáridos son polímeros de monosacáridos unidos mediante enlace glicosídico, poseen peso molecular elevado, son estables en medio acuoso y, a dife- renciade los ácidos nncleicos y las proteínas, no tienen un número exacto de monómwos. Difieren entre sí en el tipode monosacárido que lo constituyen y el tipo deenlace que los une, en la longitud de sus cadenas, en el grado de ramificación y en su fnnciún biológica. Se clasifican en homopolisacáridos y heteropolisacáridos.

Los homopolisacáridos son polimeros del mismo monosacárido; entre los princi- pales se encuentran: el almidón, el glucógeno, la celulosa, la pectina y la quitina.

Almidón. El almidón está formado por 2 tipos de polímeros: la amilosa, de 15 a 20 % y la amilopectina,de SO a 85 %.

La amilosa es un polímero lineal largode a-D-glucosas unidas mediante enlace glicosídico del tipo a 1-4,Io cual determinan que adopten una estructura helicoidal, cuyo peso molecular puede variar desde unos pocos millares hasta 500 000.

La amilopectina es un polímero ramificado, cuyo peso molecular puede llegar hasta 100 millones; los residuos sucesivos de glucosa están unidos por enlaces glicosídicos a 1-4; pero cada 24 a 30 ~ s i d u o s existen puntos de ramificación median- te un enlace glicosídico del tipo a 1-6.

Page 148: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 10.1. Estructura del glueógetio. a) Es- tructura pcneral. H = único rcsi- duo de glucosa que tiene el 011 anomériio ( C , ) libre (cn viole- ta). Los residuos señalarlos en roja tienen el OH d d C, libre. 1.0s números se refieren al orden rii que las raniilirariories se van desarrollando. 1.0s residuos sr. ñalados en azul son los puntos de ramifiracióu. h) Aniplifica- ción de la estructura en un punto de ramiflcación.

Esta tnolécula se encuentra muy hidratada porque sus abundantes grupos hidroxilos, expuestos, forman puentes de Iiidrógeno con el agua.

Cadena principal a( 1-4)

Función. Es el polisacárido de reserva de energía más importante en las cGlulas vegetales. La mayor parte de estas células tienen un conjunto enzimático que Ics permite sintetizar el almidón, especialmente abundante en tuhbrciilos como la papa y en semillas como el maíz; constituye uno de los glúcidos más ahuudante en la dieta.

Gluwgeno. Es un polímero ramificado, con peso molecular de varios millones, cuyo precursor es la a-D-glucosa que se unen por enlace glicosídico a 1-4, lo que permite el crecimiento del polímero en sentido lineal y por enlaces glicosídicos a 1-6, que facilita el establecimiento de ramificaciones cada 8 ó 12 residuos monosacáridos (Fig. 10.1). Al ser una moléculamuchomás ramificada que la amilopectinaes mucho más soluble; puedecontener hasta 10 % de glucosainina.

a)

Región extcnor 5 5

5 5 5 5

5 5 5 5 5

5 i,r

4 4 4 4 4

Región interior

Estructura supramacromolecular. Con el microscopio electrónico fue posible observar que las partículas de glucógeno tienen 3 niveles deorganizaciÚn,cada uno de elloscon una morfología y tamaño característicos. Lns unidades más grandes, las partículas a, son esferoidales y miden entre 50 y 200 nm, con un promedio de 150 nm.

Page 149: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

,,~

Estas partículas están formadas por unidades más pequeñas, -las partículas B, redonda5 o poliédricas y con un diámetro de 30 nni. En el interior de las partículas P existeuna estmctura más fina, las partículas y, constituida5 por bastones de 320 nm. Las diferen- tes unidades del glucógeno se disocian por la acción de ácidos.

Función. Es el Iiomopolímero de reserva más importante en la5 células animales. El almacén de glucágeno es limitado; es especialmente abundante en el te,jido hepáti- co, hasta el 10 á 12 % de su peso húmedo, y en el múseulo esquelético hasta el 2 %.

Celulosa La celulosa es un Iiomopolímero lineal, cuyo precursor, la B-D-glucosa está unida mediante enlaces glicosídicos del tipo B 1-4.

La conforniación más estable es aquélla en qne cada precursor se halla girado 180 con respecto al precedente formándose una cadena recta y extendida.

Varias cadenas adyacentes pueden forniar una red estabilizada por puentes de hidrógeno intercateiiarios, que da lugar a fibras supramacromoleculares lineales y estables de gran resistencia a la tensión.

Esta sustaneia fibrosa, resistente e insoluble, por lo que posee función estructu- ral,se encuentra en las paredes celulares de algunas plantas, en particular tallos, tron- cos y en todos los tejidos vegetales.

Peetina JMAforinada por ácido D-galacturónico unido por enlace glicosídico cr 1-4, contiene mucbos carboxilos en forma de metilésteres.

COOH COOH

Función. Presenteen las frutas,forma geles con la sacarosa. Por ser muy porosa, adsorbe gran cantidad de sustancias tóxicas. Facilita la coagulación de la leche en la cavidad gástrica, en forma de grumos pequeños y blandos. Por ser hidrófilas, contribu- eoyen a la formación de un bolo fecal más voluminoso. Ayuda a restablecer la flora intestinal al favorecer la germinación intestinal de algunas especies bacterianas anta-

' O 4~~

gónicas a las patógenas. Por estas propiedades se usa con alguna frecuencia en el NH NH

tratamiento de varios tipos de diarreas infantiles y determinadas colitis del adulto. I c=o

I c=o

Qu¡t¡na Es un homopolímero lineal cuyo precursor es la N-acetil-D-glucosamina, I I unido mediante enlace glicosídico de tipo 1-4; este precursor es una B-D-glucosa CH, CH3

que tiene en C-2 nn grupo amino acetilado, en vez de un hidroxilo. N- acetilglucosamina N- acetilglucosamina

Es el componente principal de los exoesqueletos duros de artrópodos como: lan- gostas, cangre,jos, insectos, hasta completar un millón de especies, lo que lo hace el segundo polisacárido más abundante en la naturaleza.

Page 150: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 10.2. Peptidoplirano de la pared celu- lar de la bacteria pram-positiva Staphyloroeeits aureus. Los ptptidos (en verde y roja) se unen por cnlare tovalenke al árida N-acdil-murámira y entrelazanlas 2 cadenas de heteropolisacáridos. Los péptidm están constituidos par D y L aminoácidos. laoglu se re- liere al isoglutámico, quc forma el cnlace peptidico a través dcl grii- po y carboxilo de la cadena latc- ral. GlcNAe son las iniciales d d N-aretil-glucosaniina y MurNAc las del N-aielil-murániica.

Las células bacterianas poseen unamembranaexterna protectora y una membrana plasmática interna; entre ambas membranas se encuentra una capa fina y resistente de peptidoglicanos, que le confiere a la célula su forma y rigidez características. Un peptidoglicano está formado por un heteropolisacárido unido por enlace covalente a cadenas peptidicas.

R I polisacárido está constituido por unidades alternas de N-acetil-glucosamina y ácido N-acetil-murámico unidos por enlace P 1-4. Estos polímeros tienen una conformación extendida, consecuencia del enlace P, y los péptidos a él unidos permiten el entrecruzamiento de varios polimeros mediante enlaces de tipo covalente (Fig. 10.2).

La enzima lisozima catalira la ruptura de los enlaces P 1-4 establecidos entre estos 2 precursores. Esta enzima se encuentra en las lágrimas, donde es probable que actúe como protección contra las: células bacterianas al destmirlas. También sintetizan estaendma, algunos virus bacterianos,loquegarantizasu liberación desde lascélulas huésped.

Page 151: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Son polimeros lineales, donde se repite un tipo de disacárido. Uno de los monosacáridos es N-acetilglucosamina o N-acetilgalactosamina; el otro, generalmen- te es un ácido urónico, el glucurónico o el L-idurónico. En algunos glicosaminoglicanos uno o más grupos hidroxilo del aminoazúcar se encuentraesterificado con un grupo sulfato. La carga negativa que a pHfisiolÓgico presentan el grupo carboxilo del ácido urónico y el grupo sulfato, junto con los enlaces P que unen a los monosacáridos, determinan que estas moléculas adopten una confomación extendida eu solución que produce elevada viscosidad. A continuación trataremos sobre el ácido hialurónico, el sulfato decondroitina, el sulfato de queratán, la heparina, el sulfato de dermatán y el sulfato de heparán.

kcido hialurónico. El ácido hialurónico posee un disacárido repetitivo formado por ácido glucurónico unido por enlace glicosídico !d 1-3 a una N-acetil-glucosamina. Esta cadena está formada por aproximadamente S0 000 disacáridos unidos por enlace glicosídico P 1-4. Forman disoluciones claras y viscosas y se encuentran en el líquido sinovial, humor vítreo y tejido conectivo.

COOH

Ácido P-glucur6nica N- acetilglucosamina

Funcionesprincipales. Es lubricante en el líquido sinovial de las articulaciones. Confiere su consistencia gelatinosa al humor vítreo, en el ojo de los vertebrados. Es componente central de la matriz extracelular de cartílagos y tendones, en los que contribuye a su resistencia, tensión y elasticidad. Facilita la migración celular durante la morfogénriis y la reparación de las heridas.

Sulfato de condroitina. El sulfato de condroitina, condroitín-4-sulfato y condroitín-6-sulfato, está formado por 20 a 60 unidades del disacárido compuesto por la unión, mediante enlace glicosídico P 1-3, de ácido glucurónico y de N-acetil-galactosamina-sulfato. Los disacáridos se unen por enlace 1-4. Se encuen- tra en cartilagos, huesos y córnea; junto con el ácido hialurónico interviene en la compresibilidad del cartílago cuando soporta peso.

N aceul-D galacrosmnai l~sul fm Ácida p-glucurúnico

Page 152: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Sulfato de queraiáu. El sulfato de queratán está integrado por el disacárido repetitivo formado por galactosa y N-acetil-gelactosamina, unidos mediante enlace glicosídico P 1-4. Los disacáridos se unen por enlace glicosídico '$1-3.

El sulfatode queratán 1 se ubicaen la córnea y contribuye de forma importante a su transparencia. El sulfato de queratán 11 está localizado en el tejido conjuntiva laxo.

Heparina La heparina tiene como unidad repetitiva un oligosacárido de 6 resi- duos de monosacáridos, integrado por derivados sulfatados de D-glucosamina y del ácido glucurónico, el cual predomina en 90 %, o ácido idurónico. Los enlaces glicosidicos son de tipo a 1-4.

H COSO COOH

u-D~glucosaminii Ácido glucurónicu wifaiada sulfmdo

Se encuentra en gránulos en las células cebadas, particularmente abundantes en los mvestimientos de las arterias, también en hígado, pulmón y piel. Es un inhibidor potente de la coagulación, que se une a los factores M y XI, pero su acción más notable es cuando activa a la antitroinbina Ill,lo cual propicia la iriactivación de enzimas seríii-proteasas, como la trombina. Además causa la liberación de la lipasa de Lipoproteínas.

Sulfato de dermatán. La unidad re~et i t iva está integrada por ácido L-idiirónico o ácido glucnrónico y N-aceti1.D-galactosamina-4-sulfato, unidos por enlace glicosídico P 1-3.

Junto con el sulfato de queratán, es constituyente de la córnea y contribuye de manera importantea su transparencia. Su presencia en lacórnea ayuda a mantener la forma del ojo.

Page 153: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Sulfato de h e p d n . El sulfato de heparán contiene N-acetil-glucosamina y el ácido urónicopredominante es el L-idurónico; es menos sulfatado quela heparina; es componente de las membranas plasmáticas, donde puede actuar como receptor y par- ticipa en interacciones intercelulares como la comunicación y la adhesividad; tam- bién determina la selectividad de la carga eléctrica en el glomérulo renal. Es compo- nente de vesículas sinápticas y otras.

CH3 N-acetil-D. Ácido L-iduróiiico

Un proteoglicano está formado por la unión de una molécula de proteina con cadenas de glicosaminoglicanos. Las proteinas que se unen por covalencia a los glicosaminoglicanos se llaman proteinas basales o núcleo.

Un proteoglicano está constituido por una cadena larga de ácido hiaiurónico, que ocupa la posición central. Se asocia por interacciones débiles, a intervalos de 40 nm, con muchas moléculas de proteinas núcleo (Fig. 10.3). Cada proteina núcleo tiene unida, mediante enlace covalente, muchas moléculas de glicosaminoglicano más cor- tas,como sulfato de condroitina, sulfato de queratán, sulfato de heparán y sulfato de dermatán. Cada proteína núcleo tiene unidas por enlace covalente, como cadenas laterales, alrededor de 150 cadenas de polisacáridos. El contenido glucídico de una molécula de proteoglicano puedeconstituir hasta el Y5 % de su peso.

Como consecuencia del gran númerode grupos hidroxilos y de cargas negativas de las moléculas, los proteoglicanos tienen la posibilidad de hidratarse, por lo que ocupan gran espacio, y pueden lubricara acojinar otras estructuras.

I3g. 10.3. Representación e~queniAtiia del agregade d r proteoglicnno. En rojo, el Bcido hiali~rbnicu: cn iirul. la proteína central o núilco: c8i verde, la proteína de enlare: cii negi-u, el sulfalu dc condn>itina ? el sulfato dc qucratán. (Tuniadu de Diucheiiiistry, L. Stryer, 4ta. edición, 1995.)

Page 154: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

1.0s proteoglicanos son moléculas extraordinariamente con~plejas que se en- cuentran en todos los tejidos del cuerpo, con predominio en la matriz extracelular o sustancia basal; se unen entre sí, y a la colágena o a la elastina, intluyen en la dctermi- nación del ordcnainiento de la matriz. También intcractúan con proteínas adhesivas, por ejeniplo, la fibronectina y laniiniiia. Por su gran tamaño y presentar en el espacio una estructura extendida, ocupan un volumen mayor en relacibn con las proteínas.

Los glicosaminoglicanos presentes en los proteoglicanos son polianiones, por lo que se unen a cationes como Na' y K' y niodifican la presión osmótica, atrayendo agua a la inalriz extracelular. Al convertirse en gel, confieren a los proteoglicanos la propiedad de servir de filtro,por lo que de,jan pasar nióleculas pequefias por difusión relativaniente lihre.

Tanil>iéii se encuentran ut>icados intraceliilarine~ite; en el núcleo celular su fun- ción es aún desconocida. En algunos gránulos de alinacenaniiento o secretores, como en los gránulos croinafines de la iiiédula suprarrenal forman parte del mecanismo de lil)eracibn del contenido de éstns.

Resumen

Los polisacáridos son las biomoléculas más distribuidas en la nahiraleza, cu- yas funciones más generales son la de almacenamiento, estructural y de reconoci- miento.

Los oligosacáridos pueden estar integrados por 2 y basta 10 monosacáridos, generalmente sustituidos, unidos mediante enlaces gticosídicm del tipo a ó P.

Los disacáridos están formados por 2 monosacáridos i b d e s o diferentes. La maltosa, la isomaltosa y la celobiosa están formados por unidades de D-glucosa.

La lactosa está formada por una P-D-galactosa y una a-D-glucosa, y la sacaro- sa está formada por una a-D-glucosa unida a una p-D-fmctoSa.

Son giicoproteínas muchas de las proteínas de las membranas plasmáticas, algunas bormonas y todas las proteínas plasmáticas, excepto la albúmina. Entre sus funciones principales se encuentran que modulan propiedades ñsico-quúnieas y protegen contra la proteólisis intra y extracelular. Intervienen como señales en el destino intracelular de muchas proteínas y en las interacciones céluia-célula.

Los polisacáridos contienen más de 10 monosacáridos, pueden ser homopolisacáridos, si todos sus monosacáridos constituyentes son iguales o beteropolisacáridos si son diferentes. El glucógeno es un homopolímero de D-glucosas unidas mediante enlace glicosidico a 1-4, ramificado mediante unio- nes a 1-6 cada 8 a 12 residuos. El almidón está formado por 2 poümeros, la amilopectina, que se diferencia del glucógeno en que se r d c a cada 24 ó 30 residuos y el de amilosa que es lineal. Ambos son reserva de energía en los animales y en los vegetales, respectivamente. La celulosa es un bomopolisacárido lineal donde las D-glucosas están polimerizadas mediante enlace acetáüco del üpo P 1-4. Existe en los vegetales donde cumple función estructural, al formar fibras resisten- tes e insolubles. La pectina está formada por ácido D-galacturónico unidos por enlace a 1-4; forma geles con la sacarosa, es muy hidróíiia y ayuda a restablecer la fiora intestinal, por lo que se usa en el tratamiento de algunos tipos de diarreas infanüies.

Entre los beteropolisacáridos tenemos a los glucosaminoglicanos o mucopolisacáridos, formados en general por un disacárido, constituido por una N-acetil-glucosamina o por una N-acetil-galactosamina unida al ácido glucurónico o al ácido-L-idurónico. A este gmpo pertenecen el ácido hialurónico, el sdfato de condroiüna, el sdfato de queratán, la heparina, el sulfato de dermatáo y el sdfato de heparán. El ácido hialurónico se relaciona con el profeso de reparación de las heridas, junto con el sdfato de condroitina interviene en la comprsibüidad del

Page 155: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

cartüago. Las datos de queratán y de dermatán mnMbuyen de manera impor- tante a La transparencia de La córnea. La hepariaa es un potente anüeoagulante y el sulfato de heparán es un mmponente importante de las membranas plasm4ticas cuya hinción se relaciona m n el reconocimiento celular y m n las interaeeiones intereelulares.

Las pmteopiieanm se forman por La unión entre una mol6nila de pmteína y lm glieosaminoglicanos. Son moléculas extraordinariamente mmplejas, que se ennientran en todos lm tejidos del cuerpo, m n predominio en La matriz extracelular donde M u y e en su ordenamiento.

1. Demuestre que se cumple el carácter polimérico en los polisacáridos. 2. Compare al almidón y al ácido hialurónico en cuanto a los principiosdeorganiza-

ción de las macromoléculas. 3. Compare estmcturalmente al almidón y al glucógeno. 4. Realice un estudio del glurógeno donde demuestre la relación estmctura-función. 5. Realice un estudio de la celulosa donde demuestre la relación estmctura-función. 6. Demuestre si los oligosacáridos que forman parte de las glicoproteínas son in-

formacionales o no. 7. Realice una tabla dondecompare losdiferentes homopolisacáridos sohre la hase de

sus semejanzas y de sus diferencias. 8. Realice una tabla comparativa entre los diferentes glicosaminoglicanos o muco-

polisacáridos ácidos. 9. Explique la importancia funcional de los polisacáridos.

Page 156: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los ácidos nucleicos constitoyen la segun<la niacroniolécula de iniportancia hio- lógica después de las proteínas. y sus funciones están niuy relacionadas con estas últimañ. Como iiiacroinoléculas, presentan las características estructurales coniunes a todas ellas, conio ya fue esludiado en el capítulo 9, pero tienen aspectos que son exclusivos de ellas.

Las funciones de los ácidos nucleicos están relacionadas con el funcionamiento del aparato genético celular, o sea, con el conjunto de molécnlas y niecanisnios que garantizan la trasmisión y expresibn de los caracteres hereditarios de geiieracibn en generación y, por tanto, son de un gran valor en la perpetuación de las especies.

El descubriniiento de su estructura fue uno de los más iniportantes hitos de la biología conteniporánea, y de ello hace apenas algo más de 40 anos. Desde entonces, miiclios son los datos que han enriquecido el conociiniento de la eslrnctiira y las funciones de estos compuestos, de forma tal, que en nuestros días existe una imagen bastante aproximada dc ellas.

Dos son los tipos principales de ácidos iiucleicos que se diferencian, tanto estruc- tural como funcionalniente: los ácidos desoxirribonucleicos (ADN) y los ácidos ribonucleicos (ARN). De cada uno de ellos existen diferentes subtipos. Ainhos surgen conio consecuencia de la polinierización de unidades estructurales más sencillas, de- nominadas nncleótidos, que ya fueron estudiados en el capítulo 8. Presentan estructu- ras tridiniensionales coniple,jas niuy relacionadas con las funciones que realizan y son portadores de información iiiolecular.

Tipos y funciones

Desde el punto de vista funcional los ADN cuiii~ilcn sólo la tuiicióii de ser los reservorios celulares de la inforniación genética, en tanto los ARN pueden realizar funciones diferentes, aunque todas ellas relacionadas con la síntesis y prncesaniiento de proteinas. Entre estas funciones tenemos: 1. Dirigen la síntesis de proteinas en el proceso de la traducción, con;o se estudiará en

el capítulo 30. 2. Forman parte de la estrnctura de los ribosoinas y parecen tenerallíuna participacibii

funcional importante. Este aspecto será estudiado en detalles en el capítulo 29. 3. Preparan a los amin&cidos para la síntesis de las proteinas y los transfieren al

ribosoina, como se verá en el capítulo 30.

Page 157: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

4. Algunos ARN participan en el procesamiento de otros ARN. El estudio de esta función se realiza en el capítulo 27.

5. Participan en el proceso de secreción de proteínas, como se verá en el capítulo 29. 6. Algunos ARN presentan cierta actividad catalítica por sí y otros contribuyen a la

actividad catalítica de las proteínas. Este aspecto sedesarrolla en el capítulo 25. 7. Actúan como "chaperonas" moleculares en el procesamiento de algunos ARN

transcritos primarios. Esta función será abordada en el capítulo 27. 8. En algunos organismos (virus) son los portadores de la información genética capí-

tulo 78.

Por razones de índole didáctico en este capítulo se estudiará primero la estructura de los ADN y después la de los ARN, se resaltarán siempre que sea posible sus analo- gías y diferencias.

ADN como material genético

En 1928, Frederick Griffith realizó un experimento singular; para ello utilizó el Diplococcus pneumoniae, una bacteria que es el agente causal de algunos tipos de neumonía. Al crecer en un medio de cultivo las colonias de estas bacterias tienen un aspecto liso (L), pues están encapsuladas por un polisacárido gelatinoso que contiene el antigeno mediante el cual reconoce a las células que infecta. Un mutante carente de esa cubierta y, por tanto, no patógeno forma colonias rugosas (R).

Grifith inyectó ratones con bacterias L muertas por calor y R vivas. De manera sorpresiva los ratones morían por neumonía, pero más sorprendente fue el hecho de que en la sangre de los ratones se encontraron bacterias L vivas, las cuales al ser dt ivadas originaban bacterias de tipo L. Estos resultados suponen que l s bacterias L transformaron a las R y que esa transformación tenía carácter permanente.

En busca de la naturaleza química de ese principio transformante, en 1944 Oswald Avery, C o h MacLeody Maclyn McCaríyenmntramn que el principio transformante no se afectaba por el tratamiento con tripsina, qnimotripsina o ribonucleasa, pero era totalmente inactivo después de su exposición a la acción de las desoxirribonucleasas; por tanto, el principio transformanteera el ADN. Este resultado no fue aceptado con simpatía por la comunidad científica. En esa época se pensaba que el ADN tenía una estructura tan simple que era incapaz de servir como portador de la información genética.

En 1952, AífredHershey y Marta Chase hicieron c m r el fago T2 en un cultivo de ikhenchia mtique conte~a"P y '=S. De esta forma las proteínas del virus eran marcadas con el mientras el ADN lo era con el3'P. Se transñnó el fago hacia un cultivo de E. coli con medio no radiactivo y, después de un tiempo suficiente para producirla infección, el cultivo fue agitado vigorocamenteen unalicuadora doméstica parasepararlaspahculas virales de la bacteria. La preparación se centrifugó en condiciones que facilitaban la sedimentación de las bacterias y que los materiales menos pesados quedaran en el sobrenadante. El análisis radiactivo mostró que la mayor parte del "S quedaba en el sobrenadante, mientras casi todo el"Pse recobraba en el precipitado. Además, mienWa en la progenie del virus sólo aparecía el 1 % del "&en éstaseconservaba más del 30 % del "P. Hershey y Chaseconclnyemn que sólo el ADN era esencial para la reproducción del virus y, por tanto,debía ser el material genético.

En 1953, JmesD. Watson y FrancisH. C. Crkkpmpnsiemn un modelo molecular para el ADN basados en estudios de cristalografia de rayos X, que ha sido corroborado suficientemente con posterioridad. Este modelo no sólo permitía comprender cómo el ADN podía servir de reservorio de la información genética, también sugería el meca- nismo básico para la trasmisión de esa información de una generación a otra. De esta forma quedó firmemente establecida la idea de que la molécula portadora de la infor- mación genética es el ADN.

Page 158: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

primaria de los ADN

~n el estudiode las macroinoléculas el concepto deestructura primaria se refiere al orden o sucesión de los precursores en la cadena polimérica. Estos precursores se unen por medio de enlaces covalentes que suelen ser los más fuertes entre todas las interacciones que contribuyen a mantener la estructwa tridiiiiensional de las macromoléculai. La estructura primaria de los ADN se define como el orden o sucesión de los desoxinucleótidos a lo largo de la cadena polinucleotídica. Ahora bien, como quiera que de los 3 conipoiieiites del desoxini~cleótido súlo existe variación en la Irase nitrogeiiada, se acostumbra hablar de la sucesión de las bases y no de los desoxinuclebtidos. Los desoxinucleótidos se unen por los Iiidroxilos de C3' y C5' mediante un grupo fosfato; este grupose esterifica hacia ambas posiciones, por lo que el enlace recihe el nombre de 3 , 5-fosfodiéster, con lo cual se origina una cadeiia lineal,osea. carente de ramificaciones, una característica que es común a casi todas las macromoléculas; la figura I l . I representa un pequeñosector de una Iiehra de ADN.

Si se observa una cadeiia polinucleotídica se verá que todos los desoxiniicleótidos están unidos a otros 2 (uno por su C3' y otro por su C 5 ) excepto los extremos. En un extremo sólo está comprometido cn el enlace fosfoditster el C3-01-1, mientras que el grupo fosfato dc la posición CS está libre; en el otro extremo es el CN - 0 H el que se encuentra libre; esto significa que los 2 extremos de la cadena son diferentes, por eso se dice que la cadeiia poliiiucleotídica tiene polaridad. Se define como el primer Componente de la cadeiia al desoxiiiuclebtido que tiene libre el fosfato de la posiciún

Page 159: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
Page 160: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

mlp u.1. Composición de bases del ADN de algunas especia -

Especie A

~aeteiiófago T4 323

Eseherichia coLi 24,7

Nwrosporacrassa n,O

'liad 29,Y

Zariahma 26.7

Eirizodemar 28.4

Langosta 293

Salmw 28,9

lhrha 2Y,7

m d e m a r 28,7

GaDh 28,O

Ra$ 28,6

Buey 29,O

Oveja 293

Hmnbrt 3O,4

' Incluye tanto a la citasina como a su derivado nictilado, la 5-metil eitasina. * Todo en forma de 5-hidroximetil citasina.

Conf'ormaci6n de los nucleótidos

La estructura de los nucleótidos fue estudiada en el capítulo 8; ahora pretende- mos hacer un breve análisis de las característicai espaciales de estos compuestos (las relaciones entre sus componentes) que influyen de forma importante en la estructura tridimensional de los ácidos nucleicos, en especial de los ADN; por tanto es conve- niente que el lector refresque el contenido del capítulo 8 antes deseguir adelante.

Relad6n base pento~a

Tantoen los ADN como en los ARN la base nitrocenada está unida mediante un - enlace N-glicosídico al carbono 1 de la pentosa. Como se trata de un enlace simple debía existir una rotación relativamente libre de los anillos alrededor del enlace, pero existen factores como el volumen de los ciclos que lo impiden. De acuerdo con la posición relativa de la base y la pentosa, en relación con el enlace, pueden derivarse 2 conformaciones: la syn y la anti.

En el orimer caso las 2 estructuras cíclicas se disnonen del mismo lado del enlace. mientras en el segundo se disponen en lados contrarios. Cuando las bases son de tipo purínicas pueden adoptar cualquiera de las 2 conformaciones, pero en el caso de las pirimidínicas el átomo de oxígeno ligado al C2 le impide adoptar la conformación syn Y por tanto, sólo existen en la configuración anti. En la figura 113 se representan estas formas isoméricas de los nucleótidos.

Page 161: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig.1 1.3. Fornias isoiii6riras de los nurleó- tidos. Se rcpresentaii las eonfor- niaciimes derivadar de In pnsiciún de Id Ihsse 1 la pcntasn alrededor del enlace N-glirosídico. En ;S) la atlenina en conl0riiiarión sy i y rn 1)) la giiaiiina en posición mti. En C ) lil citosina en la única coiifor- niiiciúii posilile para d a . qiic es la anti. 1,as;ncfe rirrtilai- iiirfira cl eiri, de 180" dado pei. la Ibarc con res- pecto n la pcnt<,s;i.

Conformación de la pentosa

1.a pentosa presente en la estructura de los ácidos nucleicos tiene una configura- ciún D y está en la forma de su anómero R. Los 5 átomos que forman el anillo de la pentosa no se encuentran en el mismo planq, pues los sustituycntes de cada uno crean impedinientos estéricos que impiden Ia coplanaridad; esto obliga a que al menos uno de los átonios de carbonose encuentre fuera del plano. Si este átomo extraplauar está orientado hacia la posición del carbono 5 sc originan las formas en&, en tanto que si está hacia el lado amtrarioda lugar a las fornias em. En los ADN los carbonos quecon más frecuencia se encuentran fuera del plano del anillo son el C2 y el C3', por lo cual se pueden originar 4 conformaciones, a saber, la C3 -endo, C i -endo, C3 -cm y C2 - cxo. El orden de frecueiicia con que aparecen en el ADN es C2-eiidoS3 -endo>CJ - exoioiC2-endo. Otras conformaciones de la pentosa no se han reportado en el ADN. l,a figura 11.4 muestra las diferentes conformaciones de la pentosa.

Fig. 11.4. Conformaciones de In pentasa. Se presentan las canforinaeianes de la pentasn que con mayar frecuencia aparecen en los ADN. Obs6rvcsc cómo en las formas endo el cnrboiio ertraplanar es16 oricntnda en la misma posición que el CS.

168 O*HFnfM& h%fkui

Page 162: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En la estmctura de los ácidos nucleicos las posiciones C3 y C5'están esterificadas en gmpos fosforilos, dando lugar al enlace fosfodiéster. La conformaciún de la pentosa d e t e d a la orientación y separación de los gmpos fosfatos unidos a C3 y C s . Como ,puede apreciar en la figura 11.5, en la forma C2 -endo, los gmpos fosfatos se diponen .cada lado del plano de la pentosa y separados por una distancia de 0,7 nm, en tanto

la conformación C3 -endo, ambos grupos se localizan del mismo lado del plano del y están separados por una distancia de sólo 039 nm.

Fig. 11.5. Orientación de los griipas fasfates. La confoi-maciún dc la peiitora orienta al priipo Iosfato. En la forma <2 -endo. les arupos fosfatos en C3' y C5'sc orientan hacia lados distintos dr . . la pentosa y están separados una distancia de 0.7 nm, en Lanto en la C3'-endo se uhiran hacia el misma lado, pero separados sólo por 0.59 nm.

Estas relaciones espaciales influyen de manera notable en la estructura tridimensional de los ácidos nucleicos en general y de los ADN en particular.

Estructura secundaria de los ADN

Cuando en 1953 Watson y Crick dieron a conocer el modelo molecular del ADN, resumieron en apenas una página de Nahrre, más de una década de trabajos de varios laboratorios, y dieron explicación a numerosos resultados obtenidos previamente por otros grupos. Basado fundamentalmente en el método de difracción de rayos X el modelo consta de las características siguientes:

1. La molécula está formada por 2 cadenas poliméricas de desoxinucleótidos, enrolla- das alrededor de un eje común con un giro hacia la derecha que adopta la forma de una doble hélice. Las cadenas enfrentadas son antiparalelas y se envuelven la una a la otra de manera que para separarlas hay que desenrollar la hélice (Fig. 11.6).

2. Las bases nitrogenadas están orientadas hacia el interior de la hélice, en tanto el eje pentosa-fosfato está hacia el exterior. Cada base de una cadena se parea con una de

Page 163: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 11.6. Estructura ~erundaria del ADN. I<squenia i-eprcsrn1;iti~o dcl iiiii- drlii de \Yatwi y Crirk. Las Iiari- das ;i?ulcs representan el coiitoriio del e,je coidentc principal hi-iiia-

do par In iiltwnaniii, de <Iciouii-rihosa y tosfzifo. 1.a linea roja rcrtical rcpi-escrita el eje de la Ii6liee. ¡,os iiiin~cros indican los entrriiii,~ y se puede advertir que 1.1s radcnas con aritiparalcl;,~. N - tesr que las 2 Iiehras forniaii es- trucluras helicoidales dereclias y :al girai- una sobre 1;) otra no piic- den wpurarv sin desenredar La Ii6liee.

la cadena opuesta, brmando pares quese disponen casi perpendicularmenteal eje de la hélice (Fie. 11.7). .

3. El modelo ideal tiene 2 nm de diámetro con 10 pares de bases (pb) por cada vuelta de la hélice (n), lo que representa un ángulo de rotación de 36" entre pares de bases vecinos. Como las bases nitrogeoadas presentan un espesor de Van der Waals de 0,34 nm (d), la hélice tiene un avance (p) de 3,40 nm por cada vuelta (Fig. 11.8).

El hecho más sobresaliente de la estructura de Watson y Crick es que acomoda sólo 2 tipos de pares de bases, los formados por A y T y los de C y G, son los llamados apareamientos de Watson y Crick (Fig. 11.9).

Esta especificidad dc apareamiento tiene su origen en la geometríade los pares; estos pares de hases son intercambiables, osea,se puede sustituir un par ATpor uno CG o viceversa, sin alterar la posición del Cf en el eje pentosa fosfato. Tampoco la hélice sealtera por invertir las bases de cada par, es decir, de manera estructnral, es lo mismo el par Al'que el TA y también es igual el GC que el CG. Cualquier otro par de bases distorsionaría la hélice, pues requeriría una reorientación considerable del eje pentosa fosfato. Esta especificidad de apareamiento es el fundaniento molecular de las reglas de Cliargaff.

La superficie dc la molécula de ADN está niarcada por la existencia de2 surcos de diferente tamaño conio se muestra en la figura 11.8. El origen de estossurcosesti por una parte, en el carácter aiimétrico de la desoxirribosa y, por otra, porque en cada par de hases el borde superior es diferente al borde inferior. Si se traza uiia línea innginaria del C I -eje de la hélice-Cl'se forman 2 ángulos diferentes: uno menor de 180", que da origen alsurco meniir,? otro mayor que lXW, que formará el surco mayor. Aunque el

Fig. 11.7. Figura extendida del ADN. Se muestir un sector extendido dc una nioléeiila de ADN coii las Liases piiriiiieas en rojo, las pirimidinicas en verde y el c j e covalente principal de desoxirribosa y fosfato en azul. Observe la regularidad de la cstriirtura que sc logra con cstos pures de bases, unidos por 2 puentes de hidr6gfno (lincas de puntos) si son adenina [A) y timina (Ti, así conio por 3 cuando son guanina (G) g cilosina (C). La dispasieiún del cjf covalente principal no cambia con los distintos pares de bases.

Page 164: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 11.9. <;comeiría dc Iris pares ric Iiascs en el ADN. Arrilia el par de Ihases adeniiui tiniina y ahqje el par giiiiiiina citosina. La geoineti-ia dc anibos pares es la niisnia, aunque lar hases de cada par cambien dc posición, pues su ubicación con respecto al Cl 'dc la dcsoriri.ihosn es sientprf la misma. El lado siipe- rior da hacia el surco mayor y el inferior hacia el surco i~icrioi.. 1.a crin dentro dcl circiilo indica la posición del eje dc la Iiéliec.

Page 165: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 11.10. Patrón de formación dc puentcs de hidrógeno. Se niuestran 2 seg- mentos de ADN de 4 pares de ha- ses cada uno, mirando haciael sur- co mayor. Los cuadrados aziilcs representan grupos aceptores para In formaciiin de puentcs de hidró- geno, y los ~írculus rojos, grupos donantes. Esta diferencia de pa- trones permite que otras niacromeléculas. especialmente pruteinas, puedan reconocer al AI>N en seciiencias esperítíias de flilse~.

surco menor es más estrechoque el inayor,amhos son casi de igual profundidad, pues los bordes delos pares de bases quedan aproximadamente a la niisma distancia de la superficie de un cilindro que contuviera la dohle hélice. Esto es conseciiencia de la posición del eje de la hélice, que pasa aproximadamente por el centro del par de bases. Cuando los pares de bases se apilan para fonnar la hélice, las cadenas fosfatadas cons- tituyen los lados de un surco mayor y un surco nienor, enrollados alrededor de la hélice y los bordes de las bases forman los fondos de los surcos. Estos surcos tiencn una importancia especial en las interacciones del ADN con las proteínas.

El fondo de los surcos, especialmente el del mayor,contiene átomos de nitrógeno y oxígeno que pueden formar puentes de hidrógeno con las cadenas laterales de los aminoácidos de las proteínas y, por tanto, pueden contener una información intrínseca valiosa. Ladistribución de estos átomos depende del par de bases. Si se recorre el surco mayor en un par.4'1; en ese orden, encontramos un N (aceptor de H), un NH? (donador de H) y un O (aceptor de H); en un par GC primero un N (aceptor), después un O (aceptor) y por último un NH, (donador). Al invertirse el orden de las bases en el par, el patrón de formación de puentes de hidrógeno cambia, y ofrece entonces 4 patrones diferentes para la interacción específica con proteínas.

Si se representa el grupo aceptor por A y el donador por D tendremos: A-D-A; A-A-D; A-D-A y D-A-A,por tanto el fondodel surco mayor contiene una información dependiente de la secuencia, que puede ser leída directamente por otra macromolécula. En la figura 11.10 se intenta representar la distribución del patrón de puentes de hidrógeno en una secuencia específica del ADN.

El surco nienor es menos informativo, pues los pares Al' y TAsólo tienen 2 grupos aceptores y los GC y CG, un donador entreZaceptores, quelo hacemenos apropiado para la lectura, si se tiene en cuenta además, que su anchura representa un obstáculo estérico para su interacción íntima con otras macromoléculas. No obstante, se conocen proteínas que se unen al ADN por el surco menor, para lo cual generalmente provocaii una curvatura de la doble hélice.

El modelo no impone ninguna limitación a la secuencia de hases de una cadena, siempre y cuando la otra cadena presente la base complementaria. El modelo asífor- mulado sugiere que la información genética está codificada precisamente en la se- cuencia de las bases uitrogenadas del ADN. El modelo contiene en sí la explicación para el mecanismo de la replicación, pues el carácter complementario indica que dii- rante el proceso de réplica cada una de las cadenas puede ser usada conio un molde para dirigir la síntesis de la cadena opuesta.

Accidentes en la doble h6iice

En 1953 no era posible aún ohtener cristales de ADN y los estudios de difracción de rayos X se hicieron con fibras que contenían varias molécolas, por tanto, los patrones de difracción y los valores obtenidos para los parámetros de la estructura eran los promedios de los valores individuales. No fue hasta la década de los años 70 quese pudieron estudiar moléculas en estado cristalino.

Richard Dicker.~on y Horace Drew aplicaron los rayos X al estudio del polímero d(CGCGAATTGCM3 y obtuvieron que el avance de la hélice era de 3,40 nm, cada vuelta contenía 10,l ph y cada par estaba girado un ángulo de 359'' con respecto a su vecino; estos valores muestran gran concordancia con los promedios antes obtenidos; pero cada par individualmente se apartaba del comportamiento proniedio.

Por analogía con la geografia, Ilaniaremos accidentes a las desviaciones del ADN real en relación con el niodelo descrito por Watson y Crik.

Page 166: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

LOS principales accidentes encontrados en el ADN son:

1.~l&1guloderotación entre los pares de bases es variable y puede tomar valores que van desde 28" hasta 42".

2. EI balanceo, o sea, la rotación del par de bases como un todo alrededor del eje mayor del par; este eje se define como una línea que pasa por el C8 de las purinas y el C6 de las pirimidinas. Cuando 2 pares de bases rotan se forma uii ángulo que, si se ahre hacia el surco mayor es negativo y si lo hace hacia el menor es positivo (Fig. 11.11 a).

3. El alabeo, o sea, la rotación de una base con respecto a su pareja; se dice que el alabeoes positivo cuando semiraalo largodel e,je mayor del par de bases, y la base más cercana al observador está girada en el sentido de las manecillasdel reloj, y es negativo en caso contrario. Los estudios en cristales muestran que el alabeo es siempre positivo con un valor promedio de 12'. Esta rotación mejora el apilainiento de las bases en una cadena, pero aproxima demasiado las puriiias de las cadenas opuestas,con lo cual se alteran otros paránietrosestructurales (Fig. 11.1 1 h).

4. La inclinación del par de bases con respecto al eje de la hélice se aparta aproxinia- damente 2" de la perpendicular (Fig.ll.11 c).Un resumen de los principales acci- dentes de la doble hélice se presenta en la tahla 11.2.

Fig. 11.11. Accidentes de la doble hélice. La figura resume las principales dcsviariones de Iri posición de los pares dc bases en ADN rcal en relación con el modelo ideal de Wrals<in y Crick. En todos los casas, la niolfeula se ohserva por el siirco mayor. En a ) se mimstra el efecto d d balanceo cuando el par de bases, romo un todo, ha girado en torno a su eje mayor y el ángulo marcado por la saeta, ea ncyativo, pues se abre hacia 4 surco mayor. En b) aparece el efecto de alabeo que siempre es positivo. En c) se presenta la inclinación d d par de hases en relación con el qie de la Iiélice. La línea ni cn todos los casas representa el cjc mayor dcl par de hases que, como se inuestrii en b), pasa por el C6 dc las pirimidinas y el C8 de las purinas.

Page 167: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Tabla 112. Valores de lasmediasy desviaciones típicas observadas para losprincipa- les accidentes del ADN en sus 3 tipos principales

Accidente ADN A ADN B ADN Z

Valor de"d" 0,292 + 0,039 0336 + 0,042 0,352 1: 0,022

Inclinación 13,O + 1.9 -2,O t4 ,6 8,s I0,7

Alabeo 15,4 i 6 2 11,7 +4,8 4,4 + 2,s

Ralanceo 5 3 + 4,7 -1,O t 5,s 3,4 t 2,l

Los valores del parámetro "d" están dadas en nm, los de los otros accidentes en grados (O). Para el ADN Z el primer valor en las 2 primeros accidentes corresponde al par G:C y el segundo al par C:G.

Por otra parte el eje de la hélice no es recto, más bien va experimentando una inclinación que está en dependencia del contenido y la proximidad de los pares GC. Estmvariaciones dependen de la secuencia de bases y crean unasuperñcie irregular en la molécula de ADN que permite la unión de proteínas,capaces por ello de reconocer secuencias específicas del ADN. Esta unión ADN proteínas es un paso determinante en la realización y regulación de las funciones genéticas del ADN.

ADNZ

Uno de los ejemplos más sobresalientes de la relación entre la secuencia y la conformación del ADN fue el descubrimiento del ADN Z. Al estudiar la estructura cristalina del d(CGCGCG) Andmw Wangy AIexanderRichobsewaron quese formaba una hélice con giro hacia la izquierda; esta hélice presenta un avance de 4 3 nm con 12 pb por vuelta, un surco menor profundo y el mayor apenas se distingue. La línea de unión delos grupos fosfatos forma un zigzagy de ahíla denominación de Z.

Los pares de bases están rotados 180" en relación con el modelo de Watson y Crick, como se muestra en la figura 11.12. Esto hace que la unidad repetitiva sea un didesoxinncleótido en vez de un desoxinucleótido. Esta conformación se adopta cuando aparecen ba~es punnicas y pirimidínicas alternadas como en d(GC)"; d(AC)" ód(GT)" (para n w .

Se ha especulado mucho sobre la función biológica del ADN Z, pero su existencia in vivono ha podido ser demostrada, sólo existen algunas evidencias indirecta5 de su existencia en el ADN de E coli. Tal vez estas zonas no estén permanentemente en conformación Z y puede existir la posibilidad de transconfonnaciones entre los distin- tos tipos de ADN, según las condiciones del interior celular, lo que puede servir como base de algún mecanismo de regulación de las funciones del ADN.

Otras estructuras del ADN

La estructura helicoidal descrita por W a h n y Crkkse obtiene cuando se emplea el Na'como contracatión y la humedad es del 92 %.A esta hélice se le ha denominado ADN B.

Page 168: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Al reducir la humedad a1 75 %,la forma B se transforma en A, que es también una doble hélice derecha pero más ancha y aplanada que la B. La hélice tiene un avance de 2,8nm. Los pares de bases presentan una inclinación de 13 a 19" en relación con el eje de la hélice y además, están desplazados hacia el exterior, de manera que el eje, en forma de un cilindro hueco, queda ubicado en el surco mayor y no toca los pares de bases; de esta forma se origina un surco mayor profundo y un surco menor superficial. El ADN A presenta 10,9 pb por vuelta y un ángulo promedio de rotación de 33,1U,con valores individuales de 16 a 44"; además, existe un balanceo sistemático que se abre hacia el surco menor (positivo) con valores de 6 t 5". En la tabla 11.3 se resumen los aspectos más relevantes de los 3 tipos principales de ADN.

Cuando la secuencia de bases en iina cadena es complementaria a un sector cerca- no de la misma cadena, pueden originarse estmctnras cmciformes por el apareamiento de las bases complementarias de la misma hebra. Estas estructuras cnicifomcs son de singular importancia para las funciones del ADN, pues representan señales muy espe- cíficas para la interacción con otras moléculas, generalmente proteínas, que participan en los mecanismos de procesamiento de la información genética.

Estabilidad de la doble hélice

Varias son las fuerzas moleculares que mantienen la doble hélice del ADN pero cada una contribuve deforma diferente. Como va fue señalado. el enlace fosfodiéster es la fuerza fundamental para la formación del políinero y es la más fuerte de todas las interacciones presentes en la molécula; esto significa que es la más difícil de romper.

La disposición de las bases nitrogenadas en cada iina de las hebras del ADN es casi perpendicular al eje pentosa fosfato, por tanto, los anillos aromáticos de las bases se disponen paralelos unos a otros como una especie de empalizado o pila de monedas; en esa disaosición los orbitales o de las bases forman interacciones de cierta fortaleza. que contribuyen de forma decisiva a mantener la estmctnra helicoidal. El apareamien- to de las 2 cadenas contribuye a aumentar la estabilidad.

Fig. 11.12. El ADN Z. Sc muestra el giro que da el I Y L ~ de hases GC cuando se encuentran consecutivos, que da origen al llamado ADN Z. El par de bases cstA rolarlo 18UU en rela- ción con su posición en el ADN R.

Page 169: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Tabla 113. Resiimen de los paliimetros estructurales priricipa1e.s en los 3 tipar más frecuentes de ADN

Característica A B

Tipo de hélice

Dihnetm

Valor den

Rotación del par

Paso o avance (p)

Valor de d

inclinación

Surco mayor

Surconienor

Formadel azúcar

Enlace glicosidico

Demha

2,6 nm

11

33"

2,s nm

0,26nm

20"

Estrecho y profundo

Ancho y superficial

C(3')-endo

Anti

R = purinas Y = pirimidinas.

Deredla

2,0 nm

10

36"

3 4 nin

034 nm

6O

Ancho y profundo

Estrechoy profundo

C(2)-endo

Anti

17quierd;i

1,s nm

12

60"

4,s nnl

0,37 nin

7"

Plano

Estrechog profundo

Y=C(f )endo

R=(C3) endo

Y=anti Rsin

Al formarse la hélice los pares de bases se aproximan hasta una distancia de 0,34 nm que es el grosor de Var der Waals del par de bases; esta aproximación impide la penetración de moléculas pequeñas, especialmente el a y a , entre los pares de bases, por locual a l a s f u e m q u e tienden afonnar el empalizada seles denomina hidrofóbicas. El origen y la naturaleza de estas fuerzas hidrofóbicas en el ADN no están totalmente aclarados; aunque el nombre hidrofóhico no es el niás adecuado paradesignar estas interacciones, la existencia de tales interacciones es indiscutible.

Las cadenas se mantienen unidas gracias a la formación de puentes de hidrógeno entre las bases de cada par. Los pares CG se mantienen unidos por 3 puentes de Iiidró- geno, en tanto entre A y T sólo se forman 2, debido a que el anillo de A carece de sustituyente en C2 (Fig. 11.9). De esta situación se deriva que las moléculas de ADN serán ni& estables, mientras niayor sea su contenido en pares GC. Se debe recordar que esta característica es importante, pues coino se rerú en capítulos posteriores para las funciones del ADN es necesario la separación de las 2 hehras, lo cual será más fácil si en la zona que se debe separar abundan los pares AT.

No obstante, los puentes de hidrógeno contribuyen poco a la estabilidad de la hélice. Si a una solución acuosa de ADN se le añade etanol, la hélice se desestahiliza. El etanol aumenta la fortaleza de los puentes de hidrógeno pero debilita las interacciones hidrufóhicas; por tanto, son las interacciones Iiidrofóbicas y no los puentes de hidró- geno las que contribuyen en mayor medida a la estabilidad de la hélice.

Page 170: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Cuando los extremos de la molécula de ADN no pueden rotar libremente, bien porque estén unidos por enlaces covalentes formando moléculas circulares, o estén asociados con proteínas, adquieren una confortnación tridimensional superenmllada ( ~ i ~ . 11.13). En esta estructura la doble hélice como un todo puede estar rotada hacia laderecha (superenrollado negativo) o hacia la izquierda (superenrollado positivo); mientras el superenrollado positi~~o favorece la formación de la hélice más compacta, el negativo favorece el desenrollamiento de la htlice y la separación de las 2 hebras, quecomo ya fue señalado, es necesario para las funciones del ADN.

El ADN bacteriano circular presenta un superenrollamiento negativo, en tanto el ADN de los cromosomas de eucariotas no parece estar superenrollado por su asocia- ción con proteínas que controlan el plegamiento del ADN.

Lasdiferentes formas y grados de superenrollaniiento del ADN se refieren como topoisómeros, y las enzimas que convierten unos en otros reciben el nombre de topoisomerasas. Los diferentes topoisómeros del ADN pueden ser separados por electroforesis en gel de agarosa, donde cada topoisómero tiene una movilidad diferen- te formando bandas independientes. La molécula que presente nn mayor grado de superenrollamiento realizará los movimientos migratorios más rápidos por presentar unaesiructuramás compacta.

Desnaturalización del ADN

Cuando una solución de ADN doble helicoidal se calienta por encima de una temperatura determinada, las 2 cadenas se separan y las propiedades del ADN se alte- ran, este proceso se conoce como desiiatiirali~ución del ADN; de esas propiedades la más útil para seguir el desarrollo del proceso es la absorción de luz ultravioleta.

Los anillos aromáticos absorhen la luz ultravioleta con menor intensidad cuando están apilados en la duhle hélice que cuando están libres en disolución; ese aumento de absorción luminosa, que puede llegar a ser hasta de 40 % en todas la5 longitudes de onda, recibe el nombre de efecto hipercrómico.

De acuerdo con la estructura de lii dublc Iiélice la alteración de un sector de la molécula potencializa la desestabilización de un sector mayor, o sea, el proceso de desnaturalización tiene un carácter cooperativo; esto se evidencia porque el efecto hipercrómicoocurre en un rango estrecho de tenipcratura (Fig. 11.14).

Este fenómeno puede describirse como la fusión de un sólido monodimensional, las gráficas obtenidas del proceso se refieren corno curvas de fusión y la temperatura de su punto medio se conoce como temperatura de fusión que se simboliza por 'r,,,. La estabilidad del ADN y, por tanto,su Tll1 dependen de vanos factorescomo la naturaleza

Page 171: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

1

I'iz. 11.14. Desnaturaliracibn dcl ADN. Una dable hebra de ADN se calierila, y los pares de bases comienzan a se- pararse de forniii eoopcrativa. Al final. las 2 Iicbras están totalmente separadas. En eso consiste la desnaturaliraeiSn del ADN.

del solvente, el tipo y concentración de los iones, así como el valor del pH.Si estos factores se mantienen constantes y sólo se varía el ADN, entonces T,,, es una función lineal creciente del contenido de pares GC, lo que indica la mayor estabilidad de éstos unidos por 3 puentes de hidrógeno que de los pares ATunidos sólo por 2.

Una vez que el ADN ha sido desnaturalizado se hace descender lentamente la temperahira hasta casi 25 "C por debajo de T",, las 2 cadenas vuelven a unirse comple- tamente; este fenómeno recibe el nombre de renaturalización.

Este proceso de desnahiralizaciún-renaturalización es el fundamento de las técni- cas de hibridación, que permiten identificar secuencias específicas en el ADN: para ello se procede de la forma siguiente:

1. Se obtiene un polinucleótido marcado de forma radiactiva (usualmente con "Pi que contiene la secuencia de bases específica de nuestro interés.

2. Se desnaturaliza el ADN problema y cuando las 2 hebras están separadas se añade el polinucleótido que sirve de sonda.

3. Se procede entonces a la renaturalización; si el ADN contiene una secuencia de bases complementaria a la sonda se apareará con ésta y la doble cadena podri identificarse por la presencia del "P.

4. Pueden emplearse como sonda también, polirribonucleótidos; si la sonda es pc- queña (100 nucleótidos) sólo se apareará a un sector estrictamente complementa- rio, pero si es muy grande pueden aparearse cadenas sin que exista la complementaridad perfecta. Estas sondas sun útiles en la localización de seciien- ciasde ADNparecidas (no exactamente iguales) a lasonda. La importanciadeeste procedimiento se verá más adelante.

Formas de presentación del ADN

En estecapítulo se ha presentado la estructurageneral de los ADNcelulares, pero el ADN puede presentarseen otraiformascon una estructura igual odiferente.La tabla 11.4 presenta una i-elación de ADN de diferentes orígenes con sil peso mnlecular.

ADN virales

En los virus puede encontrarse ADN de una sola cadenacomo ocurre en el M13, cuyos 6 408 nucleótidos forman una sola hebra circular; de forma similar ocurre en cl virus QX174 donde también el ADN es monofibrilar y circular con 5 386 nucleótidos.

Otros virus como los bacteriófagos (virus que infectan bacterias) o simplen~ente fagos de E. colide la serieT presentan su ADN bicatenario y lineal. El fago T4 ticuc una sola n~olécula lineal de ADN, de unos 166 O00 ph, y eu vezdecitosina presenta la hidroximetilcitosina y el T7 contiene39 930 pb,cuya secuencia ha sidu determinada.

Page 172: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

~ l ~ u . 4 . Tamaño del ADN de diferentes orípnes, tomando como referencia su peso molecular

Origen del ADN Peso molecular

Plásmidos de E. coli 1,4 x loh

Virus del polioma 3,2 x 10"

Fago 186

Fago 'T7

Fago h

Plásmido F

Fago T4

Mycoplasn~a homina 5,3 x 10"

Levaduras 6,O x loX

Drosophila melanogaster 7,Y x 10"'

Humanos 8,0 x 10"'

Otra forma de nresentación del ADN son los nlásmidos. Se trata de moléculas circulares de doble banda, que se encuentran ubicadas en el citoplasma especialmente de los organismos monocelulares, sean procariontes o eucariontes. Estos plásmidos tienen su replicación autónoma y suelen poseer genes importantes para la célula, por ejemplo, los plásmidos F que contiene el factor de fertilidad, los R que contienen genes que confieren resistencia a la acción de antibióticos y los Col que codifican toxinas aue oroducen la muerte de otros oreanismos.

a . - Es bueno diferenciar 2 tipos de plásmidos: los llamados de control estricto o de

hajonúmero,éstos existen en 2 ó 3 copias por célula y su replicación ocurre simultá- nea con la del cromosoma bacteriano, segregándose en cantidades equivalentes a las células hijas durante la división celular. Los plásmidos de control relajado o de alto númeroexisten en decenas y su replicación es independiente del cromosoma bacteriano. Un fenómeno notable es qiiesi se inhibe la síntesis de proteínas en la célula,el número de estos plásmidos se incrementa y puede llegar a varios cientos. Como se verá en el capítulo 35 esto tiene una importante implicación práctica.

En las células eucariontes existe además el ADN mitocondrial (ADNint) que, como SU nombre indica, se localiza en este organito citoplasniático; constituye menos del 1 % del ADN celular y se presenta como unamoltculacircular duplohelicoidal que en el humano tiene 16 569 pb. A veces se presenta como varios círculos encadenados Y,en otrai,coino un gran círculocerrado con 2 moléculai unidas por enlacecovalente en una forma tipo cabeza-cola. Su sensibilidad a la hidróliskalcatina y a laacción delas

Page 173: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

!

ARNasas hacía suponer que al menos en algunos sitios contenía rihonuclebtidos, lo cual fue comprohado posteriormente.

Estos rihonucleótidos se encuentran en la zona que forma el origen de replicación y en otros sitios donde su función cs desconocida. Lascélulas humanascontienen unas 8 000 copias del ADNmt.

En el ADNmt sc da un hecho singular, pues una de las hebras contiene la niayor proporción de las G y por eso se le denon~ina cadena pesada o H (heayv), mientras la otra contiene las C y por eso se nonihra ligera o 1. (light); esto hace posihle lasepara- ción de las cadenas por centrifugación en gracliente de densidad.

Otro hecho característico es la existencia de una pequeña zona de hebra triple denominada lazo D. En esta zona la cadena H está desplazada (de ahí D) y a la cadena L se aparea un pequeño fragmento Ilaniado ADN 7S por su coeficiente de sedimentación.

El descubrimiento de que alteraciones del ADNmt pueden ser las causas de algu- nas enferniedades ha intensificado su estudio en los últimos años.

Cromosoma baderiano

La mayoría de las bacterias presentan sus genes en una sola molécula de ADN de doble Iiehra circular superenrollado. En E colila longitud total del círculo es aproxi- madamente 1 300 pm, lo que es igual a la longitud de 50 diámetros bacterianos, por tanto debe estar muy plegado,si tenemos en cuenta que la hacteria tiene un diámetro de 1 pm y una longitud de 3 pm.

Este ADN está asociado con AUN y proleínas,se presenta con uiia armazón central muy compactada de la ciial irradian de 35 a 45 asas de ADN superenrollado, lo cual hace que el corte transversal sea sólo de 2 pm; sus 3 x 1O6ph le confieren un peso por partícula de 2 x 10".

Cromosoma encarionte

Los cromosomas eucariontes constituyen la forma de presentación más compleja de los ADN; por ejemplo, un cromosoma de Drosophila melanogastertiene un peso de partícula superior a 10"' y una longitud de 1,2 cm; como el ancho de la molécula es de 2 x 10.' cm, la relación longitud/anchura es de 6 x lo6.

El ADN de las células eucariontes se encuentra fundamentalmente en el núcleo celiilar, donde está unido a proteínas, formando asociaciones complejas de nucleoproteínas. El grado de "einpaquetamiento" de esas nncleoproteínas varía sensi- blemente durante el ciclo celular, mostrando la forma más compacta enlametafasede la mitosis y lamás relajada durantelainterfase.A la forma que adopta en la interfasese le denomina cromatina y a la que adopta en la mitosis, cromosoma; aunque en muchas ocasiones estos 2 nombres se emplean indistintamente. La estructura detallada de los cromosomas eucariontes se hará en el capítnlo 23, dedicado al estudio del núcleo celular. En la iahla 11.5 se pmentan el número de pares de bases y el contorno del ADN que contienen diferentes organismt~ por célula.

Métodos empleados en el estudio del ADN

Los métodos generales para el estudio de las macromoléculas fueron estudiados en el capitulo 9, aquísólose hará referencia a algunas particularidades de esos méto- dos en el estudio de los ADN.

Page 174: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

mli 115. Contenido de AUN de algunos organisiuos de acuerdo con el número de pares de bases y la longitud de su contorno

Origen del ADN Kilohases :' Contorno (pm) "

Fago h 48,6 17

Polioma 5,1 1,7

Eschcriehia coli 4 000

Levaduras' 13 500

Dmsophila' 165 000 56 000

Humano' 2 900 O00 990 O00

" l kilobase = 1 000 pb.

"ontorno de la nioléeula erlcndida con 034 nni de scparaciún entre cada par de bases.

' Del total del número haploide de ci-oniusoinas.

Obtenei6n del ADN

Se procede a la ruptura de las células por los métodos habituales de homogeneización. Como el ADN está siempre asociado con proteínas se debe proce- der adesproteinizar el homogenato; si se quieren obtener nioléculas de ADN de gran tamaño se puede agitar suaveniente la preparación en una mezcla de fenol y alcohol isoamXco, con lo cual las proteínas precipitan y pueden separarse por centrifugación; también puede usarse cloruro de guanidino, detergentes o enziinas proteolíticas con10 la pronasa.

Para eliminar los ácidos riboiiucleicos se trata la i~iezcla con riboiiiicleasa. Para proteger al ADN de las desoxinucleasas se añade EDTA (ácido etilendiamino tetra-acético), que secuestra los metales necesarios para la acción de la$ nucleasas.

Todo el material de vidrio del laboratorio debe ser esterilizado en autoclave y se 3:k ::aVsjsi c w g;au:ss i;:$s:ic;.s. Os :nU-s f6r;;;as :s ;;;suií;ü:ed;%j 3s: iXEE 2s

mnchomás fácil que la de las p r o t ~ ' mas.

Sepmei6n de los ADN

Los métodos niás usados coi1 este propósito son la cromatografía, elcctroforesis y ~kacentrifugación.

El soporte cromatogrático más ótil en la separación del AUN es la hidroxiapatita, a la cual el ADN de doble cadena se iine con más fuerza que cualquier otra niolécola. Cuando la mezcla que contiene el ADN se deposita sobre una columna de hidroxiapatita, ésta se lava con iina solución bufYerfosfato de hajacoiiceiitraiióii, que arrastra prefereiitemente los ácidos ribonucleicos y las proteína% Al aumentar paulati- namente la concentración del bufferse produce la separación del ADN.

Page 175: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En la elecboforesis se aprovechalacaracterística polianiónica del ADN, que hace que estas moléculas se muevan hacia el ánodo impulsadas por el campo eléctrico. La movilidad de las moléculas vana inversamente con su masa molecular y directamente con su carga. Los geles de poliacrilamida son útiles para separar moléculas de bajo peso, hasta aproximadamente 2000 pb. Para moléculas mayores es necesario el em- pleode geles de agarosa, con los cuales pueden separarse fragmentos de hasta 100000 pb, con una concentración de agarosa de 0,1 %.Para localizar las moléculas el gel se tiñe con bromuro de etidio, proflanna o naranja de acridina.

Etidio

Naranja de acridina

H

Proflavina

Estas son moléculas aromáticas planas que seintercalan entre los pares de bases y exhiben fluorescencia cuando éstos son iluminados con luz ultravioleta.

La ultracentrifugación también es útil en laseparaciónde los ADN. Unavariante del método general descrito en el capítulo 9, permite separar los ADN por su composi- ción. Para ello la centrifugación se realiza en un gradiente de CsCI; en esas condicio- nes el ADN se moverá hasta que su densidad coincida con la del medio; como la densidad del ADN es una función de su contenido en GC, moléculas con diferente composición se equilibrarán en diferentes posiciones y pueden ohtenerse con el senci- llo procedimiento de perforar el fondo del tubo y recoger pequeñas alícuotas de la solución.

Localización de ADN especiñcos

Si conocemos la secuencia de bases nitrogenadas de un ADN, podemos conocer si éste se encuentra en una célula determinada según el método de transferencia del ADN (Southern blot).

Page 176: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

El método de trasferencia del ADN aprovecha la valiosa propiedad de la nitroce- lulosa, de unir tenazmente los ADN monocatenarios, pero no el bicatenario. Después de la electroforesis en gel del ADN bicatenario, este se sumerge en una solución de NaOH 02 M, que lo convierte en monocatenario y se cubre con una Iámiia de nitroce- lulosa, que asu vez se recubrede varias capmde papel gruesoabsorbente y se preiona con una placa de presión. Esta presión hace que el líquido fluya del gel y lo obliga a pasar a través de la nitrocelulosa, donde el ADN monocatenario queda retenido en la misma posición que ocupaba en el gel; este paso puede acompañarse de electroforesis para ser más rápido, en un procesoconocido como electrotramferencia.

Después de secar al vacío el filtro de nitrocelulosa a 80°C, que fija el ADN en su lugar, el filtro se humedece con una cantidad mínima de una solución que contiene ARN ó ADN monocatenario, marcado de forma radiactiva y cuya secuencia es comple- mentaria a la del ADN buscado; ésta es la sonda. El filtro humedecido se mantiene a una temperatura de renaturalización para permitir la hibridación entre la sonda y el ADN, se lava para eliminar la sonda no unida, se seca y se recubre con una placa fotográfica para la antorradiografia. La posición del ADN buscado se indica por la zona velada en la película. Así se puede detectar y aislar un ADN de interés. Como se trata de fragmentos grandes de polinucleótidos complementarios, la hibridacih se produce eficientemente aun cuando existan pequeñas zonas de no apareamiento (Fig.

Ir--i.i

Estructura general de los ácidos ribonucleicas

Al igual que el ADN, los ARN se forman por la poliiuerización de unidades más simples denominadas ribonucleótidos o sencillamente nucleótidos. Los ribonucleótidos

Fig. 11.15. Localización de ADN espeeífi- cos. a) 1,ámina del gel donde se ha realizado la clcetroforesis de dife- rentes fragmentas de ADN. b) Los fragmentos de ADN previamente desnaturalizados se transfieren n un filtro de nitrocelulosa donde las cadenas monofihrilares se adhie- ren con fuerza. r ) El filtro se su- merge en una solución que con- tiene la sonda y se deja el tiempo necesario para la hibridación; d e s pues se lava para eliminar el exce- so de simda, se seca y w reeiibre con una placa fotográfica. d) Al revelar la placa sc tiene la loeiliza- ción exacta del fragmentode ADN huscado.

Page 177: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

contienen como pentosa la ribosa en vez de la desoxirribosa. Las bases nitrogenadas punnicas son lai mismas que las del ADN, pero entrelas pirimidínicas los ARN contie- nen por lo general nracilo en vez de timina. Auncuando la ribosa presenta un grupo hidroxilo en CZ , en los ARN el enlace fosfodiéster se establece entre el C3' de un nucleótido y el C5' del vecino al igual que en el ADN; esto hace que también en los ARN se describa una dirección o polaridad que, al igual que en el ADN, es de 5 1 3 . Sin embargo la composiciónde basesdelos ARN f f i m á ~ heterogénea quela del ADN, pues en ellos existen numerosas bases modificadas que en algunos tipos de ARN llegan a representar hasta el 10 70 del total de bases de la molécula. La modificación más frecuente es la adición a las bases típicas de grupos metilos, pero también pueden exitir otros como el acetilo, isopentenilo, etcétera.

Una situación especial se presenta con la pseudouridina que en muchos casos se menciona comonna base rara,lo cual no es cierto. La pseudoundina es un nucleótido anómalo, pues en él la base nitrogenada es el nracilo pero está unida a la ribosa por un enlace a través del C6 y no del NI, como en los nucleótidos normales. La pseudouridina se representa por la letra griega psi (v). Algunas especies moleculares de ARN contie- nen tirnidina que se refiere como ribotiidina.

La presencia del CZ -0H hace que los ARN seansusceptibles a la hidrólisis alcalina. pues la reacción requiere la formación de un intermediario fosfodiéster cíclico entre C2 y C3'que no es posible formar en los desoxinncleótidos del ADN.

Page 178: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Esta propiedad permite la separación de los monómeros del ADN y el ARN de la fm siguiente:

1. Seextraen los ácidos nucleicos de la célula como ya se explicó. La preparación se somete a una hidrólisis alcalina que sólo afecta al ARN.

2. Se somete a centrifugación de forma que el ADN de peso molecular elevado sedi- mente y los ribonuclebtidos se mantengan en solución.

3. Se decanta la solución, el precipitado se resuspeude y entonces se somete a una hidrólisis ácida con lo cual se obtendrán los desoxinucleótidos.

Los ARN presentan gran heterogeneidad en su tamaño. Los hay tan pequeños con apenas 80 nucleótidos hasta moléculas gigantes de varios miles de bases; es por ello que las propiedades físicas que dependen del peso, tamaño y forma de las moléciilas también son muy variables en los ARN.

Aunque a diferencia de los ADN, los ARN están formados por una sola cadena polinucleotidica, ésta no adopta una forma fihrilar, sino que se pliega sobre si, y en sectores donde las bases son complementarias forman estructuras duplohelicoidales. Estasformasde apareamiento pueden ser descritas por la conibinación de varias estruc- turas sencillas que pueden considerarse como los elementos estructurales de los R N .

Como se puede observar en la figura 11.16 a), la estructura más sencilla es la horquilla que contiene 2 elementos estructurales: una zona de apareamiento a veces Uamada tallo y una zona ensanchada no apareada en ocasiones denominada asa. Para formar la horquilla la cadena debe variar su dirección en 180". Dos horquillas o mas pueden combinarse una a continuación de la otra, con segmentos conectores de mayor omenorlongitud comosemuestra enla figura 11.16 b).

Otra forma decomhinación viene dada por la formación de asas internas; en este caso una gran horquilla contiene en el tallo zonas con apareamiento y sin él, estas íiltimas son las asas internas, como puede verse en la figura 11.16 c).

Por último las horquillas pueden interactuar con un sector externo; para ello algunas bases del asas se aparean con bases de otras zonas cercanas o lejanas y forman los llamados pseudonudos. Como consecuencia la cadena debe girar en el espacio, lo que contribuye a la formación de estructuras terciarias; esto se ilustra en lafigura 11.16 d).

La forma en que los pseudonudos pueden contribuir a la formación de la estructu- ra terciaria de los ARN se muestra en la figura 11.17.

Las zonas apareadas son parecidas al ADN-A, pues la presencia del oxígeno en C2' impone limitaciones estéricas que no le permite adquirir la forma B. Es bueno señalar qneel apareamiento de bases no es tan estricto como en el ADN, por ejemplo,

Fig. I l .16 . Estructuras básicac de los ARN. a) Estructura en Iiorquilla con una zona apareada (tallo1 y una no ar>arcada(ara). b ) Comhiiiaeión de

maiiún de asas internas. d l Las Lmscs de un asa se aparean ron zonas fuera de la horquilla, for- mando pscudoiiudos, para la cual la cadena dche d<iblame, por lo que esta estructura es importante en la formariitn de la estructura tercia- ria de los ARN.

Page 179: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

a) 5' UUACGGC UAGCCG 3'

Fig. 11.17. Los pseudonudos en la cstruc- tura terciaria. En a) se rcprescnta un fragmento de una cadena de ARN. En b). cbmo cata cadena da origen a una horquilla con su tallo y asa, pera por fuera de ella hay un sector complementario a las bases del asa. El apareamiento de estos 2 sectores puede dar uripn a una estructura coma la mostrada en e), formada por 2 lazos pero que siin sc mantienen en el mismo plano o, por el contrario, formar la estructura representada en d), que ya no puede contenerse en el plano. Esta última organización es la que cuntribuye a la forniación de la estructura terciaria de los ARN.

es frecuente encontrarse pares GU e incluso GG. Algunos de estos pares atípicos se muestran en la figura 11.18, donde cada par posee una geometría particular que se aparta en gran medida de la de los pares de basadel ADN.

En los ARN existe un número considerable de estructuras helicoidales, aun en ausencia de apareamiento de bases; esto se debc a las intensa9 fuerzas de "empalizado" entre las bases A, G y C. Estas fuerzas son niucho más importantes que los puentes dc hidrógeno en la formación de interacciones inter e intramolecnlares y actúan limitan- do las posibles conformaciones de los ARN.

Al igual que en el ADN la distancia limitada del eje pentosa fosfato y el eulacr P-N-glicosídico, formando un ángulo casi perpendicular, impiden que las hases se coloquen directamente una sobre otra. En las dobles hélices las bases forman ángulos de rotación de 33" y la hélice contiene de 10 a 11 pb por vuelta. En las cadenas simples

Fig. 11.18. Ap'areaniiento de bases en los R V . Se niuestran los pares de base4 CA ). TG donde puetlr oliservarse quc la geonietría de éstos se aparta runsidcrahlcrnente dc los apareamiento\ típiroi del ADN. 1.0s ánzulus formados por el N dc la hase y cl Clson diferentes en nida rasa, por lo cual ti" pueden nroniodarsr en una doble liélice como la dcl 4DN.

Page 180: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

el&,,gulo es de 60' y cada vuelta contiene 6 bases. Estos plegamientos con el máximo grado de apareamiento de bases se pueden representar sobre un plano y se refieren como la estructura secundaria de los ARN.

Esas conformaciones helicoidales permite un mejor apareamiento con otras mo- léculas de AUN ó ADN, que también presenten estructuras "empalizadas" y sus bases sean complementarias, pues son importantes en los mecanismos de expresión de la hfomación genética.

La estrucara tridimensional de los AUN se conoce como su estructura terciaria. os estudios en este campo sólo han dado resultados en algunos tipos de ARN de pequeño tamaño. En moléculas grandes los resultados aún se esperan; sin embargo, en 10s ya conocidos se ha puesto de manifiesto que la estructura terciaria depende del establecimiento de interacciones entre las bases y la rihosa en unas ocasiones, así como con los grupos fosfato en otras.

En las células existen 3 tipos principales de AUN que se distinguen tanto estruc- tural como funcionalmente. Tomando como criterio su participación en la sintesis de proteínas se han denominado ARN de transferencia (ARNt), ARN ribosomal (ARNr) y ARN mensajero (ARNm). Se estudiará cada uno de ellos por separado y después con menor detalle otros AUN celulares.

ARN de transferencia

Los ARNt constituyen una familia de especies muleculares cuya función es la de tramportarlasaminoácidoshaWa los ribosomas durante la síntesis de proteínas, por lo que deben existir tantos ARNt como aminoácidos diferentes contengan las proteínas; todas eUas presentan regularidades estructurales que permiten generalirar una estmc- tura relacionada con su función.

Los ARNt son polinucleótidos pequeños que contienen de 60 a 95 nucleótidus, aunque la mayoría tiene 76. Lo más sobresaliente en su composición de bases es la presenciade numerosas bases modificadas que llegan a constituir hasta el 20 % de la molécula. La razón de esta elevada proporción se desconoce, pero pudiera de algnna manera contribuir a la formación de estructuras tridimensionales, unas veces en fun- ción favorable y otras impidiendo la formación de interacciones entre las bases.

El estudio de la secuencia de bases de AKNt fue realizado por primera vez en 1965 por RoberiHolley, en el ARNt de la alanima procedente de levaduras. Para este trabajo Holley tuvo que vencer numerosas dificultades técnicas, pero a partir de él se ha desarrolladouna tecnología que permite realizar ese trabajo en pocos días, lo cual ha hecho que ya se conozca la secuencia de bases de más de 300 AUNt de diferentes especies.

El estudio comparativo de estas secuencias ha permitido llegar a conclusiones importantes. En todos ellos existen 13 bases iuvariantes, es decir, todos tienen la misma base en posiciones equivalentes y hay 8 bases semiinvariantes, es decir, en posiciones equivalentes siempre hay una purina o una pirimidina. En el extremo 3' siempre aparece el trío CCA.

Esbuchva secundaria

Holley estableció la estructura secundaria del ARNt de la alanina y vio que el grado máximo de apareamiento se lograba cuando la cadena polinucleotídica se repre- sentaba en forma de una hoja de trébol (Fig. 11.19).

Page 181: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fip. I1 . IY. Estrurtiii-a gcnrralirada de los ARNI. La cslrurtura en Iiojade tr6- 1>01 d c 10s R N I . Las r w a s apareadx se presntan ron el n<i- ~ P I . O de pares tipicos de rada asa. Las Ihases iriiisrrrattas S P presen- <an ion sus iniciales. Las posirio- ncs seinicaiisr~.vadas se i-cpresrii- tan ptii- Kpani las piirinas y i'para las piriniidin.?~; se represenlii la psriidouridina. Las hases drl aiiticodun aparecen sutiilireadas.

A-OH 1

I 7 ?

?-O 0-0 0-0 0-0

lUmhitn supuso quesi todos los ARNt cumplían la misma función debían poseer estructuras muy similares, lo cual ha sido confirmado posteriormente con el estudio de numerosos AWt.

Según el modelo la cadena se pliega forinando 4 sectores de apareamiento de bases llamados tallos, 3 de esos tallos terminan en zonas ensanchadas no apareadas llamadas asas. I h tallo ysu asa correspondiente forman un brazo: cada brazo tiene una disposición y longitud características. Existe un quinto hrazo que es variahle en su longitud y composición, éste hace que el núniero de nucleótidos en los distintos AKNt varíe de 60 a 95 ~iucleótidos.

Una estructura generalizada de los ARNt debe contener los elementos siguientes derivados del análisis comparativo de las moléculas estudiadas:

1. El extremo 5 contiene nn grupo fosfatu y el extremo 3 'termina con la secuencia CCA que no está apareada.

2. Las secuencias inmediatas alos extremos forman un tallo que iiicluye7 ph, entre ellos el G-U. Este es el tallo aminoacídico o aceptar. , ,

3. Existen 3 brazos constantes que,siguiendo la molécuben dirección 5- 3 ,son los siguientes: el brazo D formado por un tallode 4 65 pb y un asa con diliidrouridina; cl Iii-aio ;~iiIicodoii coiitiluido por un tallo de 5 pb y rl a u contiene el triplete aiiticod~~ii: el hrazo'Sq~ C que está hriiiado por un iallo de 5 p1) \. el asa contiene la secuencia iuvariante ribotimidina ('S), pseudouridina (!VI y citosina (C); aesto debe sumarse el brazo variable ubicado entre el del anticodon y el Tyr C, que puede contener de 3 a 21 iiucleútidos con un tallo de hasta 7 ph.

Cuando se Iiahla de posiciones equivalente se hace referencia a la localización en bu estructura secundaria y no en la primaria. pues esta última puede variar con la longitud del brazo variable; así por ejemplo, la ribotimidina sienipre se encuentra al inicio del asa T i y C. independiente de su localización en ka estructura primaria.

( ~ ' I I I I I I I \c puede oI)wr!ar UI la Iigilra l 1.19 c a i In(las las IMSCS ~ I I ~ : I I ~ I I I I C S ! wiiiiii\ aria~itc\ apiireceii Ii,c;ilizad;is eii las asas.

Page 182: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Después de numerosos esfuerzos infr~ictuosos por determinar la estructura t+Jimensionai de los ARNt, en 1974 Alexander Ric11 y Sung Hou K i n ~ por una parte y ~ m n Klugpor otra, mediante estudios de difracción de rayos X, lograron dilucidar laesWctura del ARNt de fenilalanina de levadura, con una resolución de 025 nm. 1.0s resultados mostraron que la molécula adopta la forma de una letra L invertida c); el lado vertical se forma por el brazo D y el anticodon, en tanto el lado horizontal lo foman el brazo Q C y el tallo aceptor. En ambos lados la mol4cula forma una doble hégcesimilar al ADN A, pero con apareamientos menos estrictos. Cada lado tiene una longitud de 6 nm y un ancho de 2 a 2,s nm. Los 2 extremos de la L formados por el anticodon y el CCA del aceptor están separados unos 7,6 nm (Fig. 11.20).

Fig. II.20. listi.ucliira terciaria dc los ARUI. Las nioléculas dc los 9RKI adnp- tan en el espacio una esfriictura que recuerda a una lctra I , invertida. Eii rojo se representa el asa del anlicodon. En tiiul, el asa 'I'ivC. y eii rri-de, rl asa dc la diliidroui.idi!ia. 1,"s pares iIc Ihasrs no sienipre ion del liliu \\'atsoii > Cricli? además. las bares pimien iiitcrüetuar coi, las rihosas y ion los losfatos.

La estructura se mantiene gracias a numerosas interacciones que se establecen entre sus componentes. Una proporción elevada de las bases participa en la formacibn de empalizadas, otras forman pares de bases cruzados que por lo general no son del tipo Watson y Crick. La mayoría de las bases involucradas en estas interacciones son las invariantes o semiinvariantes. También participan en la estabilidad de las molécu- las puentes de hidrógeno entre las bases y gruposfosiatos, en unos casos y en otroscon el CZ-OH de la ribosa.

El hecho de que la estructura se establece principalmente por las bases invariantes y semünvariantes sugiere que todos los ARNt tienen la misma estructura tridimensional. En el capítulo 30 se verá que esta forma tridimensional del ARN se adapta perfecta- mente a su función de transferir aminoácidos a los ribosomas durante la síntesis de pmteúlas.

El ARN ribosomal (ARNr) se encuentra formando parte de los rihosomas donde está muy relacionado con proteínas. Como se verá con más detalles en el capítulo 29,

Page 183: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

I

estas partículas citoplasmáticas pueden disociarse en 2 subunidades desiguales, la mayor denominada L (large) y la menor S (smali).

El ARNr representa del 50 al 60 % del peso de la partícula y cada subunidad contiene moléculas de ARN que le son características. En los procariontes estas molé- culas se refieren de acuerdo con su coeficientede sedimentación como ARNr de 5, 16 y 23 S, lo cual significa que contienen alrededor de 120,1540 y 2 900 nucleótidos respectivamente. En los eucariontes estas especies principales se refieren como de S, 18 y 28 S y existe una adicional de 5,s S que contiene unos 160 nucleótidos. Por lo general la subunidad menor sólo contiene una especie molecular (16 ó 18 S), mientras las otras se encuentran en la mayor. A continuación se revisarán los aspectos más sobresalientes de sus estructuras.

Al igual que los ARNt, los ARNr presentan bases modificadas pero en menor proporción, pues apenas da cuenta del 1 % del total de bases. La modificación más frecuente es la meolación,aunquepueden haber otras. Las basesmodicadas están por lo general agrupadas en pequeños sectores de la estructura primaria. A diferenciade los ARNt,los ARNr presentan grupos metilos en el C2' -0Hdela ribosa y estas modifica- ciones se encuentran muv distribuidas en la molécula.

El análisis comparativo de lasecuencia de bases delos ARNr dediferentes espe- cies ha mostrado un elevado grado de conservación evolutiva. Existen secuencias de 10 a 20 nucleótidos que son esencialmente invariantes en todas las especies estudia- das; esto sugiere que dichas secuencias están involucradas en las funciones de los ARNr y no en la estructura. Se ha comprobado que las secuencias conservadas se localizan hacia la superficie del rihosoma, lo cual apoya su carácter funcional.

~ c h u a secundaria

Con el conocimiento de la estructura primaria, asícomo diferentes aproximacio- nes experimentales y teóricas se han construido modelos de estructuras secundarias de los tipos principales de ARNr. Estos modelos contemplan el establecimiento del ma- yor número de bases apareadas y "empalizadas" con lo cual disminuye considerable- mente el contenido energético de lamolécula. No obstante, se debe tener presente que estas moléculas existen en asociación con proteínas, y es posible que esas interacciones influyan en la estructura de los ARNr. Por otra parte, la estructura terciaria que aún es desconocida puede implicar la existencia de otro tipo de interacciones que podrían contribuir a la estabilidad de la molécula en mayor grado que las secundarias.

ARN menqjero

Poco se sabe de las estructuras de orden superior de los ARN mensajeros (ARNm) de eucariontes; esto se debe en parte a que la cantidad de ARNm especí- ficos en la célula es muy baja, lo cual dificulta su purificación, y, por otra, al igual que los ARNr, se encuentra en el citoplasma en compleja unión con proteínas. Los ARNm suelen ser moléculas con metabolismo inestables, o sea, son degradados con rapidez y de ahí que presenten un tiempo de vida media muy corto en compa- ración con los ARNr y los ARNt.

Algunos detalles estructurales son característicos de los ARNm de los eucariontes. Todos presentan modificado el extremo 5' por la adición de un nucleótido de 7-inetil-guanina mediante un enlace fosfoanhídrido; esta estructura recibe el nombre de casquete y suele abreviarse por su equivalente en inglés, cap; en ocasiones la

Page 184: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

estmctura se completa con la metilación del C2 - 0 H del primer nucleótido (cap 1) y del (cap 2). Otra característica importante se observa hacia el extremo 3' donde muchos ARNm presentan una larga cola de poliadenina, poli(A), que puede tener más de 200 nucleótidos. La modificación en 5 parece estar relacionada con la unión del ARNm al rihosoma, en tanto la de 3 parece incrementar la estahilidad metab61ica. La estrnctura de los ARNm será tratada con más detalles en el capítnio 27.

En su proceso de síntesis el ARNm se forma de moléculas mucho mayores, que se encuentran en el núcleo y han recibido el nomhre de ARN heterogéneo nuclear (ARNhn). El ARNhn ya presenta el cap y la cola de poli(A) y se va acortando por un p-0 de maduración que también se estudiará en el capítulo 27.

Son moléculas de ARN que contienen de 90 a 400 nucleótidos, de una elevada estabilidad metabólica y que están presentes en las células por decenas de miles de copias cada uno; pueden estar localizados en el núcleo y se les denomina ARN peque- ños nucleares (ARNsn del inglés smallnuclear) o en el citoplasma como ARN peque- ños citoplasmáticns (ARNsc del inglés small cytoplasmic).

El subtipo más conocido está formado por 6 especies moleculares diferentes, pero todas ellas con un elevado contenido en uridina, por lo que se les ha denominado como ARN-U y se designan del U1 al U6. Todos los ARN-U presentan modificado el extremo 5' con una estnictura tipo cap, que del U1 al U5 es la trimetilguanina pero que en el U6 es diferente. Los ARNsn se presentan asociados con más de 10 proteínas diferentes, formando partículas de ribonuclmproteínas (RNPsn) que participan en el pmeeso de maduración de los ARNhn para originar los ARNm y del pmARNr.

Los ARNscse presentan en 3 tipos denominados Y1, Y2 y Y3 y al contrario de los U se encuentran en el citoplasma. Entre los ARNsc merece la pena destacar el ARN 7SL, que se encuentra unido a 6 proteínas, formando las partículas de reconocimiento del péptido señal (SRP) que participa en la translocación de las proteínas, las que deben ser procesadas en el retículo endoplásmatico mgoso. Este ARN está formado por aproximadamente 300 nucleótidos y tiene tanto hacia el extremo $ como hacia el 3' una secuencia de tipo Alu, llamada así por ser el sitio reconocido por la enzima de restricción Alu 1 (capítulo 26). La zona central formada por 150 nucleótidos recibe el nombre de dominio S. Esta molécula se encuentra plegada como lo demuestra el hecho de que el tratamiento con nucleasas da lugar a la formación de 2 subpart'culas, una que contiene el dominio S y la otra los 2 extremos. La función de las SRP será estudiada con más detalle en el capítulo 30.

M6todos empleados para el estudio de los ARN

Para la obtención de los ARN se procede de forma similar que con el ADN. Des- pués de la ruptura y homogeoeización celular se puede hacer una centrifugación en diferentes velocidades (fraccionamiento celular) para separar núcleo, ribosomas y cito- plasma soluble.

Los tratamientos con proteasas y ADNasa, así como el empleo de inhihidores de ARNasa también se utilizan, pues estas enzimas son muy activas en el cito- plasma. Con el uso de la centrifugación en gradiente de densidad, la cromatografía Y la electroforesis combinadas de forma adecuada se pueden obtener preparacio- nes de un elevado grado de pureza.

La purificación de los ARNm de eucariontes se hizo algo más simple a partir del Conocimiento de la cola de poli(A), pues esto lo hace ideal para la técnica de cromatografíade afinidad. Con este objetivo para preparar la columna al soporte sóli- do se le une previamente, y de forma covalente, un fragmento de poli(U); cuando la

Page 185: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

mezcla se deposita en la superficie superior de la columna se forman apareamientos entre el poli(U) del soporte y el poli(A) del ARNm; con una buena combinación de solventes se logra arrastrar primero las especies no unidas y al final el ARNm.

Para la localización de ARNm especíticos puede usarseuna técnica de transferen- cia en filtros de nitrocelulosa,como ya fue descrito parael ADN, y después localizarlo con una sonda radiactiva o fluorescente.

Como todos los métodos de purificación, los de ARN exigen una gran imagina- ciún y un conocimiento adecuado de las características estructurales específicas de la o las moléculas buscadas.

ARN como material genético

Algunos virus bacterianos, fagos, poseen ARN como material genético; entre ellos Im fagos de E. culiR17, MS-2, Qp, que tienen un ARN de cadenasimpleforman- do estrncturas compactas dehido a la presencia de interacciones débiles intracatenarias. En estosvirus el ARN ciimple 2funciones: unaservir de material genético y otra, sirve como ARNm y dirige lasíntesis rihosomal de las proteínas virales.

Por sil parte el fago 0 6 de Pseurlornonas phaseolica posee 3 ARN de doble hebra con un peso molecular de 2.3; 3,l y S x 10"cada uno. El virus también contiene la enzima capaz de procesar el ARN, pues esa función no puede realizarlael hospedero.

Sólo se conoce o11 plásmido. formado por ARN de dohle cadena, con un peso molecular de 1,s x IU6 y que fornia parte de la Ilaniada "partícula asesina'len levadu- ras, pues codifica una sustancia de elevada toxicidad.

TamhiGn los virus de las células eucariontes superiores pueden presentar ARN como material genético. El ARN puedeser de 2 tipos: el positivo (+),si también puede funcionar como ARNm y el negativo (-),si no puede. Algiinos virus eucariontes tienen ARN bifibrilar. Un caso interesante es el de los retrovirus,por lo genera1,contienen 2 moléculas idénticas (o casi idénticas) de ARN nionofihrilar, que gracias a la acciónde una enzima viral es usado para la formación de un ADN bifihrilar, - deahíel nombrede retrovirus- a este grupo pertenece el vims causante del síndrome de inmunodeficiencia adquirida (SIDA).

Resumen

Los ácidos nudeicos constituyen las macromoléeulas biológicas más impor- tantes después de las proteínas, pues esián relacionadas con las propiedades heredi- tarias de los seres vivos.

La estructura ñsica del gen es la molécula del ácido desoxirribonueleico (ADN); ésta se forma por la polimerización de moléculas más simples llamadas desoxinucleótidos, cuyas bases nihgenadas pueden ser del grupo de las purinas como la adenina y la guanina o del grupo de las pirimidinas como la citosina y la e a . Los desoxinudeótidos se unen mediante el enlace fosfodiéster que liga el hidroxilo de la posición C3 d e uno de ellas con la C5' del vecino. Los 2 extremos de la cadena poliménca son diferentes y por eso se dice que presentan polaridad 5'33:

La estructura espacial del ADN se describe mediante el modelo de Watson y Crick. La molécula está formada por 2 hebras antiparalelas, con las bases niheenarias hacia el interior v el eie Deniosa fosfato hacia el exterior. Las bases - " " . forman pares complementarios Acou T y G con C unidos por puentes dehidrógeno, 2 en el primer caso y 3 en el segundo. El "empaüzado" de las bases se mantbne por interacciones hidrofóbicas que son las fuerzas fundamentales en el mantenimiento de la esbudura A lo largo de la molécula del ADN existen numerosas irregularida- des que dependen de la secuencia, como la inclinación del par de bases con respecto

Page 186: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

pl d e y los efectos de alabeo y balanceo que c m patrones espaciales de formación de de hidrógeno y que permiten la interacción especiñca del ADN con otras m n e r o m o l ~ . Cuando los extremos de las cadenas de ADN no pueden rotar Ubremente, como en los casos de ADN eimilar, la molécula puede adoptar formas topológicas diferentes denominadas topoisómeros.

El ADN puede desnahuaüzarse mediante el calentamiento por encima de la mperatura de fusión 'Cm, y renaturalizarse al bajar la temperatura lentamente, 10 que ha dado lugar a los métodos de hibridación.

para estudiar el ADN se p&a extraerlo de la dula, rompiendo ésta y sepa- h d o l o de las proteínas; después puede ser puriñcado utüizando una amplia va- riedad de métodos como la eromatografia, la eleciroforesis y la centrifugación.

W c a s de transferencia permiten localizar ADN espedseoa:. Los ADN se pueden presentar en forma de una sola cadena como en los vinis. Las molénilas independientes del c:wmosoma, como en el easo de los pldsmidos

o del ADN mitoeondrial, son de doble hebra Los ácidos ribonucleieoa: ARN son productos g6nieoa: primarios, lo que equiva-

le a decir que SU estructura está determinada directamente por el ADN. Constituyen un gmpo heterogéneo de macromolénuas tanto desde el punto de vista estructural como funcional. En general sus funciones están vinculadas a los mecanismos de expresión de la información genética.

Los ARN están formados por una sola cadena de polinucleótidos enlazados mediante uniones fosfodiéster 5'-3. Su composición de bases es menos regular que la del ADN, y entre las pirimidinas prevalece el uraeilo en vez de la timina. La pentosa que contiene es la ribasa, cuyo C2'-OH impone limitaciones a su estructura tridimensional y los hace susceptibles a la hidrólisis alealina

La cadena única de los ARN se pliega sobre sí, formando mnas de bases apareadas separadas por zonas no apareadas (ias asas), que pueden ser internas o terminsles. Las interacciones de "empaüzado" en primer término y los puentes de hidr6geno en segundo, contribuyen a estabilizar &a estructura secundaria. De la estructura terciaria poco se sabe.

En las células hay varios tipos de ARN: ARNt, ARNr, ARNm y ARN pequesos. Los ARNt contienen alrededor de 76 nucleótidos con casi el U) % de sus bases modificadas. Todos presentan una estructura secundaria simüar que se ajusta al modelo dela hoja de bébol. La estructura terchia adopta la forma de una letra L inverüda. Los ARNr presentan unaestructura más compleja,pues algunos pueden tener más de 2 000 nucleótidos. Presentan b a menor proporción de bases modiñ- eadas que los ARNt, pero la ribosa está meolada en gran número; su estructura secundaria sigue los patrones expuestos y la terciaria se desconoce. La estructura de los ARNm es más betemgénea y, en relación con el metabolismo, es el menos estable de todos los ARN. Presenta un casquete en el exhmo 5' y una cola de poli(A) en el 3' y esa unido a proteínas formando ribonucleopartícuias mensqjeras. Desde el punto de vista bioquímico, deriva del ARN heterug6neo nuclear. Los Llamados ARN pequeños forman varios grupos, los más conocidos son los pequeños nuclea- res tipo U que participan en la tramformadón del ARNhn en ARNm y los pequeños citoplasmáticos tipo Y, que al parecer intervienen en la síntesis de proteínas de secreción.

Los ARN pueden presentarse como el material genético en algunos virus, que en ocasiones adopta una estructura duplohelicoidal. Existe un plssmido de levadu- ra constituido por ARN, aunque todos los demás contienen ADN.

Ejercicios

1. ¿Por qué se afirma que el ADN contiene toda la informacibn necesaria para la trasmisibn de los carácteres hereditarios? iCómo contiene esa información?

Page 187: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

2. A un estudiante se le entrega una solución que contiene un fragmento de ADN de rata de una longitud de 250 pb y se le pide que determine la composición de bases del fragmento. Al llegar al laboratorio le informan que sólo tienen disponibles los métodos para la determinación de adenina ¿Cree usted que el estudiante pueda cumplir exitosamente la tarea encomendada?

3. Un posgraduado determina la composición de bases de un ADN y obtiene los resultados siguientes: A= 23 %, G- 30 %, T= 28 % y C= 19 % ;Qué tipo de organismo está estudiando el posgraduado?

J. Escriba la fórmula de los paresde bases A-T y C-G. Infiera por qué el primero se mantiene por 2 puentes de hidrógeno y el segundo por 3.

5. Se sabe que las proteinas pA y pB se unen al ADN por el surco mayor. Estudios refinados demuestran que mientras pAse une al ADN por la secuencia CAATG, la pB lo hace por TGCCA ¿Cómo pueden estas proteínas distinguir una secuencia de oha?

6. A 2 estudiantes se les enconiienda la tarea de analizar el ADN de 2 organismos diferentes, digamos pX23 y pY21. Los alumnos extraen el ADN y lo cortan en fragmentos de aproximadamente igual longitud. Al centrifugarlos en un gradiente de CsCI, el .4DN del pX23 se concentra en una banda única. Por su parte el ADN del pY21 se distribuye en 3 bandas, una grande y 2 pequeñas ¿Cuálesson las caracte- rísticas de la composición de estos ADN que pudieran explicar estos resultados:'

7. ¿Por qué cree usted que los ARN puedan desarrollar unnúmero mayor de funciones que los ADN?

8. Si usted tuviera queniencionar una función única para los ARN ¿Cuál selecciona- &?

9. Un estudiante ha determinado la composición de bases de un ARN y obtuvo los resultados siguientes: A= 21 %, G= 29 %, T= 21 % y C=29 lo ¿A qué tipo dc organismo perteiiecía ese ARN?

10. ;,Cuál es la fiinción que pueden desempeñar en los ARN las modificacionesquese producen en las bases nitrogenadas y en la ribosa?

11. ¿Por qué cree iisted que todos los ARNt presentan una estructura terciariasimilar, si sus secuencias de bases no son exactamente iguales?

12. Si a usted se le encarga la tarea de purificar un AIWt específico ¿Cuál pudieraser un procedimiento importante para llevar al éxito su encomienda?

13. ;Por qué cree usted que durante la evolución los organismos más evolucionados utilizan como material genético al ADN y no al ARN?

Page 188: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

.

En casi todos los procesos que ocurren en las células están presentes las proteínas (del griego protos, quesignifica primero o más importante). Entre las macromoléculas, ellas son las ejecutoras, el ácido desoxirribonucleico (ADN) es la memoria que contie- nela información genética y los ácidos ribonucleicos (ARN) son las macromoléculas descodificadoras, ya que son capaces de convertir la información codificada en los ácidos nucleicos en la información secuencia1 de las proteínas.

Existen miles de proteínas diferentes, cada una con función específica A cualquier nivel aueuos refiramos,una determinadaest~ctura permite una función determinada y las son un ejemplo conspicuo; por ello se vuelve importante e imprescindible el estudio de la estructura de las proteínas, lo que permitirá comprender su diversidad funcional,la relación estructura-función y sus Probiedades más relevantes.

En este contexto, dada sus importancias biológica y biomédica, no podemos dejar de hacer referencia a los péptidos.

Péptidos y proteínas

Los péptidos y las proteínas son polímeros (del griego poli muchos, meros parte) de aminoácidos unidos por enlace peptídico (capítulo 6).

Cada aminoácido que forma párte de una cadena peptídica se le denomina resi- d ~ p u e s ha perdido un átomo de hidrógeno de su gmpo amino y una porción hidroxüo de su grupo &boxilo, o uno de los 2 si ocupan 6 s extremos de la cadena.

Se denominan oügopeptidos cuando contienen de 2 a 7 residuos de aminoácidos; polipéptidos cuando su peso moleeutar es menor que 5 000, y proteínas cuando su Peso molecular es mayor que 5 000.

En el caso de los &go&ptidos se puede especificar el número exacto de residuos - - - de aminoácidos que contiene, anteponiendo el prefijo: di-, tri-, tetra-, penta-, hexa-, o hepta, a lapalabra pé~tido. El dipéptido contiene 2 residuos de aminoácidos, el hipéptido 3 y asi sucesivame"&.

EBtnictors de loa peptidoa

Como el enlace peptídico se establece entre el grupo a-carboxüo de un aminoácido Y el gnip0 a-amino del siguiente, los residuos de los extremos tendrán: uno, el grupo amino no Comprometido en el enlace, y el otro, el carboxilo. Por convenio, el residuo aminoacídico que tiene el grupo amino libre (N-terminal) suele escribirse a la izquier- d a ~ el que Posee el gmpo carboxilo libre (C-terminal), a la derecha.

Page 189: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los péptidos están constiinidos por un eje covalente, donde se alternan de forma monótona el carbono a y el enlace peptídico, por lo que quedan proyectadas por fuera de este eje covalente las cadenas laterales de los residuos aminoacídicos. Algunos ejemplos de péptidos se muestran a continuación:

Arg - Pro - Pro - Gli - Fen - Ser - Pro - Fen - Arg Bradiquinina

7 S - S -7 Cis - Tir - Iso - Gln - Asp - Cis - Ro - Leu - Gli - NH,

Oxitocina

Tir - Gli - Gli- Fen- Met

Encefalina

D - Fen -+ L - Leu 4 -0m 4 -Val 4 -Pro A 1

y 4 1 1 1 - Cis - Gli

Glutatión

La conformación de los polipéptidos queda esiabilizada por interacciones débi- les. Su actividad sólo está favorecida cuando adquieren conformaciones específicas.

Los grnpos que se enmentran ionizados a pH ñsiológicoson el a-amino y el aarbo>UIo termyiales, así como los grupos de las cadenas laterales de los residuos de aminchddos básicos y ácidos.

Page 190: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

No obstante, las constantes de ionización de estos grupos serán diferentes a la de los aminoácidos libres, pues estarán bajo La influencia de los gmpos que le rodean.

Se puede predecir el comportamiento ácido-básico y la carga eléctrica de un péptido a partir de sus grupos a-amino y a-carboxilo libres, y de la naturaleza y número de los grupos ionizables de sus cadenas laterales (Fig. 12.1).

Funciones biol6gicas

Los péptidos cumplen variadas e importantes funciones. En la tabla 12.1 se relacionan algunos ejemplos.

nbla 12.1. Oligopéptidos y péptidos que cumplen funciones notables

~ügopéptidos y 'L Origen polipéptidos

Función

mtowna

Bradiquinina

Gramicidina S

Glucagón

Corticot~opina

Sintetizado comemalmente

Hipotálamo

Casi todas las células

Sistema nervioso cuihal

Hipófisis posterior

Riñón

Badeiia Bacillus brevis

Pánupa~

Hipófisis anteiior

células bacterianas

Hormona que estimula la überacióndela hormonaümtmpina

Ayuda a mantener los grupos sulfidrilos en so forma miuada

Control del dolor, induce analgesia

Hormona que ~ O m u l a las contracaones uterinas

Acción vasodilatadora potente

Antibiótico

Hormona que estimula a la corte! =P-

Confiere rigjdez y resistencia ala envolturacelular bgdeiiana

R.,&: Total de residuos aminoaiídicas.

Iwortaneia biomédica ;

Numensos oligopéptidos simrn como neurotra$misores en los centros nmiosoi delenctfalo; otros son hormonas liberadoras, que mediante ella5 el hipotálamo

OH OH I l CH2 H CH,

l l H3N+-C-c-N-c-coa- b) l Il l

H O H

OH OH l I CH, H CH, I I I

H,N- C- C-N- C-COO- c ) I II I

H O H

Fig. 12.1. El dipéptido serilserina. a) Di- sueltos en una solución que tiene pH<3 se encuentra en su forma catiónica. b) Representación de su forma isueléetriea. e) Disueltos en una solución que tiene pH>10 se encuentra en su forma nniónica. Serina pK,=2,21 pK,=Y,lS.

Page 191: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

gobierna la función de la hipófiis; otros son hormonas producidas en el tracto gastrointestinal, además otros oligopéptidos operan en los mecanismos involucrados en las vías sensoriales del dolor, presión, calor o en la inducción del sueno. Por ejem- plo, la sustnnde P:

Arg -Pro-Lis-Pro-Gln-Gln- Fen- Fen- Gli-Leu- Met-NH,

disiribuida en el cerebro, la médulaespina1 y el sistema nenicso periférico, parece ser el neurotrasmisor usado por las neuronas sensoriales eferentes de la médula dorsal involucrado en los mecanismos del dolor, presión y calor.

La sustancia P está presente en el tracto gastrointesonal, en células espeeiaiizadas endocrinas, y en los plexos nerviosos produciendo vasodilatación y estimulación de la motüidad. En la enfermedad de Corea de Huntington, que se caracteriza por movi- mientos involuntarios breves y deterioro progresivo de las funciones nedessuperio- res, éste es uno de los neuropéptidos cuya concentración está disminuida.

Muchos péptidos pueden utilizarse con &es terapéuticos por ser ahtibióticos o agentes antitumorales.

Entre los antibióticos se encuentran la valinomicina y la gramicidina A. La bleomicina es un péptido que se encuentra entre los agentes antitumorales.

Las proteínas son grandes polimeros, cuyo p a moledar abarca el rango entre 5 mil y millones, que adoptan variadas estructuras en el espacio que posibilitan sus funciones.

Clasificación de km pmteúias

Debido a la diversidad estructural y funcional de las proteínas y a las propiedades fisico-químicas que presentan, existen diversos criterios para clasificarlas.

Pueden clasificarse en globulares y fibrosas. Las glnhulsres son proteínas cuya estructura tridimensional es esferoidal. La rszón de sus ejes axiales es menor que 10 y generalmente no exceden de 3 a 4. Son proteínas globulares la mioglobina, la hemo- globina, las proteínas plasmáticas, las enzimas y las historias.

Lasfib- son proteínas cuya estmctura tridimensional es alargada, se conoce que la razón entre sus ejes axiales es mayor que 10.

Pueden clasificarse en insolubles, solubles y poco solubles. Las insolubles pre- sentan una eshuchun muy "empaquetada", que l'per~te formar los diferentes tipos de fibras, aquíse encuentrantodas las proteínasfibmsas; tambih induye las proteínas globulares,que forman parte de las membranas celulares en las cuales su grado de insolubilidad se corresponde con la profundidad de inmersión en la bicapa Lipídica. Esto es consecuencia de la cantidad de cadenas laterales de residuos de aminoácidos apolares que se proyectan desde su superficie, e interaccionan con la poirión apolar de los Lípidos mediante el establecimiento de uniones hidrofóbicas.

Las solubles presentan una estructura espacial globular, donde se proyectan emergiendo de su superficie las cadenas laterales de residuos de aminoácidos polares, que establecen interacciones no covalentes con las moléculas de agua (polar&, que permiten mantenerse en solución, aquíse encuentran casi todas las proteínas globulares.

Page 192: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Las poeo solubles o solubles en soluciones de sales neutras, como el cloruro de sodio; las globulinas son un ejemplo de estas proteínas.

Pueden clasifiear~e en simples y conjugadas. Las simples están formadas sólo por aminoácidos. Las wqjugadas tienen unido a las proteínas un gmpo prostético, que no es proteico; éstas se subclasifican sobre la base de ese gmpo (tabla 12.2).

w l a 122 Proteínas conjugadas

Clase

Lipopmteúias

Glicopmteúw

Fobfopmteínas

Hemopmteúw

Flavopmteúias

Metalopmteínas

G~jmprostético Ejemplo

Lípidm

Gmpos fosfato

HieIm zinc Cakio Molibdeno C o b ~ - Potasio Selenio Níquel

Cstalasa Alcohol deshidrogenasi Cahwdulina Dinihgenasa Citocmmo oddasa Ribonudeótido d u c t a s a Hnin~~quuiasa Glutaüón peroddasa U-

Se pueden agrupar en 8 tipos de funciones generales (tabla 12.3).

La estructura primaria de las proteínas se define como el orden o la secuencia de SUS L-a-aminoáeidos unidos mediante enlaces peptídicos (Fig. 12.2).

Este nivel estructural, codificado genéticamente, se conoce cuando se sabe el número, la estructura o identidad y el orden de todos sus residuos de aminoácidos, mnstituye la estmctura básica de las proteínas. Al analizarlo en detalle se distinguen uncomponente esirnctural común para todas las proteínas y otro especíñco para cada una de ellas.

Es el eje covalente monótono y homogéneo donde se alternan el carbono a y el Wpopeptidico. Entre 2carbonos ase pueden distinguir3 tipos de enlaces covalentes,

Page 193: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 12.2. Secuencia de aminoácidos de la ribonucleasa bovina.

lsbla 12.3. Clasifiación de las proteínas, según la función biológica que realizan

Tipo Ejemplos Función

EnnmaS Telome- Regula lalongitud de los telómeros

Reserva

Contráctües

Albúmina

interviene en los procesos de memoria y aprendizaje

Transporta moléculas insolubles a t r 4 del plasmasanguíneo

Ceiuloplamuna Transportacobreenel plasmasanguíneo

Fenitllia Reserva de h iem

Actina y miasina Actúan en elsistema contráctildel músculo esquelético

TubuOna Forman los micrutúbulos, posibilitandosumovUniento

Confiereelasticidadalosügamentos, al desplazarse enlas direeeiones deun plano

interviene en elcontrol del wecimiento y ladiferenciación

Defensa Inmunoglobulinas Anulan el efectodesustancias ajenas al organismo

Repuiadm ~ 5 3

MDM 2

Enzima que parücipa en el mecanismo delaeoagulación sanguínea

Controla el ciclo celular. A c í i v a l a m u e r t e c e 1 u l a r p ~

Regula la actividad de la proteína p53 Provoca la formación de algunos tipos de cáncer

Page 194: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

el quese establece entre el carbono a y el carbonocarbonilo, el enlace peptídico y el que se establece entre el N-amídico y el carbono a.

Este polímero presenta las cadenas laterales de los residuos aminoacídicos por fuera del eje covalente monótono, por lo que no interfieren en su estabilidad. ~ s t e e j e covalente común a todas las proteínas sólo difiere (de proteína a proteína) en el núme- ro total de residuos de amin&idos que lo componen;su estabilidad queda demostra- da ante proteínas como la enzima ~lutámic~~deshidro~enasa integrada por 8 300 msiduos de aminoácidos y ante las condiciones extremas que se requieren para hidroLizar elenlace peptídico; para ello hay que utilizar ácidos concentrados o álcalis diluidos hinientes,durante varias horas.

En todas las especies, las proteínas se forman a partir del mismoconjuntointegra- do por unos 20 L-a-aminoácidos. Estos aminoácidos son diferentes debido a la es&ctura de sus cadenas laterales, la cual les confieren propiedades fisico-químicas específicas. La identidad, la cantidad (tabla 12.4) y el orden de los residuos de aminoácidos que las constituyen es lo que determina la estructura primaria y la individualidad de las proteínas.

ib esta secuencia de aminoácidos lo que va a deteiminar su eshuetura tridimensional y por ende su función.

~ Z A Composición de aminoácidos de 3 proteínas

Número de residuos de aminoácidos por molécula de proteína

Aminoácidos Citocromo C a-caseína Ferredoxina (humano) (bovina) (de espinacas)

La información secuencia1 de las proteínas radica en el orden que tienen los amin&klos en su estructura primaria y es única para cada proteína (capítnlo 9).

m1

Page 195: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Se conoce que algunas proteínas de diferentes especies, con funciones iguales, tienen secuencias de aminoácidos semejantes (capítulo 84); que muchas enfermeda- des están producidas por la alteración del orden o secuencia de los aminoácidos (capí- tulo 76), y que la localización celular, la modificación química o la vida media de las proteínas están determinadas por ciertas secuencias de aminoácidos que sirven de señal.

Organización tridimensional

Se denomina eonformaci6n a la disposición espacial que adoptan los átomos de una molécula. Cada proteína tiene varias conformaciones posibles, por lo que puede pasar de una a o ~ a por transconformación; duranteeste procsono ocurrela ruptura de enlaces covalentes, por lo que la transconformación puede ser el resultado de la rota- ción alrededor de enlaces simples.

La conformación que generalmente predomina es la más estable desde el punto de vista termodinámico, que posee la menor energía Libre de Gibbs (G) en el momento que se adopta.

Se denomina pmteúia nativa cuando esta macromolécula posee la estructura espacial que le permite funcionar. El estudio de la organización espacial de las proteí- nas incluye los niveles secundario, terciario y cuaternario.

Resulta conveniente comenzar el estudio de la estructura tridimensional de las proteínas resaltando que:

1. Viene determinada por su secuencia de aminoácidos, por lo que está codificada genéticamente.

2. Es única o casi Única para cada proteína. 3. Está wtabilizada por interacciones débiles o no covalentes y por el puente disulfuro

que es un enlace covalente. 4. La función depende de su estructura tridimensional.

Estnichus secundaria

De la estructura primaria recordemos que los carbonos a de aminoácidos adyacen- tes se encuentran separados por 3 enlaces covalentes, ordenados así: Cc-C-N-Ca.

Los giros alrededor de los enlaces simples permiten la formación de estructuras secundarias. Se conoce por nivel de organización secundario (estructura secundaria) al ordenamiento regular que adoptan sectores de la cadena peptídica a lo largo de un eje, debido a la interacción de los grupos carbonilicos y amídicos con formación de puen- tes de hidrógeno; las principales son la a-hélice y la conformación p.

La a-hélice es una disposición regular de la cadena polipeptídica, con predomi- nio del eje longitudinal, está estabilizada por puentes de hidrógeno intracatenarios que se establecen entre los elementos del enlace peptidico.

El eje covalente se encuentra enrollado de forma compacta alrededor del eje longitudinal de la molécula, formando una hélice. Las cadenas laterales de los resi- duos de aminoácidos se proyectan por fuera del eje covalente helicoidal; cada giro de hélice ocupa 036 nm del eje longitudinal e incluye 3,6 aminoácidos.

Page 196: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Esta estructura está estabilizada por el máximo de puentes de hidrógenos intracatenarios, que se establecen en- el átomo de hidrógeno que está unido al niírógeno amídico y el átomo de oxígeno carbonfico del cuarto aminoácido con respecto a él, por lo que cada vuelta sucesiva de la a-hélice queda unida a las vueltas adyacentes. Los puentes de hidrógeno están orientados en paralelo al eje longitudinal de la molécula.

Como veremos a continuación la estabilidad de la a-hélice se ve afectada por diversos factores que determinan que cada segmento helicoidal abarque una pequeña extensión de más o menos 10 residuos de aminoácidos como promedio.

La estabilidad de la a-hélice puede verse afectada por:

1. La repulsión (o atracción) electrostática entre residuos de amino4cidos, cuyas cadenas laterales presenten cargas eléctricas iguales o diferentes, a pH fisiológico (Fig. 12.3); por ejemplo, muchos residuos de aminoácidos polares iónicos conti- guos impediría la formación de la u-hélice en ese gmento.

2. Volumen de los grup adyacentes. El tamaño y la forma de algunos grupos de la cadena lateral de los residuos de aminoácidos, impiden la formación o desestabilizan la a-hélice; por ejemplo, la cercanía de los residuos de asparagina, serina, treonina y leucina.

3. Interadones entre cadenas laterales de aminoácidos separadas por 3 6 4 resi- duos. Cuando existen aminoácidos básicos y ácidos separados por 3 ó 4 residuos se establecen entre ellos interacciones iónicas que inestabilizan la u-hélice, lo mismo ocurre en el caso de 2 aminoácidos aromáticos al establecerse entre ellos interacciones hidrofóbicas.

4Presenciade residuos de pmlina. La prolina es un aminoácido cíclico; el átomo denitrógenoforma parte de un anillo rígido, por lo que no existe rotación alrededor del enlace N-C,; tampoco dispone del átomo de hidrógeno del nitrógeno amídico Para formar puentes de hidrógenos.

5. hterafci6n entre aminoácidos en los exiremos de la u-hélice y el dipolo eléciri- W inherente a esta estructura. Cada enlace peptídico es un pequeño dipolo eléc- trico, donde el oxígeno carbonílico tiene carga parcial negativa y el nitrógeno amida carga parcial positiva.

En la a-hélice los puentes de hidrógenos que se establecen entre el oxígeno Whod¡co y el hidrógeno del nitrógeno amídico forman también un dipolo eléctrico.

La magnitud de ambos dipolos eléctricos es aditiva, en la dirección de los puentes de hidrógeno de la hélice, de esta forma el momento dipolar neto aumenta con la IoWihid de ésta.

Fig. 12.3. Desestabilización del a-hélice. Los segmentos de cadena polipep- tidica con rar ios residuos de aminoácidos bisiros caiisecutives, desestabilizan el a-hélice como consecuencia de la repulsiún de las cadenas laterales con carga positi- va (en rojo).

Page 197: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 12.4. El dipolo eléctrico global de la a-hélice. El dipolo el&tr¡eo de las enlaces peptídicos se trasmite a lo largo de la a-hélice a través de las interaeeianes por puentes de hi- drógeno. Los constituyentes amino y carbonilo d e . cada enlace peptídico se indican mediante los símbolos + y -. Los grupos amino y carbonilo noenlazados por puen- tes de hidrógeno y situados cerca de los extremas de la a-hélice se muestran en rojo.

Fig. 12.6. Cadenas B. El @m a la derecha de las cadenas B es más estable.

Como los 4 residuos de aminoácidossituados a continuación de cada extremo de la hélice no participan a plenitud de sus puentes de hidrógeno, esto traecomo conse- cuencia que las cargas parciales positivas del dipolo de la hélice radiquen en los grupos aminoscercannsal extremo amino-terminal, y quelas cargas parciales negati- vas del dipolo de la hélice radiquen en los grupos carbonilos cercanos al extremo carboxilo-terminal (Fie. 12.4).

Con frecuencia existen residuos de aminoácidos básicos que se encuentran cerca del extremo carboxilo-terminal, contribuyendo a la estabilización de la carga negativa - -

del dipolo de la hélice; si por el contrario, fuesen residuos de aminoácidos ácidos, su interacción sería desestahilizante. Una consideración opuesta sería válida para el exiremo amino-terminal.

Es la disposición regular de las cadenas polipeptídicas con predominio del eje lougitudinal y estabilizada por puentes de hidrógeno intercatenarios, que se estable- cen entre los elementos del enlace peptídico.

En la conformación p las cadenas polipeptídicas se disponen en zig-zag, por lo que a esta estructura se le denomina hoja plegada (Fig. 12.5).

Fig. 12.5. Sector de una cadena volipeptidica en hoia ~leeada. Se observa la diswsición en n'eme

líneas diseontinuas indican los puentes de hidrógeno.

Cada cadena presenta una torción derecha ostensible, como consecuencia de interacciones entre los carbonos asimétricos de los residuos de L-a-aminoácidos (Fig. 12.6).

La disposición en zig-zagpermite que se establezca el máximo de puentes de hidrógeno, los que unen a cada cadena con las adyacentes al interaccionar los oxíge- nos carbonílicos con los hidrógenos de los nitrógenos amídicos (Figs. 12.7 y 12.8).

Las cadenas laterales de los residuos de aminoácidos se proyectan por encima y por debajo del plana queocupan los ejes covalentes de las cadenas polipeptídicas, de esta manera no interfieren con la estabilidad de la estructura (Fig. 12.5).

La hoja plegada P puede ser paralela (Fig. 12.7), si las cadenas polipeptídicas tienen la misma dirección (enfrentan los mismos extremos terminales) o antiparalelas (Fig. 12.8), en caso contrario.

En la hoja plegada paralela los puentes de hidrógeno se establecen de forma oblicua, y alternan la dirección, con respecto al eje longitudinal de cada cadena polipeptídica, por lo que son más débiles con respecto a los puentes de hidrógeno de las antiparalelas, que se establecen de forma perpendiculara los ejes de cada cadena Y, por ende, quedan paralelos entre sí (Figs. 12.7 y 12.8).

Page 198: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

/ / / CsC-H CpC-H CFC-H

\ \ \ /C= O\ /C= O\ C = a,

\ , '. , / , H-N H-N

\ H-N

\ \ H-C- Cp H-C-Cp H-C-5

/ / / ,O=C ,,O=C ,O=C

' \ , \ N N-H'

\ /' N -H N-H / / /

CrC-H C-C-H CBC-H \ \ \

C = O\ /c= O, /C = o, \ .. / \ , x.

H - N H - N \

H-N \ \ H-C- C H-C- C H-C-C

/ / p / p

Fig. 12.7. Hoja plegada paralela. Las cadenas corren en el mismo sentido. Los puentes de hidróge- no se establecen en dirección oblicua al eje longitudinal de cada cadena.

/ \ / Y C - H H-C-CB CBC-H

\ / \ C=O--H-N C=O-- / \ /

--H-N C-0 .... - H-N \ / \

H-C-Cp CBC-H H-C-Cp / \ /

-o=c N-H O = C \ / \ N-K- - - -O=C N-H-.. / \ /

F C - H H-C-Cp CBC-H \ / \ C=O---H-N C=O-- / \ /

- H - N C=O----H-N \ / \

H-C-$ CBC-H H-C-CB / \ /

Fig. 12.8. Hoja plegada antiparalela. Las cadenas adya- centes corren en sentido contrario. Los puentes de hidrógeno se establecen de forma perpendi- cular al eje longitudinal de cada cadena.

En las proteínas globulares con frecuencia la hoja plegada P se estructura a partir desectores de una misma cadena polipeptídica.

La hoja plegada antiparalela puede formarsecuando se enfrenten 2 o más sectores alejados de la misma cadena o cuando una cadena cambie abniptamente de dirección. En este último caso, el sector que las conecta se conoce como giro o codo P (Fig. 12.9).

El giro o codo P forma un giro cerrado de aproximadamente 180°, en el que están involucrados 4 residuos de aminoácidos; queda estabilizado por puentes de hidrógeno entre el primero y el cuarto residuo. En su secuencia contiene glicina por ser un residuo pequeño o prolina, que determina que el enlace peptídico donde participa su nitrógeno imino, pueda tomar la configuración cis lo que propicia el giro cerrado (Fig. 12.10).

R

TRANS CIS

Fig. 12.9. El gira D. Éste conecta a las cade- nas antiparalelas.

Fig. 12.10. Estructura del eiro fl. a) Obsér- . vese el puente de hidrógeno entre el oxígeno carbonflica del primer residuo y el hidrógeno amídico del cuarto. b) Isórneros trans y cis dc un enlace pcptídieo con el nitró- geno imuio de la prolina.

Page 199: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 12.11. Sector conectar de cadenas para- lelas B. El segmento polipeptidico que conecta las cadenas paralelas presenta giro hacia la derecha. No se observa ningún sector conector con giro hacia la izquierda.

La formación de una hoja plegada paralela requiere de 5 sectores o más. La co- nexión entre 2 de éstos se establece mediante un segmento de cadena polipeptídica que cruza por encima del plano que ocupa la hoja plegada, orientado hacia la derecha. En ninguna proteína se ha observado que el segmento polipeptidico conedor tome la conformación hacia la izquierda (Fig. 12.11).

Es más frecuente la formación de estructuras secundarias formadas sólo por hojas plegadas paralelas o sólo por antiparalelas, con respecto a las que contienen ambos tipos, no obstante, algunas proteínas, como la anhidrasa carbónica, poseen las 2.

Estructura terciaria

Es la disposición tridimensional de las cadenas polipeptidicas estabilizadas por interacciones débiles, que se establecen entre las cadenas laterales de los residuos de aminoácidos y por el enlace covalente por puente disulfuro. Las interacciones débiles pueden ser: uniones salinas o iónicas,fuenas de Van der Waals, puentes de hidrógeno y uniones hidrofóbicas, según la identidad de los aminoácidos cuyas cadenas latera- les se enfrenten.

En las proteínas globulares, residuos de aminoácidos que ocupan posiciones ale- jadas en los niveles primario y secundario pueden interaccionar cuando la proteína está plegada. Determinados aminoácidos como: prolina, t r e o ~ n a , serina y glicina, propician en la cadena poüpeptídica la formación de giros durante el plegamie&o con una determinada dirección y ángulo; estos giros o lazos son estmcturas irregulares, extendidas o plegadas.

Como modelo para el estudio de la estructura terciariade las proteínas globulares usaremos la mioglobia (Fig. 12.12). Esta proteína es un poümem de 153 aminoácidos.

Fig. 12.12. Estructura de la rnioglobina. El grupo hema aparece en raja.

Page 200: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Su estructura secundariaestá formada por 8 sectores de a-hélice (80 %),de los cuales el más largo tiene 23 residuos de aminoácidos y el más corto 7. La continuidad de esta estnictura secundha está afectada por la presencia de un residuo de prolina, en 4 sectores diferentes, y por los residuos de serina, treonina y asparagina, en otros. Por estossectores discoutinuos se pliega la molécula; al acercarse los 8segmentos, relati- vamente rectos, de a-hélice, se aproximan residuos de aminoácidos que antes estaban distantes y sus cadenas laterales pueden interaccionar.

Aquéllos que poseen cadena lateral apolar se disponen hacia el interior de la molécula de mioglobina e interaccionan mediante uniones hidrofóbicas; este denso núcleo hidrofóbico es característico de las proteínas que poseen forma espacial globu- lar o esférica. Como el "empaquetamiento" es muy compacto, las cadenas laterales apolares están muy cercanas y las fuerzas de Van der Waals que se establecen poten- cian significativamente la acción estabilizante de las uniones hidrofóbicas.

Todas las cadenas laterales de residuos de aminoácidos polares se encuentran en la superficie externa de la molécula, excepto 2 cadenas.

El plegamiento que adopta la mioglobiua es una de las muchas posibilidades. Existen otras proteínas en cuyo nivel terciariose iucluyeusectoresde a-hélice o de conformación (tabla 12.5).

lsbla 125. Características estructurales y funcionales de algunas proteínas con nivel estructural funcional terciario

Proteína R H C S Función

Mioglobina 153 SO O O Almacena y transporta oxigeno en lascélulas musculares

Citouomo C 104 39 O O Transportaelechones enla cadena re~pirato~mitocondiial

Liwzhl 129 40 12 4 Enzima que interviene en la mptura de los polisacándos de la pared celular de algunas hadeIk

Ribonocieasa 124 26 35 4 Enzima que intervieneen la digestión delos ácidos ribonncleim

Qui~nohipsina 247 14 45 5 Enzima que interviene en la digestión delas proteínas

Ca~bo+ptidara 307 38 17 O Enzima que interviene en la digestión delos oügopéptidos

R: total de residuos de aminoácidos. H: % de residuos en a-hélice. C: % de residuos en conformación P. S: total de

Puentes disulfuro.

Modelos esúuchvsles tereian'os comunes

En el nivel terciario de numerosas proteínas globulares, no en las fibrosas, existen una serie de regularidades en su plegamiento que son comunes; puede ser que dichas regularidades confieran a este nivel un grado no habitual de estabili- zación o flexibilidad estructural o ambos.

Las esiructnrassecundarias principales a-hélice y conformación P,forman estmc- turas mixtas, las que se consideran un nivel estmctnral intermedio de transición entre

Page 201: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

las niveles secundario y terciario, conocidas como estructuras snpersecnndarias o motivos que tienen significado estructural y funcional. Entre ellas se encuentran:

- E$, integrada por 2 cadenas plegadas; presenta 2 variantes. Si las cadenas adyacentes son antiparalelas están conectadas por un extremo mediante un girob (Fig. 12.13 a). SisonparaleIasJa conexión es haciala derecha (Fig. 12.13 b).

- Bude $aP, la conexión hacia la derecha entre las cadenas plegadas paralelas contiene una a-hélice (Fig. 12.13 c).

-Barril P, 8 cadenas están orientadas de forma tal, que dibujan la superñcie de un cilindro; aquíse observa la tendencia a la torsión de cada cadena (Fig. 12.13 d).

-Motivodeíasiüa, está fonnado por 5 cadena* paralelas,ligeramente torcidas, quese relacionan en el centro (Fig. 12.13 e).

- Llavegriega, está constituida por 4 cadenas antiparalelas entre sí, conectadas la primera con la segunda, la segunda con la tercera y la primera con larnarta mediante girosp (Fig. 12.13 0.

Bucle $ap

c)

Barril p

d)

Silla

e)

Llave griega

f)

Fig. 12.13. Estructuras supersecundarias o motivos. El motiva R-R puede estar formado por: a) cadenas antiparalelas o b) cadenas paralelas. cl El bucle flan tiene una región, donde se producen las intcraccianes hidrofóbieas estabilizadoras, que aparece sarnbreada en gris d). El barril fi y e) la silla forman d núcleo estable de muchas estructura% fl La llave griega es una unidad repetitiva que se encuentra can frecuencia en las proteínas globulares.

Page 202: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Estos motivos supersecundarios, al participar en unidades repetidas aun mayores, dan lugar a diferentes estructuras terciarias. Así, cuando 2 motivos pap se solapan, originan la unidad papap. En muchas enzimas se ha demostrado que esta unidad se encuentra formando un sitio de unión para los nucleótidos.

En muchas proteínas que enlazan dinucleótidos, se combinan 2 unidades ~ C L P ~ P para formar un motivo alternativo conocido como enlazantes de dinucleótidos.

Muchas otras enzimas poseen una conformación terciaria en barril d p , resultante de una estructura en barril fi conectada mediante a-hélices. La disposición de las cadenas plegadas p al formar el barril es importante, ya que posibilita que se cree el núcleo central hidrofóbico. El extremo del barril está relacionado con el sitio funcio- nal o el centro activo de determinadas enzimas (Fig. 12.14 a).

Existen otras regularidades o motivos como son: el haz de 4 hélices (Fig. 12.14 h); ap con silla en el núcleo (Fig. 12.14 c) y "emparedado" p$ (Fig. 12.14 d).

b 12.14. Algunas regularidades estructurales presentes en el nivel terciario. a) El barril cdB se observa en la triosa fosfato isomerasa y en otras muchas enzimas. Con frecuencia existe un sitio de fijación de cofaetores o sustratas, en un bolsillo cerca del extremo del barril. b) El haz de 4 hélices, aquí puede observarse en el citocromo C. Las hélices adoptan una ligera inclinación que da lugar a un bolsillo interior, que a menudo contiene un sitio de fijación para metales u otros eofaetores esenciales para la función biológica. c) El a0 con conformación en silla en el núcleo se observa en la adenileielasa. El núcleo hidrofóbieo es muy estable. d) El "emparedado'' nR- se observa en el dominio V, de las inmunoglobulinas. Al formar las hojas plcgadas una estructura crwada se crea un bolsillo hidrofóbieo interior que suele ser un sitio de unión de una molécula planar e hidrafóbica.

Page 203: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

sauo!aunj aaua) h sop!qou!we ap sonp!saa 00~ h ob aqua appu! apand o!u!uiop epe3 .soppop sepeurell op!s ueq anb alualeaoa a[a la aod sepqaauoa seuoz ua uezye8ao as seugoad se1 ap seppunmsiadns h seuepunms seamp~~sa se1 epuanaaq u03

Page 204: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

su estructura tridimensional funcional, después de lo cual se separan de ellas, por lo que han sido denoninadas proteínas "chaperonas" o fijadoras de cadenas poüpeptídicas.

Las "chaperonas" pequeñas son las primeras que se unen a la cadena peptídica en crecimiento previniendo el plegamiento prematuro (Fig. 12.17 a).

Las "chaperonas" grandes se unen posteriormente a las cadenas polipeptídicas, crean un microambiente que permite el plegamiento correcto de lacadena polipeptídica e impiden la agregación con otras cadenas. Una vez que la proteína asistida ha adqui- rido su estructura espacial funcional, las proteínas "chaperonas" se disocian. Esta disociación frecuentemente está asociada con la hidrólisis del ATP (Fig. 12.17 b).

Las proteínas "chaperonas" también pueden actuar como guía en el plegamiento de algunos polipéptidos.

Se denomina estructura cuaternaria al nivel estructural de las proteínas, constitui- do por 2 o más cadenas polipeptídicas, idénticas o diferentes en estructura, general- mente en número par, unidas por interacciones no covalentes del tipo de puentes de hidrógeno, de uniones ióniw o electrostáticas y uniones hidrofóhiw según la proteí- na. Cada una de estas cadenas polipeptídicas reciben indistintamente los nombres de monórneros o subunidades, y el conjunto forma la proteína oligomérica. En algunas protehaseste nivel se establece espontáneamente pero otras requieren de las proteínas "rhapemnas".

La hemoglobina (Fig. 12.18) es una proteína oligomérica formada por 4 cadenas polipeptídicas, denominadas globinas, iguales 2 a 2 (a$,); cada subunidad cr posee 141 aminoácidos, cada fi 146 y cada globina tiene unido u11 grupo pruslético hemo.

Para poder realizar cada una de sus múltiples funciones, requiere de la integridad desu eshucaira cuaternaria. Esta organización espacial es muchísimo más compleja y posibüita que esta molécula pueda realizar más funciones que la de miuglobina.

Reiaci6n estructura-función de las. pmteinas

La gtnictura covalente de las pmteínas posee un carácter informacional socuencial, que determina la estructura tridimensional biológicamente activa, terciaria o cuaternaria según la pmteína. La función se ejerce mediante el reconocimiento moleenlar, el cual seestablece en virtud de la disposición espacial de las cadenas laterales de determina- dos residuos de aminoácidos; por tanto, el nivel estructural terciario o cuaternario posee un carácter informacional-conformacional, que permite el funcionamiento de la proteúia

La presencia de determinados agentes fisicos o químicos provoca la ruptura de algunas interacciones no coyalentes, y si están presentes, la de los puentes disulfuros Y conello se pmduce, en mayor o menor grado, la pérdida de la estruchua tridimensional dela proteína y por ende su función. Este fenómeno se conoce como desnaturalización (Fig. 12.19). Resulta oportuno precisar que la desnaturalización no afecta los enlaces Wpodicos, por lo que se mantiene el nivel primario.

Cuando sólo se pretende desnaturalizar una proteína, el tratamiento tiene que ser *hmente suave. Los disolventes órganicos miscibles en agua como el alcohol y la atOna,la urea y los detergente, actúan fundamentalmente destruyendolas uniones h i d m f 6 b i ~ que estabilizaban el núcleo de las proteínas globulares.

Fig. 12.17. Las proteinas "chaperonas". a) Las pequeñas previenen el plega- miento prematuro, se unen a las proteinas en crecimiento. b). Las prolcinas "chaperonas" grandes actúan coma guias en el plega- miento de las proteinas. (Tomado de Quitar. SANDO- RAMA. Edicibn especial, 1988).

Fig. 12.18. Estructura cuaternaria de la he- moglobina. Las cadenas a apare- cen rn rasado pálido. Las cadenas 1% en rosado oscuro y los grupní heme en rojo.

Page 205: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 12.19. Desnaturaliración de la ribonucleasa. Cuando se trata la ribonucleasa con B-mercapto- etanol en urea 8 M se reducen los puentes disulfuro, sr. rompen las interaecioncs débiles, pierde su StrueNra nativa terciaria y eoneUo su actividad cnzimiitica. Aparecen en el mismo color los residuos de risteina involurradas en los puen- tes disulfuro.

Fig. 12.20. Henaturalizaeiún de la rihunuileasa. Cuando se eliminan par diálisis la urea y el p-mer- captoetanol, poco a poro se esta- blecen de nuevo las interaecianes débiles g los puentes disulhro (es- tos últimos san oxidados por el oxigeno presente en el aire atmos- férico) se recupera la estructura nativa y ron ello la actividad iatalitiea.

Riln,iiucleasa nativa Kihoniiclcasa reducida y dcsiiaturnlizad;~

Las variaciones extremas de pH producen cambios en la carga eléctrica de los grupos ionizahles de las cadenas laterales de los residuos de aminoácidos expuestos hacia la superficie, cambiando la carga neta de las proteínas, con lo que aparecen repulsiones electrostáticas, también resultan afectados los puentes de hidrógeno. El aumento de la temperatura destruye las interacciones débiles en su conjunto por au- mento de la energía cinética.

Según el grado de desorganización de la estructura tridimensional de la proteína, que ocasiona el agente desnaturalizante, este proceso puede ser reversible cuando se eliminan los agentes causales, lo que se conoce como renaturalización (Fig. 12.20).

Kibonucleasa nativa

Proteínas alostéricas

Las proteínas alostéricas (del griego, allos: otros, stereos: espacio) son aquéllas que tienen uno o varios sitios alostéricos, por donde se une determinado ligando o efector. La unión entre un ligando específico y su sitio alostérico se realiza mediante el reconocimiento molecular y el establecimiento de interacciones débiles y es muy específica.

Existen proteínas alostéricas a las que pueden unirse diferentes ligandos, los sitios de uniónson generalmente diferentes para d a o de e . En estos s i con frecuencia existen cadenas laterales de residuos aminoacídicos apolares que propician un microambiente hidrofóbico, favorable al reconocimiento molecular y al estableci- miento de las interacciones débiles.

En las proteínas alostéricas existen 2 conformaciones, que presentan afinidades diferentes por la molécula con que deben interactuar, que son la tensa T de baja afinidad y la relajada Rde alta afinidad (capítulo 17).

La hemoglobina es una proteína alostérica que puede transportar hasta 4 molécn- las de oxígeno, una por cada subunidad. La unión de la primera molécula de oxígeno

Page 206: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

a cualquierade los 4 sitios de fijación es más difícil que las siguientes, pues implica la ruptura de un número mayor de interacciones iónicas que incluyen aquéllas en las que participan los carboxilos terminales de cada globina (Fig. 12.21). La ruptura de estas interacciones provoca, una rotación de 15" de un par de subunidades cda con respecto al otro, aproximándose. Esta transconformación incrementa casi 500 veces la afhidad por el oxígeno de los 3 gmpos hemo restantes. La segunda, tercera y cuarta moléculas de oxígeno, se van uniendo a las subunidades con afinidades crecientes.

Fig. 12.21. La hemoglobina, una proteína alastérica. Enlaces salinas entre las diferentes subunidades de la desoxihemoglobina. La fijación de la primera molGeula de oxígeno es más difíeil, pues implica la mptu- ra de mayar cantidad de uniones salinas. Las otras se van uniendo con más facilidad, a medida que el número de unione salinas destmi- das crece.

La estrnctnra cuaternaria de la hemoglobina desoxigenada (T) es la de baja afini- dad por el oxígeno y la de la hemoglobina oxigenada (R) es la de alta afinidad. El ácido 23 bisfosfoglicénco es un ligando o efector alostérico, que se une a la hemoglo- bina desoxigenada por la cavidad central que existe entre las 4 subunidades, estabilizando el estado T. El oxígeno liberado en los tejidos será utilizado como agenteoxidante final de la cadena transportadora de electrones durante la respiración celular (capíinlo 63).

Propiedades físico-químicas de las proteínas

Las propiedades físico-químicas de las proteínas son consecuencias principal- mente de su gran tamaño y de la presencia de grupos ionizables.

Debido a su gran tamaño forman sistemas coloidales cuando se encuentran dispersas enmedios acuosos. Nodialiuan,o sea, no pueden difundir a través de las membranas.

Fisiológicamente, las proteínas al no difundir a través de las membranas biológi- cas crean una presión osmótica, que en este caso particular se denomina oncótica, la quecontribuye ala distribución del agua y loselectrólitosentrelas células y el medio extracelular.

La presencia de grupos ionizables en determinados residuos aminoacídicos ex- P h las propiedades eléctricas de las proteínas.

Estos grupos son los extremos amino y carboxilo terminal, así como todos los ionizahles de las cadenas laterales de los residuos aminoacídicos. La carea eléctrica resultante de las proteínas dependerá del predominio de cargas negativas o positivas, lo cual a su vez está determinado por el pH del medio. Al valor del pH, al cual las

Page 207: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 12.22. Eleitraforesis. Las proteínas se trasladan a través del gel cuando se conecta el campo eléctrica.

proteínas presentan carga multante o neta cero y no se desplazan en un campo eléctri- co,se le denomina punto isoeléctrico (PI) (tabla 12.6).

En el laboratorio, al variar el pH del medio de disolución, se puede cambiar la carga eléctrica de las proteínas y con ello, también su solubilidad. Esta es la base de muchas técnicas de separación de proteínas; su empleo adecuado permite obtener proteínas con elevado grado de pureza y disponer de ellas para su uso médico, las investigaciones y su comercialización.

lhbla 12.6. Puntos isoeléctricos de algunas proteínas

Proteína PI

Pepsina Ovoalbúmina Ureara Fibrinógeno Cataiasa Hemoglobma Somatotmpina Ribonucleasa Citocromo C Liz ima

Se denomina electroforesis al método de separación de moléculas, basado en su desplazamiento en un campo eléctrico.

Por este método se pueden separar proteínas que presenten cargas eléetncas diferen- tes, pues realizarán sus movimientos migratorios a polos opuestos, o que presenten la misma carga, pero cuantitativamente diferente. En este Último caso, se desplazarán más rápido y por tanto avanzarán más, las que presenten un número mayor de cargas eléetncas.

Con frecuencia se utilizan como soportes el acetato de celulosa, el papel de filtro y los geles de poliacrilamida, pues retardan el desplazamiento de las proteínas en forma aproximadamente proporcional a su masa molecnlar. En el caso de los geles de poliacrilamida las diferentes muestras se colocan en pequeñas depresiones, que se realizan en la parte superior del gel (Fig. 12.22). En el primer pocillo se coloca una mezcla de proteínas cuyo patrón de desplazamiento sea conocido.

Page 208: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

La corrida se realiza a un pH determinado y durante el tiempo suficiente, que permita que las diferencias por desplazamiento se manifiesten. Al terminar la electroforesis, se visualizan las proteínas cuando se añade un colorante como el azul Coomassie, que no se fija al gel, pero sí a las proteínas (Fig. 12.23).

Aspectos estructurales de algunas proteínas fibrosas

En el caso de las proteínas fibrosas se analiza la estructura de la a-queratina. De la colágena su estructura secundaria, pues el resto de su estructura y de la elastina se estudian en el capítulo 68.

Existen 30 variantesde a-queratinaen los mamíferos, ricasen residuos hidrofóbicos de fenilalanina, isoleucina, valina, metionina y alanina. Las del tipo 1 integran una familia de relativa acidez, mientras que la del tipo 11 son una familia de relativa basieidad En elpelo,la estructura terciaria de las a-queraünas esdimérica (Fig. 12.24 a). Aquí2 a hélices, una del tipo 1 y la otra del tipo 11, se entrecruzan apretadas con giro hacia la izquierda formando en sus extremos N-terminal y C-terminal dominios de estnicúua globular poco caracterizados. Esta es la unidad que da origen a la estructura tridhensional superior que está estabilizada por múltiples puentes disulfuro intercatenarios. Los protoñlamentos,estrnctura cuaternaria,están formados por 2 hile- ras antiparalelas de dímeros asociados cabeza-cola (Fig. 12.24 b).

La dimerización del protofilameuto forma la protofibrilla. Cuatro protofibrillas forman una microfibrilla, que tiene aproximadamente 80 A de ancho y se encuentran cementadas por una proteína de la matriz amorfa que posee un elevado contenido de d e (Fig. 12.24~). A partir de aquíla formación de las estructuras de orden superior es poco conocida; se sabe que las constituyen las macrofibrillas. Los haces de macrofibrillas de aproximadamente 2 000 A de diámetro forman la fibra del cabello (Fig. 12.24 d).

Al contener la estructura primaria de cada hélice 35 % de glicina, 11 % de alanina Y 21 % de prolina e hidroxiprolina permite el enrollamiento hacia la derecha de las hélices. La secuencia de aminoácidos equivale a la repetición de un tripéptido del tipo N-x-pm o gii-X-hip, donde X puede ser cualquier aminoácido. Cada hélice que COnfonna la triple hélice son únicas, pues presentan giros hacia la izquierda y tienen 3 residuos de aminoácidos por vuelta. Las 3 hélices se entrenzan, por lo que cada tercer residuo de cada cadena polipeptídica pasa a través del centro de la triple hélice, que es &apretado, que sólo la cadena lateral de los residuos de glicina ajusta en e x espacio

pequeño. Los grupos peptídicos están girados de forma tal, que el hidrógeno addico de cada gücina forma un puente de hidrógeno con el oxígeno carbonílico del miduo aminoacídico X de la cadena vecina (Fie. 12.25). -- . -

Los residuos de prolina e hidroxiprolina, voluminosos y relativamente inflexi- h%mnñeren rigidez a todo este ensamblaje.

Como las cadenas polipeptídicas de la triple hélice presentan giros hacia la iz- quierda, pero se enlazan a la derecha, son prácticamente incomprimibles. Cuando sobre ella se ejerce una fuerza tensional longitudinal se convierte en una fuerza de ODmPrrsión lateral. aue es más fácil de sonortar. . . ~ ~

Esta estructura, que FÚIO se eniurntr~ en la colágeni. confiere a ~$13 proteína la elevada resistencia a la tensión, sin rapacidad dec.itiramimto, que la cardctcri~a.

Fig. 12.23. Visualización de las proteínas después de una corrida elertra- foretica. Las proteínas más peque- ñas se sitúan cerca del extremo in- ferior del gel.

Page 209: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

a hélice

microfibrilla

microfibrilla

'*' macrofibrilla :,!/ , , célula Fig. 12.25. Estructura de la triple hélice o

trapacalágena. La secuencia de aminoácidos de cada hélief per- mite el compacto enrollamiento de las 3 hélices, la que otorga a esta proteina su elevada resistencia a la tensión.

Fig. 12.24. La a-queratina. La hélice a a) da lugar a las protofibrillas b) Estas a las mierafibrillas e) que finalmente forman los haces de rnacrofibrillas d)

Page 210: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Resumen

Las proteínas diferentes que posee el hombre estan involucradas en casi todas las funciones que se Llevan a cabo en el organismo. Veinte L-a-aminoicidos dife- rentes estan presentes en los péptidos y proteínas, en cantidades variables y en un orden específico, aportando información secuencial. La polimerización de los aminoácidos mediante enlace peptidico determina la estnictnra primaria, donde el eje covalente homogéneo se establece entre 2 carbonos a mediante 3 enlaces covalentes. Las cadenas laterales de los residnos de los aminoácidos quedan por fuera del eje covalente.

La organización tridimensional de la proteína queda determinada por los niveles secnndario, teroario y enaternario. El nivel secnndario Oene 2 formas principales, la a-hélice y la boja plegada B, estabilizadas por puentes de hidr6geno que se establecen entre los elementos del grnpo peptitico. La a-hélice presenta giro derecho; 3,6 residuos de aminoácidos por espira, y los puentes de hidrógeno unen las espiras entre sí. En la conformación B Las cadenas polipeptidicas se disponen en forma paralela o antiparalela, los puentes de hidrógeno son intercatenarios.

La estnicínra terciaria se debe al plegamiento o "empaqnetamiento" de la o las estnictnras secnndarias y superseeundarias, generalmente en forma de domi- nios. Se encuentra e s t a b h d a por interaeeiones no mvalentes: Uniones iónicas o salinas,puente de bidr6gen0,Uniones bidmfóbicas y fue- de Van der Waals, que se producen por la interaM6n de las cadenas laterales de los residuos aminoacídicos, ayndan a esta estabilización los puentes disulfuro. En muchas proteínas globulares exisie mi nivel transicional antes del terciario, denominado superemüamiento secnndario.

El nivel cuaternario esíá integrado por 2 o más cadenas polipeptidicas idénti- caa o diferentes en estnictnra, generalmente en número par, unidas por interaeeiones no mvalentes.

Si la estnictnra espachl de las pro* depende de su secuencia de aminoácidos exisüní una relación mmpasiu6n-seeuencia-conformaci6n, que determinará la idormación conformacioual y esta el reeonoeimiento molenilar.

La desnaturalización se produce por egposición de Las proteínas ante agentes ñslm o quimieos que provocan la mptura de las interaeeiones débiles, incluso los puentes mvalentes disulfuro, se pierde la organización tridimensional y como con- seeoencia la función. La pérdida del nivel primario no es por desuaturalización, shio por hidrólisis.

Las proteínas alostéricas poseen sitios por donde se une espeeífcamente el ligando. La unión produce una transconformación en la proteína, hacia la forma de mayor o menor afinidad por determinada molécula, que ionuye de una forma determinante en mi funci6a

Las proteínas pueden dasiñcarse según su forma, solubilidad, composición Poimies o función.

Sospropiedadesfisico-quúnicas dependen de su gran tamaño y de la presencia de Wvos ionizables.

La importancia de Las proteínas es relevante, pues no existe mis función que el ser h n a n o sea capaz de rralizar donde no es ih presentes.

1. Establezca las semejanzas y las diferencias entre polipéptidos y proteínas. 2. Expliquela estructura covalente de las proteínas. 3. Establezca las semejanzas y las diferencias entre las estmcturas secundarias princi.

Mes.

Page 211: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

4. Explique la estructura terciaria de las proteínas globulares. 5. Realice un estudio comparativo estructural y funcional entre mioglobma y herno-

globina. 6. Explique por qué mecanismo pueden desnaturalizar a las proteínas, los agentes

siguientes: urea, ácido clorhídrico, temperatura a 60 "C y el mercaptoetanol. 7. Explique la importancia funcional de las proteínas "chaperonas". S. Aun paciente con sospecha de padecer drepanocitosis (sicklemia), usted le indica

una eleetroforesis de hemoglobina, con vistas a establecer el diagnóstico definiti- vo. Fundamente el motivo de esa indicación.

9. Demuestre que en la hemoglobina se cumplen los principios de organización de las macromoléculas.

10. Argumente si pueden separarse la albúmina de las globulinas mediante un método basado en su solubilidad.

11. Explique la importancia de la variabilidad estructnral de las proteínas. 12. Los lípidos de las membranas biológicas se organizan en bieapas. La parte polar se

orienta hacia la superficie y hacia dentro queda la parte apolar. pr ten proteínas globulares membranales que se relacionan con la parte apolar de los Lípidos. Pro- ponga un modelo de esbuchua terciaria para ese tipo de proteínas que explique esa posibilidad.

Page 212: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los Lípidos constituyen un conjunto grande y heterogéneo de compuestos quími- cos de gran importancia biológica, cuya mayor regularidad estmctural consiste en p w r un alto contenido de ácidos grasos o de cadenas hidroearbonadas,formadas por la unión de unidades de tipo isoprenoide.

La elevada proporción en componentes apolares confiere a estas sustancias otra regularidad: poseer escasa solubilidad en agua y, en cambio, ser solubles en solventes orgánicos (apolares), como el benceno, el éter y la acetona, entre otros. Esta última propiedad ha sido la utilizada para separar estos compuestos de otras biomoléculas, e incluso se ha empleado como fundamento conceptual en su definición.

Este capítulo estudiará las características estructurales y las principales propie- dades de los Lípidos de mayor interés biológico.

Los Iípidos son componentes de los tejidos biológicos que se pueden extraer mediante el uso de solventes orgánicos; estas sustancias no forman macromoléculas, noobsiante,pueden agruparse entre sí y con otras biomoléculas para formar los típidos complejos.

Los Iípidos se pueden clasificar de forma variada, en dependencia del criterio empleado; se dividen en simples, si en su composición intervienen sólo el carbono, el hidrógeno y el oiógeno; compuestos, si inciuye además nitrógeno,fósforo y azufre. Es posible también clasificarlos en saponificables o complejos y no saponificables o shples, sobre la base de que por hidrólisis alcalina originen o no sales con acción detergente (los jabones) respectivamente; ello se debe a que los complejos contienen dudas grasos y los simples no.

Emplearemos la clasificación que agrupa a estas biomoléculas según su similitud *chiral, por su mayor idoneidad didáctica. Se consideran 7 gmpos:

1- hcidos grasos. 2.Ceras. 3. Acüglicero~es (también conocidos como acilglicéridos o glicéridos). 4. Fosfátidos de glicerina (o fosfoglicéridos). 5- Esfingolípidos. 6. Terpenos. 7-bteroides.

Page 213: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En otras clasificaciones aparecen los terpenos y esteroides en un grupo denomi- nado lípidos isoprenoides.

Función biológica

La gran diversidad de estos compuestos se corresponde con las variadas fnncio- nes que desempeñan, las cuales poseen trascendencia para la célula y el organismo en su conjunto:

1. Almacenamiento de energía. Los triacügliceroles constituyen la forma de almace- namiento de energía en el tejido adiposo, de hecho la mayor disponibilidad de energía almacenada en un organismo es precisamente de esta manera.

2. Componentes de membrana. Los fosfátidos de glicerina, los esfingolípidos y el colesterol se encuentran formando parte de las diferentes membranas biológicas.

3. Otras funciones. Los triacilgliceroles (o triglicéridos) del tejido adiposo constitu- yen un medio aislante térmico, que preserva de la pérdida de calor al individuo. Estos lípidos acumulados alrededor de algunos órganos ofrecen un medio apropia- do para su sostén y protección ante traumatismos fisicos. Por otra parte, algunos Iípidos (de naturaleza esteroidea) son hormonas, compuestos que participan en la regulación de la actividad metabólica y fisiológica del organismo; otros derivados de ácidos grasos poliinsaturados presentan importante actividad fisiológica y farmacológica como: prostaglandinas, tromboxanos y leucotrienos, entre otros. Además, otroslípidosson vitaminas (como la vitamina A o retinol,Ias naftoquinonas antihemorrágicas o vitaminas K, entre otras). Otros, como las sales büiares,funcio- uan como poderosos detergentes biológicos. Se realizará el estudio dela estructura, propiedades y funciones de cada gmpo por separado.

Son ácidos carboxílicos, que su inmensa mayoría no existe libre en la materia viva, sino que forma parte de los Iípidos complejos. Los ácidos grasos son monocarboxilicos, poseen una cadena hidrocarbonada apolar de longitud variable, quecasi siempre es abierta y no ramificada.

Los ácidos grasos son compuestos anñpáticos,osea,poseen una porción polar y una apolar en la molécula. Su porción polar (el grnpo carboxilo ionizado, COO) interactúa con el agua y otros solventes polares, en tanto, que la cadena apolar hidrocarbonada no interactuará con el ama v si con solventes orgánicos u otros comuuestos aoolares. El - " - carácter aniipático de los ácidos grasos es el fundamento de su acción detergente.

Los ácidos grasos presentes en los seres vivos poseen en su mayoría un número par de átomos de carbono que, como se estudiará en su metabolismo, se explica por los

mecanismos de biosíntesis de estos compuestos. Son ácidos débiles y sus valores de pK están alrededor de 5.

Page 214: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

La nomenclatura de los ácidos grasos sigue la misma regla que se vio en el capítu- lo 5 para los ácidos orgánicos, aunque son más conocidos por su nombre trivial.

LOS ácidos pueden se;satnrados (si sólo enlaces simples en su cadena hidrocorhonada~, insoturadns (si poseen algún doble enlace en >u cadena hidrocarbonada) u sustituidos.si algún h i n o de hidriigenu ha sido reemplazado por cualquier grnpo químico.

La numeración de los carbonos en los ácidos grasos se hace a partir del carbono carboxíüco que será el número 1;

C, ............................ C - C - C - C - COOH 5 4 3 2 1

en ocasiones los carbonos se nombran con las letras del alfabeto griego a partir del carbono número 2: alfa (a), beta (P), gamma (y), etcétera, el carbono terminal se repre- senta por la letra omega (m).

Como se señaló anteriormente,son aquéllos que no presentan dobles enlaces en su cadena carbonada.

CH,-COOH CH,- CH,- CH,- COOH

ácido acético (etanoico)

ácido hutínco (butanoico)

ácido palmítico ácido esteárico (hexadecanoico) (octadecanoico)

Los ácidos g r m saturados más abundantes en los Iípidos naturales son el palmítico (C,,),el mirístico (C,,) y el esteárico (C,,) (tabla 13.1).

'hbhi3.1. Á~idos~rasossaturadosmás frecuentes en la naturaleza y de mayorimportancia biológica

F6mula semidesanoUada Nombre sistemático Nombre trivial

CH,- COOH

a,- CH,- COOH

(CH,),2 - COOH

CH,- (CH,),, - COOH

(CH,),6 - COOH

Etanoico

F'mpanoico

n- butanoico

n- pentanoico

n- hexanoico

n- dodecanoico

n- telradwanoim

n- hexadecanoim

n- octadecanoico

Acético

Page 215: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los ácidos grasos insaturados pueden presentar uno ó mis dobles enlaces. Al numerar los carbonos que participan en el doble enlace sólo se hace referencia al que posee la numeración menor; a este número se le suele anteponer la letra griega delta mayúscula (A), que indica la presencia de una insaturación. Los dobles enlaces tam- bién se especifican por so localización a partir del número del carbono donde se ubica el primer doble enlace, pero contando a partir del extremo CH, de la cadena hidroearbonada (carbono o); más adelante veremos cómo esta clasificación se usa para establecer las series de los ácidos grasos polünsaturados.

H3C- (CH& -CH = CH-(CHJ, -COOH

ácido palmitoleico (9 bexadecenoico, w7)

H3C-(CH,),-CH = CH-CH,-CH = CH- (CHJ, -COOH

13 12 10 9

ácido linoléico (9-12 octadecadienoico, w6 )

Las representaciones abreviadas más empleadas de la estructura general de los ácidos grasos omite el símbolo del carbono, pero incluye el número que corresponde con el total de estos átomos en la molécula, la cantidad de insaturaciones y las posicio- nes de éstas en la cadena. Veamos 2 de estas variantes para los mismos ácidos grasos:

18:O 18:O ácido graso de 18 átomos de carbono, saturado.

16:1(9) 16A9 ácido graso de 16 átomos de carbono, insaturado en carbono Y.

18:3(9,12,151 18n9.'2-'S ácido graso de 18 átomos de carbono, insaturado en carbonos 9,12 y 15.

Los ácidos grasos insaturados encontrados en los tejidos animales terrestres se caracterizan por poseer,en su mayoría, los dobles enlaces a partir del carbono 9. De existir varios dobles enlaces, éstos se disponen en forma no conjugada, o sea, con un gmpo CH, entre las insaturaciones. Otra peculiaridad eshuctural de estos ácidos grasos es que de-los 2 isómeros geométricos posibles, predomina la configuración cis (Fig. 13.1). Como puede apreciane, la configuración cis favorece el piegamiento de la cadena, aproximando los grupos terminales, lo cual se debe a las hibridizaciones sp2 de los carbonos en los dobles enlaces.

Page 216: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los ácidos grasos insaturados pueden ser monoinsaturados, si poseen un único doble enlace (monoetenoide); poliinsaturados, si contienen 2 o más dobles enlaces (polietenoide) y eicosanoides que son ácidos grasos poliinsaturados derivados de eicosapolienoicos (C,,).

Los ácidos grasos poliinsaturados se han clasificado en 3 series o familias, tenien- do en cuenta que los dobles enlaces adicionales se añaden sólo entre el átomo de carbono donde se localiza el primer doble enlace (a partir del carbono a) y el carbono del gmpo COOH; por ello las 3 series son w9,06 y w3.

En la tabla 13.2 se relacionan los ácidos insaturados más importantes para el ser humano. Fig. 13.1. Modelo espacial del ácido oleieo

( C,,"P ), isómero cis. El doble en- lace produce un acodamiento en

lhbla 132. Ácidos grasos insaturados de mayor significación biológica su cadena hidroearbonada.

Númerode átomos Nombresistémico y bi*ial Ubicación del ler. doble decarbono y posición enlacea partir del exiremo CH,, de los dobles enlaces cartmno w

Paimitoleico(9 hexadecenoico)

Oleim(9 octadecamonoenoico)

Linoleico(9-12 octadecadienoico)

Linolénico(9-12-15 octadecatnenoico)

y Linoléoico(6,9,12 octadecatrienoico)

Dihorno-y-Linolénico(8,11,14 eicosatrienoico)

Araquidóniw(S,S, 11,14 eicosatetraenoico)

5, S, 11,14,17 eicosapentaenoico (EPA)

Eifosanoidea Son ácidos grasos derivados de los eicosapolienoicos (C,,). Los eicosanoides (que se deriva del griego eikosi, que significa veinte) comprenden a 2 grupos de compuestos: los prostanoides y los leucotrienos (LT). Los prostanoides incluyen a las prostaglandinas (PG), las prostaciclinas (PGI) y los tromboxanos (TX); estos compuestos tienen importantes efectos ñsiológicos y farmacológicos, actúan en bajas concentraciones y en muchos casos mediante elaMPc como segundo mensajero, Por loquesu acaón es de tipo hormonal, aunque actúan localmente y no a distancia.

Las pmtaglandinas fueron aisladas por primera vez del semen humano y se con- sideró queeran formadas espeeíficamente por la glándula prosiática, de donde deriva

nombre, el que se mantiene a pesar de que se forman en casi todos los tejidos de los mamífem~,con laexcepción de los glóbulos rojos. Las prostaciclinas y los tromboxanos son compuestos relacionados con las prostaglandinas.

Los tromboxanos tienen también un anillo pero en este caso contiene 5 carbo- no-Y un átomo de oxígeno (anillo oxano). Las prostaglandinas y los tromboxanos se forman a partir de 3 ácidos eicosanoicos diferentes, que se caracterizan por el número de sus dobles enlaces. Las prostaglandinas se pueden considerar que estructuralmente derivan del ácido prostanoico (hipotético).

7: 5 3 1 COOH

4 2 20

I I

Page 217: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

PGE,

La estmctura de las prostaglandinas y demás prostanoides vana según sustitucio- nes e insaturaciones, tanto en el anillo como en la cadena. Las letras en su nombre se refieren al tipo de anillo. La notación de aparalas F prostaglandinas se refierea que el OH del carbono 9 se dispone debajo del plano del anillo; se debe destacar que las prostaglandinas F naturales son isómeros a.

El número en el nombre de estos compuestos indica la cantidad de dobles enlaces y su disposición esteroquímica en la cadena lateral. El 1 significa un doble enlace en disposición trans entrelos carbonos 13 y 14, derivan del ácido8,11,14eicosatrienoico (ácido dibomo-y-linoleico); el 2 indica la existencia de un doble enlace adicional de tipo cis entre C5 y C6, se forman a partir del ácido araquidónico; por úI&o el número 3 significa la presencia de un tercer doble enlace en la cadena lateral (cis), entre los carbonos 17 y 18, su precursor es el ácido 5,8,11,14,17 eicosapentaenoico (EPA). En los bumanosel precursor más importantedelas prostaglandinases el ácidoaraquidónico (serie 036).

Endependencia de los tejidos, así será el tipo de prostanoide formado: en riñón y bazo, PGE, y PGF,=; en los vasos sanguíneos, PGI,; en el corazón PGE,, PGF,= y PGI,, y en las plaquetas, el tromboxano A2 (TXA,).

Las prostaglandinas tienen diversas acciones como: agentes que inducen reaccio- nes inilamatorias en los tejidos (PGE, y PG,), así como participan en la intensidad y duración de las sensaciones dolorosas (PGE,). Las acciones farmacológicas de la aspi- rina, la fenilbutazona y los corticoides están relacionadas con su correspondiente inhibición a la síntesis de las prostaglandinas. También se conoce que algunas de ellas intervienen en el trabajo de parto y pueden intermmpir el embarazo (PGE, y PGF,J Las PGE, PGA y PGI, tienen efecto vasodilatador, algunas otras inhiben la secreción ácida del jugo gástrico, por lo que han sido empleadas en el tratamiento de la úlcera péptica. Las prostaglandinas PGE, y PGF,= son de las más importantes en el humano.

Page 218: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

La PGJ @rostacicüna PIJ inhibe la agregación plaquetaria. Las células endoteliales de los vasos sanguíneos liberan PGI,.

Los tromboxanos son los metabolitos activos de los endoperóxidos de las prostaglandinas PGG, y PGH,. Como se señaló previamente el anillo de pentano es reemplazado por el de oxano. Su nombre deriva de que dichos compuestos poseen una acción trombogénica potente. El tromboxano A, (TXA,) es inestable y se transforma rápidamente en el TXB,.

OH OH COOH m PGi

OH TxA2 inestable

OF OH COOH

OH bieiu PGF ,

OH

Los HPETE (ácidos hidroperoxieicosatetraenoicos) se forman por la oxidación del ácido araquidónico y, en dependencia de la ubicación del grupo OH, pueden ser 5 HPETE, 12 HPETE o 15 HPETE; éstos, a su vez, son los precursores de los ácidos hidroxieicosatetraenoicos 5 HETE, 12 HETE y 15 HETE, respecíivamente.

OOH 1 COOH

Las leucotnenos son hormonas que se forman a partir de los HPETE. Los leuwtnenas LTB,,LTC,LTD, y derivan del 5-HPETE a través del intermediario

Page 219: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

NH

f.ri!coliieiio C (LTC 1

LTA, El LTB, y los HETES (especialmente el 5-HETE) participan en la regulación de la función de los neutrófilos y eosinófilos, estimulan la adenilato ciclasa einducen la degranulación de los polimorfonucleares y liberación de enzimas lisosomales. Los leucotrienos LTC, y LTD, son sustancias humorales que provocan la contracción de la musculatura lisa, constricción de las vías aéreas, tráquea e intestino y modificaciones de la pernieabilidad capilar (edemas).

Los ácidos grasos sustituidos contienen en su cadena algún grupo químico que reemplaza a un hidrógeno de la cadena hidrocarbonada; son ejemplos los ácidos cerehrónico y tuberculoesteárico.

CH, I

H,C - (CHJ, - CH - (CH,), - COOH ácido tuberculoesteánco (10 nietil esteárico)

H,C - (CH,),, - CH - COOH ácido cerebróiiico

(2 hidroxi tetracosanoico)

Propiedades físicas de los ácidos grasos

Las propiedades &icas de los ácidos grasos están muy vinculadas a la presencia del grupo carboxilo, por un lado, y a su cadena hidrocarbonada en cuanto a su lougi- tud, grado de saturación y presencia desustitnyentes,por el otro.

Los puntos de fusión y ebullición de los ácidos grasos saturados aumentan al aumentar la longitud de su cadena hidrocarbonada, y en los insaturados ambos puntos disminuyen al aumentar el grado de insaiuración en éstos; de manera que a temperatu- ra ambiente y en climas tropicales todos los ácidos insaturados son líquidos, al igual que los saturados de menos de 10 átomos de carbono y el resto son sólidos.

En cuanto a la solubilidad, los ácidos grasos de cadenacorta son más solubles en agua por la influencia de su grupo carboxilo polar; pero a medida que aumenta el tamaño de la cadena hidrocarbonada, esta solubilidad decrece hasta hacerse práctica- mente nula. La presencia de insaturaciones incrementa también la solubiliad de los ácidos grasos en solventes polares, debido a la interacción de los enlaces pi (E) con las moléculas del disolvente.

Todo lo contrario sucede cuando analizamos la solubilidad de los ácidos grasos en los solventes apolares. Los saturados aumentan su solubilidad en los solventes orgánicos al aumentar la longituddelacadena hidrocarbonada, y en los insaturados la soluhilidad en estos compuestos disminnye con el grado de insaturación.

Propiedades química$ de los dcidos grasas

La longitud de la cadena apenas modifica el pK de estos ácidos, el cual es de aproximadaniente 5 para casi todos ellos.

Por su gmpo carboxilo los ácidos grasos pueden reaccionar con gmpos hidroxüos (OH) y originar ésteres carboxilicos (capítulo 5). Este tipo de enlace se encuentra en 10s Iípidos complejos y mediante él es que se unen los ácidos grasos al glicerol en 10s acilgliceroles y en los fosfátidos de glicerina.

Page 220: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

El grupo carboxilo puede también reaccionar con un grupo amino y formar un enlace amida (capítulo 5 ) ; este enlace une el ácido graso al esfingol en los esfingolípidos.

Con metales activos e bidróxidos los ácidos grasos originan sales:

R - COOH + Na - Na* R-COO- + %H2

R - COOH + OHNa-Na R-COO- + H,O

Las sales de aniones de ácidos grasos superiores con metales alcalinos, como el sodio y el potasio, son solubles en agua; poseen carácter aiifipático y son tensioactivas (disminuyen la tensión superficial), en consecuencia presentan acción detergente. Esta función detergente no es privativa de este tipo de lípidos, más adelante la eucon- traremos también en las sales formadas con los ácidos biliares y en otro tipo de Iípidos.

Si se adiciona una grasa a un medio acuoso y se deja en reposo, se observan las 2 fases separadas (agua: aceite), si se provoca una agitación mecánica (suministro de energía), se forman gotículas pequeñas de grasa en dispersión en la fase acuosa (una emulsiónl, pero esta emulsión formada es termodinámicamente inestable y, si cesa la agitación, la tendencia de tales gotículas es la coalescencia y separación de nuevo en las2fases. Sin embargo, si a este mismo sistema se le adiciona un detergente se logra que la eniulsión formada se estabilice; esto se explica porque la cola apolar bidrofóbica y,por ende lipofilica de cada molécula de jabóu interacciona con las vecinas, mientras que su cabeza polar interactúa con el medio acuoso y originan las micelas (Fig. 13.2). Encada inicela la carga negativa de los COO- estará dispuesta hacia la superficie, lo que resulta una repulsión electrostática entre éstas (todas con carga negativa), lo que impedirá la coalescencia y explica la detergencia.

El humano es capaz de sintetizar los ácidos grasos que requiere con la excepción de 3 de ellos: el linoleico, el linolénico y el araquidóuico. por tal motivo son conoci- dos como ácidos grasos esenciales, ya que se precisa de su ingestión en la dieta. Los ácidos grasos son fuentes dc energía importantes para el ser humano.

La presencia de dobles enlaces en los ácidos grasos permite que intervengan en reacciones de hidrogenación, halogenación y oxidación:

1. R e d o n e s de hidrogenacibn. Estas reacciones permiten la conversihi de ácidos grasaiinsaturados en sus homólogos saturados por la adición de átomos de hidró- geno.

catalizador R-CH = CH-R' + Hz L R-CH2- CH,-R1

2. Reaeeiones de halogenación. Las moléculas de halógenos pueden romper catalíticamente los dobles enlaces y dar lugar a los dihalogenuros correspondientes.

Medio acuoso

Fig. 13.2. Efecto dc iin jabón sobre la esta- bilización de una einulsión dc gra- sas. 1.0s jnlmrics forman csfcros, la porción Iiidrof6hicd queda cn ci centro y rodeada rlc In porción polar, con c i irp negativa, In que impide la eoalcseeiirio dc Ins gotículas ric grasa.

RoDcdonesdeoxidación. Los ácidos grasos poliinsaturados reaccionan con el O, mPonthIeamente y se inicia una cadena de reacciones autocatalizadas que produce ~e l%OS radicales libres como intermediarios, y aldehídos, hidroxiácidos, así como O ~ f o m p u e s t o s de cadena corta como productos finales. Algunos de estos productos

Page 221: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

finales poseen un olor característico, que les confiere el hedor a rancio a las grasas. Las membranas biológicas formadas por diferentes tipos de lípidos, que contienen ácidos grasos poliinsaturados, son muy sensibles al estrés oxidativo.

iones metálicos O -CH2 - CH=CH-CH, -CH2- + O,

o luz R- * + CH, -( CH,), -COOH

Son los Iípidos que se forman por esterificación de ácidos grasos de cadena larga con determinados alcoholes monohidroxilados o con esteroles. Las ceras más impor- tantes para el ser humanos son aquéllas que se forman por la esterificación de ácidos grasas con el colesterol (ésteres decolesterol) y que trataremos al estudiarlos esteraides.

Adgüeemles

Conocidos antes como glicéridos, son ésteres del glicerol con los ácidos grasos.

CH>OH I CHOH I CH,OH

glicerol o glicerina

En dependencia del número de ácidos grasos esterificados pueden ser: monoacilgliceroles, diadgüceroles o triacilgüceroles (o grasas neutras, antes conoci- dos como triglicéridos).

o o o II II II

HF-O-C-R O HC-O-C-R 0 HIC-O-C-R I II I l I I l

HO-CH K-C-O-CH R'-C-O-CH O I I I I I

H2C-OH H2C-OH H2C-O-C-R'

Los adgliceroles más importantes parael ser humano son los triaulgliceroles; los mono y diacilgliceroles son intermediarios del metabolismo de esta clase de Iípidos. Los triacilgliceroles son los Lípidos más abundantes en la naturaleza, constituyen una fuente importante de energía para el organismo y es la forma de almacenamiento de energía en el tejido adiposo.

Los acilgliceroles por sus características estmcturales son moléculas apolares. Sus propiedades físicas dependen del tipo de ácidos grasos esterificados. Los triacilgliceroles, cuyos ácidos grasos son de cadena larga y saturados, son sólidos a

Page 222: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

temperatura ambiente (mantecas); en tanto que, si sus ácidos grasos son saturados de cadena corta (menos de 10 carbonos) o insaturados, son líquidos a temperatura am- biente (aceites).

Por hidrólisis en medio ácido los acilgliceroles dan glicerol y ácidos grasos:

o o I l I I

O H,C-O-C-R, H,C-O-C-R, 2 H,O H,C <H II 1 H+ l R2-c-o-c-H o + H , O ~ Ho-c-H o + R2-cooH 3' H o - L H + 2 R - c o o H

I l l I II T I H2C-O-C-Rl H2C-O-C-R, 2 H 2 0 H2C-OH

Hidrólisis ácida

y glicerol y sales de sus ácidos (jabones), si el medio es alcalino, reacción conocida como saponificación:

o I I

O HC-O-C-R, CH20H II - 1 I

R2-C-O-C-H O + 1NaOH a CHOH + 1 (NntR-C00) I II I

H,C-O-C-R, CI120H

Los acilgliceroles pueden, si contienen ácidos grasos insaturados, reaccionar con hidrógeno, balógenos u oxígeno, reacciones que fueron estudiadas al tratar los ácidos grasos insahuados.

Funciones de los triacilgliceroles

Las funciones de los triacilgliceroles son:

1. Constituyen reserva energética. 2. Actúan como fuente de energía. 3. Intervienen en la regulación térmica del organismo. 4. Actúan como sostén de órganos. 5. Intervienen en la protección contra traumatismos fisicos.

F&tidos de glicerina o glicerofosfdtidos

Los fosfátidos de glicerina o de glicerol, son Iípidos complejos saponificables, Poseen estructura anfipática. Están formados por glicerol, 1 ó 2 residuos de ácidos WasOSy un grupo fosfato; además, pueden contener, en dependencia del tipo, otros compuestos.

Los fosfátidos de glicerina pueden ser:

- Ácidos fosfatídicos. - Posfatidi1 serinas (serín-cefalinas). - Posfatidi1 etanolaminas (etanolam'n-cefalinas).

Page 223: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

- Fosfatidil colina (lecitinas). o II - Fosfatidil inositoles (inositofosfátidos).

O %C-O-C-R - Fosfatidil gliceroles y difosfatidilgliceroles (cardiolipinas). II I

R'-C-O-CH O - Plasmalógenos. I II

H2C-O-P-OH I o- A e i d ~ fmbatídicm

&ido fosfatidico

La base estructural de la mayoría de los fosfátidos de glicerina es el ácido fosfatídico; este último apenas se encuentra en forma libre en los tejidos animales, aunque constituye la estructura básica del resto de los fosfátidos de glicerina, y metabólicamente es precursor de su síntesis e incluso un intermediario de la síntesis de los triacilgliceroles. Tiene esterificado al glicerol 2 ácidos grasos, uno de ellos casi siempre insaturado, y un grnpo fosfato. Estos compuestos al igual que todos sus deri- vados presentan isomería óptica, ya que poseen asimetría molecular. La variedad más frecuente en los fosfátidos natnrales es la L, que se representa con el residuo del ácido graso del carbono 2 (Ó P) hacia la izquierda y el gmpo fosfato en el carbono 3 (Ó a').

Al unirséle al ácido fosfatídico la serina, la etanolamina, la colina y el inositol originan los fosfátidos de glicerina correspondientes.

En estos Iípidos el ácidos fosfatídico se une a la L-serina por esterificación del hidroxilo de la cadena lateral de este aminoácido con el gmpo fosfato.

El sustituyente básico es'el alcohol etanolamina. La etanolamina se forma por descarboxilación de la serina; junto a las fosfatidil serinas forman el gmpo de las cefalinas.

H ~ & O - ~ - C ~ ( - < . I I , N(CH,) ,' La base nitrogenada colina se une al ácido fosfórico por un enlace éster; estos A- compuestos constituyen las lecitinas. En la figura 133 puede apreciarse un modelo de

Fasfatidil colinas la disposición espacial de este tipo de Iípidos.

Page 224: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

So0 fosfátidos de glicerina no nitrogenados, que contienen un alcohol cíclico de 6 átomos de carbono y cuya forma isomérica en los tejidos animales es el mioinositol o mesoinositol.

o l l

O H2C-O-C-R, II I

R2-C-O-C-H O I ll -

H2C-O-P-O 1 OH OH 0 . - 1, OH 'y 1 , ; M()

. { OH

El derivado 4,s bisfosfato de fosfoinositol (P,P,) es un constituyente importante de los fosfolípidos de membrana, los que por la acción de determinados agonistas hormonales se escinden, dando 1,2 diacilglicerol (DAG) y 1,4,5 trifosfato de hositol(IP,), los cuales constituyen segundos mensajeros en la respuesta hormonal.

Señal ........ P. \- ,

4.5 bisfosfato de fosfainositol (P, Pz)

Estos compuestos tampoco poseen nitrógeno; en su estructura contienen residuos de ácidos fosfatídicos que esterifican a gmpos OH del glicerol.

Fig. 13.3. Modelo espacial de una molécula de fostjtidil iulina.

Page 225: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

11 I R'-C+-CH O

I II Estos Iípidos no se consideran derivados de los ácidos fosfatídicos, pues carecen H ~ C - O - P - O - ~ - - < ~ H - C O ~ de residuos de ácido graso en el carbono 1 (ó a) del glicerol, y en su lugar se une por

h enlace éter un aldehído enólico de cadena larga. Contienen nitrógeno, el cual puede ser aportado por la serina, la etanolamina o la colina y en cada caso toma el nombre

Plasdógenos correspondiente. Los fosfátidos de gicerina son anfipáticos, su porción polar es la posición del

carbono 3, por su grupo fosfatocon carga negativa, o éste unido a la base nitrogenada correspondiente o al inositol. La porción bidrofóbica corresponde al resto de la molé- cula de glicerol y, especialmente, los residuos bidrocarbonados de los ácidos grasos unidos a los carbonos 1 y 2 del glicerol.

Funciones de los fosfdtidos de giioeriaa

Los fosfátidos de glicerina cumplen las funciones siguientes:

1. Componentes de las membranas celulares. 2. Los ácidos fosfatídicos son precursores en la síntesis de los otros fosfátidos de

glicerina y de los acilgliceroles. 3. Las lecitinas y cefaliuas intervienen en los procesos de la coagulación sanguínea;

por su acenínada característica anfipática poseen efectos tensoactivos, que explica su participación en los procesos respiratorios al nivel de los alvéolos pulmonares y también en el proceso digestivo de algunos Iípidos.

4. Las fosfatidü colinas y los fosfatidü inositoles son donadores de ácido araquidónico para la síntesis de prostaglandinas, tromboxanos, prostaciclinas, leucotrienos y otros compuestos relacionados.

5. Dos compuestos formados a partir de un derivado del fosfatidil inositol (el 4,s bisfosfato de fosfatidil inositol): el diacilglicerol y el trifosfato de inositol actúan como segundos mensajeros de la acción hormonal.

Los esfingolípidos son Iípidos complejos que contienen un alcohol nitrogenado e insaturado de 18 Btomos de carbono, el esfingol o esfingosina:

( ' p n H

H/C=C\ ./$" H-C-NH-

Al esfingol se le une un ácido graso por enlace amida, formando la ceramida, estructura básica de estos compuestos.

A la ceramida se le adicionan otros compuestos en dependencia del tipo de esfingolípido.

Los esfingolípidos se clasifican en esfingomielinas y glicoesfingolípidos.

Page 226: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Estos Iípidos, además de la ceramida, contienen un grupo fosfato que se une por enlace éster al hidroxilo del carbono 1 de la ceramida, y también una molécula de colina esterificada al fosfato. La fuente de variación de estos compuestos radica en el ácido graso unido y, como regla, son ácidos grasas superiores. La figura 13.4 muestra un modelo de la disposición espacial de este tipo de Iípidos.

(+32)12

H/C=C a

I H-C-OH O

I II H 7-NH-C-R

Fosfátidos de esfingosina (esfingomielinas)

Fig. 13.4. Modelo espacial de una molécula de fosfatidil esfingosina (esfinge-

Con frecuencia se designan como fosfolípidos a los fosfátidos de glicerina y a las mielina).

esfmgomielinas, por ser éstos los únicos Iípidos que contienen fósforo.

Estos compuestos, conocidos también como glicoüpidos, carecen de grupo fosfato (y2'12

H/C=C /H en el carbono 1 de la ceramida, y en su lugar se le une un glúcido que puede ser un \

mono u oligosacárido. De acuerdo con el tipo de glúcido que contengan los H-C-OH O

gliroesfingolípidos pueden ser cerebrósidos, gangliósidos o sulfolípidos. I II

H-C-NH-C-R CerebróSidos. Son cerebrósidos si el monosacárido unido a la ceramida es la D I

galaetosa (galactocerebrósido) o la D glucosa (glucocerebrósido). CH,«II

hüáiha osulfolípidos. Constituyen derivados de los cerebrósidos a los que se HO 1 - o 0

le^ ha añadido un gnipo sulfato al carbono 3 del monosacárido. i , o l l i GangUQadaa Son esfingolípidos que contienen oligosacáridos como residuo

9iucídico. El oligosacárido está formado por diversos monosacáridos y un derivado i 1

O l l

del ácido N-acetilnenraminico o ácido siálico. Galactocmbrósidos

7H3

y2112

H/C=C /H

I H-C-OH O

F I ll

H-C-NH-C-R I

CH -04 glucosa-galactosa-N- acetil- I

2 H-C-OH O k g l i n a - & i d o siálica

~p~~

I II H-C-NH-C-R

I

Estnictura general de un gangliásido

hesñngolípidos son anfipáticos, su porción polar se encuentra en los sustitutos o11 carbono 1 de la ceramida (grupo fosfato y colina en las esfingomielinas, y los

gláeidos en los glicoesfingolípidos); en tanto que su porción apolar lo conforman las Sulfatidos o suüollpidos

Page 227: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

cadenas bidrocarbonadas del ácido graso y del esfingol. Los glicoesfingolípidos son los Iípidos más solubles en agua debido a su contenido glucídico.

Funciones de los es8agoUpidos

Entre las funciones más importantes de los esfingolípidos se encuentran:

1. Formar parte de la estmctura de lasmembranas bioló~cas. Se encuentran en gran- des cantidades en la sustancia blanca del sistema nervioso central.

2. Las esfingomielinas son componentes de las vainas mielínicas de los nervios. 3. Algunos glicoesfingolípidos por su carácter informacional le confieren acción

antigénica a la superficie de algunas células, lo que contribuye al reconocimiento molecular de éstas.

4. Los cerebrósidos y los sulfátidos forman parte de tejidos como el cerebro, nervios, bazo y riñones, entre otros.

5. Los gangliósidos aparecen en las células ganglionares del cerebro y de tejidos no nervioso.

6. Se les atribuye participación en la trasmisión del impulso nervioso.

Los terpenos son Iípidos isoprenoides, formados por unidades de isopreno (2 metil 13 butadieno):

Los terpenos son compuestos beterogéneos, no saponificables, en su mayoría de origen vegetal y contienen en su estructura varias unidades de isopreno; son ejemplos importantes de este grupo las vitaminas A (reünol), K (nafkquinonas antihemonágicas) y E (tocoferoles).

Vitamina A Vitaminas K, y Kr EstmcNm general Vitamina E

Page 228: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Son terpenos también la coenzima Q o ubiquinona (componente de la cadena respiratoria) y el escualeuo, intermediario en la síntesis del colesterol.

Lacaracterística estmctural más sobresaliente de los esteroides, y que es comón a todos ellos, es la presencia del sistema policíclico denominado ciclopentano- , , , ,

perhidrofenantreno. , ,/ ,'\, ,..>,' , . A \. De acuerdo con la cadena lateral unida al carbono 17 y a diferentes sustituyentes , ,

e insaturaciones, se forman los distintos esteroides. Muchos de los esteroides poseen 1

(: ! .- ', 1

gmpos metilos en las posiciones 10 y 13, formando el esterano. Los esteroides se pueden agrupar en: esteroles, ácidos biliares, corticosteroides y

progestemna, andrógenos y estrógenos.

8 Esterano

8 (estnicnua Esterano simplificada)

En estos compuestos la cadena lateral unida al carbono 17 puede contener 7,s Ó 9 &tomos de carbono y, por ello, se originan los esteroides C,,, C , Y C,, respectiva- mente; poseen además un gmpobidroxiio en la posición 3. Entre estos tipos de Iípidos Se encuentra el colesterol, que tiene gran importancia biológica y médica. Es un Iípido de ~ ~ p r e c u r s ~ r del resto de los e s t e m i d e s

Page 229: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 13.5. Modelo espacial de una molécula de colesterol.

docon la aparición de aterasclerosis. En la figura 135 se p m t a e l modelo espacial de la molécula de colesterol.

La molécula de colesterol es anfipática, ya que su porción polar la constituye el grupo OH y la apolar la conforma el resto de la molécula. Cuando al OH del colesterol se le une por enlace éster un ácido graso se forma, un éster de colesterol. Estos com- puestos constituyen ceras y carecen de carácter anfipático.

Las vitaminas D son derivados importantes de los esteroles; a partir del 7 deshidrocolesterol se forma la vitamina D,; la D, se deriva del ergosterol (esterol de origen vegetal).

Vitamina D2 o qocdcifeml Vitamina D3 o mlecalcifeml

La cadena hidroearbonada unida al carbono 17 del ciclopentanoperhidrofenan- tren0 en este tipo de esteroides, posee S átomos de carbono, incluyendo un gmpo carboxilo, son por ello esteroides C,; presentan, además, gmpos OH. Los ácidos biliares son varios (cólico, desoxicólico, etcétera) y se diferencian por la ubicación y disposición de los grupos OH. Estos compuestos se encuentran en la bilis, conjugados con los aminoácidos gücina y taurina,formandosales de sodio y potasio (sales biliares). Las sales biliares poseen acción detergente y desempeñan una función importante en la digestión y absorción de los tipidos, como se estudiará en el capítulo correspon- diente; un ejemplo de ellas es la sal sódica del glicocolato, que es el producto de la conjugación del ácido cólico con la glicina.

O o 1 l . C-NH-CHr C W H

l l -C-NH-W Cm ~ a *

Page 230: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Son esteroides C,,, pues en posición 17 contienen sólo 2 átomos de carbono. En este grupo se incluyen Las hormonas s u p m a l e s corüsol, eortieosterona y aldostemna, etcétera, y la progesterona del cuerpo amarillo; como ejemplo de este grupo sepresen- tala estrnctura del cortisol y la progesterona.

Los andrógenos constituyen las hormonas sexuales masculinas y son producidas por los testículos. Estos compuestos carecen de cadena carbonada en la posición 17, por lo que son esteroides C,,. A continuación se presentan las estructuras de la androsterona y testosterona como ejemplos.

En estos compuestos el anillo A del ciclopentanoperhidrofenantreno posee carác- ter aromático y,por tanto, no hay metilo en la posición 10, carecen además de cadena hidroearbonada en el carbono 17, por ello son los esteroides C,,. Los estrógeuos cons- otuyen las hormonas sexuales femeninas y son producidas por el ovario; la estrona y el 8 estradiol pertenecen a este tipo de esteroides

Page 231: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Resumen

Los iípidos son biomoléeulas heterogéneas desde el punto de vista estrucúuni y funcional, de eseasa solubilidad en agua y solubles en solventes apolares. Un rasgo que se debe destacar es que muchos de eUos poseen hcidos grasos en su constitución (lípidos saponiñcables), aunque otros no los poseen (lípidos no saponificables). Los iípidos se d e 5 e n como la fracción del material biológico enrtraíble por medio de los solventes orgánims.

Los iípidos se ciasiñean en heidos grasos, ceras, acilglicemles, fosfátidos de glicerina, esfingoiípidos, terpenos y estemides.

Los ácidos grasos son compuestos monocarboxílicos con cadena hidmcarbonada de longitud variable; pueden ser saturados, insahirados y Sustitui- dos. Las propiedades ñsicas dependen de la longitud de la cadena hidmcarbonada y del grado de inssturación.

A partir de ácidos grasos poliinsaturados de 20 átomos de carbono (eimsaenoicos), se forman compuestos que presentan acüvidades fisiológica y farmaco16gica importantes: prostapisndinas, tromboxanos y leucoírienos, entre otros. ~ ~- - - ~

Los adgüeeroles son iípidos neulros y apolares constituidos por glicerol y ácidos grasos. En dependencia del número de hcidos graso5 esterificados al glice- rol se dividen en mo~oadgliceroles, diadgiicemles y triadgiiceroles; estos Úiti- mos constituyen el mayor resemorio de energía para el ser humano y es el üpido más abundante de la dieta

Los fosfátidos de glicerina poseen como estrnctnra básica el ácido fosfatídico, el cual se une a residuos niimgenados o alcob6Licos para originar fosfatidü serina, fosfatidil etanolamina, fosfatidil colina o fosfatidü inositol, entre otros. Los esñngoiípidos presentan el alcohol esñngol, al cual se une por enlace amida un ácido graso, formando la ceramida. La unión a la ceramida de un grupo fosfato y colina, o de glúddos da lugar a Las esñngomielinas o a los glicoesñngoiípidos, respectivamente. Tanto los fosfátidos de glicerina como las esñngomieLinas son anfipátiws y forman parte de las membranas biológicas.

Un grupo numerw de iípidos no saponiñcables, los terpenas son iípidos isoprenoides que incluye a varias vitaminas üposolubles. Los estemides son tam- bién líoidos isoorenoides v contienen como estructura básica al ciclopen~operhid;ofenantreno: u n representante importante de los estemides es el colesterol, de o*en animal, iípido que forma parte de las membranas plasmálicas, es prenirsor del resto de los &mides y su elevada concentración en sangre está relacionada con la aparición de atemsclerosis; son también iípidos estemides los ácidos b i , los mrücoides y las hormonas sexuaies masnilmas y femeninas.

Ejercicios

1. Mencione los grupos en que se suelen clasificar a los lípidos por su similitud estmctural. Para cada grupodiga sison saponificables o no y fundamente su res- puesta.

2. Desrriba las caracteridicas estructurales de los ácidos grasossaturados e insaturados y compárelos atendiendo a sus propiedades físicas y químicas.

3. Fundamente la importancia biológica de los ácidos eicosapolienoicos. 4. ¿Qué son las prostaglandinai y cuáles son algunas de sus funciones? 5. Describa las características estriicturales de los tromboxanos y diga cuál es su

función. 6. ¿De cuáles compuestos derivai; los leucotrienos y cuáles son sus funciones? 7. Describa la estructura de los triacilgticeroles y mencione sus funciones.

Page 232: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

8. ;Cuál es la estmctura básicade lamayoría de losfosfátidos de glicerina? Descníala. 9. ¿Cómo se clasifican los fosfátidos de glicerina?

10. Cite las principales funciones de los fosfátidos de glicerina. 11. Describa la estructura de la ceramida. 12. Clasifique a los esfingolípidos y mencionelas funciones principales de este tipo de

Iípidos. 13. ;Por qué a los terpenos se les conoce como Iípidos isoprenoides? 14. Cite 3 ejemplos de terpenos. 15. ;Qué tipo de Iípido es el colesterol? Subclasifiquelo dentro de su grupo y funda-

mente esta subclasificación, atendiendo a sus características estmcturales. 16. iQué características debe poseer un lípido para ser mfipático? De todos los tipos

de Iípidos estudiados diga cuáles son anfipáticos y fundamente estructnralmente su respuesta.

Page 233: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Resumen de la sección

Las biomoléculas constituyen la forma de organización molecular básica de la materia viva: tienen una comnosición elemental muv simule con marcado uredommio " A

de los átomos de carbono, hidrógeno, oxígeno y nitrógeno, algo menos de fósforo y azufre, además de otros elementos que se encuentran en menor cuantía. Los átomos se unen en su mayoría por enlaces covalentes, lo que da origen a gran variedad de moléculas a las que corresponden también múltiples funciones.

Las biomoléculas pueden ser simples y de relativo bajo peso molecular o macromoléculas de muy elevado peso molecular, formadas por la polimerización de algún tipo de biomolécula simple. Las unidades monoméricas se unen mediante enla- ces covalentes para formar las estructuras básicas de los biopolímeros. Las macromoléculas biológicas son los polisacáridos, los ácidos nucleicos y las proteínas, que a su vez son polímeros de monosacáridos, nucleótidos y aminoácidos, respectiva- mente.

Las secuencias de los monómeros (o precursores) en los biopolímeros les confiere un carácter informacional específico, el cual está determinado por la identidad y el orden en que aquéllos se disponen en las cadenas poliméricas. Esta información secuencial determina la disposición tridimensional que adoptan las macromoléeulas.

Los biopolúneros düíeren en el tipo de carácter informacional que en ellos predo- mina. Muchos polisacáridos (los homopolisacáridos) con monotonía estructural po- seen muy poco carácter informacional, su estrnctura tridimensional es simple y su función es poco compleja (reserva energética y estructural); sin embargo, otros polisacáridos (heteropolisacáridos) en los que la secuencia de sus precursores no es monómtona, son biomoléculas informacionales y en no pocos casos les confieren carácter antigénico a las estructuras de las que forman parte. En los ácidos nucleicos, aunque también poseen carácter informacional conformacional, predomina la secuen- cia, este carácter viene dado por la diversidad de sus precursores, especuicamente por las bases nitrogenadas que constituyen la porción variable en las cadenas polinucleotidicas; la estructura tridimensional mucho más compleja de estas macromoléculas está relacionada con dichas características y es el fundamento de su función.

Las proteínas son los biopolímeros que exhiben una mayor diversidad de sus monómem constituyentes, su estructura tridimensional es extraordinariamente varia- da y compleja, poseen el mayor grado de carácter informacional con predominio conformacional, aunque por supuesto, incluye al carácter secnencial; estas macromoléculas, en consecuencia, presentan múltiples y variadas funciones relacio-

Page 234: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Losorganismos vivos para mantener su estado tienen queintercambiar sustancia, energía einformación con el medio natural que los rodea; la información puede pene- trar al organismo por diversas vías, a través de los órganos de los sentidos; la energía sin embargo penetra con las sustancias, es básicamente energ'a química, de los enlaces entre losátomos quecomponen las diferentes sustancias que penetran en el organismo en forma de alunentos.

Las sustancias que penetran en un organismo experimentan una serie de transfor- maciones que le van a permitir realizar 2 grandes funciones: convertirse en estructuras propias de ese organismo, sean celulares o extracelulares, o brindar energía utilizable por la célula en sus múltiples funciones.

Los componentes moleculares de las células y de la sustancia intercelular están sometidos a una renovación permanente: en este proceso de recambio continuo las estructuras existentes son degradadas en sustancias m& simples, que en última instan- ciasoneliminadas del organismo y sustituidas por moléculas nuevas quese obtienen a partir de la transformación delos nutrientes. El conjunto de todas esas reacciones de degradación y síntesis de sustancia que ocurre en los organismos vivientes recibe el nombre de metabolismo.

Todas esas transformaciones químicas que ocurren en el organismo presentan las mismas regularidades en su realización que cualquier reacción química que se desa- rrolle en la industria o en el laboratorio, lo cual equivale a decir que están sujeta a las mismas leyes generales; también están sujetas a leyes específicas derivadas del movi- miento biológico de la materia. Desde este punto de vista una minúscula célula es como un gigantesco tubo de ensayo, donde se desarrollan simultáneamente miles de reacciones.

Para una coniprensión adecuada del metabolismo celular es necesario tener pre- sente esas leyes y aplicarlas de manera consecuente en su estudio. Al mismo tiempo resulta imprescindible tener presente algunas singularidades propias del nivel de desa- rrollo de la materia alcanzado en los seres vivos. Una adecuada comprensión de los dnculos entre logeneral y lo singular será un instrumento cognoscitivo valioso en la asimilación de los fenómenos metabólicos.

En este capítulo se hará una somera revisión de los principales conceptos de cinética y termodinámica química, relacionadas directamente con el funcionamiento de 10s biocatalizadores.

Page 235: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

oH

Reacciones químicas

Cuando una o más sustancias quíinicas se colocan en condiciones qiie provocan una transformacióii que da como resultado la apai-ición de una nueva sustancia. deci- mos que se ha producido una re~icción química. De acuerdo con el principio de conser- vación de la materia, ésta no puede ser creada ni destniida, por lo que en las reaccioiies químicas sólo se produce un reordenainiento o reagrupamiento de los elementos que constituyen las sustancias i-eaccionantes, que de esa forma dan origen a una iiucva sustancia.

En general. las sustancias estiii formadas por moléculas y éstas a 51i vez por áio- mos que se mantienen unidos. debido a la existencia de enlaces quíinicos entre cllos: se deduce que estos reordennniientos sólo son posibles gracias a la ruptura y foriiiaci6ii de enlaces quíinicos. Por ejemplo. examinemos la reacción de hidrólisis de la glucosa-6-fosfato que se muestra en la figura 14.1

. O-P- O- CH,

I I ooH + HOH +":o+ ~ o - ~ - o - o ~ ~

HO OH 1 1 o

OH OH

El número de elementos en ambos lados de la reacción es el mismo, sólo que alma un grupo OH del agua pasó a la estructura del fosfato, en tanto, el átomo de H pasd a la estructura de la glucosa; para ello fue necesario la ruptura del enlace éster entre la glucosa y el grupo fosfato, así como entre el H y el OH del agua, y la formación de enlace entre el OH y el fosfato, así como el H con la glucosa. Los elementos quíiuicos que aparecen representados a la derecha han sido reagrupados de forma diferente de como estaban en los compuestos reaccionantes, los que dieron origen a 2 sustancias nuevas llamadas productos.

Este reordenamiento de los átomos comporta variaciones en el contenido energ6- tico del sistema de reacción que determinan si la reacción puede o no ocurrir.

En el estudio de cualquier reacción química debemos considerar 2 aspecto5 iun- danientales: el primero, se refiere a la rapidez con que los reactantes se convierten cn productos, o sea, la velocidad de la reacción; el segundo, a la proporción de los rcactaiites que puede ser convertida en producto, esto es, el grado de completainiento o alcaiicc de la reacción. El conocimiento de estos 2 aspectos es de suma importancia para predecir el curso de una reacción y poder aplicarla con fines prácticos, así coiiio iiiodi- ficarla según nuestra conveniencia. Ambos aspectos están relacionados con la energé- tica de las reacciones, por lo que es conveniente revisar este aspecto.

Energética de las reacciones químicas

Toda reacción química, en principio, va acompañada de un cambio en el coiiteni- do energético del sistema reaccionante; este cambio determina tanto la dirección colnio la velocidad y el alcance de las reacciones.

La energía puede definirse como la capacidad de un sistema para realizar traba.¡o. Las células también realizan trabajo, lo que requiere ener~ía . Cuando sintetizan con- puestos químicos como la glucosa durante la fotosíntesis. el ADN durante Ia replicaciói% etcétera, realizan trabajo qiiíinico: efectúan trabajo mecánico cuando prodriceii 13

contracción de sus filameiitos,etcétera; ejecutan trabajo osmótico cuando generan 4 mantienen gradientes de concentración de sustancias a través de sus membranas. Exis-

Page 236: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

ten 2 clases principales de energía, la cinética y la potencial: la primera es la energia del movimiento -de un motor o de las moléculas- que en esle último caso le llamamos

y la medinios de h m a indirecta por la teinperatura: para que el calor realice rnabajo, tiene que fluir de un sitio de mayor temperatura a otro de menor teinperatura. Aunque generalrneiite existen diferencias de temperatlira entre las células y su entor- no, éstas no utilizan esa diferencia para realizar trabajaes más, los organisinos superio- res han desai~ollado de manera evolutiva inecanisinos de regulación. quc le permiten mantener constante la temperatura corporal.

El tipo de energía con la cual nos enfrentarnos cuando estudiamos fenómenos químicos o biológicos. es polencial o de almacenaiiiiento. Los átomos y las moléculas poseen energía potencial en virtud de la cual pueden i~itervenir en reacciones que liberan esa energía, y se manifiesta en su Iiabilidad para formar o romper enlaces químicos. por ejemplo, la glucosa posee una gran enei-gía potencial que la célula degrada constantemente, y la energía que se libera al romperse sus enlaces químicos es utilizada en la realización de numerosos tipos de trabajo (Fig. 14.2). El glucógeno que es la forma que tiene la célula para almacenar glucosa, representa de esta inaiiera energía potencial acumulada.

Trabajo quhico 1 Fig. 14.2. Ciclo de la energía en los seres vivos. Los scres vivos obtiencn la energía principalinenie par la 0x1~ d. ~ ~ c i i i n .' ' dc los nutriente, inaeridos "

hasia CO, y H.0 y con esa encrgiii realizan distinios tipos de irubiijo, como cl quiiiiico en la \intesis de las i~~iicroi~~olc'cit l .~r. el niecáriico en la coniracción muscular y el osrn"tico en la gcneracióii de giadientes de cunccntriición.

Trabajo osrnótico 1

La energía existe en muchas formas: calórica, eléctrica, radiante y química. Todas las formas de energía -tanto en los objetos inanimados como en los seres vivos- son interconvertibles como queda expresado en el primer principio de la termodinámica. cuando dice que la energía no puede ser creada ni destruida. En la fotosíntesis la energía radiante de la luz solar es transformada en energía potencial en los enlaces químicos de la glucosa que, en los músculos y los nervios, puede transformarse en mecánica o elécmca respectivamente.

Otra forma de energía potencial con la que nos encontraremos en este texto es el gradiente de concentración. Cuando una sustancia est i en una concentración de un lado de una membrana y en otra concentración del otro lado, se origina un gradiente de concentración. Todas las células forman gradierites de concentracióii debido a la in- corporación selectiva de sustancias del medio, para ello utilizan energía química; esta energía puede liberarse con la disipación del gradiente.

La unidad de energía en el sistema internacional (SI) es el joule, que es igual a I newton por metro. Pero como todas las formas de energía son interconvertibles, podemos utilizar cualquier unidad para expresar la magnitud de cualquiera de ellas.

Utilizaremos la kilocaloría (kcal) como unidad fundamental, que es igual a la cantidad de energía calórica que debe suministrársele a un kilogramo de agua Pura a 14,5 "C para elevar su temperatura en 1 "C. Para hacer la conversión basta saber que 1 kcal = 4 184 k3.

Como la energía es una propiedad exieiisiva. 1) sea, depende de la cantidad de sustancia, generalmente los cambios energéticos en las reacciones químicas se expre- san en kcal inol-', donde un mol es igual a 6,02 x 10" moléculas. El peso en gramos de

Page 237: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

un m01 de una sustancia es numéricamente igual a su peso molecular; el peso molecular de la glucosa es 180, por lo que un m01 de esta sustancia pesa 180 gramos.

Energía libre

La aplicación de los conocimientos de termodinámica nos sirven para predecir el sentido y el alcance de una reacción. Como los sistemas biológicos se mantienen a temperatura y presión constantes, es posible utilizar una medida de energía potencial para predecir el sentido de una reacción bajo determinadas condiciones. Esta medida de la energía potencial se denomina energía libre y se simboliza con la letra G en honor a Josiah Willnrd Gibbs, uno de los fundadores de la termodinámica. Nuestra atención se centrará en conocer qué sucede con la energía libre, cuando una molécula o una conformación cambia a otra, por lo que nos enfrentamos con un valor relativo más que con uno absoluto de G, especialmente con su diferencia que se representa como AG. Gibbs demostró que a temperatura y presión constantes "todos los sistemas cambian en el sentido de minimizar la energía libre".

En términos matemáticos podemos expresar que si AG es negativo para una reacción química, ésta tiende a realizarse espontáneamente, si es positivo no. Otra forma de expresarlo sería: si un sistema de partículas tiene una energía G , y puede cambiar a un estado que tiene una energía G,, el cambio se efectuará espontánea- mente si y sólo sí G, < G,.

El valor de AG es la resultante de 2 factores: el cambio en el contenido calórico entre los reactantes y los productos, así como el cambio de entropía. El contenido calórico, entalpía (H) de reactantes y productos, es igual a la energía total de sus enlaces.

Una reacción química libera o absorbe entalpía cuando en ella se forman o rom- pen enlaces; de ahí que el cambio total de entalpía representado por AH, es igual al cambio total de energía de enlace. En una reacción exotémica se libera calor y AH es negativo, pues los productos poseen menos energía que los reactantes: en una reacción endotérmica se absorbe calor y AH es positivo. Las reacciones tienden a ocurrir espontá- neamente si AH es negativo, pero éste no es el único factor.

La entropía, simbolizada por S, es una medida del grado de desorden de un siste- ma. Un cambio en entropía designado por AS se produce cuando un sistema deviene otro con mayor o menor desorden. De acuerdo con el segundo principio de la termodi- námica un proceso tiende a ocurrir espontáneamente, cuando el contenido total de entropía del sistema y el entorno tienden a aumentar.

Considérese el caso de la energía potencial acumulada en un gradiente de concen- tración. La difusión de un soluto de una solución a otra, en la cual su concentración es menor, es un ejemplo de proceso de importancia biológica que es conducido casi de manera exclusiva por un aumento de entropía, pues AH es muy cercano a cero. Supon- gamos que una solución de NaCl 0.1 M, está separada por una membrana de una solución de la misma sal en una concentración 0.01 M y que los iones pueden difundir a través de la membrana; en un primer momento, el movimiento de los iones está limitado a su compartimiento, pero a medida que difunden a través de la membra- na, los iunes pueden moverse en un volumen mayor y el grado de desorden del sistema aumenta. El máximo de entropía se alcanza cuando todos los iones pue- den moverse en todo el volumen, es decir, cuando las concentraciones de la sal hacia ambos lados de la membrana son iguales. En este caso la variación de entalpía es prácticamente nula (Fig. 14.3).

Page 238: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Otro caso interesante que ya fue discutido en la sección de biomoléculas es la insolubilidad de las sustancias apolares en solventes polares, especialmente en agua.

Gibbs demostró que la energía libre se puede definir como:

G = H-TS

donde H y S tienen el significado ya dado y T es la temperatura en grados Kelvin. Si no se permite que T varíe, entonces una reacción procederá espontáneamente si hay un cambio negativo en la energía libre según la ecuación:

AG = AH-TAS

Una reacción exotérmica (AH es negativo) que aumenta la entropia (AS es positi- vo) ocurrirá espontáneamente (AG es negativo). Una reacción endotérmica (AH es positivo) puede ocurrir de manera espontánea si AS es positivo y el término TAS es suficientemente grande para compensar en valor positivo de AH.

Si AG es cero, el sistema está en equilibrio y cualquier transformación de reactantes en productos será balanceada por otra transformación en sentido contrario.

De lo anterior, se deduce que AG es una medida del alcance de una reacción, esto significa que mientras más negativo es AG. mayor será la proporción de reactantes que se transforman en productos. Pero AG no proporciona información acerca de la veloci- dad con quc el proceso se realiza.

El cambio de energía libre de una reacción es modificado por varios factores como la temperatura, la presión y la concenuación inicial de los reactantes y los productos; las reacciones biológicas que se realizan en soluciones acuosas se ven afectadas por la concentración de H' (expresada en valores de pH). En el texto se darán los valores para GO', o sea, el cambio de energía libre bajo condiciones estándares: temperatura de 298 K (25 "C), presión de 1 atm, pH = 7 y concentración inicial para todos los reactantes y los productos de 1 M (con excepción del H+ que se mantiene en pH = 7). AG"' se denomina la energía libre estándar de la reacción, su signo depende del sentido en que la reacción sea considerada; si la reacción

tiene un A G k - a kcal.mol~', entonces la reacción

tendrá un AG = + a kcalmol-'

Fig. 14.3. Disipación de un gradiente de concentración. En un primer mo- mento lor iones sólo pueden mo- verse dentro de su compartimien- to. En la medida que se produce la difusión a través de la membrana es mayor el espacio disponible para el movimiento de cada ion.

Page 239: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 14.4. Isumerir;iciún de la f o i f o d i h i ~ droxiacetona. Lii fusfodiliidronia- cetoiia (PDHA) y el gliceralde- hído-3-fusfiito (G3P) son i shc ro s de función quc pucden iniercoci- venirse fácilmcnle.

Las condiciones en la iiiayoriü de las reacciones biológicas difiercii rie i;ls estándares. sobre todo en cuanlo a la coiicentración de reactantes y producios. pcii, sc puede calcular para otras condiciones por la ecuacióii:

[producto 1 hG= G"+ RT In

[reactante]

donde R es la constante de los gases (1,987 cal.grado~'.mol') y Iproductol y lrractanic] corresponde a la conceiitración inicial de estos componenles. Por ejciiiplu. cii Is intercoiiversión de la fosfodihidroxiacetoiia (PDHA) en gliceraldehidc 3-fosfaio (G3P). que se muestra en la figura 14.4.

Fosfadihidroniacetona 3-fosfogliceraidehido ( PDHA) ( G3P

AG" = + 1 840 kcal.inoll, la ecuación sería:

AG = + 1 840 + 1,987 T ln LG3P]/[PDHA]

si [GiP]=[PDHAI= 1 M. enlonces AGW= + 1 840 kcal.inol- porque RT In 1=0 La reacción tiende a ocurrir de derecha a izquierda hacia la formación de PDHA. Sin embargo. si [PDHA] = 0,l M y [GiP] = 0,001 M y las otras condiciones se inanticncn estándares el AG sera

En este caso la reacción tiende a ocurrir en la dirección de formación del G3P. En una reacción en que 2 moléculas se combinan para dar una sola según la reaccióii:

A + B F C

la ecuación para AG serb:

[Cl AG = G" + RT 111 [Al LB1

el sentido dc la reacción p~iede variarse. si se cambia la concenti-ación inicial dr cualquiera de los compuestos.

Como AH y AS son liinciones de estado, AG es también tina Ilinción de esindo: esto significa que su valor sólo depende de los estados inicial y final del sisieiiia

Page 240: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

reaccionante, sin que en su inasiiitud infliiya el camino recorrido. Si la susiaiicia A transformarse en J según el proceso:

o por este otro: A+ C+F +J

como se pane del niisnici rcactiinte (A) y se obtiene el mismo producto (J). el AG de ambos procesos es el mismo: por ejemplo. la reacción:

C,H,,O, + 6 6 CO, + 6 HIO

tiene un AG" = -688 kcal.niol:', tanto si se realiza abruptamente en una boniba calorimétrica. como si se lleva a cabo en uria célula. donde el proceso tiene lugar en condiciones inoderad:is y por tina ruta secuencia1 que comprende más de 20 reacciones químicas.

Como se ha sciialado, el estudio de la termodinámica de las reacciones nos propoi-- ciona un instrumento para conocer el alcance o grado de coinpleiamiento de una reacción, así conio su sentido más probable. pero no nos dice nada sobre la velocidad con que esta 1-eacción tendrá lugar. ni siquiera si esa reacción ocurrirá bajo unas condi- ciones determinadas: para determinar esto debemos valemos del conocimiento de otros factores.

Reacciones acopladas

Una de las propiedades de la energía libre más utilirada es su carácter aditivo; esto significa que si en un sisteina reaccionante ocurren 2 reacciones sii~iultáiieaiiientc, la variación de energía libre total será igual a la suma aigebraica de las variaci<iries de energía libre de cada uiia de las reacciones por separado, por ejemplo. si se tiene la reacción:

y ésta ocurre simuliáneainente con la leacción.

entonces la variación de energía libre de las 2 reacciones será:

Este ejemplo permite evidenciar una situación muy h-ecuente en los seres vivos. Como ya se ha dicho. hay reaccioiies que requieren de iiiia fuente de energía para su realización; en el laboratorio ese problenia se soluciona. conduciendo la reacción a elevadas temperaturas. lo cual no es posible en el interior de los seres vivos. Los organismos vivientes aprovechan esta propiedad y realimi las reacciones consurnido- ras de energiii a expensas de reiiccioiies que la libei-:m ciiaiido esto ocun-e se dice que las 2 reacciones están acopladas.

De manera evolutiva. lus scres v i \ w han desarrollado mecaiiisnm especiales para el acoplamiento de i-eaccioiies con la iiitroducciún de iiitei-iiiediai-¡os entre las 2 reac- ciones, de forma tal que éstas no iengan que ociin-ir al inisino tieiiipo ni en el inisino

Page 241: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
Page 242: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

COOH l

C- O II CH,

COOH l c=o l CH,

P-P-R-A

O-CH,

1 2 kcal mol I 4 G = - 4.5 kcal mol I 1 I

AG = -3.3 kcal mol 4 G = +4.2 k a l m o l

de reacciones sucesivas. Este procedimiento provee una ventaja adicional. pues per- mite la realización de reacciones termodinámicamente desfavorables. Supongamos que la reacción (1) presenta AG = + 2 kcalmol~', por lo que es poco probable que ocurra espontáneamente; pero si la reaccióii(2) tiene AG = 5 kcal.molP, la conversión de A en C es un proceso favorable, pues prescrita AG = -3 kcal.mol-'. A veces para hacer más gráfica esta situación se dice que la segunda reacción "iinpiilsa" a la primera.

Otro caso frecuente es e1 de las reacciones de oxidación rediicción. Para que una sustancia se oxide se requiere que otra se reduzca. Al igual que en cl acoplamiento energético, la célula dispone de intermediarios redal-. que permiten acoplar reacciones de oxidación con reacciones de reducción, sin que éstas tengan que ocurrir al mismo tiempo ni en el mismo lugar; estos acopladores so11 generalinenie cofactores (capítulo 19) que funcionan en forma similar a como lo hace el ATP en los acoplamientos energéticos. Esta caractenstica de las transformaciones bioquímicas de realizase en dependencia de los productos resultante de otras reacciones, creando vínculos de relación entre los procesos metabólicos, es el contenido esencial del principio de acoplamiento.

Velocidad de reacción

Una medida de cómo se efectúa una reacción química es mediante su velocidad; por ello se entiende cónio aumenta la conceiitración del producto por unidad de tien- po. Si no se dispone de un método adecuado. puede determinarse igualmente cómo disminuye la concentración del reactante; como se trata de la inisnia reacción, cual- quier medición que se haga dará la misma velocidad.

En el ejemplo dado, de la hidrólisis de la glucosa-6-fosfato pudiera medirse cómo aumenta la concentración de glucosa u de fosfalo, o cómo disminuye la de glucosa-6-fosfato por unidad de ticrnpo. Como la concentracióii de agua es sienipre mucho mayor que la de cualquiera de los demás componentes, su variacióii serZ apenas perceptible y en los cálculos se coiisidera siempre constante.

Teniendo todo esto en cuenta, podemos escribir las expresiones siguientes para la velocidad de la reacción de Iiidrólisis de la glucosa-6-íosfalo:

10 cual se lee conio variación de la coiicentración del componente dado (glucosa-6-fosfato, glucosa o fosfato) a medida que el tiempo varía. En el primer caso la expresión está afectada por el sigrio menos (-). pues la concentración de glucosa-6-fosfato va disminuyendo con el tiempo.

Fig. 14.5. Renccioiics acopladas. Se iiioes- t ia cl acoplamiento cn las reaccio~nes de l i id ró l is is dcl 6cido fosfocnolpirúvico y la foaí'orila- cióii dz l a glucosa incdinnte c l c i - . c l o del ATP. Olisi'rvrse que ine- diante este niecniiisrni, las 2 rrac- c ionc r donde in te iv ienei i 10% ni ic leót i i lo i de adrnina como in - termediarios ioii cxerg<>niciis, l o cual lar iiacc farorubles desde el punto de visiii termodinámico.

Page 243: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En gciieral la velocidad de una reacción dcpc~ide de la conceiitraci61i ilc lo5 reactanies cii cada iiionierito. coino q~icda esprc%adc eii la ley ilc nccióii ilc iiiaws. t7;iiei la reaccií~i

la ecuación de \,elocidad seiá:

donde k es la constante de velocidad específica de In reaccióii. Para una reacciúii ilc 2 reactanies

A + B + C

sería:

y en general para una reacción del tipo

donde las leiras iiiayúiculas representati a los compuestos. y las tiiinúscula~ .i los coeficienies de la eciiación balaiiceada. la eci1nci6ii para el cálculo de la vclociil;iil sería:

v = k[A]"B]"[C]' ...[ N]"

que puedc llevarse :i I;i expresión genefiil

v = kc'

donde c incluye todos los térniinos de concentracióii y z es igual a la sunia de sus exponentes: en ocaiioncs. el valor de z calculado de esta f«i-iiia e corrcsp~nde coi1 el i~rden de la reacción. pcro ese valor dehc c~ilcularsc expei-inientaliiiciitc como sc \ crJ en el acápitc siguiente.

La velocidad de las reacciones se ve afectada por la temperatura. 111 presiói~. a ~ íconio por La naturaleza. y el estado de agre;xióii de los reactantes.

Orden de reacción

La ecuación estudiada describe de forma general la relación entre la velocidad dc la reacción y la conceniración de los reactanics. según la ley de acción de niasas. En estas ccuaciones el valor<lel exponente z se define conlo cl orden de la reacción: sin etiiliar:i«. el valor de z es un número empírico y. por ianto, se debe deterniinar experinientalniciiic: esto permite agi-upar las reacciones que tienen el mismri valor de z. o sea, el iiiisnio orden de reacción El orden real de la re;icción no piiede dcierniinarse por la ecuacih de veloci- dad. pues dcpeiide en gmi niedidii del mecanismo dc la reacción y de las condicioiics cii que ésta se realiza.

Cuando sc detemina por vía cxpeiiinentd una reaccióii. ésta puede rcr dc piiiiicr orden. 51 la velocidad es directamente propicional a la concenb.acióii del reactatite; de segundo oideii. si es proporcional al cuadrado de la concentmción del reactante o al pduc tn de la coiicentm- ción de 2 reaciantes, y así s~tcesivaniente. Cuando la velocidad de la reacción es indepcndicnle clc la coiiceniiación de los reactanics. se dice que es de o~rlen ceio.

Page 244: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Las ecuacioiies reales para cada caio. eii las cuales a y b rcpreseiilaii l a i coiiceiitr;~

,iones de los reactantc:. so11 las siguiciiies:

. Reacción de nrdeii cero: Y = ha" ó v = k

. Reacció~i de piii i ics ordcii: v = ha1 6 v = kn

- Reacción de se_aiiid« ordeii: v = ha2 ó v = kah

El orden de reacci6n no tiene que sci- nccesariaiiiciite ti11 iiiiiiiei-« eiitci-o y de Iieclio muchas veces no lo cs: puedcn eiicoiitrai-se valores coino 0.6 6 1.3. etcétei-a. Es impor- tante resalvar que una iriisiiia reacción, realizada c i i con<lici»iies dircreiites. p~ ic i l c exhibir valores distintos de L . Se llame ordcii zlobal de 1;i rencciúii ;i In suma A' lo\ exponentes dc todos los tériiiiiios de coiiceiitraci6ii. deterii i i i iadi~s por v ia expcriiiieii- tal y orden con respecto a u11 reiictantc para el ex l~~ i i i cn i c de ese rcncvaiite excl i \ i \ ; i mente. Se dice en este caso poi- ejeiriplo. que la reacción es de pi-iiiier o rd i~ i i cii i i respecto a A, etcétera.

Tal vez un cjeiii(i1ii iliisti-e 10s coi iccplm ti-at;idos. T(51iicse la iciiccióii

según la ley de acciiíii de i i i aw i , In cciiacióii de velocidad \cría:

y la reacción sei-ía de tercei- orden.

Sin einharfo el est~idic de la reacciiíii dstesiiiiiia qiic ésta se realiza en 2 L.I,~>:I\:

A + B + D Etapa i i i i iy leii i i i

D + C + P + Q Eiapa muy r6pid;i

L a etapa que determine 13 \,elocidad dc la reaccióii es la hr i i iac ió i i del coiiipiieito iniermedio D. que iiiia ve7. ior i i iadc rc;iccioiia i(ipidnineiire con C para dar origcii a los 2 productos de la reaccih. por- l o ctial la seguiidü ctnpa i io irif luye sohir I;i velocidad de la reaccihi. Teiiieiido en cuciita este iiieceiiisiiio la ecu:ici6ii de \'elocidnd seria:

y por tanto. la reacción es de ~egu i ido ordeii. Para deteminai-e1 oldc11 de la reacci6n cs necesai-io ti-aiisioi-mar Iiis c c i i x i o n e de

velocidad eii ecuacioiies cinéticos, que son aquéllas que ofreceii el \ a l o i de la coiiccii- tración de cualquiera de lo:. reactantes en un tiempo dado. Si eii la cciiacióii parricilxi un solo reacteiite A. cuya concentración ii i icial es a, al cabo de un tiempo ( i ) se Iiahi-5 transformado una c a d d a d x de a en producto y sil conceiitración en ese momento sc r i a-x. Integrando las ecuacioiies de velocidad se obtieiicn las ciiiéticas que para una reacción de orden cero. sería:

para una reacción de primer orden

Page 245: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

y para una de segundo orden

Fig. 1 4 . 6 Deierminiicióii del ordcii de i ins rcacción. Para calciilai- el ordcn de i e a c c i h hay qiie b c ~

leccioiiiii iidecuiidiimcntc l a s vaiiablei quc dchcn ocupar ciida x u n o dc loi ejes de coordenadas. En U ) l o s re$~lt i idos corrcspon- d e n ii u n a reacción de ordeii cero, dondc l a pendieiite ( p ) c \ igual a la constante rspecifiia de velocidad. En b ) ic rcpcesenta u n a rcacción de primer ordcii y 211 C ) de segundo orden. Las re- piesentiicioiics I'acilitan c l c i i c u - lo de k.

los valores determinados experimentalinente para la reacción que se está estudiando ?e muestran en la figura 14.6: si se seleccionan de forma adecuada los valores represeiita- dos en cada uno de los ejes se obtiene una línea recta que pasa por el origen de las coordenadas. La gráfica en la cual se ajusten adecuadamente los valores experiiiienta- - les dará el valor del orden de la reacción.

Reversibilidad y equilibrio

Una reacción reversible es aquélla que puede realizarse en los 2 sentidos, esto es, que los reactantes generan un pmducto y éste a su vez puede regenerar a los reaclantes. En un primer momento como la velocidad depende de la concentracióti de los reactanies. y el producto apenas se ha formado, el sentido predominante será

Reactante - Producto

pero a medida que la concentración del producto comience a incrementarse, empezará a ganar en intensidad la reacción inversa

Para una reacción simple como:

aA + bB -p cC + dD

la velocidad de la reacción directa (de izquierda a derecha) se puede designar v, Y viene dada por la ecuación:

mientras que la velocidad de la reacción inversa (de derecha a izquierda) a la c d llamaremos v, será igual a:

Page 246: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Si se parte sólo de A y B, como su concentración disminiiye con el tiempo pues se convierten en C y D, la velocidad de la reacción directa disminuye con el tiempo. Por

parte como la concentración de C y D aumentan con el tiempo, la velocidad de la reacción inversa también aumentará hasta un momento en que las 2 velocidades sean iguales, esto es:

o también:

que reordenando tendremos:

donde el cociente k , k 2 representa la constante de equilibrio de la reacción:

y así para cualquier tipo de reacción. La relación entre las concentraciones de los productos y de los reactantes en el

momento del equilibrio depende de la naturaleza de los compuestos, la temperatura y la presión. En condiciones físicas definidas esa relación es siempre la misma para una reacción dada.

Para ilustrar algunos aspectos del equilibrio utilizaremos la conocida reacción de isomerización reversible de la PDHA en G3P que ocurre en el organismo. catalizada por la enzima triosa fosfato isomerasa (Fig. 14.4).

La constante de equilibrio para esta reacción bajo condiciones estándares

[PDHA] Ke = = 22,2

I G W

lo que significa que en el momento del equilibrio la relación entre las concentraciones de PDHA y G3P es de 22,2: 1.

En reacciones de este tipo. en que existe un solo reactante y un producto, la relación de concentración en el equilibrio es independiente de la concentración inicial de ellos, e igual a Ke; también es independiente de la velocidad de la reacción, en presencia de un catalizador esta velocidad se incrementa pero la relación [PDHA]I[G?P] es la misma.

Las reacciones asociadas a una Ke grande pueden ocurrir espontineamente, pero la magnitud de esta constante nada nos dice de la velocidad de la reacción, ni siquiera del hecho de que esta reacción pueda ocurrir bajo determinadas condiciones, por ejemplo, a pesar de la gran Ke de la reacción estudiada, en una solución acuosa en la cual esté ausente la enzima, la reacción es tan lenta que es indetectable.

En reacciones que intervienen múltiples reactantes o productos, la concentración en el equilibrio de un reactante o de un producto depende de la concentración inicial de todos los reactantes y productos, así conio del valor de la constante de equilibrio.

Si la reacción no es isoenergética, como es lo habitual, entonces en un sentido ha de liberar una cantidad de energía que es igual a la que absorbe en el sentido contrario

Page 247: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

y, por tanto, la variacióri total de energía librc es igual a cero; esto implica que pni-;i un sistema en cquilibrio químico podemos escribir la ecuación:

[producto 1 A G = A G + R T l n

[reactante 1

pero corno en ese riioniento AG = O y (pr'idtictoll(renctait~eJ = Ke, la ecoacióii se transforma e n

o empleando logaririnos de base 1 0

A V = - 2,3 R T log Ke.

Esta simple pero iiiiporiaiiie relación entre la variación de la emr& libre eii condicioiics estindares y la coiistaiite de cquilibrio permite determinar los valorcs de A@: midiendo las concentraciones de productos y rcactantes en el estado de equili- brio. sin necesidad de eiiiplciir coiiiplicados procediniientos para determinar 10s cmi- hios de entalpía (AH) y eiitropía (AS). Uiia lista de relaciones entre los valores de AG y Ke se muestra en la tabla 14.1.

Ke AG" (kcal.mol-') AG" (k1.1noI~')

Como se puede observar cuando AG'es negativa entonces Ke z 1 , o sea. está favorecida La formación de los productos. Por último. es bueno señalar que aunque el equilibrio químico es aparentemente un estado estático, en realidad se trata de 1111

estado dinámico, en el cual las 2 reacciones opuestas continúan realizándose, pero a la misma velocidad. El punto de equilibrio no depende de la velocidad de la reacción.

Page 248: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Energía de activación

Todas las reacciones químicas no ocurren con la misma velocidad. En la explo- ,ión de la dinamita se produce la transformación de una gran cantidad de sustancia cn fracciones de segundos, en tanto. la formación de agua a partir de H, . y O, . es tan lenta que debe esperarse mucho tiempo para que se formen cantidades minúsculas de agua:

como la esterifjcación del Bcido acético y el ctanol ocurren a velocidades inter- medias. A este último grupo perteiiccen las reacciones de cuyo estudio se ocupa la cinética química, pues su tiempo de duración permite una adecuada experimentación en el laboratorio.

Muchas reacciones quíniicas qiie presentan un g ~ i n cambio negativo de energía libre no ocurren a velocidades niensurables, por ejemplo. el G3P puede experimentar diferentes transfornlaciones, coino se niuestr;~ cii la figura 14.7. Todas ellas con un AG"' negativo, sin embargo. en soluciones acuosas ii«rmales el G3P es tiii compuesto muy estable, por lo que reacciona lentaniente o no reacciona.

H-&0H o I 11

H-C-O- P-0-

H O

. --S

H O HO O 'y.4

? H-C-OH

1 H-C-OH

l H-C-OH

I H

Cuando esto sucede sc dice que existe una bar¡-era energética Tara el desarrollo de la reacción y que los Imctiilites deben vencerla en su camino liack los productos. Esa barrera recibe el iiurnhre de energk de acti!acióri. Cada stistnnci;~ dt.bido a so estnictu- ra presenta un contenido energético dado por la energía de sus enlaces, entalpía, y por su movimiento caótico. Conio todas las inoléculas en un sisteina no se mueven a la misma velocidad. se toiiia parn caracterizar al conjunto la energia cin6:ica promedio de todas ellas; la temperatura es prccisame.nte un3 rnedida de esa energía ci116tica promedio.

Para poder reaccionar y dar productos. los reactantes deheii e m i r en contacto físico. es decir. chocar unas moléculas con otras con orientzcióri e inten~idad adecua- &S, por lo qiie deben poseer un contenido ener~&tico determinado quc les permita alcanzar el grado de excitación necesario para transformarse en productos. Si la enrr- @a del reactante está niuy lcjos de la que debe alcanzar. entonces la reacciún transcu- M d e forma muy lenta. pesa s i está muy cerca ocurrirá rápido. A la diferencia entre la energía que posee e1 reactante y la que debe poseer para reaccionar es a 11 que se denomina energía de activación.

En la figura 14.8 se representa un diagrama de las variaciones de energía tiurante una reaccibn. Primero se reprcscnta la energía de los rextantes, en segundo lugar aParece el nivel energético necesario para producir la reacción y tercero' la energia de 10s productos. El estado de excitación cii que se encuentran los reactantes en el pu~ito 2 se denomina estado de transición o complejo activado, y según la teoría de las velocidades absolutas de 1,eacción se encuentra en equilibrio con los reactantes. Como

Page 249: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 14.8. Diagrama energético de una re- acción. La reacción comienza con el valor energético de los reactantes que debe elevarse hasta formarse el complejo activado y después se originan los productos con su ener- gía característica. AE1 representa el valor de la energia de activa- ción para la reacción directa, en tanto AEZ lo es para la reacción inversa. AE3 representa el valor de la energía dc reacción.

se puede observar la energía de activación no es la del complejo activado sino la diferencia entre la energia de los reactantes y la del complejo activado; mientras indyor sea ese valor, menor será la velocidad de la reacción.

- Reacción

Existe también otro factor importante que aparece representado en la figura, y es la diferencia entre la energía de los reactantes y la de los productos. que recibe el nombre de energía de reacción. En la conversión de los reactantes en productos, además de la transformación de la sustancia, ocurre también una vaiación del contenido energético del sistema, de forma que el contenido energético de los productos puede ser igual, mayor o menor que el de los reactantes. Las reacciones del primer gmpo reciben el nombre de isoenergéticas (de isos=igual); si el nivel energético de los productos es menor, quiere decir que parte de la energía de los reactantes se ha cedido al entorno y por ello reciben el nombre de exergónicas (de exoshacia afuera); por último, si el nivel energético de los productos es mayor, significa que el sistema tomó energía del exterior y por ello reciben el nombre de endergónicas (de endos=bacia adentro).

De la figura 14.8 puede deducirse que las reacciones reversibles, que en un sentido son exergónicas, en sentido contrario son endergónicas, y que las reacciones que en sentido directo son muy exergónicas en sentido inverso son poco probables, pues presentan una energía de activación muy grande. La energía de reacción puede indicar el sentido más probable en que una reacción química puede ocurrir, pues se trata del AG de la reacción.

Existe una relación funcional entre la energía de activación y la velocidad de la reacción deducida a partir de la teoría de las velocidades absolutas de reacción; para ello hay que recordar la forma generalizada de la ecuación de velocidad:

donde k es la constante específica de velocidad, pues es el valor que toma ésta cuando el témino c'es igual a la unidad. El valor de k depende de muchos factores, entre ellos de la energía de activación a la cual está ligada por la ecuación de Arrhenius:

donde k* es un valor que depende de otros factores, e es la base de los logaritinos neperianos, R y T tienen los significados ya conocidos y E es la energía de activación.

Se debe tener presente que el exponente de e es una fracción negativa y E es su numerador, por lo que mientras mayor sea el valor de E, menor será el valor de k y por tanto de la velocidad.

Page 250: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

caMzadores

Existen vanos procedimientos para provocar el aumento de la velocidad de una -

reacción, algunos son muy refinados pero otros resultan muy sencillos, como es el caso A, realizar la reacción a altas temperaturas o la de adicionar un catalizador. El aumento de la temperatura refleja un aumento de la energía cinética de los reactantes, acercán- dolos al valor necesario para formar el complejo activado y con ello disminuye, tanto como sea posible, la energía de activación.

LOS catalizadores por su parte son sustancias de diferente naturaleza química que tienen en común la propiedad de aumentar la velocidad de las reacciones químicas, sin que su estructura o concentración se modifique como resultado de la reacción. Estos catalizadores participan en las reacciones de formas muy variadas, pero todos ellos son capaces de disminuir la energía de activación, con lo cual, como ya se ha visto, se aumenta la velocidad de la reacción.

En la figura 14.9 se reproduce el diagrama de la figura 14.8, pero ahora en presen- cia de un catalizadoi-, por lo que se observa la disminución de la energía de activación. Sin embargo, en la figura 14.9 es evidente que los catalizadores no influyen sobre la energía de reacción, por lo que Las reacciones exergónicas (o endergónicas) lo seguirán siendo, lo que ahora en presencia de un catalizador se producen con mayor velocidad.

Reacción

En las reacciones reversibles los catalizadores aumentan tanto la velocidad de la reacción directa como de la inversa, pues al disminuir la energía de activación para la reacción

Reactante - Producto

tambikn lo hacen para la reacción

Producto - Reactante

de modo que no alteran el estado de equilibrio, aunque contribuyen a que éste se alcance m& dpido; por lo tanto el punto de equilibrio, la constante de equilibrio y el A@ de la reacción son los mismos con catalizadores o sin ellos. Podemos distinguir 2 tipos genera- les de Cataliradores: aquéllos que realizan su acción catalítica en los seres vivos y los que su actividad no está vinculada necesariamente con éstos. A los primeros se les da el calificativo de bióticos y a los segundos de abióticos.

Los catalizadores abióticos pueden ser metales como el platino, sales como el dicromato de potasio, ácidos o bases como el ácido sulfúrico o el hidróxido de Sodio, compuestos orgánicos diversos como el fenol, anhídrido acético, pipera- zina, etcétera. Todos los catalizadores bióticos conocidos son proteínas y reciben el nombre de enzimas.

Fig. 14.9. Diagrama energético con un ca- talizador. La reuccióii en presen- cia del catalizador sc realiza con una energía de nctivsciúii (AE2) ineiior que c i i ausencia del catali- zador ( A E I ) . Tuinhién disiuinuyc la cricigía de activación dc la I-eac- ción inversa que pasa de DE3 sin el caializadoi a 4E4 con el catali- zador Siti enibargo. la energía de reacción (AE5) no cambia al aiia- dir el catalizador.

Page 251: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos
Page 252: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

iswnergéticas (si AG = O), endergónicas (cuando AG es positivo) y exergónicas (,-"ando AG es negativo).

La propiedad que tiene la energía libre de poseer carácter aditivo permite el acoplamiento entre reacciones. Este acoplamiento es un fenómeno tan generaliza- d,, en 10s procesos bioquímicos que forma el contenido esencial del principio de -- acoplamiento.

Los catalizadores son sustancias que tienen la propiedad de disminuir la ener- da de activación con lo cual aumentan la velocidad de las reacciones. Estos pueden

bióticos o abióticos. Los bióticos son proteínas, con especificidad por la reac- &jn y el reactante, con una alta eficiencia catalítica.

Ejercicios

1. Señale para la reacción siguiente:

Ala + Gli -+ Ala-Gli + H 2 0

a. ¿Cuáles son los enlaces que se rompen y cuáles los que se forman? b. Escriba la ecuación de velocidad. c. Si AG"= -3 kcal.moll ;cuál será el sentido más probable de la reacción? d. Escnba la ecuación de Ke y deduzca si es mayor o menor que la unidad.

2. Calcule la velocidad de la reacción:

A+B

si partimos de una solución 0,s M de A y a los de 3 minutos la concentración de A es de 0.3 M.

3. Si colocamos un pedazo de hielo sobre una mesa a temperatura ambiente, el hielo se demte de manera espontánea lo que indica que el AG" es negativo. ;Cuál de los 2 componentes de AG (AH ó AS) cree usted más importante en este proceso? ¿Cómo varía cada uno de ellos?

4. Si sabemos que la Ke de una reacción es de 84,3. ¿Cómo será el AG de la reacción? ¿Qué puede deducirse de la velocidad de la reacción?

5. Calcule la ecuación de velocidad (v=kc7) para la reacción:

si sabemos que

Page 253: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

6. Eslablezca una hipótesis para explicar por qué los cataliradores dismiiiuyeii la energía de activación.

7. ¿Es posible esperar algún cainbio en el valor del AG de la reacción si a ella se le aiiade uii catalizador? ¿Por qué?

8. Una reacción ocurre a una velocidad de 25 rnM.sl. Si se le ariade un catalizador (M) la velocidad aumentd hasta 25 000 inM.sl , pero si se le aiiade un cdtalim- dor (Q) la velocidad llega a 2 500 000 mM.sl. Calcule la eficiencia de cada cataii- zador y deduzca cuál de ellos es más probable que sea abiótico y cu61 biótico.

Page 254: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Todas las l'uiicioiies que r c a l i ~ a i i l i i b seres \¡\os Lieiieii su l 'u i idai~ ic i i tc~ c i l un número extraordinario de reacriones qnimicss. que se ngriipan de manera f i inr ional y dan lugar a los proccsos l l in l6gi io i fi icai~gados de iilailtciicr. ricsarroiiar pc ipct i iar a

cada i i id i r id i io . Todas las i-eaccioiiis qiiíi i i ir;i~ q i i i o r i i r ren en lo\ o r ~ a i i i s i i i ~ ~ s \.¡vos <lepeiiden d i

la existencia de iiii cata!irx!t!r. Ihi porqi ie ella5 st.tii cnt;i!iratln~. b i r i i porque su reactante.sii p r u d u c l ~ o ai i i l~ob r i q i i i r r a i ~ de iiii catalicadur para producirse o coiihii- n i inerespt ivant r i i l e . El fe~ i~ i i i~e i i i , de la catáli\is presenta carwterístivas tan especia- les en los seres v i w s quc Iiciiios ~s ig i i adu c l t6rniii io de biocatiílisis para dcscril>irlo; su preseiicia universal ei i los prtbcesiis i i~oler i i lares Iiace qi ie l a Ii iocalálisis ~n i i s t i I i i ?a una categoría cei i l ral ei i el i s t ? i ~ l i o d i l a I>i~it ] i i íni ica.

1.0s cata l iza~lorrs que ar1h11 en lm w r i 4 vivws son It>s I>iocalalizadores, qi ie se caracterizan po r presentar una estructura molccular complcja y tbncionar con eficicn- cia y cspcrifirid;id ciciwias. c f~rno se vio rn c l c : ip i tu l~~ :interior.

Elfuncioi iai i i ic i i tu de los I>iocatUlLadores depende n o súlo de su estructura ) de las propiedades dcr i iadas dc ésta. ta i i i l~ i& i i de bus ii i lcraccioiies ani el rcsto de I i ~ s coniponeiitcs celulares. intcraccioiics que en ocasioiics son dctc;.iiiiiiaiitcs.

Enestera l~ i l i i l ose I i a l a el r ~ i i i d i o < I i la rrlrii<.tiii.ii d i lo- I>ii,ratalirn<II~res. de si! niwaii isi i i~, .:riieraI de ;icci<iii !. YIIY p r i i i r i ~ ~ o l r i pri,piecl:~<ler. FI c o i i o r i i i ~ i r i ~ t ~ i de estos aspectos es imprcscindihle para el cst:idio adccriado, no sólo dcl mctnholisino celular sino de casi tudab l a i I 'unc i~me del orraiiibii io.

Las protciiias cspe~.ializadas cri l a ftiiici6i1 catalítica recil>cii el i ioi i ibre de e i i d i i i u Y sustancias so~ i r c iii cui i~ch a c ! í i ~ i i i c i i ~ ~ i o i i ~ i n i i ~ i s t i s~ r i i t ~h .

h q u e d i s t i i ~ ~ u e a iilr rii/,iiiiabde ias i leii i i, pil,teiiiase, precisaineiile que. tina w z PrO(hi(lo el r e ~ o i i < i r i i i i l ~ i ~ ~ o miiec.ii!ai- di! siistrato: se realiza l a traiisf1>rmaci61i de l a

reconocida, ; xa, cano cocscc:icnc,:r dc difcrcntc.~ intcracciones cntrc 12 pro- teína Cnnmática '. SI: ri istrnto, 6stc cvpcrimcnta i r n rcordenamicnto dc sus clcmcntos

Page 255: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

constituyentes debido a la mptura y formación de algunos enlaces químicos. La sustaiiciiI que resulta de la acción de la enzima sobre el sustrato recibe el nombre de producto.

Las reacciones químicas que ocurren en los organismos vivos presentan casi skin- pre una energía de activación tan elevada, que en condiciones compatibles con la \.ida ocurrirían a velocidades casi nulas, con lo cual la vida (al menos en las condicioiies actuales) sería prácticamente imposible.

Como consecuencia. una de las principales adquisiciones evolutivas de los seres vivos fue la aparición de proteínas con actividad catalítica, que al disminuir la encrgía de activación de las reacciones Iiacen posible no sólo que éstas se produzcan a graii velocidad, sino que se lleven a cabo en condiciones moderadas de temperatura, pH. etcétera, compatibles con la vida.

Un ejemplo puede ilustrar mucho esta situación, la hidrólisis del enlace peptídici, es energéticamente favorable (A(?=-2 kcal.moll); sin embargo. la energía de activa- ción para la reacción no catalizada en condiciones normales -solución acuosa neutra y temperatura ambiente- es tan elevada, que la velocidad de reacción puede demorarse algunos nieses antes que se puedan detectar los productos. Esto hace que los procedi- mientos empleados para la hidrólisis de proteínas sean realmente drásticos. Los bioquímicos pueden hidrolizar de forma química las proteínas mediante una solución 6 M de ácido clorhídrico en un ánipula al vacío a 100 "C durante 24 b; sin einbargo. algunas enzimas como la quimotripsina o la tripsina catalizan la hidrólisis a 37 "C. en pH neutro y según la proteína utilizada como sustrato cada molécula de enzima puede hidrolizar hasta 100 enlaces peptídicos por segundo. Prueba de ello es el proceso digestivo, pues apenas una hora después de ingerir una comida rica en proteínas, es posible detectar sus aminoácidos en la sangre.

En muchas ocasiones para la realización de estas transformaciones es suficiente con la participación de la proteína enzimática, pero en otros casos se requiere el con- curso de otros elementos que reciben el nombre de cofactores, que pueden ser iones inorgánicos o compuestos orgánicos de bajo peso molecular; en este último caso reciben el nombre de coenzimas. Si bien la proteína enzimática vuelve al estado inicial al final de la misma reacción, las coenzimas requieren de una reacción posterior. Las proteínas eiiziniáticas y sus cofactores correspondientes coiistitiiyen los sistemas biocatalíticos.

Las especificidades de acción y de sustrato están determinadas fundamentalmente por la parte proteínica del sistenia biocatalítico, como lo demuestra la existencia de cofactores que actúan con enzimas que difieren en el tipo de reacción que catalizaii y en el sustrato que transforman; también la sensibilidad a la temperatura, a los cambios de la concentración de H+ y la solubilidad corresponden a la parte proteínica y no a los cofactores; sin einbargo, los cofactores influyen de forma importante en la eficiencia y las propiedades cinéticas de los sistemas biocatalíticos.

Mecanismo básico de acción de las enzimas

Fig. 15.1. El coinplcjo rnriciia sustrato. Durante l a ieucciúci catalizadv por una cnzimii. ésta forma u n coni- plejo intermediario con el suslrato. La un ión de la enzima con el suslrato es muy rspecíficii y cons- tituye un paso obligado para la formación de los productos.

Aun cuando cada enzima al catalizar una reacción lo hace de una fornia particular, existen algunos hechos que son de tipo general y que se manifiestan en todas les enzimas.

Todas las reacciones enziináticas se realizan al menos en 2 etapas, una primera en la cual se produce la unión física entre la enzima (E) y el sustrato (S), que da origeii al complejo enzima-sustrato (ES) y se forma de manera reversible, o sea, puede descom- ponerse nuevamente dando origen al sustrato y a la enzima libre. No debe confundirse el complejo enzima-sustrato con el complejo activado que fue estudiado en el capítulo anterior (Fig. 15.1).

Una vez formado el complejo enzima-sustrato éste puede realizar la transforma- ción del sustrato, dando origen al producto (P) y a la enzima libre que está en condicio- nes de volver a iniciar el proceso.

Page 256: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

A la etapa iiuiiiero 1 le Ilaiiiaiiioa ehpa de uiiióii, 1 a la uuuiero 2 dc traiisl0riiia- y&,. La actividad de las eiiziuias puede ser uiodificada j aiectar la etapa 1, la 2 o

Esta es una representación simplificada. pues es posihle suponer la existencia de otros complejos intermediarios sohre todo cuando en la reacción intervienen cofactores o más de un sustrato.

El punlo erucial de este i~iecauisiiio básico es la existeiicia del coiiiplcjo enainia-sustra~~,<lue fue pr11l)uesh 1n1r primera vez por Hcr~i:veii 1905 ) a partir de cse moniento se Iian reuuido uua serie iinportaiite de indicios acerca de SU presencia:

1. Las propiedades físicas de l a ciiziiiias, como su solubilidad y estabilidad al calor, cambian frecuenteiiieiite con la foriilacióii del coiiiple,jo eiiziina-sustrato.

2.I.a~ características especirosci,picas de iniirlias en~iriias y sustralos caiiihiaii con [a formación del comple,jo ES, dc la misma forma quc cl cspcctro de absorción dc la heinuglobiiia cambia al unirse con el oxigeiio. Otras técnicas espectroscópicas como la resonancia magnética niiclear y la resonancia magnética electrónica son también muy inti~rmativas acerca de Ias interaccimes ES.

3. Los complejos ES algunas vcccs han podido ser aislados en forma pura. Para una eniima qiiecataliza la reaczih

a veceses posible aislar un coiiiplc,joEA. hi la eiiziiiia tiene afinidad suficiente por A y se incuba cn ausencia de U.

1. La formación del coniplejo ES muestra un clewdo grado de especificidad, por cjeniplolaD-serinano es sustrato de la triptófauo sintetasa, que utiliza L-seriua; el isúineru D ui siquiera se une a la euziuia; esto supoue que el lugw de uiiión del sustrato tiene uua forma muy definida.

5. Algunos complejos ES se Iian visualizados directan~eiite por iiiicroscopia electi.6- niia y por difracción de rayos X. I r ~ s cl~mplejos de 6cidos nucleicos y sus eniimas polimerasas sc observan dc mancra fácil en microfotografías clcctrónicas.

La comprobación de la existencia del complejo enzima-sustrato orientó la bús- quedade lascaracterísticas de las enzimas que permiten su formación: los resultados se exponen a coiitinuaci.júii.

Centro activo

La existencia del coinple,jo euzinia-sustrato y la caracteríbtica de que la niayuría delossustratos preseutau un taiiiaíio varias reces menor que la estructura de la enzima. implican que la eiiziiiia sólo entra rii cimkictocon el siistrato en tina pequefia zona específica dc su voluminosa estructura: esto se contirma con alyiios experimentos en ~~~ualesserl i i i i i i ia l ia~i varios aiiiiiin~ci~los de las eiizinias sin alterar su fuiicióii.

Las proteínas cnrimiticas prcscntau 2 regiones o sitios importantes.uno de cllos rwOII~e y liga al sustrato (sitio de reconncimirntnl y el otro cataliza la reaccih (sitin Qfalítico) toda vez que el sustrato se ha unido. Estos 2 sitios están adyacentes uno al Otro en la forma activa de la enzima y. en ocasiunes. el sitio catalitico es parte del de rwonocimiento, estas2 regiones en conjunto recihen e1 nombre de centro activo.

Page 257: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Aunque las eiiziinas difieren inuclio en estructura. especificidad y modo de catiíli- sis. se puede establecer un número de genevalizaciones con respecto a la estructura <ic los centras activos (Fig. 15.2):

l . El centro activo representa una porción pequeña del volumen total de la eii7iiiia: tiiiichos de los residuos dc aiiii~ioaciclos de la enzima no entran en contacto con cl siistrato.

2. El centro activo de unti enzima tiene un conjunto de grupos químicos ordenados espacialmente de foriiia precisa, esto hace que el sustrato quede unido al ccniro activo de forma tan íntima que casi ning~ina otra molécula puede unirse.

3. El centro activo es una entidad ti-idiniensiond, éste se presenta generalmente coino una cavidad constituida según los repliegues que la cadena polipeptidica forma al establecer su estruct~ira terciaria.

4. Los aminoácidos de las 2 regiones del centi-o activo no iiccesariaiiientc esti11 adyacentes unos a otros en la cadena polipeptídica lineal; el acercamiento se pro- duce como consccuencia del plegamiento de la cadena.

5. El centro activo csiá situado superficialniente en la enzima. permite el acceso de las moléculas del sustrato con relativa facilidad.

6. Los grupos que intervienen en la formación del cenlro activo realizan diferentes foiicioiies.

En la estructura del centro activo sc pueden distinguir varios componentes cada uno de los cuales contribuye a la función general pero de foriiia diferente:

1 . Eje peptídico. Formado por la paste monótona de la estructura polipeptídica. cuyo.; pliegues y repliegues contribuyen de manera importante a dar la fo rma tridiniensional del centro activo.

2. Gi-upos de arnbientacióii. Son cadenas laterales de ailiinoácidos que se encuentran en el centro activo y que son de naturaleza apolar, contribuyen a que éste preseiitc características que no permitan la cntrada del agua; esla característica provoca cambio en las propiedades catalíticas de otros grupos y además, permite qlic Se refuerce11 las interacciones débiles entre la enzima y el sustrato.

Page 258: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

. piientes de hidrógrnf> qiir se rqtahlrcen entre griipnc polares de la- cadenas laterale< de !nr sminnaridnr ~ e r i o a trenoina. tirwinn ~trGtrra. coi? gr!ipoi pola- res del sustrato.

. Knlacrs wlinnr o ihirr.; <i;r piicdrn foi-rnxrc ciiii-c 2i1qio5 <iic pi-rscntnn cargas eléclriws de la cailcii~ laica! di: lub siiiiiiukidub 2ipirticü. gluljiiiico. Iii&liiia, arginina y lisina, con g m p ~ s dc carga ~ p u c s t a cn 21 sustrato.

.Tuci-/*~\dc l'aii i l c iK.ako rui.;.~ah ic~lduaic?, que bc cdai~!cccii ciiirc quposdei C C I I I I Y I ~ C ~ ~ M I ? del s i i s l i ~ l ~ ~ ~ ! i i e w I~~<.wlimii iiiti? crwa iiiior de<tli.<is? iio lieiirii caractcrístic;is quc lcs pcrmitan otro tipo dc intcraccion. Debido a quc d agua lime uiiü cuiisíaiilc didhii-ica iiiu- cler ada.la auiciiciadc agua eii el cciitro actito iiacc quc csias iiilei.accioiics, que de por sisoii d&iles, seeii algo iii& Suert~5 q t ~ e cu !m auibieute p o l : ~ ~ Los puciitcs dc Iiidrúgciiu sou taiiibii.ii uii iactur iiuporlaiilc cii ia uriculaciúii del hudi-alu cii u iiiiisiia a: cc;;li.ii acíi,o. ~uescllos licii~ii cai-Llcr dii-cccioiiül qoc no poscin Ins dcmas i;;tiraccioncs. EsLa3 orii ip;~iic;i l~~ l(ejc pcptidiu;. q u p w de aiii!>iciitacióii \ grupos de uiiióiii son <lelerniinar!!r~ rii 121 e!q,a ik ti ni ti!^ de la riwiina c<m el sust r~lo . 1<;slii i~ni(iii está rIrleriiiiii;id.i ~ I W 2 I?<-!orcs priiiiipairs. ia ci~i i i~ i le i i i r i i tar i~lacl espacial o est6rirs qiir se ~ % + I I ~ ? ? Y -??ir? !x ?%+w!l?x%n di! wn!rr> iitlvi! ,' 12 ?rtr!ir!!!r,! dcl snstrato: así como la comp!erncntaridnd química cntrc los "rupos clcl centro activo ). los dcl sustrato.

4. C;i-iipmcatalíliu~. Al igual que los aiilwi~wrr hoi i cadeiias lalc~.alesiIe ~~ i i i i io r í r id~~s que participan en la estnictnra dcl crntrn activo; pero son los que están impliradoq ¡Ir li~ril1;l 1iircCf:i cii I:i 1i.:iiisfiiriii,iriiiii del sii~lr:ifo: lo\ que ciiiiipl<~ii c<iii iii:r!or frccucncia cstn f;;nciCn son c! i x i d n x l dc In kistidinn y cl h i d r o ~ l ! ~ de la scrina, taiiibiCii !iau sido dciiiosirados cl grupo sulfiliidrilo (Sil! dc la cisicíiia y c! cnrboxiio del asp6rtien.o <le¡ gliitániic,,.

Estusson los grupus que ii~iri-virnrn rii la segunda ebapade la rt.acciuii u etapa <le tnnsf'nrmnción; sin cmhnrgo: no .;e p n x k o!~idar qric ~i la primera ctnpn no se renlizó satisfactoriamente. la ceginda etapa <e será tnmhién afrctada. pner no puede haher una adecuada traiisforniación si la uiiióii ha sido dcficicutc.

~Icei i tr i iacl iv~~esi i i iarsl i~i i r i i i in~i i i i~ i i i ica.Si Iasfiiri-rasqt~e iiianliirir~~ la~l i . i ic- tura del ceiilro a d i w soii fuiidaiiieiilaliiiei~Le Iiiltirac~ioiirs d&bilrs. rii uii coi!iiiiilo de moléculas de una iiiisuia cir~iuia cxihlii-áii cciiti-os a c l i ~ o r que preseiilcii difci-ente eSladt1sioiiit1rii1arit~i1a1es ii~teiriiiiv~rtil,Irs. (Iridr a~liidlos qiie iaciliiaii iiiiirlio I w unión al sudrato hasta los que caqi no prrmitcn la entrada dcl irirtrato. paiando por todos los estados inicrmcdios ima:inablcs.

Formación del complejo enzima-sustrato

Se han po~tiilado 2 hip6truis para eupiiinr la furmación del compkjo enzima- StlsIWlt~. las l l a n ~ i : # \ de la llavv y la c r r r d i ~ w . ;N corno la (Ir ailapIaci(in inducicla.

La uiii<iii dei susirato coii la eiiziiiia puede iiiiplicar ~iiaiiteiier,juntas 2 iiioltcii- las quc prisriit;iii un:i c>tr;ictui.;i iuiiiplci;ic:ilnri;i ~lesdc e! piiiilu d r 5ihl:i cqxicinl o V h i c n . o amhi~.;. rii iin eomplvjt, qiw sr estnhiliza por iin nímero variado de int~raccioncs rlCl>ilcs. (.oiun cstc tipo dc ;iw~>l;iiiiieiiti, i-criici-<la al iluc w ~1>ruiIucc e n t ~ i i n a llave!. rii cerradtira: para descrihiresta iinión se dice qoeie prodiice por un meanismo así llamado lorkand key. Para que este mecanismo se produzca el centro " C h debe poscer una estructura tridiniciisional coiupleiueiitaria al sustrato aun eii auseiicia dc fslc.

Page 259: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 15.3. Adaptación inducida en la glucoquinasii. La enzima está for- mada por una sola cadena polipsptidica que adopta una es- t ruc tura tridiinensiunal formada pur 2 lóbulos que drlirniian una profunda depresión donde está lncalirado el centro activo, al unirse con el sustiato ae prnduce la tiansconi0imaci6n de la enzima que provoca u n acercamiento r w tre los 2 lóbulos. por lo quc el siistratu queda atrapado como se mucstra cn a). En h) apiirecen los grupos del centro activo que fiw man puentes de hidrógeno con la glucosa. Obsérvese que estos gru- pos pertenecen a los aniiiioicidoa que no ocupaii posiciones consc~ cutiviis en la cadena polipcptídicu.

Sin embargo, en algunas enzimas la estructura complementaria del centro activo sólo existe cuando está unido el sustrato; la unión de éste induce un carnhio conformacional en la enzima, hace que los residuos catalíticos adopten la posición adecuada, lo cual significa que a medida que el sustrato penetra en el centro activo éste adquiere su forma funcional óptima. Las moléculas que se unen al sitio de recoiioci- niiento de la enzima, pero no inducen ese cambio conformacional, no son sustratos de la enzima; de esta forma una enzima puede diferenciar un sustrato de un no sustrato por 2 factores, priniero, si la sustancia puede unirse a la enzima y segundo, si puede provo- car el cambio conformacional pertinente. Cuando las 2 condiciones se c~irnplcti se dice que el mecanismo de unión es por adaptación inducida.

La glucoquinasa es un ejemplo interesante de este tipo de mecanismo; esta etizi- ma cataliza la transferencia de un grupo fosfato del ATP a la glucosa y a lg~~nas otra? hexosas. Alg~inos estudios de cristalografía de rayos X han demostrado que estriic- turalinente la enzima está formada por 2 lóbulos; la unión de la glucosa induce un cambio conforrnacional grande que aproxima los 2 lóbulos y crea un sitio catalítico funcional (Fig. 15.3). Sólo la glucosa y otras moléculas de estructura muy similar pueden inducir el cambio conformacional que asegura que la enzima fosforile a susiretos correctos. Algunas sustancias como el glicerol, la ribosa y aun el agua pueden unirse a la enzima en el sitio de reconocimiento, pero ninguna de ellas induce el cambio conformacional requerido y por tanto no son sustratos de la enzima.

Asp 205 Gli 229 h) OH

AsN 204

AsN 231

Glu 290

Estudios de la formación del complejo enzima-sustrato en numerosas enzimas Iian puesto de inanitiesto que algunas de ellas funcionan según el mecanismo llave-cerradora. en tanto, otras lo hacen por adaptación inducida.

Mecanismos de la catálisis

El asombroso incremento de la velocidad de las reacciones que logran las enri~nas escapa a las explicaciones clásicas de este fenómeno en el mundo inanimado. Ha \id<) necesario un estudio minucioso de la forma en que actúan en r in i~s específicas. ademic de modelaciones experimentales y trabajos de investigación teórica para teiiei iiila explicación aproximada de porqué las enzimas tienen la capacidad de incrementar dc f«rma tan notable la velocidad de las reacciones; se han identificado numerosos facto-

Page 260: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

rs4ue influir en la acriiin de los mtalira<lores, pero en este iiioiiieiito sólo se mencio,,&n aquéllos que están más relacionados con el funcionamiento de las cnzimas. los w a d u s efectos de aproxiiiiacióii. iiinio\ ilidad ) orieiitacibii.

~~~ndoelsi ist i .atoseal~ja en el centroactivo.lt~Iiare de una manera fnrzada con cierto grado de distorGm (Ic la estructura. que puede pruiocür la aproxiiiia~ii>ii de gnipos reacti~os del sustralo) fa\orecer el desarrollo delareaccibn; a l e efecto esaúu ni& evidente en las reacciones ion 2 sustratoh. los cuales al asociarse a ~ h r e la superfi- ,+dela ennma quedan mny prnximos v de esta forma se facilita la reacción.

[,as estriictiiras químicas son dinámicas: los grupos químicos poseen mnvimien- tosde rotación alre<ledor de los enlaces siiiiples: esta iiioviIi(lad piiede dificultar las

pues se reqkiiere qiie 111s grupos se iiiaiiteiigaii fijos i i i tina posiciú~i al ,,lenos durante un período brcvc. Al unirsc al centro actil-o, la ciiziiiia limita conside- rablemente la movilidad de los grupos del sustrato. esta inmnvilidad momentánea es un factor favorable para el desarrdlo de la rrarciún.

Por último, las sustancias para reaccionar no sólo ncccsitan aproximarse, tambicn se requiere qiie ese accrcamicnto sr realice con tina dctcrminada orientación para qiie se favorezca la foriiiacióii de los enlaces que dcterniiiiaii el dcrarrollo de la reacción. La íntiina relación que se estal>lece entre la enziiiia y el s u ~ t r ~ t o asegura que &te quede situaduco~ila orieuhcibii ui;W favorüblc para la rcaccióu: de nuevo este erecto es aún másevideiite en las r~acc ion~s c m 2 sustratos.

Algunos análisis teóricos 5- estudios cspcrimcntalcs han demostrado que cada uno de estos efectos por sí no pueden explicar los iiicreiiieiitt~s de velocidad ohserva- dos en las reacciones enzimáticas, aun cuando al actuar de manera simultánea se potencializan unos a (~tros.

leniendo en rnenta los efRctns estridiadns anteriormente Ins incrementos de la velocidad de la reacrih, qiie logran las ei17,iiiias. son iiiiicho inayores que los espera- dosdeacuerdocon los mecanismos anteriores. Iiiia Iiipótrsis [>ara sii expli~acióii fiie enunciada inicialmente por Liniii Paiilingen 1948 y desarrollada más tarde por otros investigadores; según ellos la enzima en realidad nose une al sustrato propiamente dicho, sino al estado de transición o comple,jo activado de la reacción. provocando un aumento en la concentraeióii de éste con lo cual. como fue estudiado en el capitulo 14. se incrementa la velocidad de la reacción.

Esta situación puedelograrseal menos de2formas. hien la enzima se une directa- mn te al estado de transición con una elevada afinidad, o durante el proceso de unión lae&iaobLigadsustratoüadquii.irla utruclura del estado de trusicióii. al crear en éste tensiones estéricas que lo obligan a adoptar esta estructura; aunque durautc un tiempo se pensó que la scgunda npción era la rnrrecta, invertigarioner porteriores apoyan más la primera alternatiu.

Esta hipótesis ha recibido evidencias experimentales con el uso de sustancias, cuyas estmctuns semejan la del estado de transición de a tynas reacciones a las cuales

les ha denominado análogos del estado de transicinn. La similitiid estnictnral que estos análogos tienen con el sustmto natural de la enzima hace qiie piiedan unirse rápido y con elevada &~n¡dad a IaeiuUiia, wro sus diferencias les iiiipideii S r lransfor- mados por la enzima; por tanto, cstos análogos del estado de transición actúan conlo eficientes inhihidnres competitivos de la enzima. Para el estndio de los inhihidores enziniáticos debe consultarse el capítulo 16. . .

lomando mmo ejemplo la reacción de la ft~marasa pneden ilnstrarse Ins conceptns queSeaiahandeenriniiar; &a enzima mtaliía la hidrntanón reversihledel ácidotiimárim Y forma ácido 1,-n~álico.eoii la pai7ici~~aiión de un rarl>aiiiÓn conioestado de transiciún.

L F u m i c o Eaiildo de L-niálico

transición

Page 261: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

~

Modiñcaciones del centro sctivo

1s ~4ri ic t11ra ¡:el wi i t r~ , acliio<: diiiAiuica i i ~ i i ~ i l ; i ~ ~ l c i i i i ~ ~ ~ l c d i - < , ! I I Y K ~ . W . < ~ V

transconformación. par= lo cual conlo :p sc Iin estudiado, no prccica la ruptiii.~ dc eiil~ccb cu\alentcs. d o de iiitcraccioiies dí-bilcs; si11 ciiibai-go. debido a eslas niiiu;is ciii.iic~rr¡~iicas esiructuraieh ~ i r i C ~ I I ~ I Y B aciiw~ exihlc~~ nunwrostm agenies I ~ I I V p!w~lw provocar tranwm?orniacio!>cr inar dristiras, qiieimplicarian alterncioncsy,por tx to , afcctarinn ln función dc 13 enzima.

. . ! t t < v ! \ X P ~ ~ Y ! ! ! ? . w ~ I x Y ~ ~ ! ~ riif~iifimrkt e\!?w!tird t r i d i ~ n e n h i d l &b!- y!!4

niir: al ai.i!ixr s d ~ r e Itis ennmas priivncarlaii la distor<iiiri (!VI i rn t ro activo. t:~vvvi?o cc h: visto dcpcndr de In ertrnctura terci::ri:! dc Ins enzimns; es por ello quc todo.; lo? agcntcs dcsnnturnlizantcr afectan la acti~idad cnzim:itica. Esta cnracterísti~i h.? dckr- !:!innclo ?l ninplin tiso d r npentr? dmiiat!irnli7nnte~ nnr? ikteiicr rr:!crionei rn~i"!:í!ir::? e,, rl iai><Wtt~,~!%,,

Por ntra parte. Ins agentes rnmn la cnncrntrarion de innes hi<irn!ym imrdida romo pH), afectan rl grado de diwri;ici<in 'Ir !o< griipw ioni iahlr~ rlr la< r v h w 2atcralcc rlc !os aminoácidos. pucdcn nltcrar la distribución de cargas (.I&ctric:'.i Ic1 c w t m ;~c!ivo" p w t;mo u w d i k ~ r l;, aciividac! de las r n h w v : taml?iGn p ~ w k :!!fvw cl rctndo dc ionización del sristrato y traer coniccncnci:is sizlilarcs sohrc !a :,?ir>Ci+?d <!r In rcnrrión.

1.:) prew!cl:i rii 1:i vil!!ciiiri de aii;il<igm del .ustr;i!t~ -sustancias rel:;.i:::::::!:!s estruciuralineiiir cuii el suslralo de la eiizini~. pero que no son subceptiblcs de ser . . . !~~ail.f,~',~,~~~,,.~~~~r~~la-~~ll?,!~.,ca,i<~,~>!~ !tila !G!~<I¡<l'! <¡e l?! a c ! ~ ~ ~ ~ ! ~ ~e!l;ia!i*?!!'.? &!

eitas ~ustanciar llegan a nnirce al centro activo y ln mantienen ocupada. Po? nti'a par!P ia existencia de compuestos quiinicos. capaces de reaccionar específicaniente con g q x x del ccntro activo y m~di f i cnr lo~ pndicrLi afcctar la acción dc !as cnzimas. Ti1 ocasiones la iuodi:icación que dctcriiiiiiado grupo produce en la enziina pi-oiow la aIwlici~'m pea~iuai~ei~le de la a c l i ~ i ~ l a d catalí l ic~ de la p r o t e h i ~ I I L ~ I I I G ~ ~ V A . 111 qiw h ;~ hccho que cste tipo dc sustancia sc Ic denoniinc sustratos suicidas.

De todo lo anterior sc puedc afirniar quc la ac t i~ idad catalítica prcscntc e11 uua prcparacióu ciiziriiática dcpendcrá dc la conccntracióii de centros actkos útiles, (i su, el uúincro de centros activos por unidad de ioluiiicii unidos al sustrato o <luc 11u

presentaii oiiiguna alterociúii que l a iinpida unirse.

Especificidad de las enzimas

Dwdcel puiilu dc \ ibhestruclutd iasei>~iiii~bdiCiereii del redu de la!, prsilclilu~ por la cxislciicia del centro d i \ o. por cllu. laa propicdiidcs purticulares dc lar e i i ~ i n l a ~sn!i aq!~bl!as <:ti? driivaii del e n t r o actiso.

Teniendo en cncnta las cnractcrísticas estructurnlcs y funcionales del ccntro :irti- uo se iiiliwe que a un centro xUvo delenninado sóh, podrá unirse un siistrnto (o un número rnny limitado dc ellos quc prcscnten una cstruchiramuy similar), a s t a prollic- dad del ccntro acti\o, j por tanto de las enziniaa, ae le íIcnuiniiit cspccificid;id dc siisti-ato.

Page 262: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

L~ especificidad de sustrato puede ser absoluta, cuando sólo existe un sustrato

capa= de ocupar el centro activo de la enzima; o relativo, si se trata de un grupo de sus^^ Aun enesteúltimo casose observa quelauniónde sustratos diferentes no se produce con igual fortaleza, lo cual manifesta que la enzima presenta una afinidad d i s m a porcada unode los sustratos, y en la mayoría de los casos se destaca uno de ellos como el más afín. Como ya fue estudiado. las 2 hipótesis de formación del complejo enzima-sustrato permiten explicar de manera adecuada la especificidad de sustrato de las enzimas.

Una wz que se Ii:i prndiicido la 11nii)11 del sustrat(~ al ccntn~ activo. sí110 alguno de los enlaces dcl sustrato qiic<lará al alrmcc de los griipGs cat;iliticos de la c n h i ~ ; de ,@forma laenzima podrá realizar una transforniaciún deese sustrato, aunque este sea suseeptihle de varias transformaciones. a esta propiedad del centro activo v por tanto de la enzima se le da el iioiiibrc de cspccilicidad de accibri.

Por e,jeiii()irP. el &cilill gllltiillli~r) pllecle e\perinlrntar una reilccióll de a.d~sc;~rhoxil;icih ! pii~dili'ir ácido;~:iiiiiii<i hiitíi.ico. t;iinlii6n iina <Iesai~iiiiaci¿~ii o marninación para originar ácido a-cetoglutáiico; para cada reacción hace falta una euzinia específica. tudas cuii la iiiisiiia esr>ecilicidau de susirato (icido glutiiiiico). pero con diferente especificidad de acciún. Casi siempre las enzimas que tienen una elevada especificidad de acción y de siistrato resultan ser enzimas claves en el metabo- lismo celular.

Considerando que la unión enzima-sustrato es muy específica y que una vez formado el complejo es una de las transforniaciones posibles la que se lleva a cabo, podemos derivar una característica general del funcionamiento de los biocatalizadores. En todas las reacciones biocatalizadas se obtiene siempre el número niáximo de inolé- culasdel producto a partir del sustrato, sin que en las reacciones qiarwzcan produclos seeiiii~larios coino c i Frcciiciite e11 icarcioiw iio i:%talii-xlac por cniinin.; fqta rr~iilari- dad de 111s pri~ccw\ lhi,!li~cic~~~~ : ~ ~ o I c c n i ; ~ i - ~ c,\ <>i coi;ienidc c ~ w c ~ : i l rlei i~~-i i~cipi<; dc niánima eficiencia.

Centro activo de la quimotripsina y la tripsina

La estructura y nwcsnismc dc acción dc i:i quiniotripsina] la tripsina se conoccn detdodaiiicirte. miibas cii~iiiias ac aiiitcti~aii cii el piiicrces cii foriiia de prccuisoi-es inactivos (ziiiiógciios) Ilaiiiados qui;iiotripsiiiúgeiio ) trip~iiiúgciio, rcspectii aiiiciitc. La activacih del quirniilripsiniiyrni, tirnr Iiirnr en rl inlrstinii <Irl@u donde se

furnia la quiiiiotripsiiia quc fuiicioiia al igual que la tri~~aiiia, Iiidi.oliraiido ciilaccs peptiuicos de las pruteíiias iiireridas coiiiu parte del proceso direstiro. Dos i-iiplu- ras protcolíticas irrcyersiblcs actii an :a ciizinia, una elimina la scrina 11 y la arginina 15 del quimotripsinógcno y otra, la trcoriiria 1.17 (fig. 15.4). Esta actil-a- ciúncn eliiitc~tiiiu iieiie la \ciiia,ja de pre\eiiii. ~ l u c la eodiiia pueda degradar el lqjidu pdnireático qiie la prodriie.

La qriimotripsina no hidroliza todos los enlaces peptídieos, más hien es selectiva Para aquAlus di~iide pwticipa el grupocarl~oxili~ de fenilalaiiiiia. tirosiiia o triptiifaiio mig. 15.5). La tripsiiia por el coiili-ario es capccifica para los ciilasm. doiide el grul>o mrhoviln lo aportan la liiina o la arginina.

El iiiwmiisiiio de accióii de la quiiiiotripsiiia fue deteriiuuado a partir de su estruc- tura tridimensional estudiada por rristalografía de rayos X: la enzima coiitienr 3 radc-

pulipeptídicas A.B y C coi1 13.131 y 97 aiiiiuuácidos cada una. unidas por enlaces dkuliuros.

En Iamolécula se dcstaciin 1 apcctos estructurales importantes,el centro actiio j una hendidura o "holsón" creada por las cadenas Interalcs de varios aiiiiiio5cidns hidrofóhicos: esta hendidura hirlrofóhica sirve de sitin de iinión para reiidiios de aminofcidos específicos del surtrato. La conform:idÓn de este "holsón" permite n los resid1los alineado? en él pnrtiripar en interarcinnes hirlrofnhicas ron las cadenas Iate-

Page 263: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 15.4. Activación dcl quimotripsinóycno. El pi,,crcas segrega el quitnolrip~ hinúgeno hacia el duodeno. don- de ocurre s u transformacióii en qi~iinotripsina. Esta activación sc produce por la separuciún de los aminoácidos que ocupan las p m - cioiies 14, 15 y 147. de esta mane- ra la nioléculu quedi, formada por 3 cadenas polipepridicas unidas por puentes dirulfuros.

Fig. 15.5. Especificidad dc la quiniotripsina. Lii quirnotripsina ticnc una acciún selectiva sohir. I h cnliices peprídicos dondc participa cl grupo carbuxilo de la fcnilalanina a) , iiro4nii b) y triptófano c). La estructura ciclicii, preientc en la cadena R de estos aminoácidos. se i i co i im

da en u n profundo ''bolsóti' quc rodea el centro catalitico de la enzima.

rales de fenilalanina, tirosina y triptófano. En estas interacciones no pueden participar cadenas laterales con cargas eléctricas. ni grupos apolares pequeños.

Los residuos apolares de las proteínas globulares están escondidos hacia el intc- rior; cuando esas proteínas están en SLI estado nativo los enlaces peptídicos que unen aminoácidos apolares no son accesibles a la hidrólisis por la quimotripsina. En condi- ciones normales el ácido clorhídrico del estómago desnaturaliza las proteínas ingeri- das, y las proteasas de este órgano degradan parcialmente las proteínas antes de quedar expuestas al pH neutro del intestino para su posterior digestión por la quimotripsinn.

Page 264: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

~a actividad catalítica de la quimotripsina depende de 3 residuos de aminoicidos: histidina 57. aspártico 102 y serina 195; estos aminoácidos están distantes unos de

en la estructura primaria de la proteína, pero en la molécula activa el plegamiento es tal que las 3 cadenas laterales están muy cercas y en posición correcta para catalizar la hidólisis del enlace peptídico en la proteína que se une a la enzima. Cuando el quimouipsinógeno se activa, la conformación del polipéptido se altera y distribuye estos 3 residuos en la organización correcta.

La reacción de hidrólisis comprende varias etapas, entre ellas la formación de un complejo covalente entre la enzima y el sustrato. Primero, se produce la ruptura del enlace peptidico y el grupo carboxilo se transfiere al grupo - 0 H de la serina 195

&(SER,195)-OH + R,-NH- CO-R, -p E-(SER,195)-O-CO-RI + R,-NH, ;

segundo, este intermediario acilenzima es hidrolizado

El aspártico 102 y la histidina 57 facilitan la reacción de acilación porque, prime- ro, promueven la separación de un protón de la serina 195 y después lo aíiaden al grupo amino del péptido producto. De una forma similar el aspártico 102 y la histidina 57 facilitan la hidrólisis del intermediario acilenziina (Fig. 15.6).

Estos pasos catalizados por la enzima -transferencia de un protón desde la enzima al sustrato, formación de un intermediario covalente acil-serina y la hidrólisis del acil-enzima- reducen drásticamente la energía de activación total de la reacción de proteólisis.

Una comparación entre la quimotripsina y la tripsina resulta muy útil para enfati- zar en la naturaleza de la especificidad de las reacciones catalizadas por enrimas;

a) AsplO2

d) Aspl02

His57 Ser195 His57 Ser195 %,o H-N N O'

\-y o

F . 15. 6. Mccaniscno de a c c i h de la quimotiipsinii. En el ccntro activo de Iii quiinotripsinu se crea un c o ~rrirnicnto de cargas que p r o m u e ~ ueci la triinifcrcncia de u n piotúci entre la enzima y el siistriitu. con formación de i ~ i i iniernierliario ucil-enzima; este movimiento dc electroiies sucede entre 3 amiiioIcidos que forman el centro activo y, como en otros casos ya estudiados, no se encuentran loca-

') Aspl02 Asp102 lizadoh de forma consecutiva en la His57 Ser195 His57 Ser195 estructura primaria de la enriiiia.

h 1 Esta ruta disminiiye de manera H-N N O' ~oiiaideriible la eneigia de activa-

ciún de la rencción. que puede entanccs ocurrir en condiciones moderadas de temperatura y pH.

Page 265: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

aproximadamente el 40 % de los aminoácidos de estas 2 moléculas son los niisrnos, en particular la secuencia alrededor del residuo clave de serina

La estructura tridimensional y el mecanismo de la catálisis son,tamhién muy similares, lo cual sugiere que ambos han surgidode formaevolutiva de un polipéptido ancestral común; la principal diferencia está en las cadenas latedes de los aminoácidos que se encuentran en el sitio de unión del sustrato. Los aminoácidos con carga nega- tiva que ocupan esta área en la molécula de tripsina facilitan la unión de cadenas laterales de aminoácidos con carga positiva (arginina, lisina) en vez de los hidrofóbicos.

Clasiñcaaón y nomenclatura de ias enzimas

De lo estudiado hasta el momento se deduce que hay 2 propiedades fundamenta- les de las enzimas y todas ellas derivan de las características del centro activo: gran eficiencia catalítica y elevada especificidad; esta última en sus 2 aspectos es la que sirvede fundamento a la clasificación y nomenclatura de las enzimas.

Se toma como fundamento la especificidad de acción, con lo cual se establecen 6 grupos principales, teniendo en cuenta la reacción global que ellas catalizan; estos gmpos o clases principales se dividen en subclases y subsubclases,según otras carac- terísticas del tipo de reacción como son los grupos involncrados, los cofactores necc- sarios, etcétera.

Los grupos principales y su definición son:

1. Oxidorreductasas. Son aquellas enzimas que catalizan las reacciones de oxidorre- ducción, o sea, la transferencia de electrones o sus equivalentes entre un donante y un aceptor.

2. Transferaias. Catalizan la transferencia de un grnpo químico entre un donante y un aceptor; se excluyen aquéllas que transfieren electrones o sus equivalentes, pues pertenecen a la clase anterior, y aquéllas en que el aceptor del grupo es el agua, pues pertenecen a la clase siguiente.

3. Hidrolasas. Catalizan la ruptura de enlaces químicos con la participación de las moléculas del agua.

4. Liasas. Catalizan reacciones en las cuales se produce la adición o sustracción de grupos químicos a dobles enlaces.

5. Isnmerasas. Catalizan la interconversión de 2 isómeros. 6. Ligasas. Catalizan la unión covalente de 2 sustratos mediante la energía de hidrólisis

de nucleósidos trifosfatados, generalmente el ATP.

Nomenclatura

Existen 2 tipos de nomenclatura: la sistemática y la recomendada. La sistemática utiliza los grnpos principales, describe la reacción y sólo se utiliza en revistas y textos científicos donde se requiere de un elevado grado de precisión; para su uso existe un código de 4 números donde el primero representa la clase, el segundo la subclase, el tercero lasubsubclase y el cuarto el número deordendela enzima, que apareceen una relación publicada por la Comisión de Enzinias (EC) de la Unión Internacional de

Page 266: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

*ioquúnica y Biología Molecular, donde los autores deben consultar cada vez que vana emplearla.

recomendada viene a ser una forma abreviada de la sistemática, su uso es -- rom,j,,sobre todo en textospara estudiantes; en ambos casos se tiene en cuenta tanto laepeeificidad de acción como la de sustrato y el nombre de la enzima termina en el &joasa; ejemplo, para la reacción:

LACTATO + NAD* - PIRUVATO + NADH + H

EL uso de la nomenclatura sistemática nos llevaría al nombre siguiente lactato:NAD-oxidorreductasa, o sea, que prácticamente describe la reacción.

Lanomenclatura recomendada tiene en cuenta la especificidad de sustrato, en este para el lactato, y la especificidad de acción, se trata de una deshidrogenación, por

tantoel nombrede la enzima sería lactato deshidrogenasa. Para poder utilizar la no- menclatura recomendada, que se utiliza en este libro, es necesario conocer algunos subgmpos de enzimas como:

1. Enirelas oxidorreductasas. - Deshidrogenasas. Sustraen átomos de hidrógeno (casi siempre 2) de los sustratos

y los transfieren a una molécula aceptora que no es el oxígeno.

H-C + FAD + 11 + FADH yH. C-H

COOH ~ O O H

COOH COOH I

HO-C-H 1

C=O l + NAD l + NADH+H

H-C-H CH l

COOH I

COOH

En el primer caso se trata de la succínico deshidrogenasa, en el segundo de la málico deshidrogenasa.

- Oxidasas. Oxidan los sustratos mediante el oxígeno como aeeptor de electrones.

COOH COOH l

C=O + NH, H,+N-C-H + H'O e 1

I R Airioníaco R FA D

Arninoácidu e? Cctoácido

H,O, 01

Esta reacción la cataliza la aminoácido oxidasa.

Page 267: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

- Hidrosilasas. Catalizan la introducción dc funciones hidrosilo en sus sustratos utilizando oxígeno rnolecular corno donante.

I m - ( - - H

I + ATF 'L nr ' -c -~ + AnP

! 1 1 - C 011 F I - C OH

l l 11~-C- OH H - C OH

l l H-('- O H H-( - i )H

La priiiiera i.eacci611 es cahli~ada por la fructoquinaaa la srguii<la por 1" glicericoqninasa. El resto de las traiisferasas reciben tioiiihres derivados del grupo que transfiereti (transaniinasas de grupos arniiio. traiisiiietiiazas de iiietiim traiiscarlii~xila;i~ de carhnxilns, ctcétcra).

Page 268: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

3. ~1 grupo de las bidrolasas es el más simple para nombrar, pues basta con hacer te&nar el nombre del sustrato en el sufijo asa.

Esta enzima se denomina arginasa. 4. Las liasasson las más dificiles de nombrar,ejemplo las hidratasas, que adicionan

agua a los dobles enlaces.

COOH COOH I I

H-C HO-C-H II A l C-H + H 2 0 7 H-C-H I I

COOH COOH

Furnánco L- málica

Esta enzima se nombra fumanco hidratasa o simplemente fumarasa, aunque este Último nombre no es correcto. Cuando actúan en reacciones biosintéticas reciben el nombre de sintetasas.

COOH H I

H,O HSCoA H -C-CWH

e0 I I CH3-C, + y2 U , HO-C-COOH

SCoA 1 COOH H-C-COOH

1 H

Acetil-COA Oxalacético Cítrico

Se nombra como citricosintetasa.

Page 269: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

5 . Las isomerasas reciben diferentes nombres según los tipos de isómcros quc intcr. \,ieiieii en la rrucciúii. Cumo regla se reserva el nombre de isornerasas para I ; ~ \ <tii~iiii;~r que interronvirrteii i~i,nirri,s de F1inri611.

La enzima cs la fosfohexosa isomerasa. Las que intcrconsicrtcn isómcros dc posición sc dcsignan miltasas.

I n cstc caso sc llama fosfoglncomutasa. [,as que interconvierteii epimeros se dcno~~i i~ ian epiiiicrasus.

HO-CHI HO-CH,

En este caso sera la galactosafosfato epimerasa. 6. A las ligasas se les conoce rii general coiiio sintetasas y para nombrarlas general-

mcntc sc utiliza el nombre del producto en vcz dcl sustrato, la acctil-COA sintctasa cataliza la reacción siguiente:

#o /,O CH,-T + HS-CoA + ATP + CH,-C, + AMP + P-P + H O

'OH SCoA

Acido acéticc Cociiriiiia A AcetilbCaA

Page 270: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Hace unos años la Comisión de Enziinas recomendb utilizar el término ligasas

P estasenzimas y el de sintetasas para las liwa~, pero como ata recomendación aún nosebageneralizado, en este texto se seguirá la denominación anterior.

Siempre se debe recordar que las enzimas son proteínas cuya funciún es la de reacciones, por tanto, dehe existir una correspondencia entre el nombre de la

e&a y la reacción que ellas catalhan, pues conociendo la reaccibn se puede deducir el nombre, y a partir del nomhre puede inferirse la reacciún.

No obstante, existen algunas enzimas que recibieron nombres triviales por sus descubridores y que la prictica ha consagrado como el caso de la pepsina, tripsina, quimohipsina, etcétera.

Resumen

Las reacciones químicas que ocurren en los seres vivos son catalizadas por pmt&as espeeífieas denominadas enzimas, éstas se caracterizan por presentar un elevado poder cataiítico y una gran especiñcidad.

Aun criando cada enzima tiene su forma particular de actuar, en todas ellas se p d e distingair un mecanismo general de acción en 2 etapas: la primera es la & 6 n de la enzima con el sustrato y la segunda la transformación de éste. Este M-o nipone la existencia de un complejo enzima-sustrato cuya formación ha sido comprobada por numerosos medios.

En todas las enzimas exkkn 2 sitios importantes que son el de reconocimiento y el cataiítico, que juntos constituyen el centro acíivo de la enzima. La estructura del centro acüvo está determinada por el eje wvalente de la cadena polipeptídica que le da la forma, los grupos de ambientaaón, los grupos de unión y los grupos cataütiam En launión enzima-sustrato intervienen diferentes tipos de interaeclones wmolas hidmf6bicas, saünas, puentes de hidrógeno y hienas de Van der Waals; el ambiente apolar del centm acíivo facilita el establecimiento de estas interacciones.

Las características estructurales y funcionales del centm activo son las que conüem la especificidad y eficiencia cataütica a las e w h a s . La espeeiñadad de Sostratoeoasiste en la propiedad que tienen las enzimas de actuar sobre un número muy redncido de susúntas, generalmente uno, en tanto la especiñcidad de acción determina que la enzima cataliza sólo una de las posibles transformaciones del wstrato.

Moehos agentes físicos y químicas pueden alterar la estructura del centro acíi- VO Y con ello el fuoeionamiento de la enzima, los agentes desnahvalizantes de Pmteinas, las elevadas temperaturas, los cambios de pH y sustancias químicas

son algunos de estos agentes. La unión enzima-sustrato puede pmduche por 2 mecanismos fundamentales

de m e r d o con el tipo de enzima, bien por el tipo Uave-cerradura o por Guste hduddo.

La Mpsina y la quimotripsina son enzimas cuyos mecanismos de acción ilus- tran de manera adeeuada el funcionamiento de las enzimas.

La espeeiñcidad de las enzimas sirve de base a su dasiñcaci6n y nomendatu- A partir de la especificidad de acción se disünguen 6 grupos de enzimas:

~xidorreduetasas, transferasas, bidrolasas, liasas, isomerasas y ligasas. La nomen- dabuahduye tanto la espeeiñcidad de sustrato como la de acción. ~xisfen emíms que tienen nombres triviales como la pepsina, tripsina, etcétera que aunque no *basados en estos criterios se uoluao de manera cotidiana

Page 271: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Ejercicios

1. ¿Qué función desempeña en la formación del centro activo el plegamiento de la cadena polipeptídica que da lugar a la formación de la estructura terciaria de la proteína enzimática?

2. ¿Qué importancia tiene el hecho de que en el centro activo exista un ambiente apolar?

3. ¿Pudiera inactivarse una enzima modificando grupos del centro activo que no intervienen de forma directa en la catálisis?

4. ¿Por qué para la catálisis enzimática es necesario la formación del complejo enzi- ma-sustrato? Discuta al menos 2 posibilidades.

5. ¿Por qué podemos afirmar que las enzimas funcionan de acuerdo con el principio de la máxima eficiencia?

6. ¿Qué ventaja representa que el complejo ES se forme por un mecanismo de adapta- ción inducida y no por el mecanismo de llave y cerradura?

7. En el centro activo de una enzima existen 3 aminoácidos claves queson aspártico, histidina y glutámico. ;Pudiera esto explicar por qué esta enzima es tan sensible a los cambios de pH?

8. Clasifique y nombre las enzimas que catalizan las reacciones siguientes:

a) GlucosaóP + H_O Glucosa + Fosfato

b) Alanina Etilamina + CO,,

c) Etanol + A Acetaldehido + AH?.

e) Ácido málico + B ---f Ácido oxalacético + BH,

f) Glutámico + ARNt + ATP GlutamilARNt + AMP + PP.

Page 272: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

La función fundamental de las enzimas es aumentar la velocidad de las reacciones quimicas que ocurren en los seres vivos. El comportamiento de esa velocidad y su moduicación debido a la presencia de diferentes agentes físicos o químicos constitu- ye el objeto de estudio de la cinética enzimática.

Lacaracterística más sobresaliente de estas reacciones es la participación de las enzimas,lo cual significa que su velocidad está influida no sólo por la concentración desustrato y producto, sino además y principalmente por la presencia de una molécula proteíniea que no será alterada por la reacción en que participa.

En la medida que la reacción progresa la concentración del sustrato va disminu- yendo y la del producto aumenta, pero la concentración total de la enzima permanece invariable.

El objetivo final de la cinética enzimática es aprovechar los estudios de velocidad paraesclarecer los diferentes mecanismos por los cuales las enzimas realizan su fun- ción y correlacionar éstos con la estructura tridimensional de la proteina enzimática.

En este capítulo se hará un estudio de las características principales de la veloci- daddelas reacciones en que intervienenlas enzimas, así como de los diferentes facto- Wque pueden modificarla.

Condiciones para los estudios cinéticos

Para el estudio de la velocidad de las reacciones catalizadas por una enzima y la interpretación adecuada de sus resultados se requieren algunas condiciones.

Teniendo en cuenta que son varios los factores que pueden modificar la velocidad de la reacción sólo puede estudiarse un factor a la vez, con cuidado de que todos los demás permanezcan constantes; sin embargo no pueden mantenerse contantes, la Concentración del sustrato ni la del producto, pues su variación es el índice que asegu- nquela reacción está ocurriendo; parasalvar esa dificultad se introdujo el concepto de velocidad inicial (va) que es la velocidad de la reacción cuando aún no se ha Wnsumido el 10 % del sustrato inicial. Esto obliga a realizar primero algunos ensayos en diferentes tiempos de incnbación, de forma tal que pueda Q a r r el intervalo nece- sario Para estar seguro de que en el estudio se miden velocidades iniciales.

Page 273: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 16.1. Efecto de la concentración de enzima. La recta que se obtiene indica una relación de pruporiio- nalidod directa entre la velocidad de la reacri6ii y la concentración de la enrima, lo cual es el funda- mento de toda la ein6ti ia mriniitira.

Además, la medida de la velocidad inicial evita que las determinaciones estén intluidas por otros factores como:

1. Si la reacción es reversible, la velocidad de la reacción inversa aumentará el1 la misma medida que la concentración del producto y descenderá la velocidad de transformación del sustrato.

2. Si uose proporciona sustrato en exceso su concentración descenderá con el tienipo, lo que provocaría una disminución progresiva de la velocidad.

3. El producto de la reacción puede inhihir la actividad de la enzima.

La velocidad de una reacción catalizada por una enzima, puede medirse por 2 tipos de procedimientos, utilizando una técnica discontinua (de muestreo) en la que se toman muestras de la mezcla de reacción en diferentes tiempos, se detiene la reacción y se analiza el contenido de sustrato o producto en las muestras. Tainhiéii puede aplicarse una técnica de observación continua en la que se hace uso de una propiedad física distintivadel sustrato o prodncto u otro participante de la reaccioii quese puede medir cuantitativamente sin interferir el desarrollo de la reacción, corno puede ser el cambio que se produceen el espectro deabsorción debido ala formación del producto. Este tipode procedimiento es elmás aconsejable, pero no siempre es factible.

La velocidad inicial dehe medirse por la variación de la concentración del pro- ducto por unidad de tiempo, siempre que ello sea posible, pero en ocasiones no se dispone de los procedimientos necesariamente exactos y se hace midiendo la varia- ción de la concentración del sustrato.

En la práctica los estudios cinéticos se realizan de la forma siguiente: en primer lugar se procedea determinar el tiempo deincnbación como ya fue explicado, después se prepara un conjunto de tubos de ensayo dondese encuentran todos los conipoiien- tes de la mezcla de reacción (buffer,sustrato, activadores, etcétera) menos la enzima; esta mezcla se coloca en baño de temperatura regulable, fijando ésta en un valor determinado, donde también se incuba por unos minutos la solución que contiene la enzima. Por último, se añade a cada tubo la solución de enzima; auxiliados de un cronómetro se mide el tiempo de reacción a partir del momento en que se añadió la enzima, al transcurrir el tiempo indicadose procedea detener la reacción para añadir algún agente desnaturalizante de proteínas, uno de los más empleados es el ácido tricloroacético (TCA), se procede entonces a determinar la concentración del producto (o del sustrato), se calcula la diferencia con la concentración inicial (que en el caso del producto es cero) y este resultado se divide entre el tiempo de incubación, con lo cual se obtiene el valor de la velocidad; después se construye una gráfica cartesiana donde se representa la velocidad inicial en el eje de las ordenadas y el factor que se ha variado en el eje de las abscisas, la curva que se obtiene es la variación de la velocidad en función de la variación del factor estudiado.

Los factores que pueden modificar la velocidad de la reacción son la concentra- ción de la enzima, del sustrato, de los cofactores y de iones H+ (expresadas conio unidades de pH), asícomo la temperatura, la presencia de inhibidores y activadores. Se estudiará a continuación cada uno de ellos.

Efeeto de la concentración de enzima

Si se procede de la forma indicada pero haciendo que cada uno de los tubos de ensayo contenga una concentración diferente (creciente) de enzima, al procesar los datos obtendremos una gráfica (Fig.16.1).

La obtención de una línea recta que pasa por el origen de las coordenadas indica que existe una relación de proporcionalidad directa entre la velocidad de la reacción S laconcentración de la enzima, que puede expresarse por la ecuación

Page 274: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

lo quesignüica que la reacción es de primer orden con respecto a la concentración de e&a; esta relación constituye el fundamento de toda la cinética enzimática.

~~t~ resultado era de esperar, si la concentración de sustrato está en exceso, a quese aumentala concentración de la enzimase incrementa la formación del

mmplejoES y una vez formado éste se producirá la transformación del sustrato. La actividad~atalítica de las enzimas se expresa en unidades de enzima, g ésta es

*&ente igual ala cantidad de enzima que catalizala transformación de 1 micmmol desustrato por minuto, bajo condiciones específicas. Cuando no se posee la enzima

P"B7 sino una preparación impura, puede medirse en unidades por mL o su actividad

epeeíf~ca en la preparación como unidades por mg de proteína total. La relación de proporcionalidad directa entre la velocidad y la concentración de

enzima permite la determinación de la concentración de alguna de ellas en los líquidos otejidos corporales. Basado en este principio se determinan en el laboratorio clínico lasconcentraciones séricas de transaminasas, quinasas, peptidasas, etcétera.

Efecto de la concentración de sustrato

Enestecaso laúnica diferencia entre los tubos de ensayo radica en que el sustrato estáen cada uno de ellos en concentración diferente (Fig.16.2).

La primera explicación convincente para este comportamiento fue expriesta por LeonorMchaellis y Maud Menten en 1913, que según ellos la reacción se produce en Zetapas: la unión de la enzima (E) con el sustrato (S) para formar un complejo enzi- ma-sustrato (ES) de manera rápida, y la transformación del sustrato en producto (P) con laliberación de la eniima, que resulta la etapamás lenta

k , k,,, E + S + ES & P + E

k2

donde k,, k, y k c , son las constantes de velocidad específica para cada etapa de la reacción. k_,se conoce también como número de recambio de la enzima.

Comola segunda etapa es el paso limitante, la velocidad dela reacción depende dela descomposición del complejo ES según la ecuación:

sise puedemedir [ES] en diferentes momentos es factible calcular la velocidad, pero esto no siempre es posible, lo cual obliga a deducir una ecuación que permita calcular la velocidad en función de variables que se puedan medir.

Comola formación de ES es reversible y se descompone lentamente en producto, se establecerá un equilibrio entre E, S y ES cuando su velocidad de formación (vJ sea igual a su velocidad de descomposición (v,) y éstas vienen dadas por las conocidas ~uaciones de velocidad:

cuando vr=vd tendremos que:

Fig. 16.2. Efecto dc la conceiitració~i de sustrato. En In mctliila que la con- centración dc sustrato es mayor, la velocidad de la reacción cs nia- yor, sin embargo, los incrementos en la velocidad no son uniformes, sino cada vez menores; cuando se alcanza un deterniinado valor de la coneentraciún de sustrato, la ve- locidad se Iiaee prácticarnentc cons- tante, en ese momento la reacción Iia alcanzado la Vni. La coneen- traelón de sustrato para la cual la velocidad de la reacción cs igual a VmIZ es la constante dc Michaellis (Km), qiie es un índice de In nfini- dad de la enzima por el sustrato.

Page 275: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

el cociente de las 2 constantes, que es la constante de disociacion del complejo ES recibe el nombre de constante de Michaellis (Km).

La enzima libre (E) será igual a la enzima total (EL) menos la quese encuentra en forma de ES. Si se introducen estas consideraciones en la ecuacion (S), se tiene que:

si se despeja [ES]

[ES] = [Et][S]/(Km +[S]), (6)

sustituyendo [ES] por su equivalente en (1) se obtiene:

v, = - k,,, [E,] [SI Km + [S]

En esta ecuacion cabe considerar 3 casos:

1. Cuando [S] >>> Km: en este caso el denominador Km + [SI es casi igual a [S] y simplificando obtenemos:

Las concentraciones muy elevadas de sustrato producen un efecto de saturación, o sea, todos los centros activos de las enzimas han sido ocupados por el sustrato y casi toda la enzima se encuentra en forma de ES. Teniendo presente la ecuación (1) es posible inferir que en ese momento se habrá alcanzado la mayor velocidad posible para la reacción que se denomina velocidad máxima (Vm). En estos mo- mentos la velocidad se hace independiente de la [S], o sea, es de orden cero. Así se obtiene la forma habitual de la ecuación de Michaellis:

v, = v m [SI Km + [S]

2. Cuando [SI <<Km: en este caso el valor del denominador será prácticamente igual a Km y la ecuación se transforma en

Vm v,= -. [SI Km

el cociente de las 2 constantes VmIKm es una constante y por lo tanto, la velocidad de la reacción es directamente proporcional a la concentración de sustrato o, dicho de otra forma, es de primer orden con respecto a la concentración de sustrato.

3. Cuando [S]=Km: en este caso el denominador pasa aser 2 [S] que al simplüicar nos queda:

Page 276: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

esto significa que el valor de Km es igual a la concentración de sustrato, la velocidad inicial es igual a la mitad de la velocidad máxima; en

momento la mitad de las moléculas de la enzima está en estado libre y la otra en forma de ES.

silacurva tienesiempre la misma forma la diferencia entre ellas estarádada por losvalores de Vm y Km, de ahí que éstos se conozcan como los parámetros cinéticos de heeuaeión de Mihaellis. Analicemos brevemente el significado de rada uno de ellos.

Vm se alcanza cuando las moléculas de sustrato han ocupado todos los sitios B,.&vos de todas las moléculas de la enzima, por lo que la velocidad de reacción en ese momentosólo dependede la capacidad que tenga la enzima para transfomar el sustrato. A parür del valor de Vm se puede calcular el número de recanibio de la enzima; si una solución 10dM de anhidrasa carbónica que cataliza la formación de 0,6 M de H.CO, por segundo cuando eskí completamente saturada de sustrato según la ecuación

podemos calcular ke, , pues

Vm = k cal [Et]

esto significa que la enzima produce600 0OOinoléculas de H,CO, por seguiido y éste es precisamente el significado del número de recambio.

La Km, como la hemos definido (otras definiciones pueden originar otros signifi- cados),esigual a laconstante de disociación del complejo ES y por ello representa una medida de la afinidad de la enzima por el sustrato, de forma que mientras mayor sea la afuiidad menor seráel valor de la Km. En la tabla 16.1 se relacionan los valores de Km y de k_, de algunas enzimas.

Tabla 16.1. Valores de la Km y la kcz,, de algunas enzimas

Enzima

Anhidrasa carbónica

Acealcoiima estearasa

Catalasa

l h a l a s

h m m a

Ureara

cu?, 1.2 x 10-z 1.0 x 10h

Acetilcolina 9,s x 10.' 1.4 x 10'

%O2 2,s x 10.' 1 , ~ x 10'

Fumarato 5,0 x 10~" 8,O x 10'

Malato 2,s x 10' 9.0 x 10'

U m 2,s x 10.' 1,0 x 10'

Page 277: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 16.3. Ke1irescnlaciÚii de I.iriewca\er Uiirk. lin la ~ r á f i c a , dohleniriite rrcíprora al ploteai. llr,, centra 11 [S], se ubticiie uria iinca verla cnn i~itcrreptos dc IWni vara las ordc- n u d a y - l l K r n pai-n la al~cisas, ) periiiite la detcrrninaiióii de IUS parámcti-os riiiéfiros de blichaillis ron nijs ~rac t i l ad que la gráfica IiiperI>Úlira.

Para determinar de manera experiniental los valores de Vm y Km resulta niuy engorroso el empleo de la curva hiperbólica, pues sería muy difícil dibujarla ajustada si los puntos experimentales están muy dispersos, además resulta difícil coiisegi~i~concentraciones suficieiitemente elevadas de sustrato para alcanzar Vm, o casi iiiiprac. ticahle medir las bajas velocidades iniciales con pequeñas concentraciones de sustrato, Todas esta5 dificultades se evitan con el método de deterniinación de Lineweaver y Burk, este procedimiento resulta de una tramfomación de la ecuación de Micliaellis y consiste en tomar los inversos de ésta, representar el inverso de la velocidad inicial Wv,,) en el rje de las ordenadas y el inverso de la concentración de sustrato (l/[S1) en el eje de las ahscisas; la transformación de una ecnación a la otra es muy sencilla.

Al tomar los inversos en la ecuación de Michaellis se obtiene

descoinponiendo el sumando y simplificando se obtiene

Ol~sérvese la Iio~nologíacon la ecuación general de niialinea recta del tipo y=ai+b. cuya pendientees KmNni y con el intercepto igual a 1Nin para las ordenadas y -l/Kin para las ahscisas (Fig. 16.3).

Esta línea recta, la gráfica doblemente recíproca, se debe preferir a la gr6fica hiperbólica comométodode detcriiiinacióii de Vm y Km,ya que una línea recta piiedc dibujarse y extrapolarse de forma más rigurosa que cualquier curva. Este conociniiento es niny importante a la hora de analizar los inliibidores enzimáticos.

Reacciones con 2 sustratos

En mucha7 reacciones enziniáticas de iniportancia biológica se utilizan 2 sustiñtoS (0 un sustrato y una coenzima) para forniar 2 productos, por lociral la ecuacibn general sena

A+R - P+Q

El mecanismo de estas reacciones es más comple,jo que aquéllas en que iiiter\iene un solo sustrato y sus eiuaciones cinéticas más difíciles de deteniiinar.

El Iieclio más sobresaliente es el orden en que los sustratos se coinhinaii con la eiiziina y el orden en que se liberan los productos. Atendiendo a este aspecto se Iiali distinguido 3 inecanisnios ixásicos de reaccioiies bisustrato.

Mecanismoordenado. Los sustratos se enlazan y los productos se lihcraii en ilil orden obligado como se muestra a continuación:

donde EAB (coniple,jo enziina-siistratos) y EPQ (complejo enzima-prodiictos) se intercoiivierten rápidamente (Fig. 16.4).

El ejemplo más abundante son las desliidrogenasas que funcionan con NAW como coenziiiia aceptora de Iiidrúgenos, en las cuales la enzima se une primero a la

Page 278: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

E EA EAR EPQ P EQ 0 E

w. 16.4. Mecanismo ordcnado con 3 sustratos. La eiilinin (El debe iinirsc primer<, cun rl sustrato \ y formar el compleio EA, pies el sitio de iiiii<in de B ne es acccsihle a sic sirstrata. La iiriiún de B da lugar a la formación del cotiipleji, Irriiario B\ll que se transforma lentanienle en cl complejo enzima-productos (EPV). qur deqiiifr l ihmi tambifn suc pridurtos dc fornia ordenada.

coenzima y con posterioridad a1 sustrato, liberan primero el producto oxidado y des- pnésla coenzima reducida.

E + N A D ' d E:NAD' + LACA E:NADA:LAC

E:NADH:PIR d P I R + E N A D H +E + NADH

Esta reacción está catalizada por la enzima lactato-deshidrogenasa que oxida el lactato (LAC) en piruvato (PIK) con la reducciónsimultánea del NAD'a NADH.

Este mecanismo desde el punto de vista estmctural se fundamenta en que el centro activo noestá totalmente forniado en ausencia de los sustratos y la unión del prinicro de 40s produce un canibio conforniacional en la enzima que casi crea el sitio de reconoci- miento para el segundo, de esta manera el orden de unión de los sustratos es obligado.

Mefanismode orden azaroso. Los sustratos pueden unirse a la enzima en cnal- qGe~orden,lo que hace suponer que existe un sitio de unión diferente para cada uno de ellos (Fig. 16.5).

Un ejemplo típico de estas enzinias son las quinasas, que en el caso de la hexoquinasa sería:

En esta reacción la enzima transfiere un grupo fosfato del ATPa la glucosa (GLC) Paraformarglucosa-6-fosfato (GLP) y ADP. Como se muestra, la enzima puede unir Primero a la glucosa o al A'I'Py liberar la glucosa-6-fosfato antes o después que el ADP.

Page 279: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig . 16.5. Meeanisnio de orden aleatorio ron 2 surtratos. La enzima (E) presenta sus 2 centros ;rtivor xcesibles s sus respectivos sustratos A y B , por eso cualquiera de ellos puede unirse ~irirnero para formar los compkjos EA ó EB: a estos complejos se une el otro sustrato ) se forma rl iomplc,jo tcrniirio EAB, que se transforma en el complejo enzima-productos EPQ que puede liberar sus productos cn cualquier ordcn.

Mefanismo pingpong. Se caracteriza porque un producto se forma y libera antes de la incorporación del segundo sustrato; esto puede explicarse por la existencia de una enzima en 2 formas (E y E*), una capaz de unir al primer sustrato y la otra al segundo. El paso de la ennma de una forma a otra de manera constante fue lo que quiso denotar Cleland cuando denominó pingponga este mecanismo.

Este mecanismo se ilustra en la figura 16.6.

E EA E E'B E

Fig. 166. Mecanismo ping pong. La enzima ( l i ) s6lo piwdc iinirse al sustrato A foriiiaiirl~~ e' complejo EA que lihera el producto P y dqja niodifieada la enzima (E*) , s61a etitiillccs

puede unirse al sc~iindo sustrato B y formar el cenipleja E*U que libera el producto Q quedando la enzima en su forma inicial para comenzar un nuevo cielo iatalítico.

290 ihqufmica Uedjca

Page 280: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

~1 más característico es el de las transaminasas (enzimas que transfieren gniPOS -o), en el caso de la transaminasa glutámico-pirkico tendremos

E + ALA E: ALA, E*: PIR --. E* + PIR p + K G A * E : K G -E*:GLU-E+GLU

Enesta reacción la enzima se une primero a la alanina (ALA) formando el comple- jo-aminasa-alanina (E:ALA), que al convertir la alanina en pirúvico (PIR) deja modificada también a la enzima (E*), esta forma E* puede unirse al ácido a&gluíárico (KG) que al hmsformarse en glutámico (GLU) regenera la forma ori-

de la hansaminasa. La deducción de las ecnaciones de velocidad para cada uno de estos tipos de reacciones va más allá del alcance de este texto.

Laconcentración de cofactores suele tener un efecto similar a la concentración de svstrato.

Lacoincidencia de las 2 gráficas es un hecho experimental importante para afir- marque los cofactores se unen a la enzima por un sitio específico y en una relación estequiométrica que explica el fenómeno de saturación observado; este sitio pudiera ser el eentro activo.

Efeeto del pH

Si realizamos una experiencia como la descrita pero haciendo que la mezcla de incubación contenga soluciones hufferde diferentes valores de pH, se obtendrá una g~%cacomo la quese muestra en la figura 16.7.

Como se observa, la curva tiene una forma acampanada con una zona central estrecha que se corresponde con los mayores valores de la velocidad; al valor de pH dondese obtiene la mayor velocidad se le denomina pH óptimo. Esta gráfica se explica teniendo en cuenta que el pH modifica el estado de disociación de los grupos químicos presentes en la enzima o en el complejo enzima-sustrato, con lo que puede modificarse unasvecesla unión y otras la transformación. En valores extremos de pH (cerca de 0 ó 14) puede producirse desnaturalización de la proteína enziniática, lo que contribuye a la Pocaactividad observada en esta zona.

El pH óptimo es un valor caracteristico para cada enzima y expresa que en ese valor la enzima se encuentra en su conformación más activa. Supongamos que los D'Upos que forman el centro activo puedan existir en 3 estados de disociación depen- dientes del pH,

Fig. 16.7. Efecto del pH. Se obtiene una figura en forma arnnipaniida B m - de se puede determinar la zona dc pH iiptinio. Obsérwse que In dia- niiniiriím o aumento del pl l en relaeiiin con el pH 6ptimo provo- ca iiiia disiiiinuci6n de la vcloii- dad de la rencri6n.

siel estado más activo es EH-ohtendremos la curva descrita que es la dela mayoría de las enzimas; si fiiera EH, la curva carecería de la rama ascendente, como siicede con la Pepsina; si fuera E= carecería de la descendente, como sucede con la tripsina; estas 3 sihiaciones se representan en la figura 16.8.

Page 281: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Efecto de la temperatura

I'igiirn 16.8. Difereiirias en el pH ólitiniu. I>cpciidi~ii<lo de lii forma iónica donde la enzima tiene su mayor actividad sc pueden ohtenrr cur- vas diferentes que reflejan qinr rada enri im tiene un pH 6ptinio rili.actcristire,eitiisedebea la pre- seniiia en rl centro activo de la en- rima de Crupas químicos que tic- neii dil'ci-cnir reacción ante los ranibios de pII.

Kg. 16.9. Efecto dc la teniperatura. La ve- locidad de la rcncrión auineiiia ron la temperatura, pues ésta es im rc- fleje del sun>ento rlc la energía cinetira rlc los componentes de la reaeri6n. lo cual favorece los chu- ques lnternioleeulares: después dc cse incremento de velocidad al au- mcnwr la teniprriitura, se produ- cen alteraciones cn la estructura tridimensional de la proteína cnrimática que detfrminan una disminución cn la velocidad de reacción.

Un experimento semejante a los descritos, pero esta vezcon los tubos de ensayo bajo temperaturas diferentes, muestra sus resultados en la f i p r a 16.9.

La influencia de la temperatura sobre la velocidad dela reacción es un problema complejo en el cual intervienen variosfactores,entre ellosel aumento de la energía del sistema alaumentar la teiiiperatiira,locual hace que los reactantes posean una cner@a cinética mayor y por tanto estén más próximos al estado activado,además, los efectos desestabilizantes de la temperatura sobre la estructura tridimensional de la proteína enzimática son imprescindibles para su acción.

Teniendo en cuenta al menos estos 2 factores puede resuniirse el comportainiento de la velocidad en función dela temperatura comosigue.

El aumento de la temperatura refleja un aumento de la energía cinética de las moléculas,lo cual favorece la colisión entre las moléculas de enzima y sustrato, rnieii. tras mayor sea la temperatura mayor es el número de choques y mayor la velocidad de la reacción; pero a partir de un valor de temperaturacomienza la desnaturalización de la proteína enzimática y con ello la pérdida de la actividad que se observa en los valores elevados de temperatura.

Efecto de los activadores

Como activadores enziináticos se definen a las pequeñas moléculas, generalmen- te iones inorgánicos, que son requeridos, o al nienos estimulan, la actividad catalitica de una enzima, y al contrario de los cofactores, no son participantes explícitos de la reacción. Aun cuando pueden plantearse diferentes formas de actuar, nos limitai-ernos a los 2 casos mejor conocidos: la interacción obligatoria con la enzinia libre y la interacción obligatoria con el sustrato libre. En el primer caso se encuentran muclias enzimas que poseen iones metálicosen su centroactivo como la carboxipeptidasa que contiene Zn"; otras enzimas parecen requerir la presencia de un ion para estabilizar su conformación de máxima actividad catalitica.

La reacción general puede ser descrita de la forma siguiente:

E + A EA EA + S -+ EAS - EA + P

En el segundo caso se encuentran enzimas que catalizan reacciones en las cuales intervienen nucleósidos di y trifosíatados, que requieren de la participación siniultá- nea de un catión divalente (especialmente Mgz+) en cantidades estequiométricds. Las investigaciones sobre estas reacciones han mostrado que un mecanismo probable para esta activación es la combinación del ion con el sustrato previo a sninteracción conla enzima. El verdadero sustrato de la reaccion sería el complejo sustrato-catión, el es- quema de reacción sería:

SA + E -+ ESA -+ E + PA

La deducción de las ecuaciones cinéticas para estos casos rebasa los marcos de este texto.

Page 282: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

a& de los inhibidores

inhibidores enzimáticos son sustancias que tienen en común la propiedad de disminuir la velocidad de las reacciones catalizadas por las enzimas. Casi siempre se distinguen 2 tipos generales de inhihiciúo, la reversible y la irreversible, en el primer easoel inhibidor forma con la enzima un complejo enzima-inliihidor (El) unido por fuenm no covalentes y que por tanto puede disociarse; en el segundo, se producen modificaciones covalentes de la enzima que no pueden eliminarse fácilmcnte. En este c a p f ~ o sólo se tratará de los primeros.

para estudiar el efecto y tipo de los inhibidores se realira una experiencia igual a ladeterminación del efecto de la concentración de sustrato sohre la velocidad, pero &oraencadaunode los tnbos de ensayo se ha añadido un inhibidor en unaconcentra-

fija. Como en los casos anteriores los resultados se llevan a una gráfica y de amedocon ésta se clasifican los inliihidores; sólo se estudiarán los casos más típicos.

En la figura 16.1Use presenta una gráfica en la que aparecen también los resulta- dosobtenidos sin el inhibidor.

La gráfica nos indica que para casi todas lai concentraciones de sustrato utilizada? lavelocidad de la reacción siempre es menor en presencia del inhihidor, sólo en con- centraciones muy elevadas del sustratose logra superar la inhibiciún y eso hace que la Vmseaigual en ambos casos; esto implica que se niodifique el intercepto del eje de las abscisasquecomo sabemos es una hiiciúii de la Km.

Si laKm está aumentada y la Vni está sin niodificaciún,sc dice que el inhibidor es de tipo competitivo. El hecho de que la Vm no se altere significa que la capacidad catalíticade laennma es la misma con inhibidor osin él. El aumento de Km indica que existeuna disminuciún de la afinidad de la enzima por el sustrato; estos hechos son compatibles si suponemos que el inhihidor es capaz de unirse al centro activo para impedir la entrada del sustrato; si el sustrato no entra al centro activo no puede ser transformado por la enzima y esto explica la disminucih de la velocidad, o sea, se establece una competencia entre el sustrato y el inhibidor por ocupar el centro activo de laenzima. Cuando las concentraciones de siistrato son elevadísimas la probabili- daddeuniónenzima-sustrato es muy alta y por ello se alcanza la velocidad ináximade la reacción.

El esquema de la reacción en presencia de un inhibidor competitivo sería:

Y para ello se definen 2 constantes de disociación, la Km que ya conocemos y la Ki para la disociación del comple,jo E1 y resulta

el valor aparente de KmkL que se obtiene con el inliibidor,se relaciona con la Km sin el inhibidor por la ecuación

Page 283: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Nótese que parte de la enzima se encuentra en forma de complejo E1 que no da producto, pues no puede unir al sustrato, lo que significa que existe una disminución del número de centros activosútiles y, por tanto, una menor velocidad de la reacción.

Una característica de los inhibidores competitivos es quesu estructura es semejan- te a la del sustrato. En la figura 16.11 se muestra cómo la succinato desbidrogenasa puede ser inhihida de forma competitiva por el malonato, cuya estructura es muy similar a ladel succinato, que es el sustrato naturaldela enzima.

Fig. 16.11. Mecanismo de la inhihiciún com- petitiva. La similihid estructuraldel inhibidor con cl sustralo hace que aquél pueda unirse al centra acti- vo, pero sus diferencias le impi- den la transformación. La enzima auccinato-deshidrogenasa une al ácido sucrinico y actúa sobre los hidrógenos colocados eii carbonos adyacentes. Cuando el ácida malónieo, que tiene una estructu- ra similar, se une al centro activo de la enzima produce una inhibi- ción, pues no puede ser transfar- mado, quedando unida al centro activo y, por tanto, impide la en- trada y transformación del sustrato verdadero.

Wbieióo no competitiva

, . disminuye de alguna forma la capacidad catalítica de la enzima. Se acepta que la unión enzima-inbibidor se produce en un sitio diferente del centro activo y que esa unión

En la figura 16.12 al igual que en el caso anterior semuestran además los resulta- I - dos del experimento sin el inhibidor.

, "M

1 . - 1 - ~d 1%

Fig. 16.12. Inhihidares no competitivas. El inhibidor no competitivo no se alo- ja en el centro activo y no puede impedir la entrada delsustrala,pera de alguna forma dificulta su trans- formación; en supreaencialaseur- vas que se obtienen difieren en el valor de INm, pero no alteran el valor de -1lKm. Variaciones en la concentración del inhibidor dan origen a una familia de curvas que se cortan en cl eje de las abeisas en el punta -I/Km.

Y"

I 7 VM

,

modifica las propiedades catalíticas de la enzima, posiblemente modificando la con- formación del centro activo de forma que no impide la unión del sustrato pero dificul- ta grandementesu transformación.

El esquema de la reacción con la participación de un inhibidor no competitivo será

., Los efectos de este inhibidor sobre los parámetros cinéticos son contrarios al ,/' anterior, se observa una disminución de la Vm sin alteraciones de la Km; ni siquiera en

,/ , '. concentraciones elevadísimas de snstrato se logra eliminar la inhibición. .,' ,/ " , !

,' Si la Km no se ha modificado quiere decir que no existe impedimento para la -':, unión de la enzima con el sustrato. oero la afectación de la Vm indica aue el inhibidor

E + S +ES+ E + P E + I d E I ES + 1 + EIS E1 + S + EIS

La enzima existe en un estado libre y en forma de varios complejos (EI, ES y EIS) de los cuales sólo ES da productos. Si suponemos que la unión de S a la enzima no

Page 284: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

iduye sobre la unión de 1 y viceversa, entonces la constante de disociación de E1 será igual a la de EIS y viene dada por cualquiera de las ecuaciones siguientes:

El valor aparente de Vm' que se obtiene en presencia del inhibidor se relaciona con la Vm de la reacción sin el inhibidor por la ecuación

[Il ~ m ' = Vm. (1+ -) Ki

En este caso también la enzima existe en forma de varios complejos de los cuales sólo ES puede dar productos, pero no existe ningún impedimento para la unión con el sustrato; la existencia de esos complejos determina una disminución del número de centros activos útiles en la preparación y, por tanto, una disminución de la velocidad de reacción.

Los inhibidores no competitivos no son análogos estructurales del sustrato; el iodoacetato es un potente inhibidor no competitivo de las enzimas que poseen grupos sulfibidrilos en, o cerca de, su centro activo.

Algunos medicamentos utilizados diariamente en la práctica médica son inhibidores ennmáticos, como el caso de las sulfamidas que se emplea en el tratamien- to de infecciones bacterianas.

En general las armas químicas suelen ser también inhibidores enzimáticos que al bloquear determinadas reacciones puedeu dañar un órgano o tejido específico. si la enzima que resulta inhibida está presente sólo en él, o al organismo en su totalidad si la enzima inbibida está muy distribuida en la economía.

La lucha contra la producción, almacenamiento y utilización de las armas quími- cas debe constituir una posición de principio de todo científico, pues es parte del comportamiento ético impedir el uso de los avances de la ciencia en perjuicio de la humanidad.

Resumen

La einética enzimstica es la parte de la enzimologh que se ocupa del estudio de la velocidad de las reacciones enzimáüeas v de las factores aue la modiscan.

En los &dias einéüeos se deben obsekar algunas reglas que permitan hacer una interpretación ademada de las resuliadas, wmo son medir siempre veldda- des ini&es y variar en cada experimento sólo uno de las factores que pueden alterar la velocidad. Los principales factores que iníinyen sobre la velocidad de la reaeO6n son las concentraciones de etuimas, mistraios y wfactores, la temperatu- ra, el pH y la presencia de activadores o inhibidores.

La velocidad de las reacciones enzimátieas es diredamente proporcional a la wnceniraci6n de enzima, lo cnal consütuye el fundamento de toda la cinética enzimática. La wncentraci6n de sustrato M u y e sobre la velocidad de forma muy característica. A medida que la wncentraci6n de mistrato aumenta se produce un aumento de la velddad, pero en concentraciones muy elevadas de mistrato se produce un estado de saturaci6n de la enzima que no permite mayores incrementas de velocidad. Para explicar este comportamiento se emplea la teoría deMiehaellis- Menten, según la cnal bastan 2 parámetms para explicarlo, uno, la Km define la

Page 285: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

&dad de la enzima por el sustrato y el otm, Vm es un indicador de la capacidad cataüoca de la emima

Cuando en la reaceión intervienen 2 susiratos, uno de los mpeetos más impor- tantes que se debe determinar es el orden en que se iigsn lm sustratos y se liberan los productos. Atendiendo a este punto de vista se describen los mecanismos ordena- dos, los azarow y el ping pong.

La inilueneis de la mncentraeión de los whctores es similar a la del sustrato. La velocidad varia con el pH y existe una wna de pH ópümo donde la veloci-

dad es la mayor. Variaciones del pH en ambas lados de esta wna determinan una disminución de la velocidad.

Al aumentar la temperatura la velocidad de reaeeión aumenta, pero pasado un limite comienza a disminuir, pues se producen alteraciones de la estructura . . tridimensonal de la emima.

Los activadores producen un aumento de la velddad de la reacción, se distin- guen 2 principales, aquélios que se unen a la enzima libre y los que se unen al nishsto. Por su parte los inhibidores disminuyen la velocidad de la reacción, bien porque modiñean la Km, en cuyo caso son de tipo competitivo, o por alteraciones de la Vm, que reciben el nombre de no competitivos.

Los eshidios einéticm son importantes para el conocimiento del meraniSrno de a d n de las enzimas, con el propósito de conocerlo y modiñ~~rlo. Muchos medi- eamenios y algunas armas químicas suelen ser bbibidores enzimáticos espeeífim.

Ejercicios

1. ¿Cuáles son las razones por las que en los estudios cinéticos debe siempre medirse velocidades iniciales?

2. En una experiencia cinética se observa que al aumentarla concentración de enzima no se produce el esperado aumento proporcional de la velocidad. ¿A qué factores pueden deberse estos resultados?

3. Si 2 enzimas actúan sobre el mismosustrato con Km de 4 x 10" v 7 x 10." resnec- , . tivamente ¿Qué conclusiones pueden derivarse deestos valores?

4. Calcule el número de recambio de una enzima que al estar en una concentración de 10" M forma 3 x 10.' M del producto en un segundo.

5. Una enzima cataliza la reacción:

Alanina ------, Etanolamina + Co,

en un experimento realizado a pH=8 y a 30 "C se obtienen los datos siguientes:

V" (pmol de CO, min-')

Calcule la Km para la reacción

Page 286: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

6. En el estudio de la reacción:

L-aspártico -, L-ala + Co,

se encontró que el P-hidroxi-aspártico era un inhibidor de la enzima. Al tratar de determinar qué tipo de inhibidor era se obtuvieron los datos siguientes:

[L-aspártico] vo (mmol de CO, min-') (mg de proteína)-' mmol 1.'

sin inhibidor con inhibidor

Constmya una gráfica de l/vu vslI[S] y determine de qué tipo de inhibidor se trata.

Page 287: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En el capítulo anterior se estndiaron algunos de los factores que iniluyen sobre la velocidad de las reacciones enzimáticas, lo cual permitió hacer un estudio detallado de las características cinéticas de las enzimas. Muchos de estos factores son estudiados in viho y contribuyen de una manera importante a la profundización de nuestro cono- cimiento sobre las enzimas; pero en condiciones normales en el organismo humano, tanto en las células como en el espacio extracelular, donde las enzimas realizan su actividad de manera constante muchos de esos factores pueden tener un menor signi- ficado.

Los cambios de velocidad observados al variar la temperatura no se perciben en nuestro organismo que mantiene una temperatura constante; lo mismo sucede con los cambios de pH, pues cada órgano tiene un pH relativamente constante que se corres- ponde aproximadamente con la zona de pH óptimo de sus enzimas; igual ocurre con los compartimentos subcelulares.

Los inhibidores estudiados son por lo general materiales de laboratorio que sólo entran al organismo accidental o criminalmente. Con excepción del intestino y el hígado las células presentan un medio de composición casi constante, por lo cual no experimentan grandes variaciones en la concentración de sustratos, éstas y su iniluen- ciasobre las velocidades de reacción son más manifiestas en dichos órganos; no obs- tante, existen mecanismos intracelulares que permiten mejor adaptación de las veloci- dades de reacción a las condiciones celulares.

En este capítulo se estudiarán los principales mecanismos de que dispone la célu- la para regular la actividad de sus enzimas y se discutirán las ventajas que cada uno de ellos presenta, así como las características estructurales de las enzimas que los hacen posibles.

Formas básicas de la regulación enzimátiea

Cuando un sistema o proceso es capaz de variar su comportamiento como res- puesta a cambios que se produzcan en su entorno, de forma que la respuesta directa o indirectamente tiende a modiEcar el estímulo para volver a la situación inicial, se dice que este sistema o proceso está regulado.

En estos sistemas existe un patrón estmctural o funcional que tiende a mantenerse estable frente a los cambios que se operan en el entorno. El sistema de regulación está encaminado a mantener ese patrón estructural o funcional, que cuando este último se

Page 288: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

v

Respuesta . . '\ ,

Fie. 17.1. Com~onentcs de un sistema de regulación. La señal (S) existe ge- neralmente coma la concentración dc una sustancia esoeeífiea cuya variación la convierte en estímulo (E) que es captado por el receptor iR). El transductar iT) convierte . . al estímulo en una señal interna del sistema que bien puede trasmitirse al am~lifieadar (Al aue aumenta la intensidad de laseñal o pasar de manera direela al efeetor (E), que da lugar s la aparición de la respuesta. Esta respues<&, Larde a temprano, modifica el estímulo inicial cerrando el cielo de regula- ción.

mantiene, gracias a mecanismos intrínsecos, se dice que el sistema está autorregulado, y es el caso de los sistemas vivientes.

En la regulación tanto el estímulo como la respuesta tienen carácter específico, estos cambios de comportamiento generalmente se manifiestan por un aumento o disminución de la velocidad de algunas etapas que componen el proceso, aunque pueden manifestarse deotras formas.

La regulación existe como posibilidad antes quecomo realidad, osea,los compo- nentes del proceso deben poseer características estructurales y funcionales que les permitan responder a los cambios del entorno cuando éstos se produzcan.

La regulación enzimática se refiere a la posibilidad que tienen las enzimas de variar la velocidad de las reacciones que ellas catalizan al producirse determinados cambios en el medio; esa posibilidad viene dada por características estructurales de las enzimas y que son una vez más manifestaciones del vínculo qiie existe entre la estructura y la función de las biomoléculas.

Los cambios de velocidad observados durante el proceso de adaptación son debi- dos a cambios cuantitativos o cualitativos de los centros activos, y atendiendo a esto las formas básicas de la regulación enzimática se manifiestan por variación en la cantidad o la actividad de las enzimas.

Si se considera que el volumen celular no cambia apreciablemente durante el uroceso, un aumento de la cantidad de enzima simifica un aumentode su concentra- - ción y ya sabemos que la velocidad de la reacción es directamente proporcional a la concentración de laenzima. Modificar la cantidad de enzimaes variar la cantidad de centros activos presentes y ésta es la causa de los cambios de velocidad.

Existen 2 mecanismos básicos que producen modificaciones en la cantidad de enzimas, conocidos como inducción y represión. En el primero, la presencia de una sustancia en la célula puede activar el proceso de síntesis de la enzima y por tanto aumentar su cantidad. En el segundo, el estímulo determina la disminución de la síntesis enzimática por lo cual la cantidad de enzima disminuye. Estos mecanismos serán estudiados detalladamente en el capítulo34. Si la cantidad de enzima no varía, sólo es posible modificar su actividad aumentando o disminuyendo la fracción de centros activos útiles, pueselnúmero total nocambia; esto se logra mediante2 meca- nismos conocidos como modificación alostérica y modificación covalente, respecti- vamente, que son objeto de estudio en este capítulo. También serán estudiados otros mecanismos reguladores como: proteólisis limitada, variación en el estado de agrega- ción, interacciones proteína-proteína, translocalización, cambios en la especifcidad e isoenzimas.

Antes de estudiar cada tipo específico de regulación es bueno señalar que existen enzimas que están sometidas a varios mecanismos de regulación simultáneamente, lo cual puede ser un índice de su significación para el metabolismo celular.

Componentes de un sistema de regulación

Aun cuando existen diferencias notables entre un sistema de regulación y otro, un análisis detallado de todos ellos implica que a pesar de sus diferencias presentan un grupo de componentes que son esenciales para su funcionamiento (Fig. 17.1). Así sucede con los sistemas de regulación de la actividad enzimática.

La mayoría de las enzimas se encuentra en el interior de la célula y su actividad puede modificarse como respuesta a un cambio que se produzca en esa célula, en otra célula del organismo y aun en el medio.

El primer componente de un sistema de regulación es la señal, que es un portador material de información. En la célula, el organismo y en el medio existen numerosas señales que pueden ser de natnraleza fisica o química, cuando esas señales varían de intensidad de forma que son capaces de generar una respuesta, se dice que se han convertido en un estímulo; e a transformación señal-estímulo es el primer componente de todo sistema de regulación.

Page 289: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Para que el estímulo pueda provocar una respuesta debe existir una estructura capaz de captarlo y ésta es el receptor. Casi siempre las señales extracelulares no pueden directamente provocar respuestas, por lo que se hace necesario convertir esa serial-estímulo en otra reconocible por los componentes celulares, esa función la desa- rrolla el transductor. Por último, debe existir una estructura que genera la respuesta directamente y ese es el efector. En los sistemas de regulación enzimática el efector es una enzima específica; que como resultado de su acción aparece la respuesta que es el resultado final del sistema. En muchas ocasiones entre el transductor y el efector existe un componente que tiene como función potencializar la acción del estímulo, de mane- ra que la respuesta presente una intensidad mucho mayor que el estimulo el cual le dio origen, esa estructura es el amplificador.

Los receptores y algunos transductores serán estudiados en el tomo 11, aquísólo se harán algunos comentarios sobre los demás componentes del sistema.

La señal más empleada en el interior del organismo es la concentración de alguna sustancia en un líquido o tejido corporal; la variación de la concentración puede ser el estimulo. Hay sustancias que sólo desarrollan el mecanismo cuando su concentración aumenta, unas cuando disminuye y otras tanto al aumentar como al disminuir su concentración.

Las enzimas son los efectores de estos sistemas, existen 2 formas fundamentales de su actuación: la primera es variar la velocidad de las reacciones que ellas catalizan, aumentándola o disminuyéndola de manera que toda la vía metabólica en la cual participan se adapte a la situación reflejada por el estímulo; la segunda es variando su especificidad donde sólo se conocen algunos casos que serán discutidos.

Como el efector es una (o varias) enzima, la respuesta que se obtiene es siempre de unaintensidad mayor que la del estímulo que dio origen,debido a la elevada capaci- dad catalítica de las enzimas, pero se ha incluido en el esquema la existencia del amplificador porque en ocasiones existe un componente del sistema cuya función fundamental es la de amplificar la respuesta; más adelante se puede ver un ejemplo en el acápite de modificación covalente.

La característica sobresaliente de la respuesta es que tiende a modificar el estímu- lo que le dio origen, tratando de que éste vuelva a su situación inicial, con lo cual el sistema de regulación quedaría desconectado; si el sistema se conecta cuando la con- centración deunasustanciaen sangreaumentaJa respuesta tiende a provocar la dimiinu- ción de ese componente en la sangre, con lo cual el sistema se desconectaría.

En algunas enfermedades metabólicas el organismo no es capaz de responder de forma adecuada a un estímulo y pueden aparecer los llamados círculos viciosos, donde por ejemplo la elevación de la concentración de una sustancia genera una respiiesta que tiende a aumentar esa concentración, locual estimula otra vez el mecanismo y así sucesivamente.

Regulación alostérica

Cada vezesmás numerosa la cantidad deenzimas que al estudiarse el comporta- miento de la velocidad de las reacciones, por ellas catalizadas en función de la concentración de sustrato, se obtienen curvas diferentes a la hiperbólica de Michaellis YMenten, que en la mayoríade los casos tienen un aspecto sigmoidal (en forma de S alargada). Estas curvas se desplazan a lo largo del eje de las abcisas cuando se añaden ala reacción algunas sustancias específicas como se muestra en la figura 17.2 para la enzima fosfofructoquinasa. Se observa que para la misma concentración de sustrato 6,) pueden obtenerse diferentes velocidades de reacción al variar la concentración de las sustancias añadidas, luego una característica esencial de estas enzimas es presentar una actividad variable. Las enzimas que así se comportan reciben el nombre de alostéricas.

Page 290: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 17.2. Modificación de la actividad de una enzima alostérica. La fosfo- fruetoquinasr es una en~ in i a alos- tériea como se deduce del com- portamiento de su velocidad al variar la coiicentraeión de sustrato (en negro). La presencia de ATl' desplaza la curva hacia la derecho (en rojo)y por tanto actúa como un inhibidor. La concentración de ADP desplaza la curva hacia la iz- quierda (en azul), actúa como un activador.

Fig. 17.3. Efectos cooperativos. Al cons- truir la gráfica doblemente r e d proea, si no existen efectos coope- rativos se obtiene la recta quc apa- rece en (a). La aparición de una concavidad inferior cn el inicio de LI curva (h) indica un cfe~?o co- operativo negativo, mientras que la concavidad superior de (e) in- dica que el efecto cs positira.

Un concepto muy ligado al fenómeno alostérico es el de cooperatividad aunque existen diferencias entre ambos; se dice que hay cooperatividad cuando la unión de un ligando a una enzima (y por extensión a cualquier macromolécnla) influye sobre la unión posterior de otros ligandos. La cooperatividad puede ser positiva cuando la unión del primer Ligando aumenta la afinidad por otros Ligandos, o negativa cuando la disminuye. La cooperatividad positiva puede identificarse, en los estudios de veloci- dad en función de la concentración de snstrato, por la aparición de una concavidad hacia arriba en la gráf~ca doblemente recíproca l/v vs l I [S ] (Fig. 17.3). Por el contrario, la cooperatividad negativa (o anticooperatividad) puede demostrarse por la aparición de unaconcavidad hacia abajo en la gráfica doblemente recíproca.

Estas interacciones de los ligandos dan lugar a 2 tipos de efectos, el bomotrópico y el heterotrópico. Se llama efecto homotrópico cuando la unión de un ligando influye sobre la unión subsiguiente del mismo ligandoa la enzima, y heterotrópico cnando la influencia se realiza sobre un ligando diferente.

Cuando la unión de una molécula de sustrato aumenta o disminuye la afinidad de laenzima por otras moléculas del mismo sustrato, el efecto es de tipo homotrópico, y cuando la unión de un activador aumenta la afuiidad por el sustrato, entonces el efecto es heterotrópico.

Se estudiarán ahora los modelos propuestos para explicar el fenómeno del alosterismo.

Modelo simBírica o ooncertado

Se han propuesto varios modelos para explicar las causas del comportamiento de las enzimas alostéricas; desarrollaremos aquí una exposición sobre los 2 modelos principales, el simétrico o concertado y el secuencial. El modelo simétrico o concerta- do fueelaborado en 1965 por Jacquesnfonod, J e f f k Wyrnan y Jean-Pierre Chanpeux del Instituto Pastenr de París, fue el primer modelo propuesto en términos moleculares y el más sencillo.

Según este modelo, las enzimas alostéricas existen en 2 estados conformacionales interconvertibles, que denominaron R (relajado) y T (tenso). Estas enzimas son oligoméricas, están formadas por varias subunidades (estmctura cuaternaria) y todas éstas se encuentran en el mismo estado conformacional, -de ahí el nombre de simétrico. El tránsito de una subunidad, en un estado conformacional hacia otro, se trasmite a las otras subunidades haciendo que todas ellas adopten la misma conformación, por lo que reciben el nombre de concertado, si existen 4 subunidades en una enzima alostérica pueden darsesólo2 situaciones: la forma RRRR ÓTTTT, ya que las formas híbridas RTTT, RRTT y KRRT no son posibles según este modelo.

A la enzima puede unirse no sólo el snstrato, sino algunas sustancias específicas (ligandos), pero la enzima presentará diferente afinidad para cada uno de ellos de acuerdo con el estado conformacional en que se encuentre. Conio cada estado conformacional presenta diferente afinidad por cada uno de los ligandos, puede simplificarse mucho el análisis si se parte del supuesto caso que en uno de esos estados la afinidad para alguno de los ligandos es cero y, por lo tanto, los ligandos podrán unirse a la enzima en sólo uno de sus estados conformacionales; éste es un caso extremo para adecuar la explicación a los estudiantes. Si el sustrato puede unirse al estado R y no al T, entonces R representa la conformación activa, pues no puede haber transformación sin unión,lo que indica que en el estado R existe una conformación del centro activo que facilita la unión del sustrato, mientras que en el estado T la unión del sustrato al centro activo no es posible.

Ademásdel centro activo, existen en lassubunidades otrossitios de unión especí- ficos para los ligandos, pero también cada sitio presenta una conformación adecuada para cada ligando sólo en una de sus 2 conformaciones, nunca en las 2. Estos sitios son muy específicos, en lo cual se parecen al centro activo pero en ellos no se produce la

Page 291: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

transformación del ligando; los ligandos se unen a esos sitios por fuerzas no covalentes y de forma muy reversible; cuando la concentración de un ligando aumenta en el medio, se favorece su asociación, y al disminuir ocurre la disociación. La existencia de estos sitios es lo quedeterminó la denominación de alostérico,palabra que proviene de las voces griegas allos que significa otro, diferente y esterm que significa espacio, sitio, lugar; por tantolas enzimas alostéricas son aquéllas que presentan otros sitios diferentes al centro activo. Como puede colegirse de su descripción, los sitios alostéricos al igual que el centro activo son sitios de reconocimiento molecular; nn caso bien sencillo permitirá analizar ahora el funcionamiento del modelo: una enzima con 3 ligandos, uno de los cuales es el sustrato (S), los demás son el ligando A que sólo puede unirse al estado R y el 1 que sólo lo hace al estado T.

En ausencia de los 3 ligandos la enzima existe en un equilibrio entre los 2 estados conformacionales, caracterizados por una constante de equilibrio que recibe el nom- bre de constante alostérica (L).

Al comenzar a añadir el sustrato, éste se une a la forma R formando el complejo RS, equivalente al complejo ES ya estudiado, en este momento se produce una dismi- nución de la concentración de R y el equilibrio se desplaza, aumentando la concentra- ción de R y disminuyendo lade T; mientras más aumenta S, también R y con ello la velocidad de la reacción. El paso de T a R significa un aumento de la fracción de centros activos útiles y de ahí el efecto sobre la velocidad; esta situación explica por qué la unión del sustrato a la enzima favorece la unión sucesiva de los sustratos, o sea, un efecto cooperativo que es bomotrópico positivo.

Si añadimos al sistema la sustancia A, ésta se unea la forma R formando el comple- jo RA, que aumenta el desplazamiento del equilibrio hacia la conformación activa. Como A y S se unen por sitios diferentes se darán las situaciones siguientes:

R + T R + S + R S R + A-RA RA+ S +RAS RS + A +RAS

Se observa que existen 4 formas para el estado activo y sólo la forma R está en equilibrio con T, por lo que los incrementos de velocidad son considerables.

A las sustancias que como A se unen al estado activo y con ello favorecen un incremento de la velocidad de reacción se les llaman efectores positivos o activadores alostéricos.

Si en vez de A, al sistema en equilibrio se le añade el ligando 1 éste se une al estado T,fonnando el complejo TI que provoca un desplazamiento del equilibrio en el senti- do contrario al observado anteriormente, con lo cual la concentración del estado T aumenta y la del R disminuye; mientras mayor sea la concentración de 1 añadido, mayor será la fracción de enzima en estado T, lo cual implica un decremento en la velocidad de reacción, pues es menor el número de centros activos con la conforma- ción favorable para la unión con el sustrato.

A las sustancias quecomo he unen al estado inactivo y provocan una disminu- ción de la velocidad de la reacción,se les con= como efectores negativos o inhibidores alostériros; estos aspeetoc en forma generalizada aparecen en la ñgura 17.4.

Page 292: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

.eqnra e- el ap sapepynqns syuiap se1 ap oiegsns la ~od pep!up el i!nuyq onquau~a~~u! apand o)eqsns [e opesg eq anb pep{unqns el ua ep!unao uo!xmuojuoasueye7

:saiua!nZi!s so~aadse sol ua eseq as anb ?['puelqso~p!uea ~od opello.uesap IepuanJas oppom la sa solla ap aun :solapotu SOJJO olsando~d ueq as lena o1 ~od 'opeyaJuoJ o OJ!JI

-?u@ olapoui [a que!paui sepm!ldxa Jas uapand seJ!Jgso{e seui!zua se1 sepa3 o~

'a opava ua eiwanxa as anb eui!zua ap uppmq el ap apuadap UOp>saJ el ap leqoa pep!qaA e? 'u9!3Jeal el ap peppopn el abnu!uis!p [en2 01 U~J ewq sl qaeq o!~q!l!nba la szeldsap (1) lop!q!qu! lap epuasa~d e? .soc -a{duim saplaJ!p ap uo!~cuim~ e[ e lean, opu~p 'a eur~oj el qxq o!~qg!nba la uszeldsap (v) .iopen!pe 1ap o (S) o$eqsns lap ugp!pe e? .? asuewm el u@as ayq!l!nba ua uelsa anb (J. L 8) sauo!muimjm> z ua muasa~d as sui!zua 87 'apewaxm o a~pl?ui!s appom 13 .P.LI .a!a

Page 293: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Este modelo difiere del anterior en varios aspectos, primero, no se postula la existencia de un equilibrio entre las conformaciones de la enzima, previo a la unión con el sustrato,sino que la transición T - A es inducida por la unión del sustrato. El cambio de conformación T+R en las diferentes subunidades es secuencial y no concertado, de forma que los estados conformacionales híbridos inaceptables en el modelo concertado tienen en el secuencial una función oredominante.

El modelo concertado supone que la simetría molecular es esencial para la interacción de las subunidades y por tanto requiere que esa simetría se conserve duran- te la transición alostérica; por el contrario, el modelo secuencia1 plantea la posibilidad de interacciones entre las subunidades aun cuando éstas presenten conformaciones diferentes.

Por último. este modelo difiere en one las interacciones homotrónicas son siemore positivas en el modelo concertado, pero pueden ser positivas o negativas en el modelo secuencial. Si la segunda molécula del sustrato puede unirse de forma más o menos fuerte que la primera, depende de la naturaleza del cambio inducido por la unión de la primera molécula del sustrato.

Cabe preguntarse entonces cuál de los 2 modelos es el correcto. Estudios detalla- dos con numerosas enzimas han puesto de manifiesto que en algunos casos el modelo concertado es el aplicable, mientras que en otros es el secuencial. Sin embargo, existe un grupo numeroso de enzimas en que no es aplicable ninguno de los 2; esto hace necesario la aparición de otros modelos que puedan generalizar los conocimientos existentes y proporcionar una herramienta cognoscitiva de gran alcance para el estu- dio de las enzimas alostéricas.

Características generales de ias enzimas a l d r i e a s

No obstante, independientemente del modelo que se aplique, existen algunas características generales de estas enzimas que pudiéramos resumir como:

1. Son proteínas oligoméricas de peso molecular elevado y estructura compleja con raras excepciones.

2. Las enzimas existen en vanos estados conformacionales interconvertibles y con un grado de afinidad diferente para cada uno de sus ligandos.

3. Los ligandos se unen a la enzima en sitios específicos por fuerzas no covalentes y de forma reversible, afectando el estado conformacional de las enzimas.

4. Los cambios conformacionales en una subunidad se comunican en mayor o menor grado al resto de las subunidades.

5. La cuwa de velocidad en función de la concentración de sustrato siempre presenta una forma diferente a la clásica cuwa hiperbólica de Michaelis-Menten.

Lo importante de este tipo de modificación es que los activadores e inhibidores, no son materiales de laboratorio como en los casos estudiados anteriormente, sino sustancias propias de la célula y cuya concentración vana como consecuencia de la propia actividad celular. En ocasiones el activador y el inhibidor forman una pareja cuyas concentraciones varíande manera contraria, cuando aumenta la de uno de ellos, disminuye la del otro. Estas variaciones de concentración constituyen estímulos metabólicos que adaptan el funcionamiento de las enzimas a las condiciones celulares en Constante cambio.

La pareja que con mayor frecuencia cumple estas funciones es La formada por el A ~ Y el ADP, sus concentraciones relativas controlan un gran número de actividades e-ticas y con ello de mtas metabólicas enteras; para comprender esta situación es conveniente recordar el ciclo general del ATP.

Fig. 17.5. El modelo secuencial. A diferen- cia del modelo simétrico las for- mas R y T no están en equilibrio y la unión del sustrato se produec dc manera seeueneial, pues sólo afee- tala conformación de la subunidad a la cual se ha unido. El modelo admite la formación de híbridos conformacionales. La velocidad global de la reacción dependerá de la fracción de subunidades que estén en la conformación más ar- tiva.

Page 294: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Formación de ATP:

ADP + Pi - ATP + H,O

Formación de ADP:

ATP + H,O + ADP + Pi

Fig. 17.6. Ubicación de las enzirnas reguladoras. La eanvenión de A en G requiere d concursa de 6 enzirnas, una de ellas tiene prapie- dades reguladaras y se encuentra ubicada al principio de la vía, de forma que al controlarse la reae- eión en que participa de hecho se está controlando la vía completa. En el esquema la enzima reguladora es E2 (en rojo) y par tanto todo el funcionamiento de la vía dependerá de la velocidad de fomaciún del intermediaria C.

Como se aprecia en las reacciones, al formarse el uno del otro, las concentraciones de estos compuestos varían de forma contraria, así al aumentar las concentraciones de ATPdisminuyen las de ADP y viceversa.

En el ejemplo de la fosfofrnctoqninasa tratado al inicio, el ATP es un efector negativo (inhibidor) y el ADP es positivo (activador), como las concentraciones de ambos no pueden aumentar simultáneamente, en cada momento la enzima sólo estará expuesta a elevadas concentraciones de uno de ellos y así será so respuesta. Esta enzima no presentará entonces una actividad fija, por el contrario, su actividad variará tan amplio como sea la variación de concentración de ATP y ADP; pero como las concentraciones de ATP y ADP varían como consecuencia dé la actividad celular, y cada una de ellas representa situaciones celulares diferentes, la actividad de esta enzi- ma estará adaptada a las situaciones celulares y podrá cambiar cuando la situación varíe.

Otro aspecto importante de estas enzimas es su ubicación en las mtas metabólicas; para la transformación total de un sustrato se requieren numerosas reacciones quúni- cas, cada una produce un cambio gradual en la estrnctura del sustrato (Fig. 17.6). Para la conversión de A en G se necesitan 6 reacciones cada una de ellas catalizada por una enzima diferente, que van originando los intermediarios B, C,D, E y F.

Las enzimas alostéricas casi siempre cataüzan una de las primeras reacciones, con lo cual estas rutas se regulan desde el inicio, permitiendo que éstas funcionen sólo en condiciones celulares adecuadas. Esta ubicación hace posible que la célula utilice la cantidad indispensable de sustancia y energía para su funcionamiento, sin gastos excesivos. Esta situación que se observa como una regularidad en casi todas las rutas metabólicas es la que hemos expresado bajo la denominación de principio de la máxi- ma economía.

Existen otras formas de manifestarse el alosterismo en diferentes tipos de enzimas, hay casos en que los sitios reguladores y catalíticos están en la misma subunidad y otros en diferentes, destacándose lasubunidad catalítica y la remiladora; los cambios provocados por el efector pueden influir sobre el estado de asociación de las enzimas que tienen la posibilidad de existir como monooligómeros y polioligómeros, por lo que en unos casos puede ser activo el monooligómer~ y en otros el polioligómero. Hay otros casos de mayor complejidad que salen delos marcos deeste texto.

Por último, es bueno señalar que el alosterismo no es privativo de las proteínas enzimáticas y aparece también en proteínas que realizan otro tipo de funciones; la primera proteína alostérica estudiada fue la hemoglobima, que no es una enzima sino un transportador de oxígeno en la sangre. Otras proteínas no enzimáticas con propie- dades alostéricas incluyen a los transportadores de membrana como se estudiará en el tomo U y las proteínas represoras que están relacionadas con la regulación de la expre- sión genética que serán tratadas en el capítulo 34.

El alosterismo constituye un fenómeno muy difundido en el comportamiento de numerosas proteínas que realizan funciones diversas, y que desarrollan un mecanismo básico por el cual la acción de esas proteínas es modulada.

Modüicaci6n covalente

Existe otro grupo de enzimas que se regula de forma diferente a las anteriores; estas enzimas existen en las células en 2 formas que difieren en su composición, lo cual

Page 295: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 17.8. Aelivación de la proteinaquinasa dependiente de AMPc. La enzima se presenta como un tetrámero in- activo formado por 2 subunidades reguladoras (R) (en rojo) y 2 eatalítieas (C) (en azul). En la subunidad R se distinguen al me- nos 4 dominios, 2 para la unión al AMPc (A y B), una que es el inhibidar de la actividad eatalítiea (1) y el último el de dimerización (D). La unión del AMPc (círculos verdes) a uno de los sitios de las subunidades reguladoras pmduce una transconfomación que expo- ne el segundo sitio que, al ser oeu- pado por el AMP,, provoca la di- sociación del tetrámero de forma que las subunidades catalílicas pa- san a su forma disociada activa.

Existen numerosas pmtehas quinasas pero quizás lamejor caracterizada de todas ellas es la proteína quinasa A (PK-A) dependiente de AMPc; esta enzima ha sido localizada en numerosas especies desde la levadura hasta los mamíferos, pero no ha sido localizada en procariontes y la que está presente en plantas superiores difiere notablemente de la de los mamíferos.

La enzima de los mamíferos está compuesta por 2 tipos de snbnnidades: la reguladora (R) y la catalítica (C), cada molécula de enzima contiene 2 decada una para una fórmula subunitaria qC,.

Existen 2 tipos principales de proteínas quinasas dependientes de AMPc que se distinguen por lascaracterísticas de la subunidad R. Las 2isoenzimas se diferencian por su distribución hística, la secuencia de aminoácidos, la habüidad para autofosfo- rilarse, la unión con el AMPc y la interacción con las subnnidades C.

La holoenzimase presentacomo una proteína tetramérica inactiva de 150a 170 kD. La subunidad C tiene una masa molecular de 402 kD y las subunidades R (R, y R,,) de 42 y 45 kD, respectivamente. Cuando el AMPc se une a la subunidad R, el complejo se disocia formando qAMPc4 y Zsnbunidades C activas; una vezdisociadala h o l o e h a , lasubunidad C es la que cataüza la fosforilación de las enzimas (Fig. 17.8).

Lasfosfoproteínas fosfatasas también presentan diferente grado de especificidad de sustrato, por lo cual se acostumbra a clasificarlas como específicas e inespecíficas; entre las primeras se encuentra la pimvato deshidrogenasa fosfatasa que es específica para esa enzima; por su parte las inespecíficas se subdividen en 2 grandes grupos

Page 296: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

denominados 1 y 2. Las fosfoproteínas fosfatasas 1 son generalmente particuladas y pueden ser inhibidas por péptidos específicos,en tanto lasde tipo 2son solubles y no seles conocen péptidos inhibidores. Estas úitimas se subdividen asu vez en 3 gmpos designados A, B y C, atendiendo al tipo de cationes divalentes que requieren para su funcionamiento; su función es bidrolizar los enlaces ésteres que se forman entre el grupo fosfato y los residuos de aminoácidos de las proteínas, convirtiendo de ese modo la forma modificada en no modificada.

Se han identificado 2 proteínas inhibidoras de las fosfoproteínas fosfatasas 1 y se nombran 1 y 11. La proteína inhibidora 1 de las fosfatasas existe en 2 formas, una fosfatada que es activa y otra no fosfatada que es inactiva. Cuando la proteína quinasa A se activa no sólo fosforila las enzimas sino que, además, dificulta su desfosforilación al activar al inhibidor de las fosfatasas.

En ocasiones entre la proteína quinasa y la enzima que realiza el efecto metabólico existen otras proteínas quinasas con un mayor grado de especificidad.

El sistema de regulación del catabolismo del glucógeno es un ejemplo muy ilus- trativo de cómo opera la modificación covalente en la regulación del metabolismo. La enzima glucógeno fosforilasa (GP) cataliza la ruptura de enlaces glucosídicos del glucógeno por acción del ácido fosfórico; esta enzima presenta una forma fosfatada (GPF) de elevadaactividad y otra no fosfatada prácticamente inactiva; mientras mayor sea la concentración de GPF mavor número de enlaces dicosídicos serán rotos. -

La quinasa que cataliza la conversión de la forma no fosfatada en fosfatada tam- bién presenta 2 formas de composición diferentes: una fosfatada y otra no fosfatada. Estaenzima casi específica para la glucógeno fosforilasa recibe el nombre de glucógeno fosforilasaquinasa (GFK), pues ahora su sustrato es unaenzima; por tanto para activar la GFK se requiere de otra quinasa y para inactivarla de otra fosfatasa.

Lae~queactivaalaGFKeslapmteínaquinasaA (PK-A) dependientede AMPc El mecanismo funciona de la forma siguiente:

-El AMPc actúa sobre PK-A y pasa asu forma activa

C,R, + AMPc -> 2C + R,:AMPc, (1)

-La snbnnidad C de la PK-A fosforila la GFK con el ATPcomo fuente de fosfato

GFK + ATP . GFK-P + ADP (2)

-La GFK-Pfosforüa a la GP, también con el uso de ATP

GP + ATP ---+ GP-P + ADP (3)

. -La GP-P produce la ruptura de los enlaces glicosídicos con ácido fosfórico

Como conclusión podemos decir que la aparición del AMPc provoca, a través de todo e~mecanismo,un aumento en la velocidad de niphirade los enlaces del glucógeno.

Page 297: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Modiúcaci6n por adeaüaci6n desadenüsa6n

El ejemplo mejor estudiado es la enzima glutamina sintetasa de E. coli, esta enzi- ma cataliza la formación de glutamina a partir de glutámico y NH,, dependiendo de la hidrólisis del ATP. La molécula consta de 12 subunidades de 50 kD, cada una forma 2 estruchuas hexagonales que se superponen.

Ésta esuna enzima central en el metabolismo, pues regula el flujo de nitrógeno que una vez incorporado al grupo amida de la glutamina puede ser utilizado en la síntesis de numerosos compuestos como triptófano, histidina, carhamil-fosfato, glucosamina-6-fosfato, CTPy AMP. La enzima es inhibida de forma acumulativa por cada uno de esos productos y además por la alanina y la glicina; parece ser que posee un sitio de unión especi'fico para cada uno de estos hhibidores, y su actividad cesa casi por completo cuando está ligada a todos eUos.

Otro hecho significativo es que su actividad también se regula por modificación covalente alincorporarse un grupo adenilato (AMP) al grupo hidroxiio de una Wsina espeei'fica en cada suhunidad. La forma adenilada es mucho más sensible a la inhihi- ción acumulativa que la no adenilada. El grupo AMP puede ser retirado de la enzima por fosforólisis.

Uno de los hechos más curiosos de este proceso es que tanto la reacción de adenüación como la de desadenilauón son caíalizadas por la misma enzima, la adenilato transferasa. Esta enzima está controlada a su vez por una proteína reguladora -que habituaimenie se designa como P- que está formada por 2 subunidades y puede presen- tarse en 2 formas P, y Y,. El complejo de la adenilato transferasa con P, une el AMPa la glutaminasintetasa y con ello disminuye su actividad,mientras que el complejo de la transferasa con Po cataliza la fosforólisis que elimina el grnpo AMP.

Aquí aparece otro nivel de regulación covalente, pues P, es converüda en P,por la adición de uridinmonofosfato (üMP) a cada suhunidad en una reacción cataluada por la uridiltransferasa; esta enzima es activada por el ATP y el ácido a-ceto-glutárico e inhibida por la glutamina; a su vez los p p o s UMF'wn eliminados de la proteína por hidrólisis. Un resumen de las principales características de la glutamina sintetasa se representa en la figura 17.9.

El significado metabólico de este sistema es que la adenilación es inhibida y la desadenilación activada cuando el aporte de nitrógeno metahólicamente útil es bajo, y lo contrario cuando el suministro es adecuado.

ATP P-P

2 UTP 2 P-P

- 2 UMP 2 H,O

ADP Pi b) c)

Fig. 17.9. Regulación de la glutaminasintetasa. La enzima esiá formada por 12 subunidades agrupa- das en forma de 2 hexigonos (a). La adenilaeión se produce por la acción del complejo constituido por la adenilatotransferasa (AT) y la proteína P,, y la desadenilación cuando la transferasa se une s la proteína P, (b). La conversión de P, en P, se realiza por la uridiltransferasa, mientras la reacción inversa se lleva a cabo por hidrólisis (e).

Page 298: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

otros tipos de modificaciones

Hace más de 30 arios se conoce que la actividad de algunas enzimas puede ser modificada por la formación de enlaces disulfuros en las proteínas enzimáticas; este tipo de modificación covalente puede ser resultado de la reacción con un agente externo que queda unido a la enzima

E-SH + R-S-S-R -E-S-S-R + R-SH

o por la formación de puentes disulfuro intramoleculares

E-(SH)? + R-S-S-R LE-S? + 2 R-SH

Estas reacciones son similares a las de formación de los enlaces disulfuro que estabilizan la estrnctura terciaria de las proteínas, difieren de éstos en que, en la enzima nativa los disulfuros involucrados en la regulación deben estar accesibles a la reduc- ción por tioles externos, ya que la regulación por este mecanismo se realiza como respuesta a los cambios en el estado redox de la célula y sólo puede ocurrir si la reacción es muy reversible.

La reacción de intercambio es catalizada por enzimas que están presentes en el citosol y el sistema de membranas de la célula; entre las enzimas reguladas por este mecanismo se encuentran la pimvatoquinasa, hexoquinasa y glucosa-6-fosfatasa hepá- ticas y lafusfofructoquinasa y fructosa-1-6-bifosfatasa del músculo. Aun cuando ha sido estudiado minuciosamente el significado metabólico de este mecanismo, no está edarecido de manera convincente.

Otro tipo de modificacióu descrito en casi todos los eucariontes se produce por la transferencia a algunas enzimas del grupo 5'-ribosil-ADP proveniente del NAD'. El significado de esta modificación no está del todo claro aunque parece estar vinculado de alguna forma con los procesos de síntesis de las macromoléculas informacionales; un ejemplo de este tipo se trata en el capítulo 30. Menos estudiado es el caso de algunas enzimas bacterianas que se controlan por acetilación y desacetilación.

Por último, es conveniente añadir que como el alosterismo, la modificación covalente no es un mecanismo de modulación exclusivo de las enzimas y que se verá en otros tipos de proteínas como los transportadores de membrana, etcétera.

Fenómeno de amplificaa6n

La presencia de estos 2 mecanismos de rrgulación puede llevar a la pregunta de ¿cuál e más eficiente para la célula en el control del metabolismo? Los estudios experimentales han demostrado que ambos íipos de mecanismos son eficaces; estos resultados conducen a otras preguntas ¿por qué existe la regulación covalente si ella representa un gasto energético mayor y se obtiene la misma eficacia que con el alostérico? ¿No podría lograrse también con un mecanimio alostérico que representa i n d w un ahorro de enzimas para la célula? Realmente así es, pero este mecanismo presenta una ventaja que no es posible obtenerla con el alosterismo.

Otra vez la regulación de la glucogenólisis proporciona el ejemplo más ilustrativo; Suponga que las enzimas involucradas en el proceso son capaces de transformar 100

S

moléculas de sustrato por minuto, -lo cual representa un númerode recambio bajísio si se trata de enzimas; suponga además, que en una determinada situación se forman 4 moléculas de AMPc por minuto y observe qué sucede (p. 307): según la reacción (l),

Page 299: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

en un minuto se activa una molécula de PK-A, que da 2C, pues se trata de un mecanis- moalostérico, pero cada una de las moléculas de C en el minuto siguiente activará 100 moléculas de GFK, dando en total (2 x 100) 200 GFK activas. Cada una de las GFK activará 100 de GP, pero como existen 200 moléculas activas el número total será (200 x 100) igual a 20 000 mol4culas activas de GF-P. Cada molécula de GF-P rompe 100 enlaces del glucógeno, luego la ruptura total será de (20 000 x 100) igual a 2 000 000 de enlaces. En resumen, por cada 4 molécula de AMPc se rompen 2 millones de enlaces glicosídicos, lo cual no es posible con el mecanismo alostérico, pues cada efector sólo actúa sobre una enzima en forma estequiométrica.

Cuando a partir de una serial metabólica determinadase produce una respuestade intensidad considerablemente mayor que la intensidad del estímulo, se dice que el sistema posee la propiedad de amplificación.

La clave de este fenómeno de amplificación radica en que los intermediarios del proceso son enzimas, mientras mayor sea el número de intermediarios enzimáticos mavor será el grado de amolificación. -

La amplificación de sefiales metabólicas es importante para muchos fenómenos biológicos, como la acción de las hormonas, la contracción muscular, la coagulación de la sangre, etcétera.

Es bueno señalar queno todas lasmodificaciones covalente poseen un sistema de amplificación, ni toda amplificación se produce por un mecanismo de modificación covalente.

Otros mecanismos de regulad6n

Aun cuando los mecanismos de regulación alostérica y covalente son los más ampliamente distribuidos en los seres vivos, existen otros mecanismos que también contribuyen a la efectividad del metabolismo. En algunos casos tienen rasgos comu- nes con los mecanismos ya estudiados pero por sus características singulares merecen un tratamiento diferenciado. A continuación se exponen los aspectos más notables de esos mecanismos sin pretender agotar el tema.

Algunas enzimas se sintetizan en forma de precursores inactivos denominados 7jmÓgenos; la transformación al estado activo se logra cuando una enzima proteolítica cataliza la hidrólisis de uno o varios enlaces nentídicos en la molécula de la enzima: . . como consecuencia de esta proteólisis limitadase produce una transconformación de la enzima que la hace activa, este caso no deja de ser una variedad de modificación covalente,pues se produce mediante la ruptura de enlaces peptidicos, aunque se dife- rencia por su carácter irreversible. A este tipo demecanismo está asociada una gran amplificación, pues a veces basta con la ruptura de un solo enlace peptídico para provocar la transformación de un número considerable de moléculas del sustrato. Este mecanismo resulta de gran importancia en el proceso de la coagulación sanguínea (capítulo 63), así como en la activación de las enzimas digestivas (capítulo 54).

Variación en el estado de ag~egaci6n

Existen enzimas que se presentan en 2 formas,como monómero y polímero,pero sólo presentan actividad en una de ellas, casi siempre el polímero. Este mecanismo de regulación consisteen modular la actividad de la enzima variando su estado de agre- gación; de esta forma los factures que promueven la formación del munómero o la inhibición de la polimerización disminuyen la actividad enzimática, en tanto los que

Page 300: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

favorecen la polimerización la incrementan. El caso mejor estndiado es la acetil-COA carboxilasa, una enzima multifuncional cuya función metahólica se estudia en el capítulo 49.

La enzima es inactiva en su fonna monoménca, pero es capaz deformar poümeros de hasta 20 unidades que exhiben una gran actividad catalítica; el ácido cítrico se une a la enzima y pmmueve la polimerización y es por tanto un activador. Los tioésteres de la coenzima A con ácidos grasos de cadena larga, especialmente el palmítico, favore- cen el estado monomérico y actúan como inhibidores; es interesante que este estado de agregación también se regule por modif~cación covalente del monómero; la proteína quinasa A fosforila a la enzima en un residuo específico de serina e inhibe la polimerización, en tanto La proteína quinasasensible a La insulina (ISPK) lafosforila en otro sitio y estimula la polimerización; de esta forma la actividad de la enzima depen- de de una parte de la concentración de sus efectores alostéricos (cítrico y acil-COA) y de otra del nivel de actividad de las 2 quinasas (ISPK y PK-A).

Cada día se conoce un mayor número de enzimas cuya actividad requiere desu interacción con otra proteína, la cual a su vez está sometida a algún mecanismo de regulación. No se conoce exactamente cómo esta interacción proteína-proteína provo- ca el incremento de la actividad enzimática, tal vez el caso más estudiado es el de algunas enzimas cuya actividad depende de los iones Ca"; este catión puede actuar directamente sobre algunasemimas y modularsu actividad, peroen muehoscarosesta acción reguladora depende de la calmodulina. La caimodulina es una proteína de 148 aminoácidos cuya secuencia está muy conservada de forma filogenética, posee un residuo de lisina en la posición 115 que está trimetilado y es portador de una carga positiva permanente independiente del pH, su estmctura terciaria se caracteriza por presentar 2 dominios globulares, uno en cada extremo, unidos por una hélice a de 7 weltas. En cada uno de los dominios globulares existen 2 sitios de unión para el Cah como se muestra en la figura 17.10.

Fig. 17 .lo. Estructura de la ealmodulina El diagrama muestra la estructura tridimensional de la ealrnodulina con sus extremos, formando los dominios globulares (en azul) y la unión entre ellas (en rojo). Los ci- lindros representan estructuras helieaidales y los círculos verdes los sitios de unión para el CaX*, que como se ve son 2 en cada extre- mo.

Page 301: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Todo parece indicar que la unión del catión provoca una transconformación de la proteína que hace que alguna zona hidrofóbica críptica quede expuesta y por esta zona se producela interacción con otras proteinas; esta unión promueve la actividad de la enzima.

Se conocen numerosas proteínas enzimáticas o no, cuya adividad depende de la calmodulina; entre ellas existe un grupo de proteínas quinasas con variado grado de especificidad, como las proteínas quinasas dependientes de calmodulina 1 y 11, glucógeno fosforilasa quinasa (capítulo 43), la quinasa de cadenas ligeras de miosina, etcétera; almenosuna de las isoformas de la adenilciclasa depende de calmoduüna; un transportador activo de Caz+ que utiliza la energía de la hidrólisis del ATPtambién es dependiente de calmodulina, con lo cual el catión es capaz de regular su propia con- cenkación intracelular.

Otros ejemplos de interacciones de enzimas y proteínas que serán estudiados posteriormente son: la proteína G trimérica con la adenilciclasa y algunas fosfolipasas, la proteína p21K" con proteinas quinasas y la proteína reguladora de la glucoquinasa (capítulo 42).

Este mecanismo consiste en trasladar la enzima de una localización donde es inactivaa otradondees activa y viceversa; los agentes que favorecen la translocalización actúan como activadores o inhibidores según el sentido del desplazamiento, un ejem- plo muy estudiado es proteína quinasa C (PK-C), esta enzima se encuentra habitual- mente en el citosol donde es inactiva, en condiciones que promueven el incremento de la concentración intracelular de Caz+, éste se une a la enzima y favorece su translocalización hacia la membrana nlasmática. donde la enzima es activada nor los diacilgliceroles producidos por la hidrólisis de algunos fosfolípidos de la membrana; de esta forma la enzima y su activador sólo pueden entrar en contacto cuando las concentraciones intracelulares del catión lo permitan.

Otro ejemplo de este tipo es la citidütransferasaque seráestudiada en el capitulo 18.

Cambios en la espeeiñeidad

Se conocen apenas una docena de enzimas cuyo mecanismo de regulación impli- ca cambios en la especificidad de acción, de sustrato o ambos. La actividad de estas enzimas se regula a su vez por diferentes mecanismos como el alostérico, el covalente y la interacción con otras proteinas, en este capítulo sólo se estudiarán algunos a modo de ilustración, pues algunos casos serán estudiados con más detalles en capítulos posteriores.

La lactosa es el azúcar de la leche, la glándula mamaria sintetiza grandes cantida- des de este disacándo durante el período de lactancia y casi nada durante los períodos intermedios. La enzima galactosiltransferasa está presente en numerosos tejidos del organismo que cataüza la transferencia de un grupo galactosilo desde el UDP-galactosa hacia la N-acetil glncosamina para formar N-acetil lactosamina; mediante esta reac- ción la enzima participa en la síntesis de oligosacáridos que después serán incorpora- dos a proteínas en la formación de glicoproteínas, esta enzima también se encuentra en la glándula marnana y su concentración se incrementa durante el período de gestación.

En el momento del parto, por la acción estimulante de algunas hormonas, la glándula mamaria comienza la síntesis de una proteína denominada lactoalbúmina,

Page 302: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

p p p

l q

u + m ~nr~ q

d i

pp

'owJSoJqq-9'z-esolanq el emd u- e[ ua salqepa~de so!quim u!s sawn pez ap quaume esqejso~apepvgae el ap ui~ e1 opepojsoj opqsa la ua 'aued elso ~od :emu!nb ap peppgae el au?p!q!qu! epunjo~d eun aanpo~d as anb eag!ua!s opa 'ope~!~ojsoj ou opqsa lap el a% ~9 9 0s e ahnu!ui.p ui~ el h saaan O€ e oz ap quauine OI~JSOJ-~-~SOIJNJ el med q81 epe~!~ojsoj las IV .v eseupb eu!alo~d e[ aod u?pel!Jojsoj ap og!s la sa ZE enuas eanb 01 ~od<~~as-!~a-a~e-8ie-a~e-~~ epuanaas el quasa~d @u!uua) N ouiallxa la en%un epm ay SS ap seaguap! sapeppmqns z ~od epeuiloj gsa mgydaq euiizua 87

'pep!n!pe ap odg un qs!xa olosope-!uiJa>ap o)uauioui un ua anb elaueui ap 'oleqsns ap h u?!~ae ap sapeppgpadsa se[ a-uauieaugpys .ie!quim opuapeq enleas as euiva qsa ap u?pspaaa ap ouique~a13 'esqejsoj ap peppgae auag 'o)E~soJ-~-~so)~u.I~ Jeuuoj emd o~ejso~s!q-g'iystqe1 ap s!sg?.~p!q e1 ezgelea og!s oqo la :eseu!nb eun owoa epw %as o 'o)ejso~.-9'pes0~3Nj aeuuoj eaed olejsq-9-esol~~j el epeqav lap W~JSOJ odn.18 un aia- solla ap oun 'se~sando sauopaeaa ueqqm anb soa!pe soguaa z auag egzua el

.ea!ledaq el pe!pnIsa as uqpeqsnl! ap opom v.ouis!ueaaw alsa ua uedpgmemp~ea el h eagydaq el 019s sella ap 'sop!pl sa$uaq!p sol ua eagpadsa eaaueuap sep!oqg)s!p uequanaua as anb eui!zua e[ ap semojas! S souaui 01 .~od ua)s~x.(olnljdea) esoanl8 el ap ouiqloqelaui lap ~oquoa la na anep eyzua eun sa qsa

Page 303: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Estos datos indican que la enzima en su estado desfosforilado actúa como una quinasa y en el fosfonlado como una fosfatasa (Fig.17.12).

Estos cambios deespeciñcidad permiten la adaptación del metabolismo hepático de la glucosa a las condiciones del organismo.

Otros ejemplosdeeste meeanismoson: la adenütransferasa de E. diestudiada en este capítulo relacionada con la regulación de la glutamina sintetasa, las quinasas dependientes de ciclinas que serán estudiadas en el capítulo 24 y la ribonucleótido rednctasa que se estudiará en el capítulo 57.

Fig. 17.12. Fosfofruetoquioasa-2/fasfofructofosfatas-2. En la figura se esqwmstiza La regulación de esta enzima bifuncional. En el estado no fosforilada tiene adividad de fosfofructoquinasa transformando la fruitosa-6-fosfato en fruetosa-2,6-bisfosfato; al ser fosforilada por la proteína quinasa A (PK-A) se transforma en la fosfofruetofosfatasa que hidrolira el enlace &ter fosfórico de la posición 2 de la fmctosa-2,6-bisfosfato y la transforma en fructosa4- fosfato. Es una de las pocas enzimas conocidas que calaliza Z reacciones contrarias, en este caso el estado de fosforilaeión de la enzima determina tanto su especificidad de sustrato como de acción.

En este tipo de enzimas se presenta una situación que las diferencian de los casos anteriores. Las isoenzimas son proteínas que catalizan la misma reacción, con los mismos requerimientos pero can propiedades cinéticas y fmicoquúnicas diferentes, lo cual permitió su descubrimiento y estudio.

Aunque existen numemsas enzimas que presentan formas isoenzimáticas, el pri- mer camconocido y el más estudiado es la lactato deshidmgenasa(LDkl); esta enzima existe en todos los tejidos y en todos eUos cataliza la misma reacción.

COOH COOH l - l

NAD+ + HO - c - H Y c = O + NADH + H' l 1

H - C - H 1

Ácido lictico

H - C - H l

H

Ácido pinivico

316 m

Page 304: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En este caso el NAD'es un cofactor que acepta los átomos de hidrógeno separados del lactato por la enzima (capítulo 19).

La iswnzima presente en el corazón tiene una mayor afinidad por el Iactato y está favorecida la reacción de izquierda a derecha, mientras que la isoenzima del músculo esquelético tiene mayor afnidad por el piruvato, lo que favorece la reacción contraria.

La respuesta a esta situación surgió cuando sedescubrió que la LDH está formada por2 tipos de cadenas polipeptídicas y que la molécula contiene en total 4 cadenas.

Como la isoenzima del corazón contiene un solo tipo de cadena se le denominó H (he&= corazón) y al darse la misma situación en el músculo sus cadenas se designaron M (musfle=músfulo). La fórmulasubunitariade estas 2 iswnzimas s e o H M,

4: rrspectivamente; las procedentes de otros tejidos son híhridos que contienen los 2t1pos decadenascuyasfÓmulassubunitarias~e&~,~~y m,y suspmpiedadescinéticas y ñsicoquúnicas son intermedias entre las otras 2 primeras,lo que permite separarlas en -muestra donde exista una mezcla de todas ellas (Fig. 17.13).

O Fig. 17.13. lsoeniimas de la lactatadeshidro- genasa. Las isoenzimar de la LDH están formadas por 2 tipos de ca-

o "4 ",M2 o denas, H y M, que, de acuerda cou la proporción en que aparezca cada una de ellas en el tetrámero, darán origen a las diferentes for- mas de la enzima.

H"3

La presencia de determinada iswnzima confiere características particulares a eta- pas metahólicas en diferentes tejidos, creando un comportamiento diferente ante situa- dones simiiares, esto introduce determinado grado de regulación en cuanto al metaho- lismo del organismo como un todo.

Otro ejemplo interesante es la enzima pimvico quinasa de mamíferos, de la cual existen al menos 3 isoenzimas, la M del músculo y cerebro, la L del hígado y la A que se encuentra en casi todos los tejidos; esta enzima es un tetrámero de 250 kD y las 3 isoenzimas difieren en sus propiedades cinéticas e inmnnoquímicas. El hecho más curioso es que las isoenzimas difieren en su forma de regulación, la M no parece estar regulada, en tanto la A y la L son reguladas de forma alostérica; ambas formas son inhibidas por el ATP y la alanina y activadas por el fosfoenolpi~vato y la fructo- sa-1-6-bisfosfato.

La formación de un número crecientede isoenzimas a partir de un número reduci- do de componentes estructurales pone de manifiesto una idea que hemos venido desa- rrollando a lo largo de eitm tenias y que pudiCramos resumir diciendo: "En los 5iste- mas biológicos la diversidad tiene como fundamento Iü simplicidad.

Resumen

Los organismos vivientes para poder sobrevivir deben ser capaces de adaptar- se a las condidones cambiantes del medio nahiral que los rodea, de esta situad6n se deriva la newsidad de los mecanismos de regulación.

Page 305: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Cuando un sistema o proceso es capaz de variar su comportamiento como respuesta a los cambios que se pmducen en su entorno, de forma que la respuesta direeta o indirectamente, tiende a modiñear el estimulo volviendo a la situaei6u inicial, se dice que este sistema o pmeeso esiá regulado. En la regulaci6n tanto el estimulo como la respuesta tienen earsicter especf6co.

La regulaci6n edmática se reñere a la posibilidad que tienen las enzimas de variar la veloddad de las reacciones que ellas eatalizan, al producirse determina- dos cambios en el medio; esa posibilidad viene dada por earactehticas estructora- les de les enpmaS, que son manifestadones una vez m8s de la estrecha vincuiaci6n entre la estnietura y la funei6n de las b i o m o l ~ . Las mecanismos que regulan la actividad de las enzimas son muy diversos pero pueden agruparse en 2 tipos fundamentales, los que varían la cantidad y los que modiñcan la adividad de las enzmias.

Todo sistema de IPgulaa6n &tira esiá wnsiitnido por varios wmponen- fpS: el receptor que recibe el estímulo, el trausductor que wnvierte el estúnulo en una señal atendible por el sistema, el ampliñcador que aumenta la intensidad de la repuesta y el efeetor que reaüza el cambio adaptativo directamente.

Entre los mecanismo que modiom la actividad se encuentran la modiñeaci6n a l d r i c a y la eovalente.

Las enzimas alostéricas existen en varios estados conformacionales interwnvertibles y en cada uno de eUos presentan una añnidad diferente por sus Ligandos. La uni6n delligando intmduce un cambio conformadonal que se hasmi- te al resto de la molécula, modificando la fnieei6n de centros activos útiles v con eUo la velocidad de la reaCEi6n. Las principales modelos propuestos para ex&ar el meesnismo de las enzimas a i d d e a s son el simébim o concertado v el 8efuenciaL

En lamodioeaeión covaiente la enzima existe en 2 formas de difirente wmm- sidón, motivada por la adición o sustraeci6n de un pequefio grupo unido de mane- ra wvalente alaprotefna e&tica: eada forma de la enzima tiene una actividad euentitativa dif-te y al pasar de I& estado a otro cambia la fracción de centros activos 6itües. Los tipos mis difundidos de modificación covalente son la fodorüad6ndesfodorüaci6n, la adenüación desadenilaci6n y el intercambio de suifihidrilos dinuPuros, tanto el alosierismo wmo la modiñraei6n mvalente pue- den observarse en proteínas que no tienen Carseter edmático.

Casi siempre a los mecanismos de modüíd6n covalente esiá asociada una gran ampliñcaci6n debido a que entre el receptor y el efeetor existen numerosos intermediarios enzimátiecw.

Otros mecanismos de rrguladónmenosditundidosenlosseresvivos son los de la prote6üsis limitada, en el cual las enzimas se sinteoZan wmo piefur~ores inac- tivos y se acüvan por la mptura de enlaces peptidicos, la varia0611 en el estado de agmgaci6n de las enzimas que exisíen como mon6meros y poIímem de diferente acüvida& por la interaeeión de la enzima con otra proteína no enzimatica que generalmente la activa, por el cambio de loraüzad6n celular y por cambios en la . . espeeifieidad de d 6 n , de gustrato o ambos.

Las LweaPmas son formas diferentes de una misme enzima que se difexencian en sus propiedades &éticas y üsiwquímicas y hacen que las reacciones que ellas catalizaa presenten earaeterúlticas diferentes en los tejidas donde se encuentran. El caso más conocido es el de la enzima lactato desüidrogenasa que cataliza la con- versi6n reversible del lactato en piruvato.

Ejercicios

1. ¿Por qué para poder asegurar que un sistema esiá regulado la respuestadebe modi- ficar al estímulo inicial?

2. ;Por qué podemos afirmar que los mecanismos de regulación enzhática son una expresión del principio de máxima economía?

Page 306: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

3. El fenómeno de cooperatividad se asocia generalmente a las enzimas alostéricas. ¿Pudiera usted explicar una situación en que una enzima no alostérica mostrase un efecto cooperativo?

4. ¿Por qué se afirma que el modelo secuencia1 puede explicar los efectos cooperati- vos heterotrópicos, mientras que el simétrico uo?

5. ¿Cuál es la razón de que los modelos que tratan de explicar el comportamiento de las enzimas alostéricas supongan que éstas presentan estructura cuaternaria?

6. Haga un esquema que explique la regulación de la fosfofructoquinasa por el ATPy el ADP,según el modelo a) simétrico y b) secuencial.

7. Dos procesos metabólicos se regulan por modificación covalente y por fosfo- rilación desfosforilacióo, si en uno hay 3 quinasas intermedias con una kv*, de 120 min-', y en el otro 4 con k C , de 80 min-', calcule el grado de amplifica- ción para cada uno de ellos.

8. Existe una ruta metabólica en la cual la sustancia A puede ser convertida en D según varias reacciones, por otra parte D se convierte en A. ¿Pudiera usted diseñar un sistema de regulación tal que cuando la célula necesite la sustancia D, la vía funcione sólo en la dirección A -+ D, y cuando necesite la sustancia A funcione sólo en el sentido D -- + A?

Page 307: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

La función fundamental de las enzimas es su participación en el metabolismo celular; el metabolismo celular está compuesto por miles de reacciones químicas catalizadas por enzimas y que ocurren de manera simultánea, estas reacciones se en- cuentran organizadas en vías o rutas que están en relación con la transformación de una sustancia, donde el producto de una reacción es el sustrato de la siguiente; cada vía consta de un número determinado de reacciones y de enzimas. El conjunto de enzimas que participa en una vía metabólicase encuentraorganizado deforma carac- terística.

El primer nivel de organización viene dado por la distribución citotopográfica de las enzimas, por su ubicación en los diferentes compartimentos celulares, que dentro deéstos cada uno de los conjuntos enzimáticos se organiza en variadas formas, pueden estar disueltas en el medio o unidas a las membranas, así como presentarse en forma aislada o en estructnras organizadas con diferente grado de complejidad.

La organización de las enzimas con1ribuye a la eficiencia de las vías metabólicas, eliminando la formación de productos secundarios con lo que se logra la formación del mayor número posible de moléculas del producto a partir del sustrato, las vías metabólicas también funcionan de acuerdo con el principio de la máxima eficiencia.

En este capítulo se estndiarán las diferentes formas de organización de las enzimas y las características que derivan de cada una de ellas.

Citotopograña de las enzimas

Todas las enzimas se sintetizan en el interior de las células y la mayoría realiza allí sus funciones, pero otras son segregadas y funcionan en la matriz extracelular: la sangre, el tnbo digestivo u otros sitios del espacio extracelular. El número de diferentes tipos de reacciones químicas en cualquier célula es muy grande; una célula animal tipica por ejemplo, puede tener entre 1 000 y 4 000 tipos diferentes de enzimas, cada una cataliza una reacción única o un grupo de reacciones íntimamente relacionadas.

Algunas reacciones catalizadas por enzimas son comunes a la mayoría de las Células y por eso hay enzhas que están presentes en casi todos los tejidos del organis- mo. Este grupo incluye no sólo aquellas enzimas relacionadas con la síntesis de proteí- nas, ácidos nucleicos y fosfolípidos, también las que catalizan la oxidación total de la glucosa hasta CO, y H,O, que produce la mayor parte de la energíametabólka utiliza- da por la célula.

Page 308: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Algunos tipos de células -el hepatocito, las neuronas- llevan a cabo reacciones químicas que son exclusivas de estas células y, consecuentemente, algunas enzimas se encuentran sólo en determinados tipos de células. Por último, muchas células -incluyendo los eritrocitos y las células epidérmicas- han madurado hasta un estado que ya no son capaces de sintetizar proteínas ni ácidos nucleicos, aun cuando estas células contienen grupos específicos de enzimas que ellas produjeron en estados tempranos de su diferenciación.

Ladistribución intracelular de las enzimas constituye sin lugar a dudas un nivel básicode organización, pues ella está determinada de manera genética, lo que signifi- ca que el material genético no sólo contiene la información sobre el tipo de enzima que una célula puede formar, sino además de cuál será su ubicación dentro o fuera de la célula.

En los diferentes compartimentos celulares se agrupan las enzimas que están rela- cionadas funcionalmente en un proceso metabólico determinado, de esta manera todas las enzimas que participan-en el proceso de conversión de glucosa en pirúvico se encuentran localizadas en el citosol. Un gran número de enzimas hidrolíticas que intervienen en los procesos de digestión celular se localizan en los lisosomas. Las enzimas relacionadas con la síntesis de Iípidos se encuentran ubicadas en el retículo endoplásmatico liso (REL), y las relacionadas con la glicosilación de Iípidos y proteí- nasse encuentran en el REL y en el aparato de Golgi.

Sm embargo, en ocasiones, para la transformación total de una sustancia se requie- re la participación de enzimas ubicadas en más de un compartimento, como el caso de la síntesis de la urea dondeparikipan enzimas del citosol y de las mitocondrias; estos compartimentos casi siempre están separados del resto de la célula por una estmctnra membranosa, aunque en ocasiones no sucede así, las enzimas se encuentran unidas a componentes del citoesqueleto y mantienen una posición relativamente fija dentro de la célula.

Aun dentro de cada compartimento puede existir una distribución característica de las enzimas, de esta forma se sabe que las ARN polimerasas se encuentran en el núcleo,pero en tanto la polimerasa 1 se lofaliza en el nucléolo, la 11 y la 111 se hallan en el nucleoplasma. Las enzimas mitocondriales pueden tener distinta ubicación dentro del organelo, las relacionadas con el ciclo de Krebs se encuentran en la matriz mitocondrial, asícomo las de la cadena transportadora de electrones y la fosforiiación oxidativa en la membrana interna, algunas están en el espacio intermembranoso y otrasaun en lamembrana externa.

Un aspecto interesante es la distribución de las isoenzimas, pues cada tipo se encuentra en un compartimento determinado, existe una malato deshidrogenasa del citosol y otra de las mitocondrias; lo mismo sucede con algunos grupos de enzimas como los que forman el b-hidroxi-B-metil-glutarii-COA a partir de acetü-COA que están presentes en el citosol y en las mitocondrias; en este caso la citosólica funciona en la esteroidogénesis, en tanto la mitocondrial en la cetogénesis.

Como todas las membrana3 celulares poseen permeabilidad selectiva muchos de los intermediarios de vías metabólicas se ven limitados a moverse dentrode un com- partimento determinado, sin poder abandonarlo o deben disponer de mecanismos específicos de transporte; en este compartimento seencuentrala o las enzimas que lo transforman, asíocurre con el ácido oxalacético o la acetil-COA, que una vez formados dentro de la mitocondria no pueden salir de este compartimento.

Es bueno señalar que esta distribución de las enzimas ha dado lugar a la aparición de un mecanismo de regulación denominado compartimentalización que será esiudia- do en detalle en el capítulo 61.

Formas básicas de existencia de las enzimas

El trabajo de purificación de las enzimas comenzó hace más de 100 años y alcanzó su primer éxito notable cuando en 1926 Northropobtuvo la ureasaen formacristalina;

Page 309: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

desde entonces se emplean diversos procedimientos para la obtención y purificación de las enzimas. De acuerdo con esos procedimientos se distinguen 3 formas básicas de existencia de las enzimas en la célula: las enzimas libres -solubles o simples como se llamarán aquí-, los sistemas o complejos multienzimáticos y las enzimas multifuncionales.

EazimaF simples

Unaenzima simple es aquélla que cataliza una reacción única como las descritas enel capítulo 16,a propósito de la clasificación. Estas enzimas pueden estar forma- das por una sola cadena polipeptídica como la hexoquinasa animal, que cataliza la fosforilación de varias hexosas y está constituida por una cadena polipeptídica de 100 kD, o estar compuestas por varias subunidades. Estas subunidades pueden ser iguales, como en la glutámico deshidrogenasa que convierte este aminoácido en ácido a-ceto-glutárico y está formada por 6 subunidades idénticas de 50 kD, cada una para un peso total de 336 kD; o diferentes como el caso de la glucógeno fosforilasa quinasa, mencionada en el capítulo 17, que está formada por 4 tipos de subunidades diferentes, cada una se encuentra representada 4 veces en la molécula con lo cual contiene de esa forma 16 subunidades con un peso total de 1300 kD. En todos los casos se trata de una sola reacción.

El término de libres o solubles viene dado por el hecho de que con los procedi- mientos tradicionales de obtención y purificación de las enzimas éstas se obtenían separadas del resto de los componentes celulares, lo que hacía pensar que se encontra- ban libres en las células, o sea, que durante el proceso catalítico estas enzimas no entraban en contactofisico con otras y que la formación del complejo enzima - sustrato era un proceso azaroso, que dependía fundamentalmente de la posibilidad de choque entre la enzima y su sustrato cuando ambos difundían de forma libre en el interior de la célula. Investigaciones recientes no parecen confirmar estas ideas.

Complejas muitienzim8ticos

El término sistema o complejo multienzimático se refiere a aquellas agmpaciones de enzimas que son posibles de obtener con los métodos tradicionales y catalizan varias reacciones relacionadas con una vía metabólica.

En estos casos siempre presentan una estructura compleja compuesta de varias subunidades y en ocasiones se caracterizan porque, al disociarse el complejo, ninguno de los componentes por separado presenta actividad catalítica, lo que sugiere Ia nece- sidad de las interacciones proteína-proteína para la realización de la catálisis.

En este tipo de organización las diferentes enzimas que forman el complejo se encuentran unidas por fuerzas no covalentes, lo que hace posible su disociación; este hecho representa un importante contratiempo en el proceso de purificación. A -

En estos complejos los intermediarios metabólicos entre el sustrato y el producto J son transferidos prácticamente del centro activo de una enzima al de la siguiente, sin que exista la posibilidad de su separación de la superficie de la enzima y el proceso gana eficiencia (Fig. 18.1).

Un ejemplode este tipo de organización es el complejo pirúvico deshidrogenasa de los mamíferos, en su organización intervienen 5 tipos de enzimas que están repre- sentadas en proporciones diferentes en la estructura del complejo. La boloenzima contiene 30 moléculas de una descarboxilasa (cada una formada por 2 tipos de subunidades para una fórmula a,$,) de 152 kD cada una; 60 copias de la lipoil

Fig, 18,1, multienrimáticos, Va- tramacetilasa de 52 kD cada una y 30 de la düiidrolipoil deshidrogenasa de 110 kD cada rias enrimas sc unen por fuerzas una; además, contiene de 2 a 3 moléculas de la pimvato dghidrogenasa quinasa (formada no cavalentes y forman un grail

por una cadena a de 48 kD y una p de 45 kD) y varias copias de la pimvatu deshidrogenasa complejo que cataiiaa reacciones

fosfatasa que intervienen en el mecanismo de modificación covalente de la enzima. sucesivas en una vía mctnh6licri.

Page 310: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Desde el punto de vista teórico el descubrimiento de estos complejos tuvo una enorme importancia, pues le proporcionó una base fisica incuestionable al concepto de vía metabólica.

Se ha podido demostrar recientemente que en eucariontes, y sobre todo en mamí- feros,existe una forma peculiar de organización de las enzimas queintervienen en una vía metabólica; estas enzimas están formadas por una cadena polipeptídica de gran tamaño,capaz de realizar varias actividades enzimátim relacionadas, sonlas Ilama- das enzimas multifuncionales.

Estas em¡mas presentan 2 propiedades caracterisocas. demaneraestructural consian de una cadena polipeptídica y funcionaimente tienen actividades catalíticas múlti- ples, lo cual implica que los centros activos de las ~roteínas se generan como conse- cuencia de los plegamientos de sectores contiguos de la cadena polipeptídica, que producen estructuras globulares autónomas o dominios. cada uno con una actividad &ecítica pero diferente (Fig. 18.2).

A

Fig. 18.2. Enzimas multifuncionales. Una sola cadena polipeptidica se pliega de tsl forma que da origen a varios centros activos, lo que permite cataiizar vanas reacciones sucesivas.

Un ejemplo notable de este tipo de organización es el complejo acetil-COA carboxüasa de los mamíferos. La enzima activa es un oolímero con un oeso de 4 000 a S 000 kD que puede ser disociada en protómeros inactivos de 400 kD cada uno; como el protómero presenta las funciones de biotina carboxilasa, proteína portadora de carboxibiotina, transcarboxilasa y lazonade regulación alostérica,cadaprotómero es por tanto una enzima multifuncional.

Como en el caso de los complejos moltienzimáticos estas enzimas no permiten la fuga de los intermediarios aumentando la &en- una cadena polipeptidica única la &tesis de todas las actividades enzimátim puede ser r e g u l a d a d e m a n e r a m r s m a d a , p i e s s e ~ d e ~ n ~ h ~ ~ d e m p ~ ~ e ~ p I o mássobrrsaliente a l a sintetasa de ácidosgnmx que será emidiada en el capítnlo 49.

Enzimas unidas a membranas

Los sistemas membranosos constituyen una fracción importante de los com- ponentes celulares, estos sistemas no sólo separan un compartimento celular de otro sino que muestran diferentes funciones, como actividades enzimáticas, debi- do a la asociación o integración de algunas enzimas con los componentes estruc- turales de las membranas.

Page 311: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Las enzimas que forman parte de las membranas se diferencian estructuralmente de las que aparecen en el interior de los compartimentos, porque en su estructura (al menos la que está en contacto con la membrana) los residuos apolares se colocan hacia el exterior y los polares hacia el interior.

De acuerdo con la posición relativa del sustrato y el producto de la reacción, con respecto a la membrana, podemos clasificar las enzimas membranosas en 2 grandes grupos: las no vectoriales y las vectoriales.

Las enzimas no vectoriales son aquéllas que ligan el sustrato y liberan el producto del mismo lado de la membrana, en el interior, o en el exterior (Fig. 18.3).

Fig. 18.3. Enzimas membranosas no veetoriales. El centro activo de la enzima está orientado de forma asimétriea en la membrana.

Un ejemplo sobresaliente por su importancia en muchos mecanismos de regula- ción es la enzima adenüciclasa que cataliza la transformación del ATPen AMPc como respuesta a determinados estímulos hormonales. Esta enzima está formada por una cadena polipeptídica que atraviesa la membrana 12 veces con 2 grandes dominios citoplasmáiicos,uno enhe las hélices transmembmales 6 y 7, y otroenla zonacarboxüo terminal; se supone que el primero de estos 2 dominios es el responsable de la activi- dad catalítica de la enzima (Fig. 18.4).

Fig. 18.4. Estructura de la adenil cielasa. Esta importante enzima está for- mada por 2 grandes regiones transrnembranales, separadas por un gran dominio eitaplasmático y termina con un largo dominio C terminal; en cada uno de los do- minios trsnsmembranales, la cade- na polipeptídicri atraviesa la mem- brana 6 veces mediante estructu- ras helieoidales, esta estructura se asemejaalade los transportadores membranales de iones.

Page 312: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Las enzimas vectoriales, por el contrario, son aquéllas que ligan el sustrato en una cara de la membrana y liberan el producto en la otra, de esta forma tienen una doble función como enzimas y transportadores (Fig. 18.5). A este gmpo pertenecen enzimas relacionadas con la glicosüación de proteínas en el REL y el aparato de Golgi, que ligan un monosacárido y su coenzima del lado citosólico y liberan el monosacárido activado en la cara luminal de estos sistemas membranosos.

Fig. 185, . Enzimas membranosas veetoriales. La enzima liga el sustrato de un lsdo de la membrana y libera el producto del lado opuesta.

En el capitulo 39 se estudiarán los transportadores de electrones de la cadena respiratoria, cuya actividad vectorial crea un gradiente de protones imprescindible para la síntesis de ATP.

Un ejemplo interesante de enzimas que pueden encontrarse unidas amembranas o libres en el citosol esla citidiltransferasa que participa en la síntesis de fosfátidos de glicerina y esfingolípidos que tiene lugar en el retículo endoplasmático liso con 3 enzimas que forman parte de las membranas del retículo. Esta enzima está regulada de diferentes formas, es activada por fosfolípidos y ácidos grasos e inhibida por el CTP y la fosfocolina; por otra parte, la enzima puede ser modificada por fosforilación desfosforüación y la forma activa es la no fosforüada. La fosforilación de la enzima determina su disociación de las membranas del retículo. mientras la forma desfosforiladaestá unida a las membranas, esto hace que la enzimaesté en su forma activa cuando está con las demás enzimas que participan en el proceso.

En ocasiones en las membranas se forman grandes complejos proteínicos en los cuales participa al menos una enzima que resulta el elemento fundamental, tal es el caso del sistema de la glucosa-6-fosfa&a. Como ya se ha estudiado, esta enzima cataliza la hidrblisis de la glucosa-6-fosfato y es muy importante en la regulación de la glicemia, como se verá en los capítulo 42,43 y 44.

Este sistema forma parte del retículo endoplasmático liso y está constituido por 6 proteínas: una proteínade363 kDcon actividad catalítica (G6P),cuyocentro activo es accesible desde la cara luminal de la membrana y es el componente principal del sistema,esta pmteína no sólo hidroüzaa la glueosa&fosfato, sino también al pimfosfato y el carbamil-fosfato; el segundo componente es una proteína estabilizadora (SP) ligante de Caz+ de 21 kD, que sóloesaccesiblepor el ladocitosólico; el tercer campo-

Page 313: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

nente es la proteína T1 que actúa como un transportador de glucosa-6-fosfato pero no está muy bien caracterizada; el siguiente componente es el transportador de glucosa GLUT7 que presenta una elevada Km para la glucosa y además están presentes las proteínas T2a y T2h que actúan como transportadores de fosfato,la T2b es una proteí- na de34 kD que también puede transportar pirofosfato y carbamil-fosfato.

El funcionamiento de este sistema puede ser descrito de la forma siguiente: cuan- do aumenta en el citosol la concentración de glucosa-6-fosfato, ésta es transportada por T1 hacia la luz del retículo donde es hidrolizada por la unidad catalítica; la gluco- sa es transportada hacia el citosol por la GLUT7 y sale al exterior de la célula por el transportador de la membranaplasmática (GLUT2 enel hígado); elfosfato es transpor- tado por T2a ó T2h hacia el citosol donde se vuelve a utilizar por la célula (Fig. 18.6).

@-O-CH, HO-CH,

~0:~ :aoH HO

10H " t O /y

Fenómeno de eanalizaci6n

En muchas vías metabólicas existen sistemas multienzimáticos o enzimas multifuncionales que catalizan reacciones sucesivas. Evidencias recientes indican que hay interacciones específicas entre enzimas simples o solubles relacionadas funcionalmente, estos complejos han sido descritos tanto en procariontes como en eucariontes. Además se indica que en la célula existen pocas enzima libres si es que hay alguna; también parece ser que a menudo estos complejos enzimáticos se encuentran unidos a componentes estnifturales de la célula.

Una consecuencia importante de estos hallazgos es quemuchos metabolitos pasan deun centro activo a otro sin equilibrarse con el resto de los metabolitos de la célula, este fenómeno recibe el nombre de canalización. Desde este punto de vista se distin- guen 2 tipos de vías metabólicas, aquéllas que producen intermediarios mulüutüizables y aquéllas donde sólo el productoñnal es útü, un ejemplo del primer tipoes la glucÓüsiS donde la glucosa-6-fosfato y kifosfodibidroxiacetonasonuaüzadm demúloplesfonnas, y del segundo la síntesis de proteínas dondelos intermediarios no presentan funciones metabólicas, pero síel producto terminado.

Fig. 18.6. El sistema de la glucosa-6- fasfatass. Este sistema complejo está incluido en la membrana del retículo endoplasrnático lisa y está formado por 6 proteínas. Las fle- chas indican el movimiento de cada una de las sushncias implica. das en el proceso.

Page 314: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 18.7. El fenómeno de canalización. Tres enzimas eslán relacionadas de ma- nera funcional, pues el producto de una es sustrato de las otras 2; si no existe canalización (a), los pro- ductos C y D se obtendrán en pro- porciones casi iguales. En (b) se observa que al existirinteracciones entre las enzima8 E, y E, sólo se forma una de los productos posi- bles, lo mismo ocurre en (c), pero o n otra combinación de enzimas.

Un ejemplo hipotético proporcionará una idea más acabada del fenómeno de canalización; suponga que la enzima E, transforma al sustrato A en el producto B, que puede ser sustrato de la enzima E,, que lo transforma en C o de la enzima E, que lo transforma en D (Fig. 18.7).

Si en una mezcla de reacción se colocan el sustrato A y las 3 enzimas (supuesta- mente de una actividad catalítica similar), al alcanzarse el equilibrio se puede encon- trar uno de estos 3 resultados:

1. Se forman cantidades equivalentes deB, C y D. 2. Se forma sólo el producto C. 3. Se forma sólo el producto D.

En el primer caso no existe canalización, pues el intermediario B se libera de la enzima E, y difunde libremente, por lo cual tiene igual probabilidad de encontrarse con E, que con E,. En el resto de los 2 casos existe canalización, el producto B no se libera de la enzima E, sino que es transferido de forma directa al centro activo de E, en un caso, o de E, en el otro; esto es posible si las enzimas están unidas físicamente en forma de un complejo. Algunos experimentos han permitido establecer la existencia de este fenómeno y de interacciones entre las enzimas en numerosos casos.

Una ventaja de estas agrupaciones está representada por el hecho de que muchos de los intermediarios en rutas metabólicas se presentan en forma solvatada, pero la capacidad de solvatación de la célula es limitada. La canalización "sustrae" esos intermediarios de manera que mantiene el grado de solvatación de la célula en niveles muy bajos.

También es posible controlar la actividad de esas enzimas haciéndolas pasar del estado libre al asociado y viceversa.

Asociaciones sup~nenzimáticas

Muchos ejemplos pueden citarse de este tipo de asociaciones que intervienen los 3 tipos básicos de presentación de las enzimas. Estas asociaciones han sido descritas en el proceso de replicación del ADN (capítulo 25) del fago T4 que consta aproxima- damente de 7 enzimas diferentes. En eucariontes se ha aislado un complejo formado por 6 enzimas que aparece sólo en el momento de la síntesis del ADN.

Un ejemplo sobresaliente lo constituyen los gránulos de glucógeno, extraídos de músculo esquelético, que están formados por alrededor de 50 % de proteínas. Se ha podido demostrar que la mayoría de esas proteínas son enzimas del metabolismo del

Page 315: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

glucógeno, la glucógeno fosforilasa b, la glucógeno fosforilasa quinasa, la glucógeno sintasa, la fosfoproteína fosfatasa 1 y la proteína qninasa dependiente del AMPc; además se ha demostrado que estos gránulos contienen también todas las enzimas de la glicólisis, pues en ellos es posible la formación de lactato a partir del glucógeno.

Se ha observado que las propiedades cinéticas de algunas de esas enzimas son diferentes cuando forman parte del gránulo y cuando se encuentran libres en disolu- ción, tal es el caso de la fosfoproteína fosfatasa 1 que es activa en la partícula pero inactiva en solución.

Otro ejemplo muy demostrativo tiene lugar durante la síntesis de nucleótidos de pirimidina; toda la vía está catalizada por una enzima simple y 2 multifuncionales, la primera enzima quees trifuncional forma el ácidodibidro-oróticoa partir de NH,, CO, y aspártico. El dibidro-orótico es oxidado y pasa a ser ácido orótico por una desbidrogenasa que está unida a la membrana mitocondrial externa, y por último, una enzima bifuncional convierte este ácido orótico en uridinmonofosfato.

El hecho de que todos los intermediarios se mantengan en una concentración muy bajadentrode la célula, puede indicar quelas 2 enzimas multifuncionales se asocian ala enzima simple en la membrana mitocondrial, de forma que se produzca el fenóme- no de canalización. Un complejo similar se forma durante la síntesis de los ácidos grasos donde intervienen 3 enzimas multifuncionales, la citrato liasa, la acetil-COA carboxüasa y la sintetasa de ácidos grasos; cuando el citosol se somete a centrifugación en gradiente de sacarosa se obtiene una fracción de elevado peso molecular que con- tiene a las 3 enzimas.

Ejemplos como éstos se han reportado en el metabolismo de los aminoácidos, la oxidación de ácidos grasos, síntesis de fosfolípidos y esteroides, en la glicólisis y en el ciclo de Krebs. El ejemplo más asombroso de estas asociaciones enzimáticas es el complejo de preiniciación de la transcripción por la ARN polimerasa 11; esta enzima está formada por 12 subunidades y a ella se unen durante la formación del complejo másde 30 proteínas, muchascon actividad enzimática formando un complejo que por su tamaño es mayor que la subunidad menor del ribosoma.

Estas formas características de organizarse los sistemas enzimáticos en la célula constituyen una evidencia m& de que los sistemas biológicos operan según el princi- pio de la máxima eficiencia.

TopOgraña de las e-

Como se ha visto, el centro activo es una zona pequeña en comparación con el tamaño total dela enzima, por ejemplo, la glucosa ocupa un volumen que es aproxima- damente el 1 % del volumen de la hexoquinasa ¿Cuál es entonces la función del resto de la molécula?

En primer momento se pensó que el resto de la molécula sólo tenía la función de mantener la arquiteciura tridimensional del centro activo, pues es sabidoque agentes desestabilizantes de esta estrnctura afectan de manera notable la actividad catalítica. Esiudios experimentales, sin embargo, demuestran que en algunas enzimas se puede eliminar una parteconsiderable desu estmctura sin afectar sensiblemente su capaci- dad catalítica.

En la zona no catalítica de la enzima es donde radican los sitios de unión para efectores que regulan su actividad y, como se estudió en el capítulo 17, en algunas enzimas son varios los sitios de este tipo. Otra función es determinar la localización intracelular de la enzima, cada proteína contiene en su estrnctura secuencias específi- fas de aminoácidos que funcionan como señales de localización intra o extracelular. Sesabe que la secuencia lkina-aspártico-glutámico-lisina dirige a las proteínas hacia el retículo endoplasmático; otras enzimas (como los zimógenos) poseen zonas de ple&%niento que no permiten la accesibüidad al centro activo y las mantienen inacti- vas hasta Llegar al sitio donde desarrollan su función; en ese lugar y generalmente por

Page 316: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

mecanismosde proteólisis limitada es retirada una pequeña porción de la proteína, lo que pwmite el acceso al centro activo.

Otrafunción derivada de los aspectos discutidos en este capítulo es que las enzimas deben contener una zona de reconocimiento, que permita su asociación específica con otras enzimas las cuales participan en reacciones sucesivas de una vía metabólica, de forma tal que pueda producirse la canalización de los intermediarios.

Las proteínas que se disuelven en agua se pliegan de manera que los residuos polares quedan hacia el exterior en contacto con el disolvente. Tanto el centro activo como otros sitios de la enzima requieren que residuos hidrofóbicos sean accesibles desde el exterior como sucede con la quimotripsina. La exposición de esos gmpos hacia el exterior es desfavorable desde el punto de vista energético y puede provocar la agregación y precipitación de las enzimas. Para que puedan permanecer solubles deben poseer gran número de residuos hidrofílicos en la superficie para compensar el efecto de los hidrofóbicos.

Por úliimo, hay otro factor que contribuye al gran tamaño delas enzimas y es que las proteínas presentan regiones que reflejan su proceso evolutivo. Como todas las proteínas hansurgido de otras proteínas, muchas contienen secuencias de aminoácidos de sus antepasados pero que, al parecer,no son imprescindibles para su funciouamien- to actual.

Resumen

El metabolismo eelular está formado por miles de reacciones qoímicas que ocurren de manera simultánea en el interior de las células, todas eUas cataüzadas por enrimas. Las e d m a s que participan en una vía metab6lica presentan una forma eeraeterlstica de organi7aciÓn; un primer nivel de organización viene dado por la ubicación intraeelular de las e d m a s en mmparhentos separados unos de otros, por membranas o por otsos cnmponentes cslnlares, de esta forma exisien enzimas nucleares, lisosomales, mitncondriales, etcbtera. Este grado de cnmpartimentación puede aún ser mayor si existe una topogdik e s p d c a de las enzimaa dentro de cada wmparümento.

Las e d m a s pueden enmutrarse en 3 formas hindamentales: las denominadas simples, que son aquéiias que catalizan unareaeeión s e n d a aunque mi estructura puede ser muy compleja; los complejos multieiizimsticns que es& formados por agrupaciones de enzimas unidas por fuerzas no cmalentes y que catalizan varias reacciones sucesivas en una vía metabóüca, y las enzima8 multiiüncionales, que sw emzimas de gran tamaño formadas por una cadena polipeplídica que, en el plegamiento que da lugar a la eshpciura tereiarig forman varios centros activos que les permiten la catsilisis de varias reaeOones sucesivas en una vía metab6lica.

Estas formas de las enrimas pueden encontrarse solubles en el c i t o p h a o unidas a mmpouentes esbucturales de las eélulas, donde las membranas mnstlh- yeu el máximo exponente. Las enzimas unidas a membranas pueden ser no vectoriales, si ügan el sustrato y liberan el producto del mismo lado de la membra- na, y vectoriales si ligan el wsbato y liberan el producto en lados diferentes de la membrana aetusndn a la vez mmo enzimas y transportadores.

Estas formas de organización de las enrimas permiten que los intermediarios pasen de un centro acíivo a otro sin equüib- mn el mnjoato de mmpuegtcs de la eélnla, fen6meno que ha recibido el nombre de cauaüzacióa

Las enzimas simples, los complejos multienzim6ticos y las enzimas multifuncionales pueden agruparse formando grandes asociacioues supraeozimaücas que cataüzan una vía metabólica wmpleta y, que en ocasiones, pueden estar unidas a membranas intraeelulares.

Estas situsaoues estudiadas aportan nuevos elementos sobre el problema del tamaño de las enzima8, pues además de los facture4 ya wnocidos se precisa la

Page 317: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

exisiencia de mnas de intemd6n que permitan su amiación con otras enzímas, al menw en algún momento de su funcionamiento.

1. ¿Por qué podemos afirmar que la distribución de las enzimas en el interior y exte- rior de las células constituye un nivel de organización de éstas?

2. ¿Qué ventajas tienen las enzimas multifuncionales sobre los complejos multienzimáticos?

3. ¿Cuál cree usted que debe ser la principal característica estructural de las enzimas vectoriales?

4. ¿Qué ventajas generales presenta el fenómeno de canalización? 5. ¿Por qué la existencia de canalización puede ser un indicio de asociaciones

supraenzimáticas? 6. ¿Por qué son tan grandes las enzimas?

Page 318: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En numerosas ocasiones para poder catalizar una reacción, además de la enzima, se requiere de otra molécula de bajo peso molecular -en relación con el peso de la enzima. Estas moléculas realizan diversas funciones que contribuyen de manera deci- siva al desarroiio de la reacción, son los Llamados cofactores enzimáticos. Los cofactores enzimáticos son necesarios en muchas reacciones, ya que las enzimas poseen en la cadena R desus aminoácidos un númerolimitado degmpos funcionales que no inclu- yen todos los necesarios para intervenir en los mecanismos de las reacciones metabólicas; aunque en algunos casos los cofactores no presentan grupos diferentes a los presentes en la enzima, como el -SH o el -S-S-, que no son diferentes a los de la cisteha y la cistina. Las características estmcturales de estos cofactores le confieren ca~acidad de translocación mover sus gmoos reactivos de un sitio a otro dentro de la - . molécula- que no pueden realizar ninguno de los aminoácidos proteínicos; estos mo- vimientos pueden ser esenciales en algunas reacciones metabólicas catalizadas por complejos mnltienzimáticos.

Aun cuando la función determinante la desempeña la enzima, y de ella depende tantola especificidad deacción comola del sustrato,la participación de los cofactores es imprescindible, pues se ha comprobado que sin ellos hay reacciones que no son posibles.

En este capítulo se estudiará cada uno de los cofactores enzimáticos conocidos tanto de forma eshuciural como funcional. Este conocimiento es necesario para mejor comprensión de las miasmetabólicas en particulary de la actividad celular engeneral.

Tipos de cofaetores

Desde el punto de vista de su estmctura química podemos distinguir 2 tipos de cofactores: los iones inorgánicos y los compuestos orgánicos, a estos últimos se les denomina coenzimas.

No se ha podido elaborar una clasificación funcional de los cofactores, aunque algunos participan en un tipo de reacción, otros intervienen en un número tan variado qnenoes posible atribuirlosa ningún grupo.

Otro criterio utilizado anteriormente fue el grado de fortaleza de la unión entre el cofactor (especialmente las coenzimas) y la proteína enzimática, designando como coenzimas aquéllas que se unían débilmente y podían separarse por diálisis, y gmpos prostéticos a los que se unían de manera fuerte, en ocasiones de forma covalente, que

Page 319: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

no eran separables por ese procedimiento. En este caso cabe la misma observación que en el anterior, ya que hay algunos tipos de cofactores que siempre se unen de manera fuerte a la enzima, en tanto otros unas veces se ligan con fuerza y otras no. Los ejem- plos de cada caso se verán en todo el capítulo.

Formas de actuar los cofactores inorgánicos

Los iones inorgánicos participan en un amplio y variado número de reacciones bioquímicas; seestima queuna tercera parte de las enzhas requieren de un ion inorgá- nico en algún momento de la catálisis.

Los cofactores inorgánicos son casi siempre cationes divalentes como el Mg"', Cah, Mn2+, Znh, Fe2+, etcétera, aunque también pueden ser monovalentes como el Kt e incluso aniones como el CI-; algunos de estos iones se encuentran unidos tan fuerte a la enzimaque se pueden obtener juntocon ella en el proceso desu purificación,otros lo hacen tan débil que una vez purificada la enzima deben ser añadidos para que ésta recobre su actividad.

Aunque intervienen en múltiples reacciones podemos distinguir 3 formas funda- mentales de actnar:

1. Contribuyen a la unión entre la enzima y el sustrato, como si fueran una especie de "puente iónico" entre estos 2 componentes de la reaccián,como el caso del Mg2+ en las quinasas.

2. Estabilizan la proteína enzimática en su conformación más activa y de esta forma contribuyen a la catálisis, éste es el caso del Cahen algunas lipasas.

3; Constituyen de por sí el centro catalítico principal, pero al unirse a la proteína enzimática aumentan su eficiencia y adquieren especificidad, es el caso del Fe2' en numerosas oxidorreductasas.

En ocasiones resulta difícil distinguir cuándo uno de estos elementos actúa como cofactor y cuándo como activador.

Formas de actuar las coenzimas

Las coenzimas pueden defuiirse comomoléculas orgánicas que poseen propiedades fisicoquímicas específicas, que no forman parte de la cadena polipeptídica de las enzimas y actúan junto con éstas en la catálisis de las reacciones bioqnímicas.

En la mayona de las reacciones, las coenzimas actúan transportando una pequeña parte del sustrato como electrones, átomos o grupos funcionales. Desde este punto de vista se distinguen 2 tipos principales: los transportadores interenzimáticos y los intraenzimáticos.

El mecanismo general de la reacción en el primer caso comprende las etapas siguientes:

1. Combinación del cofactor (CoF) con una enzima (El). 2. 'kansferencia de parte del sustrato (S-X) al cofactor. 3. Migración del cofactor (CoF-X) deuna enzima (El) a otra enzima (E2). 4. Transferencia del grupo al sustrato (M) de la segunda enzima. 5. Disociación del cofactor (CoF) de la segunda enzima.

Esta es probablemente la forma más frecuente de actuar las coenzimas, como cofactor de 2 enzimas y como cosnstrato de cada una de ellas.

Los transportadores intraenzimáticos (también Uamados grupos prostéticos) están unidos de manera covalente ala proteína enzimática y transfieren parte del sustrato de un sitio a otro dentro de la misma enzima o a otro cofactor.

Page 320: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Los cofactores orgánicos pueden realizar otras funciones que, aunque menos ge- nerales que las anteriores, no dejan de ser importantes, como: modificar el estado de agregación en enzimas multiméricas; molde o plantilla que dirige el orden de incorpo- ración de los precursores en una macromolécnla informacional; iniciador @rimer) de la síntesis de macromoléculas, e intermediarios intercambiables como sucede en el caso de las mutasas. En este capítulo trataremos principalmente de coenzimas que actúan por los 2 primeros mecanismos y para los cuales realmente se introdujo en la bioquúnica esta denominación.

Las vitaminas son sustancias químicas que deben ser ingeridas por el organismo para su normal crecimiento y desarrollo. Un estudio detallado de éstai desde el punto de vista nutricional se presenta en el capitulo 73 de la sección de nutrición. Es un hecho comprobado que muchas vitaminas, especialmente las hidrosolnbles, tienen importancia funcional por ser componentes de la estructura de las coenzimas, por ello muchas veces se habla de formas coenzimáticas dedeterminada vitamina. En la por- ción vitamínica de la coenzima en general radica el grupo funcional específico de la coenzima, aquél que es transformado por la acción de la enzima; pero es necesario tener presente que no todas las vitaminas forman parte de coenzimas, ni todas las coenzimas contienen una vitamina en su estructura.

De inmediato se pasará al estudio sistemático de cada una de las coenzimas.

Estas coenzimas presentan la nicotinamida, integrante del complejo vitamínico B como parte de su estructura, que está compuesta por un nucleótido de nicotinamida y otro de adenina unidos por un enlace anhídrido fosfórico 5'-5'. Existen 2 formas coenzimáticas: el nicotinadenindinucleótido (NADA) y el nicotinadenindinucleótido fosfatado (NADP*) cuyas estruc@ras se muestranen la figura 19.1.

Fig. 19.1. Estructura de los piridín nueleótidas. Están formados por un nucleótido de nicotinamida (en rojo) y un nucleótido de adenina, unidos par un enlace anhídrido fosfórico.

Page 321: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

16

Tanto el NAD' como el NADP participan en reacciones de oxidación-reducción cataliadas por deshidrogenasas. Una reacción típica es la catalizada por la alcohol deshidrogenasa:

CH,-CH,-OH + NAD'- CH,-CHO + NADH + H*

La mayoría de las enzimas que utilizan pindíu nucleótidos son específicas parael NAD' y el NADP, excepcionalmente algunas pueden emplear cualquiera de los 2.

La conversión de NAD' a su forma reducida NADH se acompaña de cambios evidentes en sus propiedades espectroscópicas. El NAD* tiene una banda de absorción en 260 nm que disminuye al reüu&e,mientras apareceotraen 340 nm. Estacaracterísti- case emplea con frecuencia para medir la actividad de enzimas dependientes de NAD' en ensayos continuos.

El grupo funcional, que es transformado durante la catálisis, es el anillo de nicotinamida que puede captar o ceder un ion hidruro (H-).

Los piridín nucleótidos funcionan con enzimas que sustraen (o incorporan) al sustrato 2 átomos de hidrógenos unidos (directa o indirectamente) al mismo átomo de carbono; como de los 2 átomos de hidrógeno sustraídos al snstrato sólo un ion Wse incorpora a la coenzima, esto hace que se libere un Ht al medio para crear en las reacciones una dependencia del pH. Las deshidrogenaciones se ven favorecidas en pH elevado y dificultadas en pH bajo.

Esto se hace más claro si se analiza la reacción de la alcohol deshidrogenasa ya mencionada:

CH,-CH2-OH + NAD' -3 CH,-CHO + NADH + H+

cuya constante de equilibrio (capítulo 15) viene dada por:

[CH, - CHO] [NADH] [H'] Ke=

ICH, - CH, OH] [NAD']

que reordenando tendremos:

Ke = IH'~ . [CH, - CHO] [NADH]

[CH, - CH, OH] [NAD']

como se vio en el capítulo 14, para una temperaiura y presión dadas el valor de Ke no se altera, por tanto,si el valor de [H+l aumenta'. -y por lo tantoel pHdisminuye-,el valor de Ke se mantiene constante si disminuye el valor de la fracción quemultiplica a [Hi]. Una disminución en el valor de la fracción significa una diminución en la concentración de los productos (que aparecen enel numerador) oun aumento en la concentración delos reactantes, (que aparecen en el denominador) o ambos, lo cual equivale a decir que al disminuir el pH,el equilibrio se desplaza hacia la formación de los reactantes.

Los piridín nucleótidos transfieren equivalentes de reducción entre 2 sustratos o entre un snstrato y otra coenzima, por lo cual su funcionamiento representa un ciclo de oxidación-reducción alternante.

Page 322: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

En el metabolismo, el NAD' funciona generalmente en reacciones de oxidación de sustratos, y el NADP,en las de reducción; por lo cual el primemeseminentemente una coenzima catabólica y el segundo anabólica. Existen enzimas llamadas transdeshidro- genasas que caíalizan la transferencia de hidrógenos de una a otra coenzima:

NADH + NADP'L NAD' + NADPH

Existen otras reacciones como las de epimerización, aldolización o eliminación de aleunos zruiios del sustrato donde el NAD' actúa en un ciclo de oxidación-reduc-

u A

ción del sustrato dentro de la misma reacción, promoviendo la aparición de grupos reactivos en el sustrato, que facilitan la acción de las enzimas. En estos casos, como el de la UDP-galacto epimerasa el NAD' actúa como un grupo prostético.

H -E-OH I

HO-C- H I , i<~.>-C- 3

H-C-OH 1

E- NADH + 1

+ H H-C-OH E NADH

I HO-C- H

c = : ; 1

H - c-OH 1

H - C-OH I H

Gaiactosa Glucosa

A d e d de la función del NAD' en las reacciones de oxidación-reducción, que s i dudas cu la mi\ importante, esta cwniima participa en otras reacciones. Se conucr su participación en las reaccionacataliwdas pur la .ADK ligasa (capitulo 25J.dondeactÚa como donante de m w s adenilatos. Por otra arte, también es coenzima en reacciones donde se t d e ; airoteínas uno o varios &pos ~ribosil-ADPCO~IO cual se modiñca la actividad de estas proteínas, como se verá en el capítulo 30. En el caso de los piridín nucleótidos se evidencia también el principio de multiplicidad de utilización.

Las flavinas constituyen un grupo numeroso de sustancias en la naturaleza, la riboflavina, o vitamina B,, es la que forma parte de estas coenzimas. Se presentan 2 formas coenzimáticas: el flavinmononucleótido (FMN) y el flavinadenindinucleótido (FAD) cuyas estructuras se reproducen en la figura 19.2.

H E - OH I

H-C-OH I

H-C-OH I

H-C-H N

-0

1 FMN 1 "H OH

1 FAD 1

Fig. 19.2. Estructura de los flavin nucleótidos. Formados por un nucleótido de riboflavina y otro de adenina, unidos por un enlace anhídrido fosfórico; el grupo fun- cional es la isoalaxaeina (en rojo).

Page 323: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Las 2 formas participan en reacciones de oxidaciún!reducción catalizadas por deshidrogenasas y oxidasas, un ejemplo de las primeras es la reacción catalizada por la succinato deshidrogenasa:

HOOC-CH,-CH,-COOH + FAD HOOC-CH=CH-COOH + FADH,

y de las segundas la reacción catalizada por la glicina oxidasa:

H,N-CH,-COOH + FAD --N HCO-COOH + NH, + FADH,

FADH, + 0, ---+ H,O, + FAD

que sumadas dan:

H,N-CH,-COOH + O, A HCO-COOH + NH, + 40,

La reducción del FAD también seacompañade cambios en su espectrodeabsor- ción que se emplea con los mismos fines que en el caso del NADt.

El grupo funcional de estas coenzimas es el anillo de isoaloxacina, que puede pasar de su forma oxidada a semirredncida y reducida al captar 1 ó 2 átomos de hidró- geno, sin liberar protones al medio.

Los flavín nucleótidos funcionan con enzimas (flavoprotehas) que sustraen 2 átomos de hidrógeno de carbonos adyacentes, originando compuestos insaturados como en el caso de la snccinato deshidrogenasa.

Los flavín nucleótidos se encuentran generalmente como grupos prostéticos y actúan entre un sustrato y una coenzima o entre 2 coenzimas.

El ácido lipoico es también un componente del complejo vitamínico B (Fig. 19.3).

Fig. 19.3. Estriictura del ácida lipoica. Una cadena carbonada de 8 carbonos, que presenta 2 grupos funcionales -SH (en rajo) y el grupo carbaxilo que le permite m i n e a 1s proteína enzimáties para formar la cstruitura de la caenzima.

Casi siempre se encuentra unido de forma covalente a la enzima por un enlace amida entre su grupo carboxilo y el grupo amino de la cadena lateral de una lisina (lipoamida); la parte funcional de la molécula está constituida por los gmpos -SH que pueden reducirse y oxidarse de manera alternativa.

Page 324: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

El tipo de unión coenzima-enzima hace que el grupo funcional (-SH) esté unido a ima larga cadena carbonada que le permitegran movilidad,por lo que puede trasladar- se grandes distancias dentro de la enzima.

La función metabólica de esta coenzima es participar en el complejo proceso de descarboxilación oxidativa de u-ceto-ácidos, como la reacción de conversión del a-ceto-glutárico en succinil-COA que se estudia en el capítnlo 38.

El glutatión es un tripéptido que estádistribuido de forma universal en los seres vivos (Fig. 19.4).

Además, gracias a la presencia de los grupos -SH, el glutatión funciona en reaccio- nes de oxidación-reducción.

Glutatión

Esta coenzima es muy importante en los mecanismos involucrados en el manteni- miento de la estructura de las membranas celulares, especialmente en los eritrocitos, pues parücipaen los mecanismos de defensa contra el estrésoxidativo; su papel en el mantenimiento de la forma de los eritrocitos se verá en el capítulo 63.

Las porfirinas constituyen un grupo numeroso de sustancias de amplia distribu- ción en la naturaleza, su estructura está formada por 4 anillos pirrólicos sustituidos, unidos por puentes metínicos y un catión divalente coordinado de manera central y que con mayor frecuencia es el Mg" -como en la clorofila- o el Fe2+ -como en la hemoglobina-. Posiblemente el representante de este grupo más abundante en la natu- raleza es el grupo hemo (Fig. 19.5).

y- Giu GYS Gli

Fig. 19.4. Estructura del glutatión. El ácido glutárnieo se enlaza por el rarboxilo de la cadena lateral a una eisteina que contiene el grupo fun- cional (en rajo) y por última a la glicina.

Fig.19.5. Estructura del grupo hemo. Far- mado por 4 anillos de pirrol, susti- tuido por 4 grupos iiietilos en 1,3, 5 y 8; 2 vinilos en 2 y 4, y 2 ácidas propiónicos en 6 y 7. El átomo de hierro central se coordina con los nitrógenos de los pirroles y otros 2 sustituyenles que varían según la enzima.

Page 325: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 19.6. Estructura de la biotina. La es- tructura cíclica formada por el imidazol sustihddo y el tiofeno y la larga cadena lateral forman la estructura de esta coenzims.

Estas cwnzimas se unen a la enzima (hemoproteínas) de forma diversa y pueden actuar en estadode FP,Feao alternando de una a otra, de esta última forma intervie- nen como coenzimas de oxidación-reducción, tal es el caso de los citocromos de la cadena transportadora de electrones que se estndian en e1 capítulo 39.

La biotina constituye un compuesto esencial para el crecimiento y desarrollo de los seres humanos, está compuesta por un anillo de tiazol y un imidazol fundidos y sustituidos, y una cadena lateral de ácido valérico (Fig. 19.6).

N

o . 11

CH-CH-CH-CH C~- ' \ - : : : ~ .,;;, ~, ; ! ! -~< . , '~

2 2 2 2 . I : I - ~

! !-! c=: i

En general se encuentra unido deforma covalente a la enzima mediante un enlace amida, enhpsu grupo carboxiio y el amino de lacadena lateral de una lisina (biociüna); este tipo de unión le confiere al gmpo funcional las mismas propiedades que las descritas para el ácido Lipoico; participa en 2 tipos de reacciones: la carboxilación dependiente de ATP que resulta hidrolizado en ADP y Pi, como en la acetil-COA carboxilasa:

C3IgWS3A + CO, + ATP --+ HOOCCI+WSCOA'+ ADP + Pi

y de transcarboxilación, como la catalizada por la metilmalonil:oxalace- tato:h.ansearbom

El mecanismo de las reacciones dependientes de biotina incluye 2 etapas; la primera, que mquiem ATP,el CO, es incorporado al N-4 de la biotina Liberando ADPy Pi; una segunda etapa, el CO, se transfiere al sustrato.

Page 326: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

El pirofosfato de tiamina es la forma coenzimática de la tiamina o vitamina B,; en su estrnctura presenta un anillo de pirimidina sustitnido, unido por un grupo meoleno a un anillo de tiazol también sustituido, unido a su vez por un gmpo etilo al pirofosfato como se muestra en la figura 19.7. La vitamina carece del gmpo pirofosfato.

Fig. 19.7. Estructura del pirofosfato de tiamina. La cstruetura fstá forma- da por una pirimidina sustituida, enlazada por un metileno a un gru- po tiazol sustituida, que se une al pirofosfata par un grupo etilo. El anilla de tiazol constituye el nú- cleo funcional de esta coenzima.

1. La descarboxilación no oxidativa de a-ceto-ácidos. 2. La descarboxilación oxidativa de a-ceto-ácidos. 3. La formación de a-cetoles.

El sitio funcional de la molécula es el g ~ p o tiazol que puededisociar un protón, dando origen a un carbanión que reacciona con el grupo ceto del sustrato, que se descarboxila, y da origen a un compuesto intermediario muy reactivo.

Todas las reacciones que dependen del pirofosfato de tiamina (PPT) son básica- mente similares; en cada caso un enlace C-C adyacente al grupo feto se rompe, dando un intermediario estable; la reacción de esteintermediariocon un H+ generaun aldehído (descarboxilación no oxidativa), con un agente oxidante, como el ácido lipoico, origi- na un ácido (descarboxilación oxidativa) y con un grupo carbonilo, un a-cetol (forma- ción de a-cetoles) (Fig. 19.8).

,.d

Fig. 19.8. Mecanismo general del pirofosfato de tiamina. La eoenzima reaccio- na con el cetoácido y forma un intermediario estable (entre ear- ehetes): (a) La reacción con un

can un agente oxidante para la deaearboxilaeión oxidativa y (c) can un aldehida en la formación de a-eetoles.

Page 327: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Fig. 19.9. Estructura del tetrahidrafolato. Formada por un anillodepteridina unido al ácido para-amino-ben- mico y Éste al ácido glutámico. Los N de las posiciones 5 y 10 son loa grupos funcionales de la eoeniima.

Fig. 19.10. Formas coenzimáticas del tetrahidrofolato. Distintas formas caenzimáiicas del kteahidrohlato y sus interconvenianes.

El ácido tetrahidrofólico (FH,) es la forma coenzimática del ácido fólico, su es- truciuraestáfonnadapor unapteridina, el ácido p-amino-benzoico y el ácido gluiámico (Fig. 19.9); pueden encontrarse formas que contienen hasta 7 moléculas de ácido glutámico unidas por enlaces isopeptídicos, aquéllos donde interviene el gmpo carhoxilo de la cadena lateral.

Pteridina P - aminobenzoico Ácido glutámico

La parte funcional de la molécula está representada por los nitrógenos que ocupan las posiciones 5 y 10, esta coenzima presenta múltiples formas interconveriihles (Fig. 19.10). Numerosos ejemplos de reacciones en que participa alguna de estas formas coenzimáticas se presentan en este texto.

N

I H H H

F . ADP + Pi

~~

5 10 5 N N metilen - FHd N - rnetilen - FH

5 10 5 N N - rnetenil FH, N - formimino -FH,

Page 328: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Esta coenzima se forma por la reacción entre la metionina y el ATP, dando como resultado una estructura que contiene un grupo metüo muy lábil y por tanto puede cederse fácilmente,como se observa en la figura 19.11.

Presenta una interacción con el NS-metü-FH,, que es necesario para regenerarla después de cada reacción, un ejemplo es la metilación del ácidoguanidinacético para la formación de creatina.

Ácida guanidin acético Creatina

Al ceder el grupo metilo la S-adenosil-metionina (SAM) se transforma en S-adenosil-homocisteína (SAH) que, al reaccionar con el NS-metil-FH,, regenera la forma activa de la coenzima.

La coenzima A es la más sobresaliente de las coenzimas que en los sistemas vi- vientes transfieren grupos acilos; su existencia universal y la gran variedad de reaccio- - ~~

nes en que intervienen sus derivados enfatizan su importancia. La eshiehira de la molécula es muy compleja y presenta numerosos grupos fun-

cionales (Fig. 19.12). NH.

4 fosfo panteteína

I 1

/ O O H CH, ' II l I I

HS -CH.-CH,-N+ C - C H - C H ~ N - c C- I, i I I l H OH CH,

P - mercapta i O OH etilarning Ácido pantoténico 1 o - P= o

I 0-

Entre estos grupos se destacan el ácido pantoténico (componente del complejo vitamínico B) y la P-mercaptoetilamina, que juntos forman la Cfosfo-panteteína y un nucleótido de adenina.

Muchas experiencias han demostrado que la parte reactiva de la molécula es el gmpo tiol (-SH) final; es común utilizar la abreviatura CoASH para denotar esta coenzima.

H + I

H,N -c-COO- I

CH.

Fig. 19.11. Es t ruc tura de la s-adenosil metianima. Al unirse la rnetionina al grupo adenosilo, el metilo (en rojo) se torna extremadamente Iá- bil y puede cederse de manera fá- cil en reacciones de rnetilación.

Fig. 19.12. Estructura de la coenzima A. Está formada por un nucleótido de adenina unido a un grupo de 4-fosfupanteleina; ésta, a su vez, se forma por la unión del ácido pantoténico con la P-mcreaplo etilaniina.

Page 329: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

]

Fig. 19.13. Formas cocnzimáticas de la

piridoxina. Ambas formas contie-

La formación de los derivados acMcos se cataliza por enzimas sintetasas y requie- ren ATPcomo fnentede energía:

R-CH,-COOH + CoASH + ATP- R- CH,. COSCoA+ AMP + PP

Una vez unido el gmpo acilopuede experimentar numerosas reacciones, como su transferencia a un aceptor en la reacción de la citrato sintasa, donde el grupo aceWo de la acetil-COA se transfiere al oxalacetato con formación de citrato.

Acetil- COA t H . COOII

0, C-COOH I I

H.C - COOH H:C- COOH

Ácido oxalacético Ácido cítrica

Cuando los grupos acilos son grandes su unión con la CoASH proporciona una ventaja adicional, pues contribuye a la solubilidad de estos compuestos en el seno celular eminentemente acuoso.

El grupo de Cfosfo-pantetehase ha encontrado también unido de forma covalente a una proteína denominada proteína transportadora deacilos (PTA) que forma partede la sintetasa de ácidos grasos.

Fosfaio de piridoxal

El fosfato de piridoxal es una de las coenzimas que intervienen en un mayor número de reacciones enzimáticas, casi todas relacionadas con el metabolismo de los aniinoácidos; desdeel punto devista nutricional deriva de la piridoxha o viiamina B,. Como vitamina B, se reconocen al menos 3 compuestos: piridoxol, piridoxal y piridoxamina; las formas fosfatadas de los 2 últimos presentan actividad coenzimática (Fig. 19.13).

Il nen un anillo de piridina sustitui- 1 3 -P-b-cH, da; si en la posición 4 tiene un O -P-O-CHI

gmpo aldehído se forma el fosfato I o::] I 0- 0-

de piridoxal (PAL), pero si es un grupo metilamina entqnces será la piridoxamina (PAN). Estas san las 1

U o:'U I 2 formas coenzimátieas de la piridoxina o vitamina B,.

.. PAL

.. PAN

Entre las reacciones que interviene esta coenzima se encuentran:

1. Racemización de aminoácidos, a partir de un enantiomorfo se obtiene una mezcla de los 2.

cocí coo- l I

H l\'-C-H H- C-NH I I

C H CH

L - alanina D - alanina

Page 330: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

2. Descarboxilación de aminoácidos con formación de compuestos de gran actividad biológica denominados aminas biógenas.

coo NH, + 1 l H,N-C-H

CH, CH, I l coo coo

Ácido glutdmico Ácida 7- mino butírico

3. La deshidratación de la serina que produce pi~vico.

L - Serina Ácido pinivico

4. La desaldoüzación de la senna que da lugar a la formación de glicina.

coo I

coa 1

H,N-C-H + m< > H,N-C - H + N - metil - FH PAL l

H-C-OH 1

5. Las reacciones de transaminación son las más importantes, interrelacionan el meta- bolismodelas aminoácidos con el delos glúcidas; en estas reaccionesun aminoácido reacciona con el fosfato de piridoxal (PAL) unido a la enzima y origina el cetoácido homólogo y la coenzima es transformada en fosfato de piridoxamina (PAN).

@\ @\ y 2

COOH I

COOH l o\ H3N- c -

l + c = o

1 + CH3

7

CH,

L - alanina Ácido pirúvico

I 1

La reacción del PAN unido a la enzima con un cetoácido dará lugar a un nuevo aminoácido y la coenzima tornará a su estado inicial.

COOH KHi COOH @ I @\ + I H \ /O

C = O H,N-C-H \

1 I CH, + CH, I +

CH2 CH,

I I COOH

COOH N

Acido ac - cetoglutanco Ácido glutámico

Page 331: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Este tipo de reacción fue tomado comoejemplo del mecanismopingpongen las reacciones con 2 sustratos (capítulo 17).

En experiencias realizadas in vitro donde la enzima era sustituida por un ion metálico polivalente, con temperatura cercana a los 100 "C, se observó que las reaccio- nes ocurrían de forma inespecífica y de manera simultánea, esto llevó a pensar que debía existir alguna etapa común en el mecanismo de la reacción.

Se propuso que el paso inicial consistía en la formación de una base Schiffentre la coenzima y el sustrato.

H

Esto puede producir el debilitamiento de los enlaces 1,2 ó 3; si la enzima actúa sobre 1 estaríamos en presencia de una desearboxilación,si lo hacesobre 2 daríalugar a la eliminación de diferentes grupos de la cadena R de los aminoácidos según el curso ulterior de la reacción y la actuación sobre 3, así como la hidrólisis posterior del intermediario son los caminos para las reacciones de transaminación.

Otras reacciones en que participa el PALcomo en la glucógeno fosforilasa serán objeto de estudio en los capítulos correspondientes.

Esta coenzima es un derivado de la vitamina B,,, su estructura consiste en un anillo de corrina con un átomo centralde cobalto; lacorriua tiene comolas porfirinas 4 anillos pirroles, sólo 2 de ellos (A y D) están enlazados directamente, además, están unidos a grnpos metilos, propionamida y acetamida. El átomo de cobalto presenta6 valencias de coordinación, 4 de ellas están enlazadas con los N de los pirroles; el ouinto sustituvente es el nucleótido de 3'dimetilbenzoimidazol monofosfato aue se une a la cadena lateral de acetamida del anillo D por un grnpo aminoisopmpanol; y el sexto sustituyente (que en la vitamina puede ser CN-, OH- ó -CH,) en la coenzima es el S'desoxiadenosilo proveniente del ATP(Fig. 19.14).

Hasta el momento se ha podido comprobar la participación de la coenzima BI2 en 4reaccionesenzimáticas: malonil-COA miitnsn. ~11ii:iiii:it11 mutasa, dio1 deshidrogenasa y la conversión de homocisteína en mcti~iiiiii;i.

Sólo se examinaráhprheraconio ejemplo,dondese pri~duceun reordenamiento de la molécula del sustrato originado por el cambio de posición de un H y del grupo CoASH entre carbonos adyacentes.

coo COO 1 1

Page 332: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

, H-N

1 CH2

1 &JcH3 N CH, H , C CH

\ 0 -

O (,+P.'

\ O \

Esta reacción permite la oxidación del metil-malonil-COA al transformarlo en succinil-COA, que es un intermediario del ciclo de Krebs; se estudia detalladamente en el capítulo 38.

La estructura de estos compuestos se estudió en el capítulo 8 como precursores de los ácidos nucleicos, de ellos sólo a los ribouucleótidos se les conocen funciones Coenzimáticas.

AdenoSmhiPosleto (ATP). El ATPparticipa en numerosas reacciones, sirve como fuente de energía, de elementos estructurales o ambas; al primer grupo pertenecen aquellas reacciones donde los productos no contienen los grupos de la coenzima como la formación de derivados acilicos de la CoASH ya estudiados.

Fig. 19.14. Estructura de la coenzima B,,. Sus componentes estructurales son 3: un anillo de earrina muy susti- tuido (en negra), un nucleótido de benzaimidazol (en azul) y un nueleósido de desaxiadenasilo (en rajo).

Page 333: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Al segundo y tercer grupos pertenecen varios tipos de reacciones:

1. Transferencia de fosfato.

HO -CH, @ -O-CH2 Hc3 + A F - OH - OH

+ ADp

OH - H OH H OH

Glucora - 6 - P Glucosa

2. Transferencia de pirofosfato.

Ribosa - l - P Fosfamibosil pirofosfato

3. Transferencia de gmpos adenilatos como en la reacción de la ADN ligasa de eucariontes, queseestudia en el capítulo 25.

4. Transferencia de adenosilo, como en la formación de la SAM ya estudiada.

Guanosinbifo&to (GW). Su función es menos generalizada que en el ATP, pues actúa casi siempre sirviendo de fuente de energía como en la reacción de la fosfoenolpirúvico carboxiquinasa.

Actúa como coenzima de transferencia de derivados de monosacáridos en la sinte- sis de glicoprotwnas,estos derivados se forman de manera similar a los derivados del U T P que se estudian a continuación.

La función del GTP en el proceso de síntesis de protehas sr discute en el capitulo 30. Uridinbifosfaío 0. Los nucleótidos de uridina mtervienen como coenzimas

que transfieren monosacáridosenformadeUDP-derivados, estw derivados se forman por la reacción entre el UTP con un monosacáridofosfatado.

En una reacción posterior, el monosacárido se transfiere a un aceptor y el UDP reacciona con el ATPregenerándoseel UTP.

Page 334: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Las reacciones en que intervienen se estudiarán en la sección dedicada al metabo- lismo de los glúcidos.

Citidintriffosfio (CTP). Actúa de forma similar alUTP, pero transfiere grupos al nivel de oxidación de alcohol; interviene fundamentalmente en la formación de fosfátidos de glicerina y esfingolípidos, su forma coenzimática se origina por reacción del CTP con un alcohol fosfatado, por ejemplo:

CTP + COLINA-P d CDP-COLINA + PP.

en una reacción posterior la colina se transfiere a un aceptor que pudieraser un ácido fosfatidico y se libera CDP, que por acción de una qninasa en presencia de ATPregene- ra el CTP.

Como se puede apreciar el conjunto de compuestos que pueden actuar como cofactores enzimáticos es numeroso y de gran diversidad estructural. La relación pre- sentada no los incluye a todos, sólo a los más importantes; algunas coenzimas que participan en reacciones muy específicas serán estudiadas cuando se analice esa reac- ción en particular.

Resumen

Los cofactores enzimáticos son sustancias de diferente naturaleza química, que participan en las reacciones enzimáticas debido a que las enzimas no poseen en su estrnctnra todoslos grupos fhaonales necesarios parallevar a cabo la catáüs'i de todas las reacciones metabólieas; los cofactores no son componentes obligados de todas las reacciones.

Los cofactores pueden ser iones inorgánicos que facilitan la unión en- zima-sustrato o estabilizan la estrndura tridimensional de la enzima, o cnnstiiu- yen por sí los eentros cataüticos que ganan eficiencia y especiñcidad al unirse a las pmteúias.

Las coewhas son sustancias orgánicas que aun cuando pueden funcionar de formas muy variadas, lo más frecuente es que lo hagan como transportadores interenzimsticos o intraenzimáticas; muchas coenzimas son formas funcionales de las vitaminas.

Las comzinuw pueden participar en reacciones de oxidación-reducción como los piridín y flavin nudeótidos, el ácido üpoiw, el glutatión y las porñrinas.

La bioüna participa en las reacciones de carbonüaaón y transcarboxüaaón; el pirofosfato de tiamina participa en el metabolismo de los a-do-ácidos en reac- ciones de descarbnnüauón oxidativa y no oxidativa, así como en la formación de ~ceto1es.

El tetrahidrofolato interviene en reacciones de transferencia de fragmentos de un carbono, igual que le S-adenasü-metionina

La ccazima A participa en numerosas reacciones donde se transfieren grupos acilos, espedalmente con ácidos de cadena larga a los cuales ayuda a solubüizar en el medio acuoso ciioplasmático.

El fosfaio de piridoxal interviene en ua gran número de reacciones relaciona- das con el metabolismo de los aminoácidos, entre ellas la más importante es la reacción de trailsaminacióu que relaciona el metabolismo de las proteínas con el de los glúcidos.

La forma cwnzimática de la vitamina B,, participa en un númem reducido de reacciones, especialmente en las fatalizadas por mutasas.

Por último, pueden señalarse funciones coenzim6ticas a los nucleósidos trirosfatados, el más sobresaliente de todos es el ATP.

Page 335: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Ejercicios

1. ¿Cómo podría determinarse experimentalmente si en una reacción de deshidro- genación intervieneel NADt o el FAD, sin necesidad de realizar estudios sobre la esiructura del sustrato y el producto?

2. Haga un eshidio comparativo íanto estructural como funcional de las coenzimas que presentan grupos -SH en su estructura.

3. ¿En qué se asemejan la biotina, el ácido lipoico y la Cfosfo-panteteína? 4. ¿Por qué puede afirmarse que las coenzimas funcionan de acuerdo con el principio

de multiolicidad de utilización? 5. ¿Por qué el estudio de los cofactores pone en evidencia que la especificidad de sus-

trato y de acción pertenece a la proteína enzimática? 6. Relacione los 6 grupos principales de la clasificación de las enzimas con los

cofactores estudiados en este capítulo. 7. ¿Cuáles son las principales diferencias entre las coenzimils que intervienen en reac-

ciones de transferencia de fragmentos de un carbono? 8. Haga un esquema que refleje el funcionamiento de una coenzima que actúa como

un transportador interenzimátim.

Page 336: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

Resumen de la secci6n

Los biocatalizadores constituyen un grupo importante de componentes de los sistemas vivientes que permiten el constante y necesario intercambio de sustancia, energía e información en- el ser vivo y el medio naiural fuera de él. Los biocatalizadores en general están constiíuidos por 2 tipos de sustancias, las enzimas queson proteínas especializadas en la catálisis y los cofactores que pueden ser de distinta naturaleza química y que contribuyen al desarrollo de algunas reacciones ennmáticas.

La nota esencial en la estructura y función de las enzimas es el centro activo, una formación flexible donde se organizan de manera armónica grupos químicos de las cadenas laterales de los aminoácidos, en una distribución espacial determinada que permiten crear las condiciones idóneas para la catálisis enzimática; su ubicación en la superficie proteínica lo hace accesible al sustrato y le permite liberar fácilmente el producto.

Los efectos de aproximación, inmovilización y orientación sobre los grupos reaccionantes del sustrato, que se logran gracias al ajuste perfecto entre éste y la enzima, favorecen el desarrollo de las reacciones a velocidades extremadamente gran- des; a su vez, la sensible estructura del centro activo lo hace «blanco, del efecto de numerosos factores que pueden modificarlo, unas veces lo hacen más eficiente, otras disminuyendo o aboliendo su eficacia.

Muchos de esos factores son componentes habitualesdela célula y contribuyen en mayor o menor medida a regular la actividad de las enzimas. Es precisamente a la estructura y las propiedades del centro activo que las enzimas deben sus propiedades distintivas como la eficiencia catalítica, la especificidad de acción y la especificidad de sustrato.

Las enzimas manifiestan su actividad en el incremento notable de la velocidad de las reacciones y el estudio de éstas ha proporcionado una inestimable información acerca delos mecanismos de acción de las enzimas. Las variaciones que se observan en la velocidad de reacción al modificar los factores que en ella intervienen han brindado la posibilidad del diseño de fármacos, venenos, tóxicos, etcétera, que pueden ser nsa- dos con diferentes fines según quién o quiénes lo empleen. Los profesionales de las ciencias para la salud deben estar muy bien informados sobre estos tópicos.

La característica más sobresaliente de los seres vivos es su permanente intercam- bio con el medio exterior, pero las condiciones ambientales como la temperatura, la humedad relativa,la disponibilidad de nutrientes, etcétera, cambian constantemente, haciendo necesario que el organismo viviente tenga que adaptarsea esoscambios con riesgo de perecer. Esos cambios tienen su fundamento último en las variaciones que tienen lugar en la intensidad y dirección de las vías metahólicas, cuyas reacciones están catalizadas por ennmas.

La posibilidad de las enzimas de variar la intensidad de su función como respuesta a estímulos específicos permite esas adaptaciones. La regulación de las enzimas y con

Page 337: Los - Universidad Clea. Educación Online.clea.edu.mx/biblioteca/Bioquimica medica Tomo I.pdf · Formas de actuar las coenzimas 334 Coenzimas y vitaminas 335 Piridín nucleótidos

ella la del metabolismo constituye un aspecto importante de la existencia de los seres vivos y sus alteraciones pueden conducir a la aparición de estados morbosos.

En los organismos plnricelulares existe el fenómeno de la especialización celular y en parte éste se debe ala diferente dotación enzimática en cada uno de los órganos y tejidos. Asimismo hay una distribución diferenciada de las enzimas en los compartimentos intracelulares; esta situación crea dn flujo de sustancias dentro del organiimo que garantiza el funcionamiento armónico de los millones de células que lo integran.

La eficiencia de las enzimas es asombrosa, pero puede serlo aún más debido alas formas en que se organizan. Desde las enzimas sencillas hasta los grandes agregados supraenzimáticos contribuyen a incrementar notablemente todas las propiedades catalíticas de las enzimas, estas agrupaciones proporcionan'una base Esica a las vías metahólicas y hacen que ellas no dependan del encuentro casualentre elsustrato y la enzima. A pesar dela gran diversidad de grnpos químicos reactivos presentes en las cadenas laterales de los aminoácidos, éstos son insuficientes para funcionar como catalizadores en todos los tipos de reacciones en que participan las enzimas; por ello ha sido necesario la cooperación con sustancias de bajo peso molecular llamados cofactores, que aportan los grupos de los cuales carecen las enzimas.

Estos cofactores presentan una gran diversidad estrnctural y funcional de forma tal que pueden actuar con un buen número de enzima5 con diferentes especificidades. El hecho de que en la composición deestos cofactores participan vitaminas y minera- les vincula a los biocatalizadores con los aspectos más importantes de la nutrición. Una nutrición deficiente puede producir alteraciones en el funcionamiento de las enzimas y, por tanto, en el metabolismo celular que crean un grave peligro para la salud del individuo y semanifiestan por síntomas y signos que reflejan su carencia.

Por todas estas razones los biocatalizadores, y especialmente las enzimas, consti- tuyen uno de los nódulos fundamentales en el conocimiento de los fenómenos vitales al nivel molecular.

Pero aún todo ello es sólo una de las caras del problema, la aplicación práctica de la enzimologia es de gran utilidad en campos tan diversos comolaindustria,la agricul- tura y las ciencias médicas, en estas últimas las enzimas pueden ser utüizadas para el diagnóstico de numerosas enfermedades y en el tratamiento de algunas; aunque aún el campo de esta aplicación está limitado.

Mucho queda por conocer sobre las enzimas y su funcionamiento, pero el conoo- miento actual nos permite tener cierta precisión de su importante función en el surgi- miento y mantenimiento dela vida.