Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling...

24
Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai Li Coastal and Hydraulics Laboratory US Army Corps of Engineers

Transcript of Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling...

Page 1: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai Li

Coastal and Hydraulics Laboratory US Army Corps of Engineers

Page 2: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyy

Introduction Motivation: ► Prediction of morphodynamic processes at coastal

inlets is challenging but crucial for coastal sediment management, navigation, channel maintenance, and breach erosion protection

Issue: ► Difficult to conduct meaningful long-term validation of

morphodynamic models using real data Approach: ► Simulate idealized inlets representing 9 US inlets and

compare inlet evolution, characteristics, and features with the actual inlets empirical formulas (soft validation)

BUILDING STRONG®

Page 3: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

Introduction: CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyyCoastal Modeling System

Hydrodynamics: ► 2DH shallow-water equations ► Fully implicit, finite-volume method ► Non-uniform or Telescoping Cartesian

grids

Sediment Transport ► Inline ► Total-load non-equilibrium sediment

transport ► Erosion/deposition calculated using an

adaptation approach

► Several options for transport capacity formula

Waves ► Spectral wave-action balance equation ► Implicit finite-difference method

BUILDING STRONG®

Page 4: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyyEmpirical Relations

Cross-sectional area ► O’brien (1931, 1969), Kraus (1998), Jarrrett (1976), van

der Kreeke (1992), Powell et al. (2006), etc. A CPn A Cross-sectionalarea[m2 ]

P Tidal prism [m3 ] Ebb tidal shoal volume 6 3 1C 8.8310 1.8810 [m ]► Walton and Adams (1976)

b 0.811.10 [ ]Vebb n aP

► Hicks and Hume (1996) 3 3a 5.310 8.410 3 1.32 1.33Vebb 1.37 10 P (sin ) b 1.23

BUILDING STRONG®

Page 5: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics LaboratoryInlet Stability Analysis

Escoffier’s (1940) Inlet Stability Diagram

equ ustableunstable

A

u

eq

P u AT

Inlet cross-sectional area

Max

imum

cur

rent

vel

ocity

Inlet will

close

Inlet will remain open

erosion deposition

Page 6: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics LaboratoryMethods: Base Inlets

Newburyport

Grays Harbor

Mouth of the Columbia River

East Pass

Oregon

Shinnecock

Galveston Bay

John’s Pass

Humboldt Bay

Page 7: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Methods: Idealized Inlets Initial Morphology

► Equilibrium offshore profile based on measured bathymetry or median grain size

► Flat rectangular bay with dimensions based on actual inlet. Bay width and length adjusted to match actual bay area

► Flat rectangular inlet with width and area matching actual inlet

Water levels ► Tidal constituents

Waves ► Representative year based on mean sediment

transport rate estimated from the CERC formula and nearby buoy data

Ocean Bay

Inlet

Page 8: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyy

Methods: Model Setup Flow

► Manning’s n = 0.025 s/m1/3

► Coriolis

Sediment transport ► Single representative grain size ► Morphologic acceleration factor = 10

Time stepping ► Flow and sediment: 15 min

• Second-order scheme

► Waves: 1 hr

Grids ► Same for flow, sediment, and waves ► Resolution

• At least 10 cells across inlet

BUILDING STRONG®

Page 9: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyy

John’s Pass, FL

Waves ► Hmo = 0.73 m ► Tp = 4 s

Tidal range ► 0.43 m

Bay Dimensions ► Area = 4.5e7 m2

► Length = 27 km ► Width = 19 km

Inlet ► Area = 845 m2

► Width = 300 m

BUILDING STRONG®

Page 10: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

®

Click Here to Play Animation

BUILDING STRONG

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Johns Pass, FL

Page 11: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsssResults: Johns Pass, FL LaboraLaboraLaboratttorororyyy

Flood dominant

Actual ebb shoal volume ► 2.1 to 2.3 M m3

BUILDING STRONG®

Page 12: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyy

Results: Johns Pass, FL

Actual peak current velocity

~1.2 m/s

Tidal Prism: 2.1 x107 m3

BUILDING STRONG®

Page 13: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

0

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Results: Johns Pass, FL

Inlet does not reach equilibrium

Ebb shoal does reach equilibrium but is underestimated

0 10 20 30 40 50 60 70 80 90 10500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Time (years)

Are

a (m

2 )

Inlet cross-section

Jarrett Max Jarrett Min Average Average filter

0 20 40 60 80 1000

5

10

15

20

Time (years)

Vol

ume

(M m

3 )

Ebb shoal volume

Hicks and Hume (1996) Walton and Adams (1976) CMS

Page 14: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Results: Grays Harbor Initial bathymetry

Actual bathymetry

Waves Hmo = 2 m Tp = 10 s

Tidal range 2.25 m

Inlet Ac = 31200 m2

Bay Ab = 513 M m2

W = 19 km L = 27 km

Page 15: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

Click Here to Play Animation

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Results: Grays Harbor, WA

Page 16: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyy

Grays Harbor, WA

Equilibrium cross-sectional area of idealized inlet larger than initial condition

Inlet still evolving after 100 years

BUILDING STRONG®

Page 17: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Results: Grays Harbor, WA

0 10 20 30 40 50 60 70 80 90 100 1

2

3

4

5

6

7

8

9 x 104

Time (years)

Are

a (m

2 )

Inlet cross-section

Jarrett Max Jarrett Min Average Average filter

Actual ebb shoal volume ► 240 to 250 M m3

0 20 40 60 80 100 -200

0

200

400

600

800

1000

1200

Time (years)

Vol

ume

(M m

3 )

Ebb shoal volume

Hicks and Hume (1996) Walton and Adams (1976) CMS

Page 18: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Galveston, TX

Initial bathymetry

Inlet Ac = 16800 m2

W = 3 km L = 7.5 km

Bay Ab = 1600 M m2

W = 50 km L = 32 km

Waves Hmo = 1.2 m Tp = 5 s

Tidal range 0.43 m

Page 19: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Results: Galveston, TX

0 20 40 60 80 100 -100

-50

0

50

100

150

200

Time (years)

Vol

ume

(M m

3 )

Ebb Inlet Bay

0 20 40 60 80 100 -500

0

500

1000

Time (years)

Vol

ume

(M m

3 )

Ebb Inlet Bay

Van Rijn

Lund-CIRP

Page 20: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

BUILDING STRONG

®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Results: Galveston, TX V

an R

ijn

0 10 20 30 40 50 60 70 80 90 100 0

0.5

1

1.5

2

2.5

3 x 104

Time (years)

Are

a (m

2 )

Inlet cross-section Jarrett Max Jarrett Min Average Average filter

0 10 20 30 40 50 60 70 80 90 100 0

1

2

3

4

5

6

7 x 104

Time (years)

Are

a (m

2 )

Inlet cross-section Jarrett Max Jarrett Min Average Average filter

Lund

-CIR

P

0 20 40 60 80 1000

200

400

600

800

1000

Time (years)

Vol

ume

(M m

3 )

Ebb shoal volume

Hicks and Hume (1996) Walton and Adams (1976) CMS

0 20 40 60 80 1000

50

100

150

200

250

Time (years)

Vol

ume

(M m

3 )

Ebb shoal volume

Hicks and Hume (1996) Walton and Adams (1976) CMS

Page 21: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyy

Discussion and Conclusions

Rate of bed change within the first 10-20 years is rapid and then slows None of the simulated inlets reached a full

dynamic equilibrium after 100 years suggesting that either: 1. The adaptation time of the simulated inlets is longer

than 100 years 2. The inlets may never reach equilibrium due to

missing or incorrect processes necessary for a stable equilibrium

Significantly different results were obtained for different sediment transport capacity formula

BUILDING STRONG®

Page 22: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyy

Discussion and Conclusions

Model computational times were reasonable ► 100 years in about 7-10 days on a PC

Model stability was very reasonable Cross-sectional areas were generally over-

predicted Ebb and flood shoal morphologies and evolution

were reasonable Comparison to the Escoffier curves were

reasonable

BUILDING STRONG®

Page 23: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

CoastaCoastaCoastalll andandand HydrauHydrauHydraulililicccsss LaboraLaboraLaboratttorororyyy

Future Work

Multiple grain sizes ► Reduce channel erosion ► Help reach dynamic equilibrium

faster Dynamic roughness ► Function of the bed gradation and

bedforms

Bank erosion feature Influence of jetties, asymmetric

bays, and dredging Inlet infilling and closure?

BUILDING STRONG®

Page 24: Long-term Morphologic Modeling at Coastal Inlets · 2018-11-07 · Long-term Morphologic Modeling at Coastal Inlets Alex Sánchez Richard Styles, Mitchell Brown, Tanya Beck, and Honghai

BUILDING STRONG®

Coastal and HydraulicsLaboratory

Coastal and HydraulicsLaboratory

Coastal and Hydraulics Laboratory

Thank you

Questions?