Jpl Iitb.pres1

download Jpl Iitb.pres1

of 26

Transcript of Jpl Iitb.pres1

  • 8/10/2019 Jpl Iitb.pres1

    1/26

    Physics and Transport Modeling in

    Nanoscale MOS Devices

    Jean-Pierre Leburton

    Department of Electrical and Computer

    Engineering and Beckman Institute

    University of Illinois at Urbana-Champaign

    Urbana, IL 61801, USA

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    2/26

  • 8/10/2019 Jpl Iitb.pres1

    3/26

    Threshold Voltage: Channel Formation

    Flat band conditionsM O S

    VG-VFB

    VB

    Vox

    Ec

    Ei

    Ev

    Efs

    Efm

    2q!p

    q!p

    VT = VFB +VC +2!p +

    1

    Cox2"

    0"sqNa (2!p +VC#VB )

    tox

    Depletion charge

    Inversion potential

    Channel potential

    (non-equilibrium)

    qVFB

    Depletion

    ee

    e

    e

    After Y.Taur and T.H. Ning, FMVD, Cambridge, 2d ed.

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    4/26

    MOSFET Operation Principles*

    a)VG >V

    T,V

    D !0 b)VG >VT,VD V

    T,V

    D >V

    GT

    Pinch-off

    VDS

    IDS

    (a)

    (b) (c)

    Charge control operation

    ON

    OFF

    I-V Characteristic

    IDSAT

    After R.S. Muller and T.I Kamins, DEIC, Wiley, 2d ed.

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    5/26

    Gradual Channel Approximation ( )VGT

    !VDS

    VG VD

    VC

    yLy0

    VD

    VC(y)

    VG

    COX COX COX COX

    S D

    V

    VD+VTVC(y)+VTVS+VT

    Qn(y)

    Qn(y) =!Cox VG !VT!VC(y)[ ]

    VDS

    IDS

    !(x,y): electrostatic potential!"

    !y

  • 8/10/2019 Jpl Iitb.pres1

    6/26

    VG VD

    S D

    V

    qFX qFX

    Gate control:

    many carriers

    -low field

    Gate control

    lost: Few

    carriers-high

    field

    IDS=qWn(y)v(y): constant

    Pinch-Off and Saturation (VGT

  • 8/10/2019 Jpl Iitb.pres1

    7/26

    Sub-Threshold Conduction*

    Normal conduction

    Sub-threshold

    conduction

    (Diffusion)

    *After R.S. Muller and T.I Kamins, DEIC, Wiley, 3d ed

    e-

    ns ! exp("q#B

    kT)

  • 8/10/2019 Jpl Iitb.pres1

    8/26

    MOSFET Scaling (Constant field)*

    Scaling assumptions Device dimensions (L, W, tOX,) 1/K

    Doping concentration (Na,Nd) K

    Voltage (except VT) 1/K

    Derived scaling: Electric fields 1

    Device parameters Carrier velocity 1 Depletion layer width (Wd) 1/K Capacitance (C="A/t) 1/K

    Inversion layer charge density 1

    Current, drift 1/K

    Channel resistance 1

    Derived scaling: Circuit delay time (#$CV/I) 1/K

    Circuit parameters Power dissipation (P~VI) 1/K2 Power-delay product (P#) 1/K3

    Circuit density (~1/A) K2

    Power density (P/A) 1

    Device and circuitparameters

    Multiplicativefactor (K>1)

    Wd =2!0!s"depl

    qNa

    Down scaling ofcircuit parameters

    *After Y. Taur and T.H. Ning, Fundamentals of Modern VLSI Devices,Cambridge, 2d edition

    J.P. Leburton, IWSG-2009, IITB, India

    Not scalable: Materials (EG, , etc)

    Temperature

  • 8/10/2019 Jpl Iitb.pres1

    9/26

    Modern CMOS

    *After R.S. Muller and T.I Kamins, DEIC, Wiley, 3d ed.

    CMOS Inverter circuit* Transfer characteristics*

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    10/26

    Short Channel Effects

    Channel-length modulation

    IDSAT

    =

    W

    2LC

    ox(V

    G! V

    T)

    2

    L

    S D

    VG

    %L

    IDSAT

    '=

    W

    2(L ! "L(VG))C

    ox(V

    G !V

    T)

    2> I

    DSAT

    VDS

    IDS

    VGT

    Pinch-off

    Beyond

    pinch-off

    Pinch-off

    Beyond

    pinch-off

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    11/26

    Velocity Saturation (Si-Devices)

    F

    vd

    (1)

    (2) (3)

    f(v)

    v0

    F1

    2

    3

    4

    (4)

    kBT

    c

    vd1 vd2 vd3=vd4

    Line

    ar

    Sub-linear Saturation

    Carrier heating:

    collisions

    Carrier drift

    Fc

    vd =

    vsatF

    F+ Fc

    = vsat

    / Fc

    vsat

    !107cm / s

    Consequence for MOS Devices

    IDS

    =

    W

    LC

    ox (V

    G! V

    T)V

    DS! V

    DS

    2/ 2"# $%

    IDS

    =W

    L + (VDS / Fc )C

    ox (V

    G! V

    T)V

    DS! V

    DS

    2/ 2"

    # $

    %

    Velocity saturation

    induced current reduction

    *After R.S. Muller and T.I Kamins, DEIC, Wiley 3d ed.J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    12/26

    Gate-Induced Mobility Degradation

    VG VD

    n+ n+

    VS

    p-Si

    Interface

    roughness

    Interface

    charge

    eFX

    Feff =!

    1

    "0"s

    (Qd+Q

    n

    2)

    eff =

    0

    1+ (Feff /F0 )#

    with0,F

    0 and# fitting parameters

    eff =0

    1+!(VG"VT) For simulation purpose

    Feff

    R.S. Muller and T.I Kamins, DEIC, Wiley, 3d ed.

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    13/26

    Drain-Induced Barrier Lowering (DIBL)*

    e

    VT-shift with VD

    *After Y.Taur and T.H. Ning, FMVD, Cambridge, 2d ed.J.P. Leburton, IWSG-2009, IITB, India

    Tunneling

    Thermionic emission

  • 8/10/2019 Jpl Iitb.pres1

    14/26

    Source-Drain Charge Sharing Effect:

    VT (Gate coupling)-Reduction*

    tox

    *After R.S. Muller and T.I Kamins, DEIC, Wiley, 3d ed.

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    15/26

    Deep Nanoscale Devices

    vdr

    x or t

    vsat

    Oxide leakage

    Quantum ChargeDopant granularityVelocity Overshoot

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    16/26

    Velocity Overshoot (Transient)

    Fx

    t(or x)

    v

    vx

    Fx

    1

    2

    3

    4

    6

    5

    Increasing scattering rates

    with carrier energy

    vsat

    n+ n+

    t or xtmax/ xmax

    L= xmax

    In III-V Compnds : tmax~1ps =>xmax~100nm

    vmax~ 4-5x107cm/s

    In Si: tmax~0.1ps=>xmax~10-20nm

    vmax~2x107cm/s

    High speed-high current!!

    K. Hess, ATSD, Wiley, 2000

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    17/26

    Depletion and Quantum Capacitance:

    Gate Coupling ReductionPoly-Si gate*

    (All-Si&self-alignment)Quantized inversion

    layer

    C-V curve*

    CPoly

    Cox

    Cinv

    1

    Cg=

    1

    Cpoly+

    1

    Cox+

    1

    Cinv

    ! Cg

  • 8/10/2019 Jpl Iitb.pres1

    18/26

    Dopant Granularity: VT-Fluctuations*

    *U. Kovac et al., Microelectronic Reliability 48, 1572 (2008)J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    19/26

    tox-Scaling => High-K Dielectrics*

    But

    Cox

    =

    !0!

    ox

    tox

    tox

    Tunneling-induced dissipation

    High-K dielectrics Cox =!0!SiO

    2

    tSiO2

    =

    !0!high"K

    thigh"K

    thigh!K =("high!K / "SiO2 )tSiO2 >>tSiO2 Reduces Tunneling

    *P. Zeitzoff and H.Huff, 2005 ICCMUT,

    Dallas, TX

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    20/26

    High-K Dielectric Phonons

    High-K: Large!=> large polarization

    !

    P

    e

    + +

    +++

    +

    +

    ++

    +

    Polar Optic Phonons

    + + + +-- - -

    U(t): ion displacement

    !"!#SO

    1

    $ox

    % & 1

    $ox

    0

    '() *

    +," P

    2

    Interaction strength(Frohlich)

    Electronic

    contribution (fast)

    Ionic contribution

    (slow)

    M. Fischetti et al., JAP 90, 4587 (2001)

    !

    P =!

    Pionic

    +

    !

    Pelectronic

    Me/Si-O bond!E

    G

    "n(direct)

    negligible in

    insulators

    (large EG)

    Si-O bond: strong--> hard phonons

    Me-O bond: weaker-->soft phonons

    Electron-phonon interactionHigh energyLow !0

    Low energyLarge !0

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    21/26

    High-K Dielectric Remote Phonons

    (High-K)

    (Si)

    Interaction between electron in Si and

    remote phonons in High-K dielectric !!!!

    !" !#SO

    1

    $ox

    %+ $

    Si

    %&

    1

    $ox

    0+ $

    Sio

    0

    '

    ()

    *

    +,

    Interaction strength

    (image charge)

    K. Hess, ATSD, Wiley, 2000

    Q. Wang &G.D. Mahan, PRB 6, 4517 (1972)

    *M. Fischetti et al., JAP 90, 4587 (2001)

    +++

    + +

    + + +

    +

    __

    _

    _

    __

    _

    _

    _

    Plasmon-RIP coupling*Remote Interface Phonons

    Si-substrate

    Metal gate

    n-channel

    tox

    weak strong

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    22/26

    High-K Dielectric Remote Phonon Scattering

    Strong RIP

    scattering

    (ZrO2&HfO2)

    Weak (bare or

    plasmon screened)

    RIP scattering

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    23/26

    RIP-Limited Channel Mobility:SiO2 vs. HfO2*Simulated Theory vs Experiment

    Ns-dependence

    T-dependence

    Weaker T-dependence

    for Hf-based

    insulators

    coulombscattering

    neglected in

    the model

    Goodagreement

    at high Ns

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    24/26

    Alternative (Future) MOSFET Structures*

    * After K. Imai, Proc. Of SPICE vol. 7028

    Depleted devices for - Reduction of VT-fluctuations

    - Ballistic transport

    + III-V on Si for high mobility

    J.P. Leburton, IWSG-2009, IITB, India

  • 8/10/2019 Jpl Iitb.pres1

    25/26

    Confined Phonons in Quantum Wires*

    Carrier confinement, but alsoCarrier confinement, but also

    phonon confinementphonon confinement"

  • 8/10/2019 Jpl Iitb.pres1

    26/26