Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira...

74
2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 1 Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology

Transcript of Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira...

Page 1: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 1

Introduction to Embedded Data Converters

Akira Matsuzawa

Tokyo Institute of Technology

Page 2: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 2

Contents

1. Introduction

2. Characterization of data converters

3. Overview of high-speed A/D converters

4. Overview of high-speed D/A converters

5. Overview of over-sampling sigma-delta data converters

6. Basic design considerations

Page 3: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 3

1. Introduction

• Mixed signal systems– Software defined radio– Digital read channel– Mixed Signal SoC

• Progress of ADC and DAC– Power and area– Embedding

Page 4: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 4

Basic mixed signal system

DSPADC DACPre

FilterPostFilterAGC

Clock

Continuous time=Analog

Discrete time=Digital

Continuous time=Analog

Mixed signal systems basically consist of DSP, ADC, DAC, and pre/post filters. The signals are converted between continuous time and discrete time.

Page 5: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 5

Software defined radio

IMT-2000RF

GSMRF

BluetoothRF

GPSRF

GPSBB

BluetoothBB

GSMBB

IMT-2000BB

MCU

Power

Multi-standards and multi chips

Current

Future cellular phone needs 11 wireless standards!!

Yrjo Neuvo, ISSCC 2004, p.32

RF filter LNA X Filter ADC

FrequencySynthesizer

FilterPA DACX Filter

DSP

Mixer

Mixer

Future

Multi-bands and Multi-standards on a single chip

On a chip

Future wireless systems need powerful ADC and DAC for software defined radio.

Page 6: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 6

Mixed signal tech. ; Digital read channel

Variable Gain Amp.Variable

Gain Amp.Analog

FilterAnalog

FilterA to D

ConverterA to D

ConverterDigital

FIR FilterDigital

FIR FilterViterbiError

Correction

ViterbiError

Correction

ClockRecoveryClock

RecoveryVoltage

ControlledOscillator

Voltage ControlledOscillator

DataOut

Data In(Erroneous)

Data Out(No error)

Analog circuit

Digital circuit

Digital storage needs high speed mixed signal technologies.For the reduction of error rate, high speed ADC is the key.

Pickup signal

7b 400MHz

DVD

Page 7: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 7

Mixed signal SoC

PixelOperationProcessor

PixelOperationProcessor

IOProcessor

IOProcessor

AVDecode

Processor

AVDecode

Processor

Back -EndBack -End

SystemCont-roller

SystemCont-roller

CPU1CPU1CPU2CPU2

VCOVCO

ADCADC

Gm-CFilterGm-CFilter

PRMLRead

Channel

PRMLRead

ChannelServo DSPServo DSP

AnalogFront EndAnalog

Front End

Front-EndFront-EndAnalog FE+Digital R/C

Okamoto, et al., ISSCC 2003

0.13um, Cu 6Layer, 24MTr

Mixed signal SoC can realize full system integration for DVD application. Embedded analog is the key.

Page 8: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 8

Progress of high-speed ADC

0.1

10

Pd/ 2

N G

sps

[mW

]

Pd of high speed CMOS ADCs

Conversion rate [x100Msps]

1

1mW/2N Gsps

10mW/2N Gsps

This Work

101

6b, 1GHz ADC2W,1.5um Bipolar

6b, 800MHz ADC400mW, 2mm2

0.25umCMOS

7b, 400MHz ADC50mW, 0.3mm2

0.18umCMOS

ISSCC 2002

ISSCC 2000

Matsuzawa, ISSCC 1991

World lowest Pd HS ADC

High speed ADC can be embedded in CMOS resulting in power reduction.ISSCC 1991

Sushihara and Matsuzawa, ISSCC 2002

Sushihara, et al, ISSCC 2000

1/8

Page 9: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 9

Progress of A/D converter; video-rate 10b ADC

1980 1982 1993 Now

Board Level (Disc.+Bip)20W

$ 8,000

Conventional product World 1st Monolithic

Bipolar (3um)2W

$ 800

World lowest power

CMOS (1.2um)30mW$ 2.00

CMOS (0.15um)10mW$0.04

SoC Core

1/2000 in Power and 1/200,000 in cost during past 20 yearsADC was the bottle-neck for the digital TV and Video systemsTechnology progress has solved this problem.

K. Kusumoto and A. Matsuzawa,ISSCC 1993.

T. Takemoto and A. Matsuzawa,JSC, pp.1133-1138, 1982.

Page 10: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 10

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005 2010Year

Pow

er (m

W)

2

5

20

50

200

500

2000

5000 FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

1

10

100

1000

10000

1980 1985 1990 1995 2000 2005 2010Year

Pow

er (m

W)

2

5

20

50

200

500

2000

5000 FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.1

1.0

10.0

100.0

1980 1985 1990 1995 2000 2005 2010Year

Are

a si

ze (m

m2)

0.2

0.5

2.0

5.0

20.0

50.0FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.1

1.0

10.0

100.0

1980 1985 1990 1995 2000 2005 2010Year

Are

a si

ze (m

m2)

0.2

0.5

2.0

5.0

20.0

50.0FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

Power reduction Area reduction

Power and area reduction of video-rate 10b ADCs

Power and area of ADC have been reducing continuously.Currently, ADC can be embedded on a chip

Page 11: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 11

0.1

1.0

10.0

100.0

0.1 1 10

Process node (μm)

Pow

er/M

Hz

(mW

/MH

z)

0.2 0.3 0.5 0.7 2 3 5 7

0.2

0.5

2.0

5.0

20.0

50.0

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.1

1.0

10.0

100.0

0.1 1 10

Process node (μm)

Pow

er/M

Hz

(mW

/MH

z)

0.2 0.3 0.5 0.7 2 3 5 7

0.2

0.5

2.0

5.0

20.0

50.0

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.1

1.0

10.0

100.0

0.1 1 10Process node (μm)

Are

a si

ze (m

m2)

0.2 0.5 2 5

0.2

0.5

2.0

5.0

20.0

50.0

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.3 0.70.1

1.0

10.0

100.0

0.1 1 10Process node (μm)

Are

a si

ze (m

m2)

0.2 0.5 2 5

0.2

0.5

2.0

5.0

20.0

50.0

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

FlashTwo-stepSubrangingFolding/InterpolatingPipeline

OthersLook-ahead Pipeline

0.3 0.7

M. Hotta et al. IEICE 2006. June

Power and area reduction of video-rate 10b ADCs

Page 12: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 12

Embedding ADC on a CMOS chip

6b Video ADC

8b low speed ADC;DAC

Digital Video filter

8b CPU

1993 Model: Portable VCR with digital image stabilizing

CMOS ADC and DAC has been embedded on a CMOS chip.This has realized low cost and low power digital portable AV products.

System block diagram

A. Matsuzawa, JSC, pp. 470-480, 1993.

Page 13: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 13

2. Characterization of data converters

• Basic functions of ADC and DAC• Static performance

– INL, DNL, monotonicity– Quantization noise

• Dynamic performance– SNR, SFDR, THD, SNDR, ENOB– Sampling Jitter– ERB– Glitch

• Figure Of Merit• Performances and applications

– Needed performances for wireless systems

Page 14: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 14

Basic functions of ADC

Time

Volta

ge

Time

Sampling Quantization

0001

0010

0111

1000

1001

1000

0111

0101

0011

0010

0100

0111

0111

0111

0110

0110

0110

0110

Coding

Digital

Sampling

Quantization

CodingAnalog

ADC

Sampling: Sampling the analog signal with accurate timing.Quantization: Express the converted data with certain accuracy.

CLK

Volta

ge

Page 15: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 15

Static performance

INL: Integrated Non-Linearity

INL and DNL are the major static performance indicators of ADC and DAC.

DNL: Differential Non-LinearityIDEAL

IDEALj,ACTUALj Width

WidthWidthDNL

−≡

j,IDEALj,ACTUALj fuctionTransferfunctionTransferINL −≡

j1jj

jk

0kkj

INLINLDNL

DNLINL

−=

=

+

=

=∑

Page 16: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 16

DNL and INL

DNL profile INL profile

Page 17: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 17

Monotonicity in DAC

Keep monotonic

In

Out

Large DNL

Degrade monotonicity

In

Out

1/2

1/4

1/81/161/32

1/2

1/4

1/8

1/161/32

01111->10000

→ 1/2

Binary weight

At the change of MSB bit

Binary coded DAC often degrades monotonicity. The monotonicity stands for the qualitative characteristics of data converters of which transfer function keep the monotonic increase or decrease.

If the converter can not guarantee the monotonicity, The feedback loop doesn’t work properly and results in backrush.

Page 18: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 18

Quantization noise

Transfer characteristics

Quantization noise

20

112

1 22

2

22

2

2

ΔΔ

ΔΔ

Δ

Δ

Δ

Δ

<⎪⎩

⎪⎨⎧

=

=== ∫∫ −−

e,eotherall,

)e(P

deede)e(PeP/

/

/

/n

Q

( )

( )

76102610

2511222

22

22

21

21

.N.PPlogSNR

.PPSNR

P

n

sdB

NN

n

s

N

s

+⋅=⎟⎟⎠

⎞⎜⎜⎝

⎛=

⋅=⋅⋅

=≡

⋅=

ΔΔ

Δ

Quantization causes noise Higher SNR needs higher resolution

Page 19: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 19

Dynamic performance

026761

10

10

10

10

..SNDR

ENOB

powerdistortionandNoisepowerSignal

logSNDR

powerSignalpowerdistortionharmonicTotal

logTHD

powerspuriousestargLpowerSignal

logSFDR

powernoisefloorTotalpowerSignal

logSNR

-=

=

=

=

=

Dynamic performance indicates the ratio between signal and noise or distortion.

We should use the suitable terms depending upon the type of application.

Fc=40MHz, fin=4MHzSFDR=49.8dBSNDR=44.9dB, ENOB=7.17-bit2ndHD=-49.8dB, 3rdHD=-56.7dB

Page 20: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 20

Sampling jitter effect

( )2tinf21log10)dB(SNDRσπ

−=

Sampling jitter is converted to noise.When the input frequency becomes higher, the SNR becomes lower.

1 .1013

1 .1012

1 .1011

20

40

60

80

100

120

SNDR 10 106⋅ σt,( )SNDR 20 106⋅ σt,( )SNDR 50 106⋅ σt,( )SNDR 100 106⋅ σt,( )SNDR 200 106⋅ σt,( )

σtTime

Inpu

t sig

nal

t0t

tsig

dtdV

V σΔ =

sigV

Page 21: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 21

ENO

B (b

it)

Input frequency (MHz)300200100

3

4

5

6

SNR

SNDR

Effective Resolution Bandwidth

3dB (0.5bit) down

ERB

ERB is the input frequency where the SNDR has dropped 3dB (or ENOB 0.5 bit)

Page 22: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 22

Glitch

I/2 I/4 I/8 I/16

I/2 I/4 I/8 I/16

I/2 I/4 I/8 I/16

State 1: [1000]=8

State 2: [0111]=7

Intermediate: [1111]=15 8

15

7

Glitch

Caused by overlapping of signalsThis appears within a few psec,However, energy is not negligible.Glitch causes the distortion of signal

Cur

rent

Time

Glitch is the spiky signal at code transition.

Tg

Xg

N2s

g

2

QNmax,g

s

g22N2max,g

23TT

12PP

TT

2P

⋅<∴

=<

⋅⋅= −

Δ

Δ

Page 23: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 23

Figure Of Merit

BW22Poweror

f2Power

stepConversionEnergyFOM

ENOB

sENOB

×=

×=

=High Speed ADC

[Sampling Freq. VS Power]

1

10

100

1000

10000

1 10 100 1000 10000

Sampling Freq.[MSps]

Pow

er[

mW

]

12Bit(Paper)

10Bit(Paper)

12Bit Products

10Bit Products.

JSSC,ISSCC,VLSI,CICC,ESSCC

& Products

(≧10Bit,≧

10MSps)1995-2006

conv/pJ5.0MHz/mW3.0

bit10

conv/pJ8.0MHz/mW1

bit12

10b12b

Figure of merit shows energy efficiency for data conversion.

Page 24: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 24

Performance and application

6 8 10 12 14 16

Resolution (bits)

Con

vers

ion

Rat

e (M

Hz)

0.1

1

10

100

1000

5

3050

300500

0.5

0.05

HDD/DVDGraphics

Audio

GeneralPurpose

DVC/DSC/Printer

Video/Communication

Servo

(µ-Computer)

Automobile

Meter

Needed resolution and conversion rate depending upon the application.

Page 25: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 25

Needed SNR for certain BER in wireless system

Q

I

16QAM

10A2

“1”“0”

BER

Noise distribution

( ) ⎟⎟⎠⎞

⎜⎜⎝

−⋅

⎟⎟⎠

⎞⎜⎜⎝

⎛−≈

1n2SNR2erfc

n112BER

Lower Bit Error Rate in the digital modulation needs higher SNR.

⎟⎠⎞

⎜⎝⎛≈

nsinSNRerfcBER π

n-PSK

n-QAM

0 10 20 30 401 .10

10

1 .109

1 .108

1 .107

1 .106

1 .105

1 .104

1 .103

0.01

0.1

1

BERq SNR 16,( )

BERq SNR 64,( )

BERq SNR 256,( )

BERp SNR 4,( )

SNR

16QAM

64QAM

256QAMQPSK

Page 26: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 26

BER requirement

DAC requirement for QAM ADC requirement for digital read-channel

The lower the bit error rate the higher the required ADC/DAC resolution.Resolution (quantization noise) affects BER.

Page 27: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 27

Signal intensity in wireless system

Amp. ADC

Filter

A B C

Thermal noise Thermal noise

Wantedsignal

Thermal Noise+ Quantization noise

Adjacentsignal

FarsignalFilter

Frequency

Inte

nsity

(dB

)

A

B C

Due to aliasing

Due to distortion of ADC

> Needed SNR

> Needed dynamic range to the blocker

Wireless system has strong unwanted signals. Also, electric circuits generate distortion and noise.

Page 28: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 28

Needed ADC dynamic range

-26dBm

-97dBm

Quantizationnoise

Wantedsignal

Blockersignal

15dB15dB

ADC dynamic range=86dB (14b)

DCS1800

-52dBm

-93dBm

Quantizationnoise

Wantedsignal

Adjacentchannel

8dB

WCDMA

-33dB

-85dB

Filter attenuation

Thermal noise

20dB

Existence of strong blockers results in the need for high dynamic range ADC.

ADC dynamic range=36dB (6b)

Page 29: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 29

3. Overview of high-speed A/D converters

• Performance and ADC architecture• Integrating ADC• Successive approximation ADC• Flash ADC• Sub-ranging ADC• Interpolation method• Folding ADC• Pipelined ADC

Page 30: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 30

ADC performance and architectures

4 6 8 10 12 14 16

10M

1M

100k

10k

100M

1G

10G

20184 6 8 10 12 14 16

10M

1M

100k

10k

100M

1G

10G

2018

Con

vers

ion

freq

uenc

y (H

z)

Resolution (bit)

Successiveapproximation

Integrating

Flash

Sub-range

Multi-bitsigma-delta

Pipeline

Single-bit sigma-delta

There are many conversion architectures with varying performance parameters.

Page 31: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 31

Integrating ADC

+ vx +

S1

vref

-vin Comparator

T

vx

R

C

Time

vref

-vin

vref

-vin

0

vin 大

Going to 0 -> 1, when Vx becomes negative.

PhaseⅠ PhaseⅡ

( ) TRCvd

RCv)T(v inT

0in

x =−

−= ∫ τ

・High resolution (20bit and more)・Very low speed (DC measurement)・Small DNL・Can realize zero offset voltage・Small analog elements and area

Water clock

Integrating ADC achieves high resolution, but at low speed.Recently it has been used as column-ADC in CMOS imager.

Page 32: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 32

Successive-approximation ADC

b1 b2 b3 b4 b5 b6

MSB LSBVFS

V0

Binary search

Vin

VDACVin

VFS21

VFS21 VFS4

1+

VFS21 VFS8

1+

VFS21 VFS8

1+ VFS161+

b1=1b1=1b2=0

b1= b3= 1b2=0

b1= b3= b4= 1b2=0

S/HVin Successive-approximation resistor and control logic

b1 b2 b3 Bout

DAC Vref

VDAC

Comparator

CMPin

Balance

Successive-approximation method is based on a binary search.

Page 33: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 33

Charge-redistribution ADC

C C2

C4

C8

C16

C16

Vin Vref

Vx=0Q=-2CVin

1) Sampling

C C2

C4

C8

C16

C16

Vx=-VinQ=-2CVin

Vin Vref

2) Hold

Binary weighted Capacitor array

Charge-redistribution ADC draws attention as a suitable ADC in the nano-meter CMOS era. Because it needs no OP-Amp, but just needs capacitors and comparator.

Page 34: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 34

C C2

C4

C8

C16

C16

Vref

Vx=-Vin+Vref/2Q=-2CVin

Vin

Charge-redistribution ADC

Vref

Resistor ladder forhigher resolution

Higher resolution

Ultra low power

Low conversion rate

3) Charge redistribution

Determine from MSBIf needed

Easy calibration

No OP amp

Needs multi clock

Page 35: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 35

Flash ADC

R

R

R

R

R

R

R

VDD

+

+

+

+

+

+

+

+

R/2

R/2

vin

Encoder

Comparator

Φ

Digitalout

Ultra fast operation: Several GHzNo sample and holdLow resolution: <8 bitLarge input capacitance difficult to drive

Flash ADC is very fast, but area and power increase exponentially with resolution.

10001

01011

D1D2D3D4D5

0

1

Inputvoltage

NrefV

2

refV

Scale

Page 36: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 36

Sub-ranging ADC

GND

0

8

1 6

2 4

0

2

4

6

Input voltage

Upperconversion

Lowerconversion

Multi-step conversion can reduce the # of comparators.However, it needs high precision comparators.As a result, small power and area.

62122;steptwo

102312;Flash:bits10

2N

N

=⎟⎟⎠

⎞⎜⎜⎝

⎛−

=− Slide gauge

Page 37: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 37

Interpolation methodInterpolation can generate accurate intermediate references which are between two references. Thus step sizes are almost equal, even though mismatch voltages are large.

Mismatchvoltage

SmallDNL

K. Kusumoto and A. MatsuzawaJSC, pp. 1200-1206, 1993.

Step sizeStep size Step size

Page 38: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 38

Folding ADC

Upper bitsADC

Lower bitsLogic

Comp

Comp

Comp

Comp

Folding Circuits

Folding Circuits

Folding Circuits

Folding Circuits

vin

Analog signalDigital signal

Input signal

Parallel

Folded signalsFold

ed s

igna

ls

The signal is compressedThe signal is compressed→→The # of comparators can be reducedThe # of comparators can be reduced

Input signal is folded to the compressed signals of which phases are different.Lower bits are obtained by comparing between these folded signals.

Low power and small size, yet still high speed.However, not suitable for higher resolution. <10bit

Page 39: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 39

Folding circuits

VDD

vin

V1 V2 V3 V4

V1 V2 V3 V4 Input voltageO

utpu

t vol

tage

vout

VDD

Current summation

V1Vin

VDD

Vout

V1 VinInput voltage

Out

put v

olta

ge VDD

Composing the folding characteristics by the summation of currentsfrom differential transistor pairs.

Page 40: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 40

Pipelined ADC

vin M-bitDAP DAP DAP DAP

MSBLSB

+ ×2M

Amplifier

S/H

Digital Approximater(DAP)ADC

(M bit)

DAC(M bit) Conventional M is 1 or 1.5

High resolution(<15bit)Moderate speed(<200MHz)Low power consumption

Suitable for CMOS

Switched capacitor operation

-Vref

+Vref

-Vref

+Vref

0 1

X2

-Vref

+Vref

-Vref

+Vref

0 1 0 1

X2

MSB 2nd

Pipelined ADC is the centerpiece of embedded ADCs for many applications,such as digital cameras, digital TVs, ADSLs, VDSLs, and wireless LANs.

Page 41: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 41

MUX

+VR -VR

LATC

H4RV

+

4RV

SUB-ADC DAC 2X GAIN

Vi

Vo

Cf

Cs

S2

S3+

-+-

-+

1.5-bit/stage Pipeline ADC

+VR-VR

+VR

-VR

reff

ii

f

s VCCV

CC1 +⎟

⎟⎠

⎞⎜⎜⎝

⎛+

if

s VCC1 ⎟

⎟⎠

⎞⎜⎜⎝

⎛+

reff

ii

f

s VCCV

CC1 −⎟

⎟⎠

⎞⎜⎜⎝

⎛+

4V

Vi ref−<if

if4V

V4V ref

iref ≤≤−

if 4V

V refi >

=oV

Transfer characteristics

Unit conversion stage for 1.5-bit/stage pipeline ADC

Amplification at each stage reduces the input referred thermal noise.1.5b/stage architecture reduces the requirement for the comparator offset drastically.

Page 42: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 42

Pipelining

-

-+

+

Op amp

CMPDAC

-

-+

+

Op amp

CMPDAC

-

-+

+

Op amp

Sample & Hold 1st stage 2nd stage

Cf

Cs

Cf

Cs

1st stage

2nd Stage

SampleAmp.

SampleAmp.

Pipeline action relaxes settling time requirement.

Sample Amp. Sample Amp.

Page 43: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 43

4. Overview of high-speed D/A converters

• Basic two concepts of DAC• Binary method

– R-2R based DAC– Capacitor array DAC

• Decoder method– Resistor string DAC– Current steering DAC

Page 44: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 44

Basic two concepts of DAC

2. Decoder method

111110101100011010001000

Decoder

Sw

itch

mat

rix

Vref

Digital

AnalogD3D2D1

Small DNLSmall glitchLarge area

Bin

ary

Wei

ght c

kt.

Vref

1. Binary method

Digital

D3D2D1

Analog

Not small DNLLarge glitchSmall area i

N

1iireflgana D21VV ⋅= ∑

=

i

1N

0i

iqlgana D2VV ∑

=

⋅⋅=

Page 45: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 45

+vout

2R 2R 2R 2R

A0 A1 A2 A3

RF

-vref

2RRRR

Virtual ground

Rv

I

AIAIAIAIRv

refr

rrrrFout

2

222 131210

=

⎟⎠⎞

⎜⎝⎛ ⋅+⋅+⋅+⋅=

R-2R based DAC

Resolution: 12bLarge DNLSmall area at high resolutionModerate speedLarge power consumption

Binary method

R-2R resistor ladder can generate binary weighted current easily.

Page 46: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 46

16C

vref

+ vout8C 4C 2C C

[ ]

CQv

ACACACACvQ

out

ref

16

842 3210

−=

⋅+⋅+⋅+⋅=

+ vout8C 4C 2C C

16C

vref

A0A1A2A3

Q

Reset

Enable

Capacitor array DAC

Virtual ground

Ai= 0 or 1

Capacitor array DAC is widely used in CMOS technology.

Low power and no sample & Hold

Binary method

Page 47: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 47

Decoder method Resistor string DAC

Vref

+Vout

Decoder

R

R

R

R

R

R

R

R

Resolution limit: 10bGood DNLLow speedSmall glitch

large parasitic capacitance: 2N

111

110

101

100

011

010

001

000

Digital value

Decoder method can realizes small DNL, however needs large area at high resolution.

Page 48: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 48

VDD

Bias

Vout

Di Di

Current source

Di=1

Di=0

Vout

Column decoder

R

Row

dec

oder

Current cell with switch

Current steering DAC

Widely used for high speed DAC. Graphics, communications, etc.

High speed, -- 1 GHzResolution – 14 bSmall DNLSmall glitch

Conventionally large area

Decoder method

Page 49: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 49

5. Overview of over-sampling sigma-delta data converters

• Sigma-delta modulation method– Over sampling– Noise shaping– Sigma-delta modulator– SNR– Higher order system– Feed forward and feed back compensation– MASH (Multi-stage noise shaping)

Page 50: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 50

Sigma-delta ADC, DAC

+vin

CC

Φ1

Φ1

Φ2

Φ2

2refv

2refv

−1bit DAC

Integrator

Integrator

+x(n)+ z-1

1bit DACAnalog

Digital

Comparator

DigitalFilter

Sigma delta ADC Sigma delta DAC

Digital Signal

Processing

AVDD

DAC out

Implemented in CMOS, easily.

Sigma delta ADC and DAC are widely used in high resolution (14b-24b)and not high speed ( <1MHz) applications.

LPF

Page 51: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 51

Over sampling

Δx(n) y1(n)H(f)

y2(n)

he(x)

-fs/2 fs/2

H(f)

-fb fbf

OSR1

12ff2

12df

f1

12df)f(H)f(SP

2

s

b2

s

f

f

22/f

2/f

22ee

b

b

s

s

⋅=⎟⎟⎠

⎞⎜⎜⎝

⎛⋅=⋅== ∫∫ −−

ΔΔΔ

Band limitingfilter

Quantization noise power

Reduction of bandwidth by filter → Reduction of effective noise power

Total noise power is invariant

Over sampling can reduce effective quantization noise.

In-band noise

b

s

f2fOSR ≡

Page 52: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 52

Noise shaping

The spectrum of the quantization noiseincreases with frequency increase.

InIn--band noise is reducedband noise is reduced

Integrator Quantizer Differentiator

2Sf

2SfBW f

Sign

al in

tens

ity

NoiseNoise

Low pass filter High pass filter

2. 4.

Input signal Output signal

1. 3.

1. 2. 4.3.

Noise

Quantization noise: High pass filter Lower in low frequency

Signal: Low pass filter x High pass filter Flat

Only quantization noise is shaped in frequency characteristics

Spectrum of quantization noise is shaped by differentiator. In-band noise can be reduced.

Page 53: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 53

1−z

+Quantizer

1−z

+

Integrator Differentiator

1−z

+Quantizer

+

IntegratorDifferentiator

1−z

Equivalent transform

X(z)

X(z) Y(z)

Y(z)

Q(z)

Q(z)

11 −− z)z(X

)z(Q)z()z(X)z(Y 11 −−+=

Sigma-delta modulator

The signal will overflow

No overflow

1−⋅− ZQX

Outputsignal

Input signal

Quantizationnoise

Differentiator(High pass filter)

Sigma-delta modulator shapes the frequency characteristics of the quantization noise

)z(Q)z()z(X)z(Y 11 −−+=

Page 54: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 54

Generic expression of sigma-delta modulator

H(z) Q(z)

Input signal

+

1−z

)z(Qz)z(H

)z(Xz)z(H)z(H)z(Y 11 1

11 −− +

++

=

Filter

X(z)

Output signal

Y(z)

Quantizer

We can use not only LPF but also BPF and complex BPF.This gives us an excellent opportunity for wireless applications.

STF (Signal Transfer) NTF (Noise transfer)

Ex. 1z1

1)z(H −−= 1z1)z(NTF,1)z(STF −−==

High pass filterNo filter

Page 55: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 55

Noise power in sigma-delta modulator

( ) )z(Qz1)z(X)z(YL1−−+=

s

22q f12

)f(h Δ=

( )1L22L2

s

f

f s

2

f

f

L2

ez12

qq

OSR1L231

2df

ff2j

f12

z1)f(hN

b

b

b

bfs/f2j

++

+

− =

⎟⎠⎞

⎜⎝⎛

+⎟⎠⎞

⎜⎝⎛=≈

−=

ππ

ΔπΔ

π

0 2 4 6 8 10 12-140

-120

-100

-80

-60

-40

-20

0

SNR = 113.8dB

Frequency (MHz)dB

FS0 2 4 6 8 10 12

-140

-120

-100

-80

-60

-40

-20

0

SNR = 113.8dB

Frequency (MHz)dB

FS

Digital Filterfs=26MHz

fbLth order filter

Page 56: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 56

2nd order sigma-delta ADC

1−z

+

DAC

1−z 1

+

DAC

-++

1z 1−z 1

)z(X )z(Y)z(Q

1−z 1−z 1

++++-

1z 1−z 1

)z(X )z(Y)z(Q

1−z 1−z 1

++

1z 1−z 1

++-

DACDAC

DACDAC

)z(Q11st order SD ADC

+

2

11 −−z1+

DAC DAC

- -11 −−z 11 −−z

+ 11 −−z 11 −−z+

DAC DAC

-1)z(X )z(Y( ) )z(Qz1)z(X)z(Y 1

1−−+=

( ) )z(Qz1)z(Q 11

−−=

( ) )z(Qz1)z(X)z(Y21−−+=

Quantizer is replaced by 1st order SD ADC

2nd order SD ADC

1st order SD ADC

Page 57: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 57

Multi bit sigma-delta ADC

+

DAC

-11 −−z 11 −−z

+

DAC

-1)z(X

++)z(Y

11 −−z1

11 −−z 11 −−z 11 −−z1

11 −−z 11 −−z 11 −−z1

11 −−z 11 −−z

Feedback type

Feedforward type

+ 11 −−z1+

DAC DAC

- -11 −−z 11 −−z

+ 11 −−z 11 −−z+

DAC DAC

-1)z(X

+ 11 −−z1+

DAC DAC

- -11 −−z 11 −−z

+ 11 −−z 11 −−z+

DAC DAC

-1 )z(Y

1a 2a 3a 4a

1b 2b 3b 4b

41 )z1()z(NTF −−=

Page 58: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 58

( ) ( )1L2

2N OSR1L21223DR

+

⎟⎠⎞

⎜⎝⎛+−=

ππ

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000

Dyn

amic

Ran

ge (

dB)

1st

2nd

3rd

4th5th

OSR

n=1bit

Dynamic range of sigma-delta ADC

Higher order SD modulator seems effective to increase the dynamic range.However it is not easy, because of instability, signal saturation, and thermal noise.

Page 59: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 59

Noise-shaping characteristics

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0SNDR = 99.5dB

SNR = 100.1dB

In-bandOSR=64200kHz

Dyn

amic

Ran

ge (d

B)

Frequecy (Hz)

Thermal noise

5th order, 1bit

100dB/dec

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0SNDR = 99.5dB

SNR = 100.1dB

In-bandOSR=64200kHz

Dyn

amic

Ran

ge (d

B)

Frequecy (Hz)

Thermal noise

5th order, 1bit

100dB/dec

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

1st order

20dB/dec

2nd order

40dB/dec

dBFS

Frequency (Hz)

fs=26MHz

103

104

105

106

107

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

1st order

20dB/dec

2nd order

40dB/dec

dBFS

Frequency (Hz)

fs=26MHz

Higher order sigma-delta modulator can realize higher dynamic range, theoretically.

Page 60: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 60

Cascade (MASH) sigma-delta modulator

+

2

11 −−z1+

- -11 −−z 11 −−z

+ 11 −−z 11 −−z+

DAC

-1)z(X

)z(Y1

11 −−z1+

-11 −−z 11 −−z

+

DAC

)z(Y2

+-

)z(H1

)z(H2 +

( ) )z(Qz1)z(Q)z(Y 21

12−−+−=

( ) )z(Qz1)z(X)z(Y 121

1−−+=

)z(Q1

)z(Q2

11 QY −

)z(Q1−

)z(Y

1)z(H1 =

( )212 z1)z(H −−=

( ) ( ) ( ) )z(Qz1)z(Qz1)z(Qz1)z(XHYHY)z(Y 231

121

121

2211−−− −+−−−+=+=

( ) )z(Qz1)z(X)z(Y 231−−+=

Cascaded SD modulator can realize higher order noise shaping without stability issues. However, high dynamic range is difficult, due to severe mismatch requirement.

Page 61: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 61

6. Basic design considerations

• Accuracy– Current mismatch and DAC accuracy– VT mismatch– Capacitor mismatch

• Comparator– Offset compensation

• Op-Amp– Gain and GBW– kT/C noise

Page 62: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 62

Current mismatch and DAC accuracy

6 8 10 12 141 .10

3

0.01

0.1

sigma 3.0 N,( )

sigma 2 N,( )

sigma 1.3 N,( )

sigma 0.8 N,( )

N

90%50%

10%

99.7%

Van den Bosch,.. Kluwer 2004

INL yield

0iI Δ+ 1iI Δ+ 2iI Δ+ 1N2iI −+ Δ

N2C2

1I)I(≈

σ

N: resolution

C: constant determined by INL yield

Larger resolution requires smaller mismatch.

Page 63: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 63

VT mismatch

Larger gate area is needed for smaller VT mismatch.Technology scaling reduces VT mismatch if the gate area is equal.

1 10 100 1 .1030.1

1

10

100

δVT LW( )0

δVT LW( )1

δVT LW( )2

LW

LWTV ox

T ∝Δ

0.4um Nch

0.13um Nch In w/o Halo*

0.13um Nch Boron, w. Halo

)mV(VTΔ

)m(LW 2μ

Page 64: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 64

Mismatch current and transistor size

( )2Tgsds VVLW'KI −=

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛∂

∂+

∂∂

+∂∂

=LW

LWI'K

'KIV

VII dsds

TT

dsds ΔΔΔΔ

⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

++−

−=

LWLW

'K'K

VVV2

II

Tgs

T

ds

dsΔ

ΔΔΔ22WL

'K

VTT

L1

W1A

LWLW

LWA

'K'K

LWAV

+=⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

Δ

Δ

Δ

⎟⎠⎞

⎜⎝⎛

=−

LW'K

IVV dsTgs

Mismatch

2

222WL

2K

ds2

2VT

2

ds

ds

L1

W1A

WLA

ILA'K4

II

⎟⎠⎞

⎜⎝⎛ +++=⎟⎟

⎞⎜⎜⎝

⎛ Δ

Smaller mismatch requires larger L and W.

Page 65: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 65

Capacitor mismatch

)(

4106)3(pFCC

C −×=

Δ σ

)3( σCCΔ

Capacitance (pF)

10bit, ¼ LSB

12bit, ¼ LSB

14bit, ¼ LSB

10bit: 0.4pF12bit: 4pF14bit: 40pF

Smaller capacitor mismatch requires larger capacitanceCoefficient depends Fab.

Typical MIM capacitor

Page 66: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 66

CMOS comparators

There are many types of comparator circuits

Page 67: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 67

Low power CMOS comparators

VSS

VDD

Vin1+

m2

m7

m9 m10

m3 m4m1

m5 m6

m8

m11 m12

Out+Out-

CLK

W1 W2 W1 W2

( ) ( )

( ) ( )⎥⎦⎤

⎢⎣⎡ −++−=

⎥⎦⎤

⎢⎣⎡ −++−=

−−

++

thinthinp

thinthinp

VVLWVV

LWKG

VVLWVV

LWKG

22

11

2

22

11

1

Vin2+ Vin1- Vin2-

( ) ( ) −−++ +−=+−

−=

2121

21

inininin nVVnmnVVnm,thenmn:

mnmW:Wif

Interpolation action

No static currentDifferential comparisonInterpolation actionHigh speed

T.B.Cho., et al., J.S.C., Vol.30,No.30, pp.166-172, Mar. 1995.

CMOS comparator are low power because of the lack of static current.

Page 68: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 68

Isink

R R

Isink

R R

effoxj

ksin

oxj

m

VLWC32WC2

I

LWC32WC2

gGBW⎟⎠⎞

⎜⎝⎛ +

=⎟⎠⎞

⎜⎝⎛ +

=ππ

2eff

oxksin V

LW

2CI μ

=L

Coxκ

=

⎟⎟⎠

⎞⎜⎜⎝

⎛+

=

kC

32L2

VGBW

j2

eff

π

μ

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

Rel

ativ

e ba

ndw

idth

Feature size ( )mμ

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

Rel

ativ

e ba

ndw

idth

Feature size ( )mμFeature size ( )mμ

Design rule and Speed in Comparator

Gain bandwidth (=Speed) is inversely proportional to the L2 (channel length).Technology scaling is still effective in increasing the comparator speed, if we are not concerned with the signal’s dynamic range.

Page 69: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 69

Offset compensation

CLK

LatchVin1

Vin2

A Vout

+

-

-

+Va Vo

CLK

Latch VoutVin1

Vin2

A+

-

-

+

Store the offset voltage in capacitors and subtract it from the signal.

( )

osAao

aoosAa

VA1AVV

VV)A(VV

+=

==−−

=∴

AVV osl

in_os =

VosA: Offset of the amplifierVosL: Offset of the latcha) Offset cancel at input nodes

b) Offset cancel at output nodes

Feedback= High gain type

Feed forward =Low gain type

Two ways for suppressing offset voltage.

Page 70: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 70

Operational amplifier

-

-+

+

Op amp

Cf

Cs

Vin

Vn

Vn

Amplify

Sampling

βGCC

GG

f

perror

121−≈⎟

⎟⎠

⎞⎜⎜⎝

⎛+−≈

⎟⎟⎠

⎞⎜⎜⎝

⎛+

f

p

CC

2

106)( +> NdBG

N:ADC resolutionM:Stage resolution1MN2G

1+−≤

β

for 1.5b pipeline ADC

DC gain

Cf

Cs Cpi gm Cpo COLRL2

1

1

p

+

Equivalent circuit

pisf

f

CCCC

++=β

( )pisf

pisfoLpoL CCC

CCCCCC

++

+++=

3fcN

C2gGBW

L

mclose_

⋅>=

π

β

Closed loop gain-bandwidth

Higher resolution requires higher open loop gain.Higher conversion frequency requires higher closed loop GBW.

Page 71: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 71

kT/C noise

R

CL

Larger SNR requires larger capacitance and larger signal swing.Low signal swing increases required capacitance.

CL

vout

φ

vn

0.1 1 10 10050

60

70

80

90

10095.918

51.938

SNRC 1 2, C,( )

SNRC 2 2, C,( )

SNRC 3 2, C,( )

SNRC 5 2, C,( )

1000.1 C

14bit

12bit

10bit

0.1 1 10 100

VFS=5VVFS=3V

VFS=2V

VFS=1V

n=2

SN

R (d

B)

Capacitance (pF)

( ) CkT

2d

CR11kTR4v 2

2n =

+= ∫ π

ωω

CnkTv2n = n: configuration coefficient

⎟⎟⎠

⎞⎜⎜⎝

⎛=

nkT8CVlog10)dB(SNR

2FS

Page 72: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 72

Basic design consideration

Small mismatch

NFS

off

21

VV

orCC

∝ΔΔ

goff C

1LW1Vor

C1

CC

∝∝∝ ΔΔIncrease Capacitance

Decrease speed and Increase Power

N2mm

s 2g

CgGBWf ∝∝∝ N2

dd

2I

CIGBW ∝∝

N2ssddd 2fCfIVP ⋅∝⋅∝∝

N22C ∝

Solutions 1) ArchitecturePipeline, Parallel

2) Redundancy3) Error compensation4) Circuit design

However, kT/C issue remainsN22

sig 2CVSNR ∝∝2

sig

N

V2C ⎟

⎟⎠

⎞⎜⎜⎝

⎛∝

N2d

s 2If ∝ N2

sd 2fP ⋅∝

Solutions1) Increase signal swing2) Increase OSR

OSRSNR ∝

Very tough tradeoffs, so let’s keep up the design effort.

Results in

Page 73: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 73

Acknowledgement

• The author thanks Mr. T. Matsuura from Renesus for some slides provision.

Page 74: Introduction to Embedded Data Converters · Introduction to Embedded Data Converters Akira Matsuzawa Tokyo Institute of Technology. 2006.06.14. VLSI symposia 2006, ... PRML Read Channel

2006.06.14. VLSI symposia 2006, A. Matsuzawa, Tokyo Tech. 74

Study-aid books• B. Razavi, “Data conversion system design,” IEEE press.

• P. E. Allen and D. R. Holberg, “ CMOS Analog Circuit Design,” 2nd

Edition, OXFORD University Press.

• D. A. Johns and K. Martin, “Analog integrated circuit design,” John Wiley & Sons.

• R. J. Baker, “ CMOS mixed-signal circuit design,” IEEE Press.

• R.van de Plassche, “CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters,” 2nd Edition, Kluwer Academic Publishers.

• M. Gustavsson, J. J. Wikner and N. N. Tan, “CMOS data converters for communications,” Kluwer Academic Publishers.

• C. Shi and M. Ismail, ”Data converters for wireless standards,”Kluwer Academic Publishers.

• A. Rodriguez-Vazquez, F. Mederio, and E. Janssens, “CMOS Telecom Data Converters,” Kluwer Academic Publishers.