New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9....

37
Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 1

Transcript of New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9....

Page 1: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Lecture 1: Foundations of Optics

Outline

1 Electromagnetic Waves2 Material Properties3 Electromagnetic Waves Across Interfaces4 Fresnel Equations

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 1

Page 2: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Electromagnetic Waves

Electromagnetic Waves in MatterMaxwell’s equations⇒ electromagnetic wavesoptics: interaction of electromagnetic waves with matter asdescribed by material equationspolarization of electromagnetic waves are integral part of optics

Maxwell’s Equations in Matter

∇ · ~D = 4πρ

∇× ~H − 1c∂~D∂t

=4πc~j

∇× ~E +1c∂~B∂t

= 0

∇ · ~B = 0

Symbols~D electric displacementρ electric charge density~H magnetic fieldc speed of light in vacuum~j electric current density~E electric field~B magnetic inductiont time

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 2

Page 3: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Linear Material Equations

~D = ε~E~B = µ~H~j = σ~E

Symbolsε dielectric constantµ magnetic permeabilityσ electrical conductivity

Isotropic and Anisotropic Mediaisotropic media: ε and µ are scalarsanisotropic media: ε and µ are tensors of rank 2isotropy of medium broken by

anisotropy of material itself (e.g. crystals)external fields (e.g. Kerr effect)mechanical deformation (e.g. stress birefringence)

assumption of isotropy may depend on wavelength (e.g. CaF2 forsemiconductor manufacturing)

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 3

Page 4: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Wave Equation in Matterstatic, homogeneous medium with no net charges: ρ = 0for most materials: µ = 1combine Maxwell, material equations⇒ differential equations fordamped (vector) wave

∇2~E − µε

c2∂2~E∂t2 −

4πµσc2

∂~E∂t

= 0

∇2~H − µε

c2∂2~H∂t2 −

4πµσc2

∂~H∂t

= 0

damping controlled by conductivity σ~E and ~H are equivalent⇒ sufficient to consider ~Einteraction with matter almost always through ~Ebut: at interfaces, boundary conditions for ~H are crucial

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 4

Page 5: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Plane-Wave Solutions

Plane Vector Wave ansatz ~E = ~E0ei(~k ·~x−ωt)

~k spatially and temporally constant wave vector~k normal to surfaces of constant phase|~k | wave number~x spatial locationω angular frequency (2π× frequency ν)t time

~E0 (generally complex) vector independent of time and space

could also use ~E = ~E0e−i(~k ·~x−ωt)

damping if ~k is complex~E0 describes the polarization and the absolute phasereal electric field vector given by real part of ~Esum of solutions is also a solution

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 5

Page 6: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Complex Index of Refractiontemporal derivatives⇒ Helmholtz equation

∇2~E +ω2µ

c2

(ε+ i

4πσω

)~E = 0

spatial derivatives⇒ dispersion relation between ~k and ω

~k · ~k =ω2µ

c2

(ε+ i

4πσω

)complex index of refraction

n2 = µ

(ε+ i

4πσω

), ~k · ~k =

ω2

c2 n2

split into real (n: index of refraction) and imaginary parts (k :extinction coefficient)

n = n + ik

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 6

Page 7: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Transverse Waves

plane-wave solution must also fulfill Maxwell’s equations

~E0 · ~k = 0, ~H0 · ~k = 0, ~H0 =nµ

~k

|~k |× ~E0

isotropic media: electric, magnetic field vectors normal to wavevector⇒ transverse waves~E0, ~H0, and ~k orthogonal to each other, right-handed vector-tripleconductive medium⇒ complex n, ~E0 and ~H0 out of phase~E0 and ~H0 have constant relationship⇒ consider only ~E

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 7

Page 8: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Energy Propagation in Isotropic Mediatime-averaged Poynting vector⟨

~S⟩

=c

8πRe(~E0 × ~H∗0

)Re real part of complex expression

∗ complex conjugate〈.〉 time average

energy flow parallel to wave vector in isotropic media

⟨~S⟩

=c

8π|n|µ|E0|2

~k

|~k |

energy flow is proprtional to index of refraction!in anisotropic materials (e.g. crystals), energy propagation andwave vector are not parallel!

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 8

Page 9: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Quasi-Monochromatic Lightmonochromatic light: purely theoretical conceptmonochromatic light wave always fully polarizedreal life: light includes range of wavelengths⇒quasi-monochromatic lightquasi-monochromatic: superposition of mutually incoherentmonochromatic light beams whose wavelengths vary in narrowrange δλ around central wavelength λ0

δλ

λ� 1

measurement of quasi-monochromatic light: integral overmeasurement time tmamplitude, phase (slow) functions of time for given spatial locationslow: variations occur on time scales much longer than the meanperiod of the wave

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 9

Page 10: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Polychromatic Light or White Light

wavelength range comparable wavelength ( δλλ ∼ 1)incoherent sum of quasi-monochromatic beams that have largevariations in wavelengthcannot write electric field vector in a plane-wave formmust take into account frequency-dependent materialcharacteristicsintensity of polychromatic light is given by sum of intensities ofconstituting quasi-monochromatic beams

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 10

Page 11: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Material Properties

Index of Refractioncomplex index of refraction

n2 = µ

(ε+ i

4πσω

), ~k · ~k =

ω2

c2 n2

no electrical conductivity⇒ real index of refractiontransparent, dielectric materials: real index of refractionconducting materials (metal): complex index of refractionalso transparent, conducting materials, e.g. ITOindex of refraction depends on wavelength (dispersion)index of refraction depends on temperatureindex of refraction roughly proportional to density

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 11

Page 12: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Glass Dispersion

en.wikipedia.org/wiki/File:Dispersion-curve.png

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 12

Page 13: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Wavelength Dependence of Index of Refraction

tabulated by glass manufacturervarious approximations to express wavelength dependence with afew parameterstypically index increases with decreasing wavelengthAbbé number:

νd =nd − 1

nF − nC

nd : index of refraction at Fraunhofer d line (587.6 nm)nF : index of refraction at Fraunhofer F line (486.1 nm)nC : index of refraction at Fraunhofer C line (656.3 nm)low dispersion materials have high values of νd

Abbe diagram: νd vs nd

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 13

Page 14: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Glasses

Abbe-Diagram nd –ννd

Description of Symbols

N- or P-glass

Lead containing glass

N-glass or lead containing glass

Glass suitable for Precision Molding

Fused Silica

PSK

FK

PK

LAK

BK K

SK

LLF

BALF

BAFSSK

BASF

F

SF

LASF

LF

LAF

KF

BAK

4

KZFS452

82

4

24

16

11

145

57 4

5

95

3

7

ZK7

KZFS2

2

107

10

5

51

51A

52 A

1

51

2

64

KZFS8

KZFS52

KZFS11

10

5

2

7

33

46A

66

67

57

6

1156A

14

15

5

8

4

9

4041

44

31A

454743

21

235

34

108

34

914

12

227

21

53A

33A

5

5

1

FS

51

58A

60

35

68

50

10

169

37

85 80 75 70 65 60 55 50 45 40 35 30 25 209095

νd

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

nd

85 80 75 70 65 60 55 50 45 40 35 30 25 209095

νd

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00 nd

2.05

Aug

ust

2010

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 14

Page 15: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Empirical Models of Index of Refractiontabulated, measured index as function of wavelengthapproximations to express smooth wavelength dependencemost common: Sellmeier equation and coefficients:

n2(λ) = 1 +B1λ

2

λ2 − C1+

B2λ2

λ2 − C2+

B3λ2

λ2 − C3

reflects resonances that drive index variation with wavelengthonly applicable over a limited wavelength rangeBK7: B1 =1.03961212, C1 =6.00069867e-3, B2 =2.31792344e-1,C2 =2.00179144e-2,B3 =1.01046945, C3 =1.03560653e2

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 15

Page 16: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Transparent Materials

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 16

Page 17: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Internal Transmission

internal transmission per cmtypically strong absorption in the blue and UValmost all glass absorbs above 2 µm

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 17

Page 18: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Metal Reflectivity

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 18

Page 19: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Electromagnetic Waves Across Interfaces

Introductionclassical optics due to interfaces between 2 different mediafrom Maxwell’s equations in integral form at interface frommedium 1 to medium 2(

~D2 − ~D1

)· ~n = 4πΣ(

~B2 − ~B1

)· ~n = 0(

~E2 − ~E1

)× ~n = 0(

~H2 − ~H1

)× ~n = −4π

c~K

~n normal on interface, points from medium 1 to medium 2Σ surface charge density on interface~K surface current density on interface

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 19

Page 20: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Fields at Interfaces

Σ = 0 in general, ~K = 0 for dielectricscomplex index of refraction includes effects of currents⇒ ~K = 0requirements at interface between media 1 and 2(

~D2 − ~D1

)· ~n = 0(

~B2 − ~B1

)· ~n = 0(

~E2 − ~E1

)× ~n = 0(

~H2 − ~H1

)× ~n = 0

normal components of ~D and ~B are continuous across interfacetangential components of ~E and ~H are continuous across interface

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 20

Page 21: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Plane of Incidence

plane wave onto interfaceincident (i ), reflected (r ), andtransmitted (t ) waves

~E i,r ,t = ~E i,r ,t0 ei(~k i,r,t ·~x−ωt)

~H i,r ,t =cµω

~k i,r ,t × ~E i,r ,t

interface normal ~n ‖ z-axis

spatial, temporal behavior at interface the same for all 3 waves

(~k i · ~x)z=0 = (~k r · ~x)z=0 = (~k t · ~x)z=0

valid for all ~x in interface⇒ all 3 wave vectors in one plane, planeof incidence

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 21

Page 22: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Snell’s Law

spatial, temporal behavior thesame for all three waves

(~k i ·~x)z=0 = (~k r ·~x)z=0 = (~k t ·~x)z=0∣∣∣~k ∣∣∣ = ωc n

ω, c the same for all 3 wavesSnell’s law

n1 sin θi = n1 sin θr = n2 sin θt

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 22

Page 23: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Monochromatic Wave at Interface

~H i,r ,t0 =

cωµ

~k i,r ,t × ~E i,r ,t0 , ~Bi,r ,t

0 =cω~k i,r ,t × ~E i,r ,t

0

boundary conditions for monochromatic plane wave:(n2

1~E i

0 + n21~E r

0 − n22~E t

0

)· ~n = 0(

~k i × ~E i0 + ~k r × ~E r

0 − ~k t × ~E t0

)· ~n = 0(

~E i0 + ~E r

0 − ~E t0

)× ~n = 0(

1µ1

~k i × ~E i0 +

1µ1

~k r × ~E r0 −

1µ2

~k t × ~E t0

)× ~n = 0

4 equations are not independentonly need to consider last two equations (tangential componentsof ~E0 and ~H0 are continuous)

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 23

Page 24: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Two Special (Polarization) Cases

TM, p TE, s

1 electric field parallel to plane of incidence⇒ magnetic field istransverse to plane of incidence (TM)

2 electric field particular (German: senkrecht) or transverse to planeof incidence (TE)

general solution as (coherent) superposition of two caseschoose direction of magnetic field vector such that Poynting vectorparallel, same direction as corresponding wave vector

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 24

Page 25: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Electric Field Perpendicular to Plane of Incidence

Ei

Er

Et

Hi

Hr

Ht

electric field also perpendicular to interface normal ~n(~E i

0 + ~E r0 − ~E t

0

)× ~n = 0 becomes (with E i,r ,t

0 instead of ~E i,r ,t0 )

E i0 + E r

0 − E t0 = 0(

~k i × ~E i0 + ~k r × ~E r

0 − ~k t × ~E t0

)× ~n = 0 becomes

n1E i0 cos θi − n1E r

0 cos θr − n2E t0 cos θt = 0

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 25

Page 26: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Electric Field Perpendicular to Plane of Incidence

Ei

Er

Et

Hi

Hr

Ht

from previous slide:

n1E i0 cos θi − n1E r

0 cos θr − n2E t0 cos θt = 0

~k i,r ,t × ~E i,r ,t0 in direction of ~H i,r ,t

0

Poynting vector in same direction as wave vector⇒ flip sign oftangential component of magnetic field vector of reflected wavereason for minus sign for reflected component in above equationcos θi,r ,t terms from projecting ~k i,r ,t × ~E i,r ,t

0 onto interface plane

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 26

Page 27: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Electric Field Perpendicular to Plane of Incidence

Ei

Er

Et

Hi

Hr

Ht

θr = θi

ratios of reflected and transmitted to incident wave amplitudes

rs =E r

0E i

0=

n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt

ts =E t

0E i

0=

2n1 cos θi

n1 cos θi + n2 cos θt

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 27

Page 28: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Electric Field in Plane of Incidence

Ei E

r

Et

Hi H

r

Ht

(~E i

0 + ~E r0 − ~E t

0

)× ~n = 0 becomes

E i0 cos θi − E r

0 cos θr − E t0 cos θt = 0 .

flip tangential component of electric field vector to align Poyntingand wave vectorscos θi,r ,t terms are due to the cross products ~E i,r ,t

0 × ~n

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 28

Page 29: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Electric Field in Plane of Incidence

Ei E

r

Et

Hi H

r

Ht

(~k i × ~E i

0 + ~k r × ~E r0 − ~k t × ~E t

0

)× ~n = 0 becomes

n1E i0 + n1E r

0 − n2E t0 = 0

~k i,r ,t × ~E i,r ,t0 is in direction of ~H i,r ,t

0

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 29

Page 30: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Electric Field in Plane of Incidence

Ei E

r

Et

Hi H

r

Ht

ratios of reflected and transmitted to incident wave amplitudes

rp =E r

0E i

0=

n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt

tp =E t

0E i

0=

2n1 cos θi

n2 cos θi + n1 cos θt

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 30

Page 31: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Summary of Fresnel Equations

eliminate θt with Snell’s law n2 cos θt =√

n22 − n2

1 sin2 θi

µ1/µ2 ≈ 1 for most materialselectric field amplitude transmission ts,p, reflection rs,p

ts =2n1 cos θi

n1 cos θi +√

n22 − n2

1 sin2 θi

tp =2n1n2 cos θi

n22 cos θi + n1

√n2

2 − n21 sin2 θi

rs =n1 cos θi −

√n2

2 − n21 sin2 θi

n1 cos θi +√

n22 − n2

1 sin2 θi

rp =n2

2 cos θi − n1

√n2

2 − n21 sin2 θi

n22 cos θi + n1

√n2

2 − n21 sin2 θi

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 31

Page 32: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Consequences of Fresnel Equationscomplex index of refraction⇒ ts, tp, rs, rp (generally) complexreal indices⇒ argument of square root in Snell’s law

n2 cos θt =√

n22 − n2

1 sin2 θi can still be negative⇒ complex ts, tp,rs, rp

real indices, arguments of square roots positive (e.g. dielectricwithout total internal reflection)

therefore ts,p ≥ 0, real⇒ incident and transmitted waves will havesame phasetherefore rs,p real, but become negative when n2 > n1 ⇒ negativeratios indicate phase change by 180◦ on reflection by medium withlarger index of refraction

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 32

Page 33: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Other Form of Fresnel Equationsusing trigonometric identities

ts = 2 sin θt cos θisin(θi+θt )

tp = 2 sin θt cos θisin(θi+θt ) cos(θi−θt )

rs = −sin(θi−θt )sin(θi+θt )

rp = tan(θi−θt )tan(θi+θt )

refractive indices “hidden” in angle of transmitted wave, θt

can always rework Fresnel equations such that only ratio ofrefractive indices appears⇒ Fresnel equations do not depend on absolute values of indicescan arbitrarily set index of air to 1; then only use indices of mediameasured relative to air

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 33

Page 34: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

ReflectivityFresnel equations apply to electric field amplitudeneed to determine equations for intensity of waves

time-averaged Poynting vector⟨~S⟩

= c8π|n|µ |E0|2

~k|~k |

absolute value of complex index of refraction entersenergy along wave vector and not along interface normaleach wave propagates in different direction⇒ consider energy ofeach wave passing through unit surface area on interfacedoes not matter for reflected wave⇒ ratio of reflected andincident intensities is independent of these two effectsrelative intensity of reflected wave (reflectivity)

R =

∣∣E r0

∣∣2∣∣E i0

∣∣2Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 34

Page 35: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Transmissivitytransmitted intensity: multiplying amplitude squared ratios with

ratios of indices of refraction (different speeds of light)projected area on interface

relative intensity of transmitted wave (transmissivity)

T =|n2| cos θt

∣∣E t0

∣∣2|n1| cos θi

∣∣E i0

∣∣2

energy conservation⇒ R + T = 1 for transparent materials (notfor absorbing materials)

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 35

Page 36: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Arbitrary Polarization

electric field vector of incident wave ~E i0, length E i

0, at angle α toplane of incidencedecompose into 2 components: parallel and perpendicular tointerface

E i0,p = E i

0 cosα , E i0,s = E i

0 sinα

use Fresnel equations to obtain corresponding (complex)amplitudes of reflected and transmitted waves

E r ,t0,p = (rp, tp) E i

0 cosα , E r ,t0,s = (rs, ts) E i

0 sinα

reflectivity R and transmissivity T

R = |rp|2 cos2 α + |rs|2 sin2 α

T =|n2| cos θt

|n1| cos θi

(|tp|2 cos2 α + |ts|2 sin2 α

)

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 36

Page 37: New Leiden Observatory - Leiden University - Electromagnetic …keller/Teaching/ATI... · 2016. 9. 16. · August 2010 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

Reflection and Transmission

Christoph U. Keller, Leiden University, [email protected] Lecture 1: Foundations of Optics 37