Lecture 2: Geometrical Optics - Leiden Observatory

40
Lecture 2: Geometrical Optics Outline 1 Geometrical Optics 2 Lenses 3 Mirrors 4 Optical Systems 5 Aberrations Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 1

Transcript of Lecture 2: Geometrical Optics - Leiden Observatory

Page 1: Lecture 2: Geometrical Optics - Leiden Observatory

Lecture 2: Geometrical Optics

Outline

1 Geometrical Optics2 Lenses3 Mirrors4 Optical Systems5 Aberrations

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 1

Page 2: Lecture 2: Geometrical Optics - Leiden Observatory

Geometrical Optics

rays are normal to locally flat waverays are reflected and refracted according to Fresnel equationsphase is neglected ) incoherent sumrays can carry polarization informationgeometrical optics neglects diffraction effects: � ) 0physical optics � > 0simplicity of geometrical optics mostly outweighs limitations

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 2

Page 3: Lecture 2: Geometrical Optics - Leiden Observatory

Lenses

Surface Shape of Perfect Lens

lens material has index of refraction n

o z(r) · n + z(r) f = constantn · z(r) +

pr

2 + (f � z(r))2 = constantsolution z(r) is hyperbola with eccentricity e = n > 1

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 3

Page 4: Lecture 2: Geometrical Optics - Leiden Observatory

Paraxial Optics

Assumptions:1 Snell’s law for small angles of incidence (sin� ⇡ �)2 ray hight r small so that optics curvature can be neglected (plane

optics, (cos� ⇡ 1))3

tan� ⇡ � = r/f

paraxial approximation reassonable for � . 10 degrees

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 4

Page 5: Lecture 2: Geometrical Optics - Leiden Observatory

Spherical Lenses

surface error requirement less than �/10most optical surfaces are spherical due to ease of manufacturingcan easily join two spherical surfaces with equal radii

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 5

Page 6: Lecture 2: Geometrical Optics - Leiden Observatory

1.1-meter Singlet Lens of Swedish Solar Telescope

www.isf.astro.su.se/NatureNov2002/images/dan/DCP_5127.JPGg

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 6

Page 7: Lecture 2: Geometrical Optics - Leiden Observatory

Positive/Converging Spherical Lens Parameters

center of curvature and radii with signs: R1 > 0,R2 < 0center thickness: d

positive focal length f > 0

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 7

Page 8: Lecture 2: Geometrical Optics - Leiden Observatory

Negative/Diverging Spherical Lens Parameters

note different signs of radii: R1 < 0,R2 > 0virtual focal pointnegative focal length (f < 0)

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 8

Page 9: Lecture 2: Geometrical Optics - Leiden Observatory

General Lens Setup

commons.wikimedia.org/wiki/File:Lens3.svg

object distance S1, object height h1

image distance S2, image height h2

axis through two centers of curvature is optical axis

surface point on optical axis is the vertex

chief ray through center maintains direction

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 9

Page 10: Lecture 2: Geometrical Optics - Leiden Observatory

Thin Lens Approximationthick-lens equation:

1S1

+1

S2= (n � 1)

✓1

R1� 1

R2+

(n � 1)dnR1R2

◆=

1f

thin-lens equation for d << R1R2:

1S1

+1

S2= (n � 1)

✓1

R1� 1

R2

◆=

1f

Finite Imagingrarely image point sources, but extended objectobject and image size are proportionalorientation of object and image are invertedmagnification perpendicular to optical axis: M = h2/h1 = �S2/S1

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 10

Page 11: Lecture 2: Geometrical Optics - Leiden Observatory

Achromatic Lens

combination of 2 lenses, different glass dispersionalso less spherical aberration

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 11

Page 12: Lecture 2: Geometrical Optics - Leiden Observatory

Mirrors

Mirrors vs. Lensesmirrors are completely achromaticreflective over very large wavelength range (UV to radio)can be supported from the backcan be segmentedwavefront error is twice that of surface, lens is (n-1) times surfaceonly one surface to ’play’ with

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 12

Page 13: Lecture 2: Geometrical Optics - Leiden Observatory

Spherical Mirrors

easy to manufacturefocuses light from center of curvature onto itselffocal length is half of curvature: f = R/2tip-tilt misalignment does not matterhas no optical axisdoes not image light from infinity correctly (spherical aberration)

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 13

Page 14: Lecture 2: Geometrical Optics - Leiden Observatory

Parabolic Mirrors

want to make flat wavefront into spherical wavefrontdistance az(r) + z(r)f = const.z(r) = r

2/2R

perfect image of objects at infinityhas clear optical axis

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 14

Page 15: Lecture 2: Geometrical Optics - Leiden Observatory

8.4-meter Large Binocular Telescope Primary Mirror Nr. 2

mirrorlab.as.arizona.edu/sites/mirrorlab.as.arizona.edu/files/LBT_2_DSCN1893.jpg

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 15

Page 16: Lecture 2: Geometrical Optics - Leiden Observatory

Conic Sections

circle and ellipses: cuts angle < cone angleparabola: angle = cone anglehyperbola: cut along axis

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 16

Page 17: Lecture 2: Geometrical Optics - Leiden Observatory

en.wikipedia.org/wiki/Conic_constant

Conic Constant Kr

2 � 2Rz + (1 + K )z2 = 0 forz(r = 0) = 0

z = r

2

R

1

1+r

1�(1+K ) r

2R

2

R radius of curvatureK = �e

2, e eccentricityprolate ellipsoid (K > 0)sphere (K = 0)oblate ellipsoid (0 > K > �1)parabola (K = �1)hyperbola (K < �1)all conics are almost sphericalclose to originanalytical ray intersections

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 17

Page 18: Lecture 2: Geometrical Optics - Leiden Observatory

Foci of Conic Sections

en.wikipedia.org/wiki/File:Eccentricity.svg

sphere has single focusellipse has two fociparabola (ellipse withe = 1) has one focus (andanother one at infinity)hyperbola (e > 1) has twofocal points

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 18

Page 19: Lecture 2: Geometrical Optics - Leiden Observatory

Elliptical Mirrors

have two foci at finite distancesperfectly reimage one focal point into another

Hyperbolic Mirrors

have a real focus and a virtual focus (behind mirror)perfectly reimage one focal point into another

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 19

Page 20: Lecture 2: Geometrical Optics - Leiden Observatory

Optical Systems

Overview

www.google.com/patents/US6560031

combinations of several optical elements (lenses, mirrors, stops)examples: camera “lens”, microscope, telescopes, instruments

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 20

Page 21: Lecture 2: Geometrical Optics - Leiden Observatory

Simple Thin-Lens Combinations

thin-lens combinations can be treated analyticallydistance > sum of focal lengths ) real image between lenses )apply single-lens equation successivelyfocal length of general thin lens combination

focal lengths: f1, f2distance between thin lenses: d12effective focal length: 1

f

= 1f1+ 1

f2� d12

f1f2

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 21

Page 22: Lecture 2: Geometrical Optics - Leiden Observatory

Example Thin-Lens Combinations

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 22

Page 23: Lecture 2: Geometrical Optics - Leiden Observatory

F-number and Numerical Aperture

Aperture

all optical systems have a place where ’aperture’ is limitedmain mirror of telescopesaperture stop in photographic lensesaperture typically has a maximum diameteraperture size is important for diffraction effects

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 23

Page 24: Lecture 2: Geometrical Optics - Leiden Observatory

F-number

f/2: f/4:

describes the light-gathering ability of the optical systemf-number given by F = f/D

also called focal ratio or f-ratio, written as: f/F

the bigger F , the better the paraxial approximation worksfast system for F < 2, slow system for F > 2

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 24

Page 25: Lecture 2: Geometrical Optics - Leiden Observatory

Numerical Aperture in Fibers

en.wikipedia.org/wiki/File:OF-na.svg

acceptance cone of the fiber determined by materials

NA = n sin ✓ =q

n

21 � n

22

n index of refraction of external medium

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 25

Page 26: Lecture 2: Geometrical Optics - Leiden Observatory

Telecentric Arrangement

as seen from image, pupil is at infinityeasy: lens is its focal length away from pupil (image)magnification does not change with focus positionsray cones for all image points have the same orientation

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 26

Page 27: Lecture 2: Geometrical Optics - Leiden Observatory

Aberrations

Spot Diagrams and Wavefronts

plane of least confusion is location where image of point sourcehas smallest diameterspot diagram: shows ray locations in plane of least confusionspot diagrams are closely connected with wavefrontsaberrations are deviations from spherical wavefront

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 27

Page 28: Lecture 2: Geometrical Optics - Leiden Observatory

Spherical Aberration of Spherical Lens

Made with Touch Optical Design

different focal lengths of paraxial and marginal rayslongitudinal spherical aberration along optical axistransverse (or lateral) spherical aberration in image planemuch more pronounced for short focal ratiosfoci from paraxial beams are further away than marginal raysspot diagram shows central area with fainter disk around it

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 28

Page 29: Lecture 2: Geometrical Optics - Leiden Observatory

Minimizing Spherical Aberrations

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 29

Page 30: Lecture 2: Geometrical Optics - Leiden Observatory

Spherical Aberration Spots and Waves

spot diagram shows central area with fainter disk around itwavefront has peak and turned-up edges

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 30

Page 31: Lecture 2: Geometrical Optics - Leiden Observatory

Aspheric Lens

conic constant K = �1 �p

n makes perfect lensdifficult to manufacturebut possible these days

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 31

Page 32: Lecture 2: Geometrical Optics - Leiden Observatory

Coma

typically seen for object points away from optical axisleads to ’tails’ on stars

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 32

Page 33: Lecture 2: Geometrical Optics - Leiden Observatory

Coma Spots and Waves

parabolic mirror with perfect on-axis performancespots and wavefront for off-axis image pointswavefront is tilted in inner part

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 33

Page 34: Lecture 2: Geometrical Optics - Leiden Observatory

Astigmatism due to Tilted Glass Plate in Converging Beam

astigmatism: focus in two orthogonal directions, but not in both atthe same timetilted glass-plate: astigmatism, spherical aberration, beam shifttilted plates: beam shifters, filters, beamsplittersdifference of two parabolae with different curvatures

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 34

Page 35: Lecture 2: Geometrical Optics - Leiden Observatory

Field Curvature

field (Petzval) curvature: image lies on curved surfacecurvature comes from lens thickness variation across apertureproblems with flat detectors (e.g. CCDs)potential solution: field flattening lens close to focus

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 35

Page 36: Lecture 2: Geometrical Optics - Leiden Observatory

Petzval Field Flattening

Petzval curvature only depends on index of refraction (ni

) andfocal length (f

i

) of lensesPetzval curvature is independent of lens position!Petzval curvature vanishes for

Pi

1n

i

f

i

= 0field flattener also makes image much more telecentric

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 36

Page 37: Lecture 2: Geometrical Optics - Leiden Observatory

Distortion

image is sharp but geometrically distorted(a) object(b) positive (or pincushion) distortion(c) negative (or barrel) distortion

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 37

Page 38: Lecture 2: Geometrical Optics - Leiden Observatory

Vignetting

effective aperture stop depends on position in objectimage fades toward its edgesonly influences transmission, not image sharpness

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 38

Page 39: Lecture 2: Geometrical Optics - Leiden Observatory

Aberration Descriptions

Seidel Aberrationsintroduced by Ludwig von Seidel (1857)

Taylor expansion of sin� = �� �3

3! +�5

5! � ...

paraxial approximation: first-order optics, sin� ⇠ �

Seidel aberrations: third-order optics, sin� ⇠ �� �3

3!describes spherical, astigmatism, coma, field curvature, distortion

Zernike Polynomialsorthonormal basis on unit circlelowest orders correspond to Seidel aberrationsZ

m

n

(r ,�) = R

m

n

(r) cos m�, Z

�m

n

(r ,�) = R

m

n

(r) sin m�

n � m � 0

R

m

n

(r) =P n�m

2k=0 (�1)k

�n�k

k

��n�2k

n�m

2 �k

�r

n�2k

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 39

Page 40: Lecture 2: Geometrical Optics - Leiden Observatory

Zernike Polynomials

tip

coma 0�

tilt

coma 90�

focus

trefoil 0�

astigmatism45�

trefoil 30�

astigmatism0�

third-orderspherical

Christoph U. Keller, Leiden Observatory, [email protected] Lecture 2: Geometrical Optics 40