HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael...

16
4/16/2014 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics Line Commutated Converter LCC Effective short Circuit Ratio ESCR Configurations and operating modes Conversion principles Reactive power Capacitor Commutated Converter – CCC Converter arrangements Converter station layout and equipment Control & protection Questions? 2

Transcript of HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael...

Page 1: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

1

HVDC TechnologyLine Commutated Converters

Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014

1

Topics

• Line Commutated Converter ‐ LCC

• Effective short Circuit Ratio ‐ ESCR

• Configurations and operating modes

• Conversion principles

• Reactive power

• Capacitor Commutated Converter – CCC

• Converter arrangements

• Converter station layout and equipment

• Control & protection

• Questions?

2

Page 2: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

2

HVDC technologyLine Commutated Converters ‐ LCC

3

HVDC Classic• Current source converters (CSC)• Line-commutated converter (LCC) with

thyristor valves• Requires ~50% reactive compensation

(35% HF)• Converter transformers• Minimum short circuit capacity > 2 x Pd,

> 1.3 x Pd with capacitor commuted converter (CCC)

Indoor

Outdoor

Thyristor ValvesThyristor Valves

Indoor

Outdoor

Thyristor ValvesThyristor Valves

AC DC

HVDCHVDC--CSCCSC

AC FiltersAC Filters

DC FiltersDC FiltersConverter Converter

TransformersTransformers

AC DC

--

AC FiltersAC Filters

DC FiltersDC FiltersConverter Converter

TransformersTransformers

Short Circuit RatioWhat’s the deal?

• Commutation performance

• Voltage stability

• Dynamic performance

• Dynamic overvoltage, DOV

• Low order harmonic resonance,

• Rule of thumb – ESCR > 2 LCC, > 1.3 CCC; where ESCR = (SN+SG+SSC+SWF‐Q)/PDC

4

GT

SC

WF

ACNetwork

QHF ± QSH

QHF ± QSH

SN

SWF?

SG

SSC

fres = f1 (S/Q)

Page 3: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

3

HVDC in bipolar operation Single 12p CSC per pole with metallic return switching

• MRTB – metallic return transfer breaker, used for switching from ground return to metallic return

• GRTS – ground return transfer switch, used for switching from metallic return to earth return in preparation for restarting pole (NRTS for systems with continuous metallic neutral)

• BPS – bypass switch, used to provide metallic return path

• NBS – neutral bus switch, used to commutate spill current from healthy pole for neutral bus fault

• NBGS – neutral bus ground switch, used to help clear faults on electrode line (or metallic neutral

5

MRTBNBS

GRTS

BPS

NBGS

BPS

NBS

NBGS

BPS

BPS

DC disconnect, closed

DC disconnect, open

DC breaker, closed

DC breaker, open

DC breaker

=

HVDC monopolar earth return operationTemporary during emergencies or maintenance

6

DC disconnect, closed

DC disconnect, open

DC breaker, closed

DC breaker, open

DC breaker

=

Idp1

Idp1=Ig

Page 4: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

4

HVDC monopolar metallic return operationDuring converter outages or degraded line insulation

7

DC disconnect, closed

DC disconnect, open

DC breaker, closed

DC breaker, open

DC breaker

=

Idp1

Idp1

Ig = 0

Commutation in a controlled bridgeRectifier operation

8

uR

uS

uT

1 3 5

4 6 2

Id

Ud

IR

IS

IT

uS

uR

uT

u

dcdid IXUU

3cos0

vdi0 Uπ

23U

Page 5: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

5

Reactive power characteristicsLCC

• Converter stations appear as a reactive load, i.e. lagging power factor

• Both rectifier and inverter operation exhibit lagging power factor, i.e. current lags voltage

• Lagging power factor is due to phase control and commutating reactance

• Typically reactive power demand = 55% of station rating at full load

• Reactive power compensation –typically 35% of station rating from ac filters the balance from shunt banks

• Shunt reactors sometimes used at light load to absorb excess from filters

9

HVDC Classic:Reactive compensation by switched filters and shunt capacitor banks

Conventional HVDC technologyLCC and CCC

• CC located between converter transformers and thyristor valves ‐ reduces transformer rating, increases valve voltage rating

• CC provides part of the commutation voltage and reactive support. Reduces probability for commutation failure for remote faults

• CC location reduces bank exposure to ac network faults, simplifies commutation capacitor protection, reduces MOV energy

• Reduces amount of shunt compensation, raises ac network resonance frequency, reduces dynamic overvoltage, lowers minimum ESCR

• Reduces variable O&M with shunt bank switching and transformer LTC operations

10

LCC circuit CCC circuit

Commutation capacitor, CC

Page 6: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

6

CCC principles of commutation Inverter operation

11

• Commutation Margin, ´

• Apparent Margin ac

• Commutation margin increases with +Id or -Uac

HVDC converter arrangements

HVDC Classic

• Current source converter

• Line commutated

• Thyristor valves

• Thyristor modules

• Electrically triggered

12

SingleValve

DoubleValve

QuadrupleValve

Thyristor Module

Thyristor Heat Sink

Gate Unit

Page 7: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

7

Layout of bipolar HVDC station± 500 kV, 3000 MW

13

HVDC converter station6400 MW, ± 800 kV with series converters

14

Page 8: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

8

Thyristor Valve Installation

15

Layout of HVDC quadruple thyristor valve

16

TCU Derivative Feeding Resistor

Thyristor

Saturable ReactorModule

TCU

Thyristor Module= 9 thyristor

positions

DC GradingResistor

Damping Resistors

Damping Capacitors

TCU DerivativeFeeding Capacitor

TCU

TCU

TCUThyristorControl Unit

Page 9: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

9

HVDC thyristor module

17

Thyristors

Capacitors

Resistors

TCUHeat sinks

Current connector

Compression springs

Cooling tubes

&

&&

S

RQ

IP FPPOWER

+ UPF

+ URP

- UN

+ UPS

+ UDI

+

1

PROTECTIVE FIRING

RECOVERY PROTECTION

MONITORINGNORMAL FIRING

Valve Cooling System 

• Single circuit system

• Outdoor dry, liquid‐to‐air coolers for valve heat dissipation

• Same base design for HVDC, HVDC Light and SVC

• High reliability – redundant pumps, coolers, control, monitoring and protection

• Designed for ease of maintenance –redundancy permits repair or replacement of parts without requiring a converter or pole outage

18

OUTDOORCOOLERS

EXPANSIONVESSEL

MAINPUMPS

CONVERTERVALVE

D EAERATIONVESSEL

REPLENISHMENTSYSTEM

M ECHANICALFILTERS

DEIONIZERFILTERS

M

SHUNTVALVES

MECHANICALFILTERS

Page 10: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

10

Transformer Converter Interface HVDC

• Match valve voltage with system AC‐side

• Provide impedance to limit the short circuit current to the valve

• Galvanically separate the AC‐ and DC‐side (takes place inside transformer, between AC and DC winding) making it possible to connect the converters in series

• Converter transformers also carry harmonics, phase shift provides some harmonic cancellation

• MVA rating and transport limitations determine configuration

19

Harmonic FiltersConventional HVDC12‐pulse converter

• AC side current harmonics: fh=12n±1, i.e. 11th,13th,23rd,25th,. . . 

• Typical ac filter performance criteria: THD<1.5%, Dh<1%, TIF < 45

• DC side voltage harmonics: fh=12n

• Typical dc filter performance criteria: Ieq < 250ma

• Typically 35% of station rating in installed ac filters

• Harmonics diminish with increasing harmonic number

20

Page 11: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

11

Filter types

21

0 10 20 301

10

100

1 103

1 104

Harmonic number

Impe

danc

e (o

hms)

5 10 151

10

100

1 103

Harmonic number

Impe

danc

e (o

hms)

Bandpass filter High-pass filter Double-tuned filter

0 20 40 6010

100

1 103

1 104

Harmonic number

Impe

danc

e (o

hms)

HVDC classic control principles

• Two independent variables at each terminal – firing angle, ac voltage

• Control of firing angle is fast, control of ac voltage is slow (LTC)

• One end assigned to voltage control, the other end to current control

• Higher level power control calculates current order – no need for speed for normal dispatch but can be fast for pole loss compensation or runback

• Current (or voltage) order converted to firing angle and sent to control pulse generator

• CPG synchronized to ac voltage via PLL for equidistant firing

22

Page 12: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

12

Firing angle limits and VDCOL

• Firing angle limits – alpha min for rectifier operation, minimum commutation margin for inverter operation

• Minimum firing voltage for rectifier operation for disturbances

• Voltage dependent current order limiter for controlling dynamic reactive power demand during start‐up and disturbance recovery

• VDCOL time constants – fast for decreasing voltage, slower for increasing voltage

• VDCOL up time constant speed dependent on system strength

23

Rio Madeira - Total transmission project overview

Hydro Power Plants

3300 and 3150 MW

Complex Customer structure

Technology

– Very week network in NW Brazil.

– Advanced technical solutions

• Capacitor  Commuted Converters – Replaces 2 Synchronous machines

• Large three winding transformers (Largest HVDC transformers so far)

• Deep hole electrodes

Logistics

– Transport of transformers on river. Limited period of enough water  in river

– Brazilian Custom Clearance

© ABB Group April 16, 2014 | Slide 24

Rio Madeira HVDC ProjectChallenges

Page 13: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

13

© ABB GroupApril 16, 2014 | Slide 25

Rio Madeira HVDC Project

ABB Araraquara Converter station (right) and Ahlstom station in the middle

Two transformers moved into position

© ABB GroupApril 16, 2014 | Slide 26

Rio Madeira HVDC Project

Porto Velho Bipole quadruple valves

Page 14: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

14

© ABB GroupApril 16, 2014 | Slide 27

Rio Madeira HVDC Project

Araraquara Bipole double valves

© ABB GroupApril 16, 2014 | Slide 28

Rio Madeira HVDC Project

Porto Velho Back to Back station

Page 15: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

15

© ABB GroupApril 16, 2014 | Slide 29

Rio Madeira HVDC Project

Porto Velho Back to Back

NorthEast – Agra (NEA800), India• Power:  6000/8000*) MW * continuous overload

• DC‐voltage: + 800 kV

• Transmission: 1728 km

• Three‐station multi‐terminal bipole with OH‐lines, parallel‐connected 12‐pulse converters 

• In‐service: 2014‐15

30

Alipurduar

3000 MWPole 3

Pole 4

Bipole 2

400 kV

Biswanath Chariali

3000 MW

Pole 1

Pole 2

Bipole 1

400 kV

Bipole 1

Agra

3000 MW 3000 MWPole 3

Pole 4

Bipole 2

Pole 1

Pole 2

400 kV

+800 kV

-800 kV

~432 km~1296 kmBIPOLE 1 BIPOLE 2

Page 16: HVDC Technology Line Commutated Converters 1 HVDC Technology Line Commutated Converters Michael Bahrman, P.E., IEEE PES T&D, Chicago, April 15, 2014 1 Topics • Line Commutated Converter

4/16/2014

16

Questions?

31