Line Commutated Converters - ABB

22
β€” SEMIS Simulation Tool Line Commutated Converters User manual

Transcript of Line Commutated Converters - ABB

Page 1: Line Commutated Converters - ABB

β€”

SEMIS Simulation Tool

Line Commutated Converters

User manual

Page 2: Line Commutated Converters - ABB
Page 3: Line Commutated Converters - ABB

β€”

INTRODUCTION

SEMIS is a web-based semiconductor simulation tool providing a thermal calculation of the

semiconductor losses for common converter circuits. The simulation simplifies significantly the selection of the

switching device and enables the optimal selection of semiconductors for further investigations.

The SEMIS Simulation Tool is a user-friendly online application found on ABB Semiconductors website

www.abb.com/semiconductors/semis

SEMIS users select from a substantial selection of topologies. By assigning the circuit parameters and selecting

the desired switching device, multiple ABB products can be simulated at the same time. Once a simulation is

run, SEMIS returns comprehensive results on semiconductor losses as well as on the electrical parameters in the

input and output of the circuit. The results are shown in both graphical (waveforms) and numerical (tables) way.

The SEMIS tool is based on the PLECS simulation software. PLECS users can download our product models in

the XML file format from the ABB Semiconductors website and use them for their simulations. For more specific

topologies ABB offers customized converter simulations for non-standard topologies with PLECS simulation

software on a project basis.

β€”

COPYRIGHTS

All rights to copyrights, registered trademarks, and trademarks reside with their respective owners.

Copyright Β© 2019 ABB Power Grids Switzerland Ltd.

All rights reserved.

Release: December 2020

Document number: 5SYA 2119

Page 4: Line Commutated Converters - ABB

β€”

TABLE OF CONTENTS

1. LINE COMMUTATED CONVERTERS ............................................................................................ 6

2. OVERVIEW ..................................................................................................................................... 7

3. SIMULATION SETTINGS ............................................................................................................... 8

3.1 Circuit parameters ............................................................................................................. 8

3.1.1 Select Topology ................................................................................................................ 8

3.1.2 Converter Operation ........................................................................................................ 8

3.1.3 Ambient temperature ...................................................................................................... 8

3.1.4 Controller ........................................................................................................................... 8

3.1.5 AC parameters .................................................................................................................. 9

3.2 Switch settings ................................................................................................................... 9

3.2.1 Matching Thyristors ....................................................................................................... 10

3.3 Selection of Articles / Start simulation......................................................................... 10

4. SIMULATION RESULTS ............................................................................................................... 11

4.1 Graphical Output – Waveforms ...................................................................................... 11

4.1.1 Control .............................................................................................................................. 12

4.1.2 Parameters values indication ....................................................................................... 12

4.2 Numerical / Tabular results ............................................................................................ 13

5. ALERTS & FEATURES .................................................................................................................. 15

5.1 Junction Temperature ..................................................................................................... 15

5.2 Maximum Surge Peak Voltage ........................................................................................ 15

6. APPLIED CALCULATIONS .......................................................................................................... 16

6.1 Input Parameter Definitions ........................................................................................... 16

6.2 Phase current .................................................................................................................... 16

6.3 DC Voltage Definition ...................................................................................................... 16

6.4 Real Power ......................................................................................................................... 16

6.5 Reactive Power ................................................................................................................. 17

7. VALIDATION OF SEMIS RESULTS WITH PSCAD ...................................................................... 18

8. USER MANUAL REVISION HISTORY .......................................................................................... 20

9. SIMULATION SOFTWARE RELEASE HISTORY.......................................................................... 20

Page 5: Line Commutated Converters - ABB

β€”

LIST OF FIGURES

Figure 1 Line commutated converters circuit in website .................................................................................................... 7 Figure 2 Selection of topology ........................................................................................................................................... 8 Figure 3 Converter mode selection .................................................................................................................................... 8 Figure 4 Ambient temperature input block ......................................................................................................................... 8 Figure 5 Controller input block ........................................................................................................................................... 8 Figure 6 Controller input block ........................................................................................................................................... 9 Figure 7 Grid parameter input blocks ................................................................................................................................ 9 Figure 8 Thermal settings and Thyristor selection ............................................................................................................. 9 Figure 9 Matching Thyristors for selection ....................................................................................................................... 10 Figure 10 Start of simulation ............................................................................................................................................ 10 Figure 11 Simulation progress and termination ............................................................................................................... 10 Figure 12 Graphical results of Line commutated converters ........................................................................................... 11 Figure 13 Tabular indication of cursor position graph values .......................................................................................... 12 Figure 14 Device Losses & Temperatures ...................................................................................................................... 13 Figure 15 Definition of Tvj before the last switch ............................................................................................................. 14 Figure 16 Converter AC Parameters ............................................................................................................................... 14 Figure 17 DC & Control Parameters ................................................................................................................................ 14 Figure 19 Validation results comparison for 2 pulses thyristor rectifier/inverter .............................................................. 18 Figure 20 Validation results comparison for 6 pulses thyristor rectifier/inverter .............................................................. 19 Figure 21 validation results comparison for 12 pulse thyristor series/parallel connected rectifier/inverter ..................... 19

Page 6: Line Commutated Converters - ABB

Line Commutated Converters

6 User Manual 5SYA 2119 SEMIS – ABB Semiconductors

1. LINE COMMUTATED CONVERTERS

The main objective here is to develop a universal model for a 6/12/2 pulse thyristor controlled con-

verter operating as a rectifier & inverter. These models can be used by engineers for a quick check on

the performance of the selected ABB semiconductors best fitting their load demand and application.

The estimated semiconductor conduction and switching losses, as well as the junction temperature,

will assist the user in selecting the optimum device that suits their converter operation and load re-

quirements.

ABB offers the following thyristor topologies for thermal analysis simulation with

– 6-Pulse controlled rectifier

– 6-Pulse controlled inverter

– 12-Pulse series controlled rectifier

– 12-Pulse series controlled inverter

– 12-Pulse parallel controlled rectifier

– 12-Pulse parallel controlled inverter

– 2-Pulse controlled rectifier

– 2-Pulse controlled inverter

Page 7: Line Commutated Converters - ABB

Overview

SEMIS – ABB Semiconductors User Manual 5SYA 2119 7

2. OVERVIEW

Figure 1 Line commutated converters circuit in website

Grid definitions Results graphs

Converter settings Results tables

Thyristor selection

Page 8: Line Commutated Converters - ABB

Simulation Settings

8 User Manual 5SYA 2119 SEMIS – ABB Semiconductors

3. SIMULATION SETTINGS

3.1 Circuit parameters

3.1.1 Select Topology

Select Topology Selection

Selection of either 6pulse, 12 pulse or 2 pulse topologies

Figure 2 Selection of topology

3.1.2 Converter Operation

Converter Operation Selection

The converter can be operated either

as Inverter DC to AC or as Rectifier AC to DC

Figure 3 Converter mode selection

3.1.3 Ambient temperature

Ambient temperature Definition of environmental Range -25 ... 90 Β°C

temperature around the converter

for temperature / cooling

calculations

Figure 4 Ambient temperature input block

3.1.4 Controller

The user can define the following parameters as seen in figure 6. The controller fires the thyristor at

the defined firing angle in rectifier operation.

Figure 5 Controller input block

SYSTEM FREQUENCY Converter AC output frequency Range 40 to 60 Hz

FIRING ANGLE Instant of thyristor turn-on Range 15 to 60 deg

DC CURRENT Current on DC side Range 1 to 4000 A

Page 9: Line Commutated Converters - ABB

Simulation Settings

SEMIS – ABB Semiconductors User Manual 5SYA 2119 9

In inverter operation, the user can define the following parameters as seen in figure 7.

Figure 6 Controller input block

DC VOLTAGE Input Voltage inverter model on Range 125 to 12000 V

DC side pole to pole

POWER FLOW FROM DC TO AC SIDE

Power flowing in inverter operation Range 0.01 to 50 MW

3.1.5 AC parameters

The user can enter the desired reference converter AC side voltage. Further, the user can provide the

AC parameters such as commutation reactance.

Figure 7 Grid parameter input blocks

AC LINE-LINE VOLTAGE (RMS)

AC Side Line-Line voltage (RMS) Range 500 to 4000 V

OVERSHOOT FACTOR Defines maximum surge peak voltage Range 1.5 to 3.5

Commutation Reactance Percentage of reactance on AC side Range 1 to 10%

Smoothing Reactance Reactance on the load side 200 mH

Remark:

The smoothing reactance value used in the models is in typical ranges of LCC smoothing inductance

3.2 Switch settings

Figure 8 Thermal settings and Thyristor selection

Heat Sink Thermal Resistance Range 0.0001 ... 0.5 K/W

Definition of thermal resistance of

the cooling system applied.

Thyristor selection Select voltage class of Thyristor for filtering Selection

Page 10: Line Commutated Converters - ABB

Simulation Settings

10 User Manual 5SYA 2119 SEMIS – ABB Semiconductors

3.2.1 Matching Thyristors

Once the previous Thyristor properties are selected, the matching thyristor options appear. By click-

ing on the product code name the user may access the datasheet from the ABB website.

Figure 9 Matching Thyristors for selection

If one or more elements produce results exceeding the safe operating area (SOA), no results are re-

turned. In this case, the user should run the simulation again with changed parameters and/or prod-

uct selection to enable results within SOA operating conditions.

3.3 Selection of Articles / Start simulation

To simulate one or more articles, select from the list by activating the checkbox

Simulate Starts the simulation

The progress of the simulation is shown with

the number of calculated Jacobian.

Abort Stops the simulation; No results generated

Hold results To compare multiple simulations, results can be held for later viewing

By selecting the button, result are hold after the simulation has finalized for later

comparison with succeeding simulations

Figure 10 Start of simulation

Figure 11 Simulation progress and termination

Page 11: Line Commutated Converters - ABB

Simulation Results

SEMIS – ABB Semiconductors User Manual 5SYA 2119 11

4. SIMULATION RESULTS

The simulation results are displayed in two different ways for all selected articles simulated.

Graphical results - Waveforms Visual analysis of waveforms for fast and efficient detection of

most significant sources

Numerical / Tabular results Numeric indication of all simulations values for direct comparison

Remark: To hide curves of selected articles, unselect in the table β€œResults History”

4.1 Graphical Output – Waveforms

When the simulation finishes the semiconductor and AC side waveforms are shown as follows:

Figure 12 Graphical results of Line commutated converters

Page 12: Line Commutated Converters - ABB

Simulation Results

12 User Manual 5SYA 2119 SEMIS – ABB Semiconductors

4.1.1 Control

For an indication of values within the graph, a cursor can be activated to show curve values in a table.

Sections of graphs can be zoomed in by click, move and release mouse button for more details

Hide selectively waveforms of products

Rest zoom to full view

Activate cursors and to show parameter values table according to the cursor position

Zoom selectable rectangle

Zoom horizontal or vertical band

4.1.2 Parameters values indication

Tabular indication of graphical waveforms values according to cursor position selected.

Values are indicated for each parameter Color of the wave form is indicated. The third column shows

the difference between the two cursors per parameter.

Figure 13 Tabular indication of cursor position graph values

Remark:

The numerical values of each indicated parameter are shown according to the position of the respec-

tive cursor in the graph. Drag cursor to investigate about full details

Page 13: Line Commutated Converters - ABB

Simulation Results

SEMIS – ABB Semiconductors User Manual 5SYA 2119 13

4.2 Numerical / Tabular results

The following parameters are given in a tabular format in multiple sections.

As converter losses, the aggregated losses in all 3 phase legs are accounted for.

In addition to the semiconductor losses, there are also losses occurring in the passive components

(e.g. Resistances.). These Losses are not taken into consideration for this simulation. For the simplic-

ity of the simulation, it is assumed that all semiconductors in one phase leg are loaded symmetrically

and no voltage asymmetries do exist.

Device losses and temperatures

Figure 14 Device Losses & Temperatures

Switching Loss Single Thyristor Losses during turn on and turn off events (dynamic)

Conduction loss Single Thyristor Losses during on state (static)

Combined losses Sum of single Thyristor switching and conduction loss.

Converter losses Sum of all Thyristor losses

% Losses Defined as the (%) ratio of calculated combined converter losses with respect

to the converter MVA rating i.e., total apparent power flow. Since the converter

is meant for a THREE-PHASE application, the kVA rating would correspond to

total three-phase AC Power delivered by the converter.

Junction Temperature Avg

Junction temperature average during the simulation period

Junction Temperature Max

Maximum junction temperature during the simulation period

Page 14: Line Commutated Converters - ABB

Simulation Results

14 User Manual 5SYA 2119 SEMIS – ABB Semiconductors

Junction Temperature BLS

Junction temperature at a time point just before the last

switching, after which the maximum junction temperature

is achieved. This effect is not critical for thyristor

applica tions.

Figure 15 Definition of Tvj before the last switch

Converter AC parameters

Figure 16 Converter AC Parameters

Real power P Active power / real power output of the converter

Reactive power Q Q as supplied to the grid as effective power (reactive) on converter AC side

Calculation see in section 6.5.

Phase voltage RMS According AC phase value according to 1st order harmonics of AC frequency

Phase current RMS According AC phase value according to 1st order harmonics of AC frequency

System frequency According to the definition

Power Factor According to the definition

DC Parameters & Control Parameters

Figure 17 DC & Control Parameters

DC Power According AC Power definition + Losses

DC Voltage According definition

DC Current According definition

Firing angle in Deg According definition

Tvj Max 123.58Β°C

Last Switch Event

Tvj BLS 123.54 Β°C

Page 15: Line Commutated Converters - ABB

Alerts & Features

SEMIS – ABB Semiconductors User Manual 5SYA 2119 15

5. ALERTS & FEATURES

The system verifies results and generated warning messages in case of limits are violated.

5.1 Junction Temperature

Parameter Junction temperature

Verification If the junction temperature BLS of Thyristor is above its

maximum junction temperature limit, the alert message is displayed

Warning message Thyristor temperature out of the safe operating area

5.2 Maximum Surge Peak Voltage

Parameter AC Line-Line Peak voltage

Verification If the maximum surge peak voltage is greater than the safe operating voltage

rating of thyristor, an alert message is displayed

Warning message For the device voltage of 1.8kV, V_DSM should be less than 1800V

Page 16: Line Commutated Converters - ABB

Applied Calculations

16 User Manual 5SYA 2119 SEMIS – ABB Semiconductors

6. APPLIED CALCULATIONS

6.1 Input Parameter Definitions

Idc Mean value of DC current waveform

VLL_RMS Line-Line voltage RMS

alpha Firing angle of the thyristor in rectifier mode

gamma Firing angle of the thyristor in inverter mode

Ls Commutation inductance in H

6.2 Phase current

6 pulse 𝐼𝑠 = √2

3𝐼𝐷𝐢

12 pulse series 𝐼𝑠 = √7.459

3𝐼𝐷𝐢

12 pulse parallel 𝐼𝑠 = √7.459

3βˆ—

𝐼𝐷𝐢

2

2 pulse 𝐼𝑠 = 𝐼𝐷𝐢

6.3 DC Voltage Definition

Grid inductance per phase 𝐿𝑠 = πΏπ‘ƒπ‘ˆ βˆ— 𝑉𝐿𝐿𝑅𝑀𝑆

/ (100 βˆ— 𝐼𝑠 βˆ— 2 βˆ— 𝑝𝑖 βˆ— 𝐹𝐻𝑧 βˆ— 1.732)

6 pulse 𝑉𝑑𝑐 = 1.35 βˆ— 𝑉𝐿𝐿_𝑅𝑀𝑆 βˆ— π‘π‘œπ‘ (π‘Žπ‘™π‘β„Žπ‘Ž) βˆ’ (6 βˆ— 𝐹𝐻𝑧 βˆ— 𝐿𝑠 βˆ— 𝐼𝑑𝑐)

12 pulse series 𝑉𝑑𝑐 = 2 βˆ— 1.35 βˆ— π‘‰πΏπΏπ‘…π‘€π‘†βˆ— cos(π‘Žπ‘™π‘β„Žπ‘Ž) βˆ’ (2 βˆ— 6 βˆ— 𝐹𝐻𝑧 βˆ— 𝐿𝑠 βˆ— 𝐼𝑑𝑐)

12 pulse parallel 𝑉𝑑𝑐 = 1.35 βˆ— π‘‰πΏπΏπ‘…π‘€π‘†βˆ— cos(π‘Žπ‘™π‘β„Žπ‘Ž) βˆ’ (3 βˆ— 𝐹𝐻𝑧 βˆ— 𝐿𝑠 βˆ— 𝐼𝑑𝑐)

2 pulse 𝑉𝑑𝑐 = 0.519 βˆ— π‘‰πΏπΏπ‘…π‘€π‘†βˆ— cos(π‘Žπ‘™π‘β„Žπ‘Ž) βˆ’ (2 βˆ— 𝐹𝐻𝑧 βˆ— 𝐿𝑠 βˆ— 𝐼𝑑𝑐)

Note: Replace alpha with gamma in inverter mode

6.4 Real Power

PDC DC power / real power absorbed from DC side calculated according

PAC real / active power transferred to converter output calculated as:

VTrueRMS True phase voltage RMS AC line to neutral

ITrueRMS True phase current RMS AC

Ξ· Power conversion efficiency

IDC DC current in Load

RDC Load resistance for rectifier mode

LDC Load inductance for rectifier mode set to 200 mH. See details in 3.1.5

Page 17: Line Commutated Converters - ABB

Applied Calculations

SEMIS – ABB Semiconductors User Manual 5SYA 2119 17

𝑅𝐷𝐢 = 𝑉𝐷𝐢

𝐼𝐷𝐢

𝑃𝐷𝐢 = 𝑉𝐷𝐢 βˆ— 𝐼𝐷𝐢

πΌπ‘‘π‘Ÿπ‘’π‘’π‘…π‘€π‘† = √1

𝑛 βˆ‘ π‘–πœˆ

2Μ‚π‘›πœˆ=1

It includes harmonic components NOT ONLY 1st order of output frequency.

According to:

𝑃𝐴𝐢 =3

π‘›βˆ‘ π‘’πœˆ Μ‚

π‘›πœˆ=1 . 𝑖�̂� . π‘π‘œπ‘  πœ‘π‘£ = 3. π‘‰π‘‘π‘Ÿπ‘’π‘’π‘…π‘€π‘†. πΌπ‘‘π‘Ÿπ‘’π‘’π‘…π‘€π‘† . 𝑃𝐹

For Inverter or Rectifier mode, the DC power definition PDC can be computed as

𝑃𝐷𝐢 = 𝑃𝐴𝐢 + π‘ƒπΏπ‘œπ‘ π‘ πΆπ‘œπ‘›π‘£π‘’π‘Ÿπ‘‘π‘’π‘Ÿ

Defined as the Loss (%) Ξ· is the ratio of calculated combined converter losses with respect to the

converter input power.

For Inverter mode, the PDC is the main input power definition. Loss (%) Ξ· is given by:

πœ‚ =π‘ƒπΏπ‘œπ‘ π‘ πΆπ‘œπ‘›π‘£π‘’π‘Ÿπ‘‘π‘’π‘Ÿ

π‘ƒπ·πΆβˆ— 100%

For Rectifier mode, the PAC is the main input power definition. Loss (%) Ξ· is given by:

πœ‚ =π‘ƒπΏπ‘œπ‘ π‘ πΆπ‘œπ‘›π‘£π‘’π‘Ÿπ‘‘π‘’π‘Ÿ

π‘ƒπ΄πΆβˆ— 100%

6.5 Reactive Power

Q Effective reactive power on the converter AC side [VAr] 𝑄 = 3 βˆ— π‘‰π‘ƒβ„Ž_𝑅𝑀𝑆 βˆ— πΌπ‘ƒβ„Ž_𝑅𝑀𝑆 βˆ— 𝑠𝑖𝑛(πœ‘1)

VPH_RMS Phase voltage (RMS)

IPH_RMS Phase current (RMS)

πœ‘1 Fundamental power factor angle

Page 18: Line Commutated Converters - ABB

Validation of SEMIS Results with PSCAD

18 User Manual 5SYA 2119 SEMIS – ABB Semiconductors

7. VALIDATION OF SEMIS RESULTS WITH PSCAD

To ensure supplied simulation results are reliable, each of the Thyristor rectifier models and the in-

verter models is validated with another simulation platform or compared to real measurement data.

The circuit topology is reconstructed in PSCAD to validate the results obtained from the SEMIS web

simulation tool. The objective of the work is to develop a 2 pulse, 6 pulses and 12 pulse series-con-

nected and parallel-connected rectifiers and inverters with loss and temperature estimation in

PSCAD and to validate the steady-state results obtained through Thyristor rectifiers web simulation

model.

Two different devices have been chosen for the process of validation. At least one set of the valida-

tion is carried out with one device, at least one set of validation is carried out in rectifier or inverter

mode to ensure all the combinations of the devices and modes of operation are covered. The XML

data of both these thyristors which were created from the device datasheets for SEMIS simulations

is modified to individual .txt files to capture the on-state voltage drop of the thyristor (VT at differ-

ent temperatures, to make the data readable in PSCAD.

The PSCAD and SEMIS circuit models are made as identical as possible to prevent any errors in vali-

dation due to the dissimilarities. Junction to Case and Case to Heat sink thermal resistances for the

Thyristor have been captured from the device datasheet while the Heat sink to ambient thermal re-

sistance Rth(h-a) is assumed as 2K/kW with different ambient temperatures.

Five cases each for the 2 pulses rectifier/inverter and the 6 pulses rectifier/inverter while 3 cases for

each of the 12 pulses series-connected and 12 pulses parallel-connected have been simulated in

PSCAD and SEMIS by varying different parameters like input line-line voltage, device, Load current,

etc.

Figure 18 Validation results comparison for 2 pulses thyristor rectifier/inverter

Remark:

The following corrections and simplifications are made on PSCAD for 6 pulse and 12 pulse converters:

β€’ A correction of -2.5˚ and +2.5˚ was made to alpha on PSCAD w.r.t the alpha in PLECS for recti-

fier and inverter operations respectively to achieve the same AC and DC parameters.

β€’ This can be explained by the fact that cosine is a decreasing function from 0 to 90 ˚ for recti-

fier operation and an increasing function from 90 to 180 for inverter operation.

β€’ The correction in alpha is required to reduce the influence of the differences in the numerical

approximation methods (conversion of the circuit to differential equations) employed by

these softwares.

Results analysis according settings

Topology

Tester:

Date

Device used (.xml)

Limit acceptance level Green / Orange / Red

Instructions 1. Enter all values according the final results table in the column SEMIS

2. Enter all values according the final results from the PSCAD in the column PSCad

3. Verify the relative difference; Results must not vary more than 2 %

Description of Settings Set

Parameter

Set 1

SEMIS

Set 1

PSCad

Set 1

Difference

Set 2

SEMIS

Set 2

PSCad

Set 2

Difference

Set 3

SEMIS

Set 3

PSCad

Set 3

Difference

Set 4

SEMIS

Set 4

PSCad

Set 4

Difference

Set 5

SEMIS

Set 5

PSCad

Set 5

Difference

Absolute average difference [%] 0.54% 0.47% 0.51% 0.49% 0.78%

Max difference [%] 1.30% 1.43% 1.62% 1.25% 1.50%

Device Losses & Temperatures

Conduction Loss per Thyristor (W) 312 309 + 0.96% 713 708.2 + 0.67% 272.75 270.2 + 0.93% 116 116 + 0.43% 729.26 739.9 - 1.46%

Combined Loss per Thyristor (W) 312 309 + 0.96% 713 708.2 + 0.67% 272.75 270.2 + 0.93% 116 116 + 0.43% 729.26 739.9 - 1.46%

Junction Temperature Before Last Switch Diode

Junction Temperature Avg Diode (Β°C) 48.32 48.01 + 0.64% 59.04 58.6 + 0.75% 46.43 46.40 + 0.06% 43.1 43.1 - 0.05% 57.2 57.52 - 0.56%

Converter Losses (W) 1247 1240 + 0.56% 2853 2838 + 0.53% 1091.6 1082 + 0.88% 463 462 + 0.22% 2916.78 2945 - 0.97%

Losses Efficiency 1.26 1.25 + 1.30% 0.75 0.74 + 0.79% 1.11 1.09 + 1.62% 0.61 0.60 + 1.25% 0.87 0.88 - 1.50%

AC Parameters

Real Power (kW) 98.76 99.5 - 0.75% 381 382 - 0.26% 98.76 99.5 - 0.75% 76 76.8 - 1.05% 333 331.2 + 0.54%

Reactive Power (kVAR) 38.36 38.3 + 0.16% 147.9 150.02 - 1.43% 38.36 38.3 + 0.16% 34.5 34.8 - 0.87% 361.41 358 + 0.94%

Phase Voltage RMS (V) 239.5 239.8 - 0.13% 461.82 462 - 0.04% 239.57 240 - 0.18% 461.82 462 - 0.04% 461.82 462 - 0.04%

Phase Current RMS (A) 481 478.8 + 0.46% 962 965 - 0.31% 481 478.8 + 0.46% 198.2 199.4 - 0.61% 1169 1156 + 1.11%

Alpha 15 15 + 0.00% 15 15 + 0.00% 15 15 + 0.00% 22.94 23 - 0.26% 47.15 47 + 0.32%

Output Frequency (Hz) 50 50 + 0.00% 50 50 + 0.00% 50 50 0.00% 50 50 + 0.00% 50 50 + 0.00%

DC Parameters & Control Parameters

DC Power (kW) 97.52 98.3 - 0.76% 377.92 379.162 - 0.33% 98.76 98.4 + 0.35% 76.93 77.262 - 0.43% 336.02 334.145 + 0.56%

DC Voltage (V) 200.85 200 + 0.42% 387 384.3 + 0.70% 200.85 200 + 0.42% 379 381 - 0.53% 281.88 283 - 0.40%

DC Current (A) 491 489 + 0.41% 983 984.5 - 0.15% 491 489 + 0.41% 201.31 202.6 - 0.64% 1181 1193 - 1.02%

SEMIS 7 - 2 Pulse Thyristor Rectifier/Inverter

Sravan Durga

March 30, 2020

5STP 27N8500, 5STP 45Y8500

0% 2% 5%

Rectifier Mode Rectifier Mode Rectifier Mode Inverter Mode Inverter Mode

Page 19: Line Commutated Converters - ABB

Validation of SEMIS Results with PSCAD

SEMIS – ABB Semiconductors User Manual 5SYA 2119 19

β€’ The thyristor bridge model and the control to generate pulses from alpha on PSCAD is differ-

ent from the converter built with individual thyristors and the control scheme on PLECS.

β€’ This approach serves the purpose of estimating losses as similar powers are operated on

both models.

β€’ The errors shown in red may be ignored as this is a correction in the alpha to achieve the

same AC and DC parameters

Figure 19 Validation results comparison for 6 pulses thyristor rectifier/inverter

Figure 20 validation results comparison for 12 pulse thyristor series/parallel connected rectifier/inverter

Topology

Tester:

Date

Device used (.xml)

Limit acceptance level Green / Orange / Red

Instructions 1. Enter all values according the final results table in the column SEMIS

2. Enter all values according the final results from the PSCAD in the column PSCad

3. Verify the relative difference; Results must not vary more than 2 %

Description of Settings Set

Parameter

Set 1

SEMIS

Set 1

PSCad

Set 1

Difference

Set 2

SEMIS

Set 2

PSCad

Set 2

Difference

Set 3

SEMIS

Set 3

PSCad

Set 3

Difference

Set 4

SEMIS

Set 4

PSCad

Set 4

Difference

Set 5

SEMIS

Set 5

PSCad

Set 5

Difference

Absolute average difference [%] 1.32% 0.74% 1.49% 0.76% 0.51%

Max difference [%] 16.72% 8.39% 16.72% 2.07% 2.62%

Device Losses & Temperatures

Conduction Loss per Thyristor (W) 488 488.9 - 0.18% 2041 2037.37 + 0.18% 405 406.9 - 0.47% 1161 1148 + 1.06% 2212 2206.2 + 0.26%

Combined Loss per Thyristor (W) 488 488.9 - 0.18% 2041 2037.37 + 0.18% 405 406.9 - 0.47% 1161 1148 + 1.10% 2212 2206.2 + 0.26%

Junction Temperature Before Last Switch Diode

Junction Temperature Avg Diode (Β°C) 53 53.04 - 0.08% 94.49 94.56 - 0.07% 49.55 49.61 - 0.12% 71.0 70.7 + 0.46% 92.09 92.06 + 0.03%

Converter Losses (W) 2929 2936 - 0.24% 12245 12244 + 0.01% 2425 2448 - 0.95% 6965 6890 + 1.08% 13247 13250 - 0.02%

Losses Efficiency 0.29 0.29 - 0.30% 0.45 0.45 - 0.18% 0.24 0.24 - 1.01% 1.15 1.14 + 0.64% 3.21 3.23 - 0.89%

AC Parameters

Real Power (kW) 1017 1016.35 + 0.06% 2726 2721 + 0.18% 1017 1016.35 + 0.06% 600 597.41 + 0.43% 400 396.45 + 0.89%

Reactive Power (kVAR) 362.9 363.69 - 0.22% 1751 1755.08 - 0.23% 362 363.7 - 0.47% 946 936 + 1.06% 2205.11 2205.6 - 0.02%

Phase Voltage RMS (V) 461.82 462 - 0.04% 461 461.8 - 0.17% 461.82 461 + 0.18% 239.57 240 - 0.18% 239.6 239.6 + 0.00%

Phase Current RMS (A) 806.8 808 - 0.15% 2431 2435 - 0.16% 806.8 808 - 0.15% 1623 1614.8 + 0.51% 3252 3250.4 + 0.05%

alpha 15.01 12.5 + 16.72% 30.02 27.5 + 8.39% 15.01 12.5 + 16.72% 120.75 123.25 - 2.07% 99.88 102.5 - 2.62%

Output Frequency (Hz) 50 50 + 0.00% 50 50 + 0.00% 50 50 0.00% 50 50 + 0.00% 50 50 + 0.00%

DC Parameters & Control Parameters

DC Power (kW) 1014 1013.41 + 0.06% 2714 2708.756 + 0.19% 1014 1013.90 + 0.01% 606.87 604.3 + 0.42% 412.46 409.7 + 0.67%

DC Voltage (V) 1016 1014 + 0.20% 909 906.2 + 0.31% 1016 1014 + 0.20% 300 302.45 - 0.82% 100 101.29 - 1.29%

DC Current (A) 1000 999.63 + 0.04% 3001 2997.2 + 0.13% 1000 1000.3 - 0.03% 2000 1984.89 + 0.76% 4000 3995.6 + 0.11%

SEMIS 7 - 6 Pulse Thyristor Rectifier/Inverter

Sravan Durga

March 31, 2020

5STP 27N8500, 5STP 45Y8500

0% 2% 5%

Rectifier Mode Rectifier Mode Rectifier Mode Inverter Mode Inverter Mode

Topology

Tester:

Date

Device used (.xml)

Limit acceptance level Green / Orange / Red

Instructions 1. Enter all values according the final results table in the column SEMIS

2. Enter all values according the final results from the PSCAD in the column PSCad

3. Verify the relative difference; Results must not vary more than 2 %

Description of Settings Set

Parameter

Set 1

SEMIS

Set 1

PSCad

Set 1

Difference

Set 2

SEMIS

Set 2

PSCad

Set 2

Difference

Set 3

SEMIS

Set 3

PSCad

Set 3

Difference

Set 4

SEMIS

Set 4

PSCad

Set 4

Difference

Set 5

SEMIS

Set 5

PSCad

Set 5

Difference

Set 6

SEMIS

Set 6

PSCad

Set 6

Difference

Absolute average difference [%] 0.90% 0.96% 0.77% 1.52% 1.38% 0.82%

Max difference [%] 8.39% 8.39% 2.13% 16.72% 16.72% 2.82%

Device Losses & Temperatures

Conduction Loss per Thyristor (W) 2584 2598.7 - 0.57% 1844 1858.45 - 0.78% 2014 2022 - 0.40% 1569 1570 - 0.06% 186.07 186.86 - 0.42% 403.87 400.4 + 0.86%

Combined Loss per Thyristor (W) 2584 2598.7 - 0.57% 1844 1858.45 - 0.78% 2014 2022 - 0.40% 1569 1570 - 0.06% 186.07 186.86 - 0.42% 403.87 400.4 + 0.86%

Junction Temperature Before Last Switch Diode

Junction Temperature Avg Diode (Β°C) 108.99 109.36 - 0.34% 83.49 83.88 - 0.47% 93.78 93.98 - 0.21% 81.9 81.2 + 0.81% 44.39 44.42 - 0.07% 49.52 49.43 + 0.18%

Converter Losses (W) 31010 31189 - 0.58% 22130 22302 - 0.78% 24170 24263 - 0.38% 18830 18845 - 0.08% 2233.09 2244 - 0.49% 4846.35 4810 + 0.75%

Losses Efficiency 0.48 0.49 - 0.71% 0.34 0.35 - 0.91% 1.15 1.13 + 1.02% 0.37 0.37 + 0.10% 0.22 0.22 - 0.56% 0.80 0.80 + 0.22%

AC Parameters

Real Power (kW) 6423 6414.75 + 0.13% 6423 6414.75 + 0.13% 2085 2114.9 - 1.43% 5133 5142 - 0.18% 1029 1028.3 + 0.07% 599 595.8 + 0.53%

Reactive Power (kVAR) 3959 3950 + 0.23% 3959 3950 + 0.23% 3416 3440 - 0.70% 1651 1643.7 + 0.44% 327.27 328.8 - 0.47% 942 930 + 1.27%

Phase Voltage RMS (V) 461.82 461.8 + 0.00% 461.82 461.8 + 0.00% 288.64 288.6 + 0.01% 461.82 461.8 + 0.00% 461.82 461.8 + 0.00% 239.57 239.6 - 0.01%

Phase Current RMS (kA) 5496.15 5453.6 + 0.77% 5496 5454 + 0.76% 4669 4660 + 0.19% 3923 3896 + 0.69% 785.66 785.5 + 0.02% 1570 1549 + 1.34%

Alpha 30.02 27.5 + 8.39% 30.02 27.5 + 8.39% 120.43 123 - 2.13% 15.01 12.5 + 16.72% 15.01 12.5 + 16.72% 120.6 124 - 2.82%

Output Frequency (Hz) 50 50 + 0.00% 50 50 + 0.00% 50 50 0.00% 50 50 + 0.00% 50 50 + 0.00% 50 50 + 0.00%

DC Parameters & Control Parameters

DC Power (kW) 6392 6383.56 + 0.13% 6392 6392.45 - 0.01% 2109 2139.16 - 1.43% 5115 5123.16 - 0.16% 1026 1026.1 - 0.01% 604.49 600.61 + 0.64%

DC Voltage (V) 1839 1838.9 + 0.01% 1839 1839.1 - 0.01% 703 714.5 - 1.64% 1028 1020 + 0.78% 1029 1029 + 0.00% 301 303.3 - 0.76%

DC Current (A) 3493 3498.01 - 0.14% 3493 3497.9 - 0.14% 2964 2988 - 0.81% 4994 4937.4 + 1.13% 1000 999.9 + 0.01% 1994 1969 + 1.25%

12 pulse parallel inverter

SEMIS 7 - 12 Pulse Series/Parallel Thyristor Rectifier/Inverter

Sravan Durga

March 27, 2020

5STP 27N8500, 5STP 45Y8500

0% 2% 5%

12 pulse series rectifier 12 pulse series rectifier 12 pulse series inverter 12 pulse parallel rectifier 12 pulse parallel rectifier

Page 20: Line Commutated Converters - ABB

User Manual Revision History

20 User Manual 5SYA 2119 SEMIS – ABB Semiconductors

β€”

8. USER MANUAL REVISION HISTORY

Rev. Page Change Description Date / Initial

1.1 all Initial version in the new design 2019-03-12 PGGI/HM

β€”

9. SIMULATION SOFTWARE RELEASE HISTORY

Rev. New topic Fixed defects Tvj influence Date

1.0 Initial version - - 2020-03-20 PGGI / HM

Page 21: Line Commutated Converters - ABB
Page 22: Line Commutated Converters - ABB

β€”

Contact

ABB Power Grids Switzerland Ltd.

Semiconductors

Fabrikstrasse 3

5600 Lenzburg, Switzerland

Phone: +41 58 586 1419

Fax: +41 58 586 1306

E-Mail: [email protected]

abb.com/semiconductors

Note

We reserve the right to make technical changes

or modify the contents of this document without

prior notice. With regard to purchase orders, the

agreed particulars shall prevail. ABB does not

accept any responsibility whatsoever for potential

errors or possible lack of information in this document.

We reserve all rights in this document in the

subject matter and illustrations contained therein.

Any reproduction- in whole or in parts- is forbidden

without ABB’s prior written consent.

Do

cu

me

nt

no

. 5

SY

A 2

119