BJT Biasing Cont. - seas.upenn. ese319/Lecture_Notes/Lec_5_BJTBias2_12.pdfBJT Biasing Cont. Biasing...
date post
09-Mar-2018Category
Documents
view
259download
15
Embed Size (px)
Transcript of BJT Biasing Cont. - seas.upenn. ese319/Lecture_Notes/Lec_5_BJTBias2_12.pdfBJT Biasing Cont. Biasing...
ESE319 Introduction to Microelectronics
12009 Kenneth R. Laker, update 21Sep12
BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design
ESE319 Introduction to Microelectronics
22009 Kenneth R. Laker, update 21Sep12
Simple Base Biasing Schemes
What's wrong with these schemes?
ESE319 Introduction to Microelectronics
32009 Kenneth R. Laker, update 21Sep12
Another Simple Biasing Scheme
RB
RC
I E
V CC
Is this scheme any better? If it is, why?
ESE319 Introduction to Microelectronics
42009 Kenneth R. Laker, update 21Sep12
Biasing for Operating Point StabilityA practical biasing scheme must be insensitive to changes in transistor and operating temperature! Negative feedback is one solution.
IC
IB
IE R
E
RC
VCC
VB
ESE319 Introduction to Microelectronics
52009 Kenneth R. Laker, update 21Sep12
I C I S eV BEV T
V BE=V BRE I E=V BREI C
Basic relationships:I E= I BI C=1 I B
I E=1
I C=
1
I C
Given the (DC bias) equations:
Assume: V BE=0.7 V
Let: VB, VCC and IC be specified;
Compute: RE to obtain IC:
RE=V BV BE
I C=
V B0.7I C
ESE319 Introduction to Microelectronics
62009 Kenneth R. Laker, update 21Sep12
Negative feedback makes the collector current insensitive to VBE, IS, and . If IC increases due to an increase in IS then VBE will decrease; thus, limit-
ing the magnitude of the change in IC.
The equations that must be satisfied simultaneously are:
Negative Feedback via RE
I C=V BV BE1RE
=V BV BE
RE
V BE=V BREI C=V B
1
RE I CI C=I S eV BEV T and
if IS => IC when IC => VBE IC > VBE VBE insensitivityI C
V BRE
=>
ESE319 Introduction to Microelectronics
72009 Kenneth R. Laker, update 21Sep12
Scilab Analysis of IC Insensitivity to ISSimultaneous equations:
I C= I S eV BEV T
I C=V BV BE
RE
or: V BV BE
RE=I S e
V BEV T
If we plot the exponential function and the straight line function,the solution values of IC and VBE for the circuit occur at theirintersection.
Let RE=4k V B=4.7Vand (want VB >> VBE)
ESE319 Introduction to Microelectronics
82009 Kenneth R. Laker, update 21Sep12
Scilab Program//Calculate and plot npn BJT bias characteristicbeta=100;alpha=beta/(beta+1);VsubT=0.025;VTinv=1/VsubT;VBB=4.7;Re=4;vBE=0.0:0.01:1;iCline=alpha*(VBB-vBE)/Re;//mA.plot(vBE,iCline);iC=0.01:0.01:2; //mA.!IsubS =1E-16; //mA.for k= 1:1:8 IsubS=10*IsubS; vBE2=VsubT*log(iC/IsubS); plot(vBE2,iC); //Current in mA.end
I C=V BV BE
RE
V BE=V T lnI CI S
ESE319 Introduction to Microelectronics
92009 Kenneth R. Laker, update 21Sep12
IC vs IS Results PlotI S=10
11 I S=1018
I C0.1mA Insensitive to I
S!
I C=V BV BE
RE
I C= I S eV BEV T
ESE319 Introduction to Microelectronics
102009 Kenneth R. Laker, update 21Sep12
RE=V B0.7
I C
Example: =100V B=4.7VI C=1 mA
RE=0.994.70.7
103
=100101
0.99
I C=V B0.7
RE=
1
103 A
Writing IC as a function of :
Assume: 100 200100101
103=0.990 mA I C200201
103=0.995 mA
CONCLUSION: IC is insensitive to changes in !
RE4000
Insensitivity to Beta
ESE319 Introduction to Microelectronics
112009 Kenneth R. Laker, update 21Sep12
Non-zero Base Resistance
I B
ICV B=I B RBV BE1 I B RE
I B=V BV BE
RB1RE
I E=1 I B
I C= I B=
RB1REV BV BE
I C= I B
1V BV BE
RE=
V BV BE RE
If RB1REI E
RC
RE
RB
VB
VCC
If RB1RE
I C= I BRB
V BV BE no feedback!
IE
ESE319 Introduction to Microelectronics
122009 Kenneth R. Laker, update 21Sep12
Biasing for Operating Point Stability Quick Review
What is the purpose RE?
What does RB represent?
What is the condition on the value of V
B?
What is the condition on the value of R
E?
What is our rule of thumb for achieving x >> y?
ESE319 Introduction to Microelectronics
132009 Kenneth R. Laker, update 21Sep12
Observations Emitter feedback stabilizes base voltage source bias. To reduce the sensitivity of IC to VBE, choose . RB 0, emitter feedback stabilization works well if RB is
not too large, i.e.RB1RE
Ideal rule of thumb (if possible):
RB1
101RE
V BV BE
RB=10010
RE=10 RELet 1=100
orRB1
101RE RB=
110
1RE
ESE319 Introduction to Microelectronics
142009 Kenneth R. Laker, update 21Sep12
Emitter-Feedback Bias Design
Voltage bias circuit Single power supply version
R1
R2
VCC
RC
RE
IC
IE
IB
VB
+
-
ESE319 Introduction to Microelectronics
152009 Kenneth R. Laker, update 21Sep12
RTh=RB=R1R2
RTh
VTh
V Th=V B=R2
R1R2V CC
Thevenin Equivalent
I 1
I B I 1 I C
ESE319 Introduction to Microelectronics
162009 Kenneth R. Laker, update 21Sep12
Using Thevenin EquivalentUse Thevenin's theorem to simplify base circuit:
If VCC, VB and RB are inde-pendently specified then R1 and R2 are found by solving Eqs. (1) and (2):
Design Eqs.
I B0
V Th=V B=R2
R1R2V CC
I1
RTh=RB=R1R2=R1 R2
R1R2R1R2=
R1 R2RB
V B=R2 RBR1 R2
V CCR1=RBV CCV B
V B=R2
R1R2V CC R1 V BR2 V B=R2 V CC
R2=R1V B
V CCV B
R2=R1V B
V CCV B
R1=RBV CCV B
(1)
(2)
Can VCC, VB and RB be inde-pendently specified?
ESE319 Introduction to Microelectronics
172009 Kenneth R. Laker, update 21Sep12
Using Thevenin Equivalent
If VCC, VB and RB are independently specified then R1 and R2 are found by solving Eqs. (1) and (2):
Design Eqs.
R2=R1V B
V CCV B
R1=RBV CCV B
Can VCC, VB and RB be independently specified?
RECALL: VB >> VBE and RB1RE
ESE319 Introduction to Microelectronics
182009 Kenneth R. Laker, update 21Sep12
1st Rule of Thumb for Single Supply Biasing1. Choose RT = R1 + R2 so that I1
ESE319 Introduction to Microelectronics
192009 Kenneth R. Laker, update 21Sep12
IC
R1
R2
RC
RE
V CCI
E
V CE+-
V RE+
-
+
-
Three design goals so farRB1REV BV BE
Constraint: V CC=V RCV CEV RETRADEOFF Increase VRC and/or VRE => Reduce VCE VRC too large => possible saturation & reduced op-erating range (i.e. V
CE -> 0.2 V or smaller).
VRC too small => possible cutoff & reduced operating range (i.e. I
C -> small or zero).
NEED A COMPROMISE!
An Unavoidable Design Tradeoff
I 1 I C also I 1 I B
(VCC
fixed)
V RC
V RE=V BV BE
B
ESE319 Introduction to Microelectronics
202009 Kenneth R. Laker, update 21Sep12
2nd Useful Rule of Thumb 1/3, 1/3, 1/3 Rule
V RE=V CC
3V RC= I C RC=
V CC3
V CE=V CC
3
V CC=V RCV REV CE
RC=V RCI C
=V CC3 I C
RE=V REI E
=V CC3 I E
=V CC3 I C
V RE=V CCR2RT
V BE=V CC
3
Design Equations
where
IC
R1
R2
RC
RE
V CCI
E
V CE+-
+
-
+
-
V B=V BEV RE I 1 R2V BE=0.7V
VB >> VBE
V RE= I E REV B
I 1=I C10
V CCRT
R2=RTV BV CC
13
RT
R1=RT 1V BV CC
23
RT
RT = R1 + R2
I1 V RC
V RE
ESE319 Introduction to Microelectronics
212009 Kenneth R. Laker, update 21Sep12
Biasing for Operating Point Stability Quick Review
What is the condition on the value of VB?
What is the condition on the value of RE?
What is the purpose for R1 & R
2?
What happened to RB?
What is the constraint on the value of I1?
What is the 1/3, 1/3, 1/3 Rule?
IC
R1
R2
RC
RE
V CCI
E
V CE
I1
IB
V RC
V CC=V RCV CEV RE
V RE
V CC=V RCV CEV RE
V B
V CCV RCV CEV B
ESE319 Introduction to Microelectronics
222009 Kenneth R. Laker, update 21Sep12
Constant Emitter Current BiasThe current mirror is used to create a current source:
1. A BJT collector is the cur-rent source:
I C= I S eV BEV T
I REF
I
2. A diode-connected transistor sets the current.
3. Choose Rref for the desiredcurrent:
Rref =V CC0.7
I REF
V CC0.7I C1
V BE2=V BE1
I O
I REF=I C1I B1I B2 I C1 I E1
I REF=V CCV BE1
RrefRref
V CC IC1
I B1 I B2
V CE1=V BE1
4. If Q1 = Q2 then IC2 = IC1 => I O I refmatched
I O=I C2
and VCE2 = VCE1
ESE319 Introduction to Microelectronics
232009 Kenneth R. Laker, update 21Sep12
Constant Emitter Current
If Q1 and Q
2 have the same saturation current:
Now: VBE1 = VBE2I S1= I S2
And the transistors are at the same temperature: T 1=T 2
The two collector currents set primarily by Rref are equal, as long as Q2 is not saturated.