JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET...

42
FET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing & Common Gate Voltage divider MOSFET Biasing configurations Depletion-type Enhancement-type

Transcript of JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET...

Page 1: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Chapter7. FET Biasing

JFET Biasing configurations Fixed biasingSelf biasing & Common GateVoltage divider

MOSFET Biasing configurations Depletion-typeEnhancement-type

Page 2: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

JFET: Fixed BiasingExample 7.1:As shown in the figure, it is the fixed biasing configuration of n-channel JFET. Determine:VGSQ , IDQ , VDS , VD , VG and VS .

Solution: Mathematical approach

VGSQ = - VGG = - 2V.

Page 3: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

2

1

P

GSDSSDQ V

VII2

82110

VVmA

= 5.625mA

VDS = VDD – ID RD = 16V - (5.625mA) (2k) = 4.75VVD = VDS = 4.75V

VG = VGS = - 2V

VS = 0V

Page 4: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Three points are sufficient to plot the curve.

Graphical approach

It is known that IDSS= 10mA and VP= -8V.

First, according to Shockley’s equation, we can sketch out the transfer curve.

(0 , IDSS) (0, 10mA)

(VP, 0) (-8V, 0)

(VP /2, IDSS/4) (-4V, 2.5mA)

Page 5: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

The fixed level of VGS has been superimposed as a vertical line at VGS= -VGG = -2V.The intersection of the two curves is the solution to the configuration, referred to as the quiescent or operating point.

By drawing a horizontal line from the Q-point to the vertical ID axis, we get

IDQ = 5.6mA

Page 6: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

VDS = VDD – ID RD = 16V - (5.6mA) (2k) = 4.8V

VD = VDS = 4.8V

VG = VGS = - 2V

VS = 0V

The remaining work is almost the same as previous approach:

Page 7: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.1, FET fixed biasing

Page 8: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.1, Graphical approach

Page 9: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

JFET: Self-BiasExample 7.2:As shown in the figure, it is the self biasing configuration of n-channel JFET. This network needs only one dc supply. Determine:VGSQ , IDQ , VDS , VD , VG and VS .

Solution:

This time, we only use graphical approach.

Page 10: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

From the dc circuit, we get

For dc analysis, all the capacitors are replaced with open circuit.

VGS = – ID RS

It is a straight line through the origin.The other point is (-4V, 4mA).So the load line is plotted through the two points.

Note that IG = 0mA .

Page 11: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Three points are sufficient to plot the curve.

It is known that IDSS= 8mA and VP= -6V.

Then, according to Shockley’s equation, we can sketch out the transfer curve.

(0 , IDSS) (0, 8mA)

(VP, 0) (-6V, 0)

(VP /2, IDSS/4) (-3V, 2mA)

Page 12: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

The intersection of the two curves is the Q-point.So we get

IDQ = 2.6mA

VGSQ = -2.6V

VDS = VDD – ID (RD+RS)

= 20V - (2.6mA) (1k+ 3.3k)

= 8.82V

Page 13: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

VS = ID RS = (2.6mA) (1k) = 2.6V

VD = VDS +VS = 11.42V

or

VG = 0V

= 8.82V+ 2.6V

= 11.42V

VD = VDD – ID RD = 20V- (2.6mA) (3.3k)

Page 14: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.2, FET self-bias

Page 15: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.2, Q-point of self-bias

Page 16: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

JFET: Common GateExample 7.4:As shown in the figure, it is the common gate configuration of n-channel JFET. Determine:VGSQ , IDQ , VDS , VD , VG and VS .

Solution:This network is corresponding to common-base network of BJT.

Page 17: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Three points are sufficient to plot the curve.

It is known that IDSS= 12mA and VP= -6V.

According to Shockley’s equation, we can sketch out the transfer curve.

(0 , IDSS) (0, 12mA)

(VP, 0) (-6V, 0)

(VP /2, IDSS/4) (-3V, 3mA)

Page 18: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

From the dc circuit, we getVGS = – ID RS

It is a straight line through the origin.The other point is (-4.08V, 6mA).So the load line is plotted through the two points.

= – ID (680 )

So from the Q-point, we getIDQ 3.8mAVGSQ -2.6V

Page 19: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

VS = ID RS

VG = 0V

= 6.3V

= 12V- 3.8mA 1.5k

VD = VDD – ID RD

= 3.8mA 680 = 2.58V

VDS = VD – VS

= 6.3V-2.58V = 3.72V

Page 20: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.4, Common gate configuration

Page 21: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.4, Transfer curve & load line

Page 22: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

JFET: Voltage DividerExample 7.5:As shown in the figure, it is the voltage divider configuration of n-channel JFET.Determine:VGSQ , IDQ , VD , VS , VDS , and VDG .

Solution:This network is the same as voltage divider network of BJT.

Page 23: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Three points are sufficient to plot the curve.

It is known that IDSS= 8mA and VP= -4V.

According to Shockley’s equation, we can sketch out the transfer curve.

(0 , IDSS) (0, 8mA)

(VP, 0) (-4V, 0)

(VP /2, IDSS/4) (-2V, 2mA)

Page 24: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

For dc analysis, all the capacitors are replaced with open circuit. Note that IG = 0mA .

Also it’s obvious that

So we get

DDG VRR

RV21

2

V

kMk 162701.2

270

= 1.82V

VGS = VG – ID RS = 1.82V- ID (1.5k)

Page 25: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

(1.82V, 0mA) & (0V, 1.21mA)

So the load line is plotted through the two points.

Then from the Q-point, we getIDQ 2.4mAVGSQ -1.8V

= 10.24V

= 16V- 2.4mA 2.4kVD = VDD – ID RD

Page 26: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

VS = ID RS = 2.4mA 1.5k = 3.6V

= 6.64V= 16V- 2.4mA ( 2.4k + 1.5k )

VDS = VDD – ID (RD+RS)

Or VDS = VD – VS = 10.24V-3.6V = 6.64V

VDG = VD – VG

= 10.24V-1.82V = 8.42V

Page 27: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.5, Voltage divider configuration

Page 28: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.5, Transfer curve & load line

Page 29: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Depletion-Type MOSFETExample 7.7:As shown in the figure, it is the n-channel depletion-type MOSFET configuration.Determine:VGSQ , IDQ , and VDS .

Solution:For the n-channel depletion-type MOSFET, VGS can be positive and ID can exceed IDSS.

Page 30: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Three points are sufficient to plot the curve while VGS<0.

It is known that IDSS= 6mA and VP= -3V.

According to Shockley’s equation, we can sketch out the transfer curve.

(0 , IDSS) (0, 6mA) (VP, 0) (-3V, 0) (VP /2, IDSS/4) (-1.5V, 1.5mA)

Page 31: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

when VGS > 0, letting VGS =1V,

and according to Shockley’s equation, we get

So the transfer curve has been sketched out.

2

1

P

GSDSSD V

VII2

3116

VVmA

= 10.67mA

Page 32: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

For dc analysis, all the capacitors are replaced with open circuit. Note that IG = 0mA .

Also it’s obvious that

So we get

DDG VRR

RV21

2

V

MMM 18

1111011

= 1.5V

VGS = VG – ID RS = 1.5V- ID (750)

Page 33: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

(1.5V, 0mA) & (0V, 2mA)

So the load line is plotted through the two points.

Then from the Q-point, we get

IDQ 3.1mA VGSQ -0.8V

10.1V

= 18V- (2.4mA) (2.4k+750)

VDS = VDD – ID (RD + RS)

Page 34: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.7, depletion-type MOSFET configuration

Page 35: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.7, Transfer curve & load line

Page 36: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Enhancement-Type MOSFETExample 7.11 :As shown in the figure, it is the n-channel enhancement-type MOSFET feedback biasingconfiguration.Determine: VGSQ and IDQ.

Solution:Due to the existence of VGS(Th), we need four points to obtain the transfer curve.

Page 37: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

The ID is defined byID = k (VGS – VT)2

Solving for k, we obtain

2)()(

)(

)( ThGSonGS

onD

VVI

k

2)38(

6VV

mA

= 0.2410-3 A/V2

Then, Letting VGS = 6V, we get

ID = 0.2410-3 (VGS – VT)2

= 0.2410-3 (6V – 3V)2 = 2.16mA

Page 38: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Also, Letting VGS = 10V, we get

ID = 0.2410-3 (VGS – VT)2

= 0.2410-3 (10V – 3V)2

So four points are sufficient to plot the curve.

VGS(Th) (3V, 0mA)

(VGS(on) , ID(on) ) (8V, 6mA)

(6V, 2.16mA)

= 11.76mA

(10V, 11.76mA)

Page 39: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

From the dc circuit, we get

VGS = VDD – ID RD

(0V, 6mA) and (12V, 0mA)

So the load line is plotted through the two points.

= 12V– ID (2k)

So from the Q-point, we get

IDQ 2.75mA VGSQ 6.4V

Page 40: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.11, enhancement-type MOSFET configuration

Page 41: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Figure: Example 7.11, Transfer curve & load line

Page 42: JFET Biasing configurations Fixed biasing Self …jpkc.xidian.edu.cn/ac/uploads/ppt/chapter7.pdfFET Biasing Chapter7. FET Biasing JFET Biasing configurations Fixed biasing Self biasing

FET Biasing

Summary of Chapter 7

JFET Biasing configurations Fixed biasingSelf biasing & Common GateVoltage divider

MOSFET Biasing configurations Depletion-type: voltage dividerEnhancement-type: feedback biasing