The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond...

24
The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck (Leiden) Neal Evans (Univ. of Texas) Geoff Blake (Caltech) The c2d team Cardiff, Jan ‘05

Transcript of The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond...

Page 1: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

The chemistry and physics of interstellar ices

Klaus PontoppidanLeiden Observatory

Kees Dullemond(MPIA, Heidelberg)Helen Fraser(Leiden)Ewine van Dishoeck(Leiden)Neal Evans(Univ. of Texas)Geoff Blake(Caltech)The c2d team

Cardiff, Jan ‘05

Page 2: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Abundance % of O % of C % of NH2 1 - - -Oxygen-bearing ice

4x10-4 29% 20% -

Carbon dust 3.3x10-4 - 50% -Silicates 2.6x10-4 23% - -Gas-phase CO

1x10-4 9% 15% -

Nitrogen-bearing ice

3x10-5 <1% <1% 18%

PAHs - - 10% -Other gas-phase molecules

10-7-10-6 <1% <1% <1%

Total ~60% ~95% ~18%

Known molecular reservoirs in dense clouds (cores)

Page 3: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Grain mantles as chemical reservoirs

Bare grain surface

CO, O, N, H…

H2O, CH3OH, CO2, NH3,…

CH3OCH3, CH2CH3CN,…

Surface reactions

Freeze-out Evaporation

Gas-phase reactions

Mostly hydrogenation

Comets, planets

Primitive cloud Circumstellar environment

Mol. CloudT=10-15 Kn~105 cm-3

Page 4: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Main questionsFormation of interstellar ices.

What forms first? Water? CO2? What are the chemical pathways

to form the most abundant ice species?

How does the ice interact with the gas-phase?

Evolution of ices Which external processes are

important - UV, heating, energetic particles?

What happens when prestellar ices are incorporated into a protostellar envelope and then a disk?

Page 5: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

The big laboratory in the sky Microscopic properties

Understanding astronomical ice absorption spectra: Grain shape effects/distribution of ices within a grain mantle + inter-molecular interactions

Macroscopic properties Distribution of ices in a

cloud/envelope/disk. Dust temperatures, radiation fields,

density and history of the above parameters.

Page 6: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Spectroscopy of icesSpectroscopy of ices

VLT-ISAAC 3-5 micron modeH2O, CO, CH3OH, OCN-, (NH3) --- ~50 lines of sight

Spitzer-IRS 5-20 micronH2O, NH4

+, CH4, (NH3), (CH3OH), --- ~100 lines of sightCO2

ISOCAM-CVF 5-16 micronH2O, NH4

+, CO2

Page 7: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Single line of sight

Traditional methodof observing interstellarices. Problem: almostimpossible to couple theice to the physicalcondition of the cloud

Page 8: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Multiple embedded lines of sight

Good: Direct spatialinformation can be obtained. Sources are bright.Bad: Sources may interact With the ice on unresolved scales

Page 9: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Multiple background stars

Good: Unbiased ice spectra. Bad: Stars are faint in the mid-IR

Page 10: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

2MASS JHK

SVS 4 - a cluster embedded in the outer envelopeof a class 0 protostar.

SVS 4

SMM 4

Pontoppidan et al 2003, 2004 A&A

Page 11: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

ISOCAM 6.7 micron SCUBA 850 micron(used to extract temperature+density profiles)

Mapping of ice abundances

SMM 4

Most of the stars in SVS4 have very little IR excess: Extinction estimates are accurate

Page 12: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

H2O ice

CH3OH ice

Both H2O and CH3OHices show a suddenjump in abundanceAt densities of4x105 cm-3 and 1x105 cm-3, resp.

-The formation of water seems to dependon density.-Methanol in high abundance is verylocalised.

Page 13: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

CO ice seems to be dividedinto two (or three) basic components

Pure CO

CO+H2O

Pontoppidan et al. 2003, A&A, 408, 981

Page 14: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Collings et al 2003

CO ice is mobile

< 10 K

10-20 K

30-70 K

Pontoppidan et al. 2003, A&A

Page 15: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Cold core

Envelope?

Large disk?

15.2 micron CO2 bending mode with Spitzer

Page 16: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

(+) indicates an observed line of sight.

Ices in the Oph-F core

CRBR 2422.8-3423

Pontoppidan et al. 2005, in prep

Page 17: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

NH4+

Radial map of CO and CO2 icesDensity

Spitzer-IRSVLT-ISAACISOCAM-CVF

Page 18: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

The formation of ice mantles can be directly modeled.

T0 x 3

T0 x 10 (equilibrium)

T0

However, an accurate temperature-density model ofThe core is required for accurate age estimates.

50%

5%

Page 19: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Robert Hurt, SSC

Page 20: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

CRBR 2422.8-3423 model

2D Monte Carlo model to compute temperature + density structure of disk and envelope using JHK/(sub)mm imaging +

2-40 micron spectroscopy

90 AU flared disk (solar nebula style) +

envelope/foreground material producing extinction to account for the near-infrared colours.

Vary parameters by hand (a full grid wouldtake years to compute).

Page 21: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Comparison between observed JHKs composite and modelof CRBR 2422.8-3423

ISAAC JHKs Model JHKs

Pontoppidan et al. 2005, ApJ, in press

Page 22: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Model fit to the SED of CRBR 2422.8-3423

30”

10”

Page 23: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Heated ice bands toward CRBR 2422.8-3423

H2O+’6.85 micron’ bands

Conclusion:

Most of the ice, in particular the CO ice isNot located in the disk, in this case. However, the NH4

+ bandShows evidence for strong heating, requiring a significant part of this component to be located in the disk.

Page 24: The chemistry and physics of interstellar ices Klaus Pontoppidan Leiden Observatory Kees Dullemond (MPIA, Heidelberg) Helen Fraser (Leiden) Ewine van Dishoeck.

Summary

• Different methods of observing interstellarIces: 1) Single line of sight toward embedded source. 2) multiple lines toward embedded and background stars. 3) disk ices coupled with a radiative transfer model.

• Examples given:1) CRBR2422.8-3423 (disk)2) SMM 4 (protostellar envelope)3) Oph-F (dense core)4) L723 (isolated dense core)

• Ices are important both for tracing the chemistry and physical conditions of dense clouds…