Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf ·...

29
Primordial or Big-Bang Nucleosynthesis (BBN) Dominik Nickel, 13.01.05 Overview: Introduction/Historical Remarks Physical Picture of ’The First Three Minutes’ Theoretical Description Observations Comparison/Discussion

Transcript of Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf ·...

Page 1: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Primordial or Big-Bang Nucleosynthesis (BBN)

Dominik Nickel, 13.01.05

Overview:

• Introduction/Historical Remarks

• Physical Picture of ’The First Three Minutes’

• Theoretical Description

• Observations

• Comparison/Discussion

Page 2: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Introduction

Page 3: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

The Standard Hot Big-Bang Model

Established by (key phenomena):

• Hubble (z ≈ 10)

• CMB (z ≈ 103)

• BBN (z ≈ 1010)

Page 4: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Big-Bang Nucleosynthesis

• Production of light elements (D,3He,4He,7Li, . . . )

• Starting point: T ≈ 0.3MeV (D stable against photo-dissociation)

End point: T ≈ 0.1MeV (Coulomb-barrier suppression)

• Radiation dominated expansion

→ abundances depend only on baryon-to-photon ratio

→ one parameter theory

Page 5: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Historical Remarks

1946: Gamov suggested big-bang origin of light elements.

1948: Alpher indicated radiation dominance.

1949: Turkevich and Fermi showed, that BBN stops at A = 7.

1953: Alpher, Herman and Follin set up BBN picture as it is today.

1965-1967: Peebles; Wagoner, Fowler and Hoyle simulated detailed

reaction network.

1973: Measurement of Deuterium restricted ΩB < 0.1.

from 1998: Keck and WMAP opened new precision area.

Page 6: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Physical Picture of ’The First Three Minutes’

Page 7: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Nuclear Statistical Equilibrium 1

Nonrelativistic nuclear species with mass number A and charge Z in/with

• kinetic equilibrium: nA = gA

(

mAT2π

)32 exp

(

µA−mA

T

)

,

• chemical equilibrium: µA = Zµp + (A − Z)µn,

• binding energy: BA = Zmp + (A − Z)mn − mA.

⇒ nA = gAA32 2−A

(

mNT

)3(A−1)/2

nZp nA−Z

n exp

(

BA

T

)

Page 8: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Nuclear Statistical Equilibrium 2

Define mass fraction XA contributed by nuclear species A(Z):

XA :=nAA

A′ nA′A′

= gA ζ(3)(A−1)π1−A

2 23A−5

2 A52

(

T

mN

)

3(A−1)2

×ηA−1XZp XA−Z

n exp

(

BA

T

)

,

where

η =nB

(

≈ 6 × 10−10)

is the baryon-to-photon ratio (∝ ΩBh2).

Page 9: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

The Three Steps of BBN 1

Step 1: Initial Condition

• t = 10−2s, T = 10MeV

• relativistic degrees of freedom: e±, νi, γ

• weak interactions keep up equilibrium due to high temperature

• light elements in NSE because of small η

Page 10: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

The Three Steps of BBN 2

Step 2: Freeze-out’s and e±-annihilation

• νi decouple at T = 2.7MeV.

• e±-annihilation at T = 1MeV. (→ Tγ =(

114

)13 Tν)

• Equilibrium between neutrons and protons freezes out at T = 0.8MeV:

n

p=

Xn

Xp= exp

(

−mn − mp

T+

µe − µν

T

)

≈ exp

(

−mn − mp

T

)

≈1

6.

– Reaction rate Γ ≈ G2F T 5 for weak the interactions

n ↔ p + e− + ν,

ν + n ↔ p + e−,

e+ + n ↔ p + ν

(determined by neutron lifetime τn).

– Expansion rate of the universe: H ≈ 1.66 g12∗ T 2/mpl.

⇒ Γ/H ≈(

T0.8MeV

)3

Page 11: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

The Three Steps of BBN 3

Step 3: Nucleosynthesis

• At T = 0.3MeV and t = 1min, Deuterium becomes stable against photo-

dissociation (Saha-condition, note: B2 = 2.2MeV). Deuterium ’bottleneck’

opens up and light elements abundances evolve towards their NSE value.

• Due to neutron decay np → 1

7

(compare to equilibrium value of 174 ).

Yp := X4 =4(n/2)

n + p≈ 0.25

(independent of nuclear reaction rates)

• At T = 0.1MeV and t = 3min the nucleosynthesis stops (Coulomb-barrier

suppression).

Page 12: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Theoretical Description

Page 13: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Nuclear Reaction Network in an expanding Box

• Idea: Integrate up starting conditions according to thermal rates.

• Small baryon-to-photon ratio:

– Need only to consider 2-body nuclear reactions.

– Expansion driven by radiation.

• Thermal reaction rates from averaging cross sections:

λ = NA〈σv〉 = NA

(

8

πµ(kT )3

)12

∫ ∞

0

σ(E)E exp

(

−E

kT

)

dE.

• State of the art: Systematic error estamination.

• Result: BBN abundances computed from measurements in a laboratory.

Page 14: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

One Example: p(n, γ)d

NAσv (also called R-factor) for p(n, γ)d: Four data points and R-matrix

calculation with 1σ error.

Page 15: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

The Reaction Network

• 11 reaction rates

• no stable A = 5, 8

• 2 branches for 7Li

production

Page 16: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Theoretical Result

Left: Theoretical Prediction with 1σ error bars as function of η.

Right: Relative uncertainties in percent of the light element predictions.

Page 17: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Sensitivity

• The light element abundances depend on τn, η, g∗, GN and 11 nuclear

reaction rates.

• Larger τn or g∗ means earlier np freeze-out, larger η higher baryon density

and all therefore more 4He.

• The numerical evaluation at η = 6.14 × 10−10 gives:

Yp = 0.24849

1010η

6.14

!0.39„τn

τn,0

«0.72„ GN

GN,0

«0.35

,

105 D

H= 2.558

1010η

6.14

!

−1.62„τn

τn,0

«0.41„ GN

GN,0

«0.95

R−0.554 R

−0.455 R

−0.323 R

−0.202 ,

10107Li

H= 4.364

1010η

6.14

!2.12„τn

τn,0

«0.44„ GN

GN,0

«

−0.72

R1.342 R0.96

9 R−0.768 R−0.71

11 R0.714 R0.59

3 R−0.276 ,

where Ri are renormalizations of nuclear reactions.

• Deuterium, which can also be measured most accurately, gets the role of

the ’baryometer’. Helium-4 is sensible to τn and g∗.

Page 18: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Observations

Idea: Measure present day abundances and extrapolate back to t = 3min.

Problem: Chemical evolution of elements after BBN not always clear.

Page 19: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Deuterium

• Binding energy B2 = 2.2MeV and thus very fragile.

• No astrophysical source known.

⇒ Measurements will always give an upper bound.

• Measured via absorption features of distant HII-regions against more

distant quasars.

Page 20: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

• Lyman-α absorption line (1216A)

of a z = 3.572 HII-region. The line

of D is shifted by 0.33(1 + z)A.

• Problems:

– Inloper

– Redshifted H-lines mimic D

(complex velocity structure).

– How much D is destroyed?

– Only few quasars usuable, small

sample size.

– χ2world = 4.1.

World average of the 5 best measurements: DH = (2.78+0.44

−0.38) × 10−5.

2 multiple absorption line system: DH = (2.49+0.20

−0.18) × 10−5.

Page 21: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Helium-4

• 4He is produced in stars.

• Measured by optical recombination lines in low-metallic HII-regions.

• Extrapolated to zero metallicity.

• 2 different values for Yp, depending

on treating emission and underlying

absorption:

Yp = 0.238 ± 0.002 ± 0.005,

Yp = 0.244 ± 0.002 ± 0.005

Page 22: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Lithium-7

• Evolution unclear, since it is

destroyed and produced in stars.

• Abundances measured in atmosphere

of old (population II) stars in halo of

our galaxy:

– Lithium plateau (’Spite plateau’)

for massive stars.

– Large systematical errors. 4500 5000 5500 6000 6500Stellar Surface Temperature (K)

10−12

10−11

10−10

10−9

Lith

ium

/Hyd

roge

n N

umbe

r R

atio

Current measurements:7Li

H=

(

1.23+0.68−0.32

)

× 10−10.

Page 23: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Comparison/Discussion

Page 24: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Theory vs. Experiment

• Treating all observations equally:

1 . 1010 η . 7.

• For Deuterium only:

1010 η = 6.28+0.34−0.35,

1010 η = 5.92+0.55−0.58,

for multiple absorption and world av-

erage respectively.

Page 25: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Comparison with CMB

WMAP determines baryon density and therefore baryon-to-photon ratio η

more precisely:

ΩBh2 = 0.0224 ± 0.0009,

η = (6.14 ± 0.25) × 10−10.

Elements Observations WMAP Predictions χ2eff

D/H (2.49+0.20−0.18) × 10−5 (2.55+0.21

−0.20) × 10−5 0.045

D/H (2.78+0.44−0.38) × 10−5 (2.55+0.21

−0.20) × 10−5 0.281

Yp 0.238 ± 0.007 0.2485 ± 0.0005 3.77

Yp 0.244 ± 0.007 0.2485 ± 0.0005 0.692

7Li/H (1.23+0.64−0.46) × 10−10 (4.26+0.91

−0.86) × 10−10 10.72

7Li/H (2.19+0.46−0.38) × 10−10 (4.26+0.91

−0.86) × 10−10 4.50

Page 26: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Non-Standard BBN 1

• Number of neutrinos: Yp insensitive to η, but

sensitive on expansion rate, i.e.

g∗ = 5.5 +7

4Nν .

Elements Observations Nν,eff

D/H (2.49+0.20−0.18) × 10−5 2.78+0.87

−0.76

D/H (2.78+0.44−0.38) × 10−5 3.65+1.46

−1.30

Yp 0.238 ± 0.007 2.26+0.37−0.36

Yp 0.244 ± 0.007 2.67+0.40−0.38

Page 27: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Non-Standard BBN 2

• Chemical potential of neutrinos µν in

n

p≈

(

n

p

)

µν=0

exp(

−µν

T

)

allows to dial in any desired freeze-out ratio.

• Inhomogeneities in η, for example from a first order QCD phase transition:

– Diffusion of neutrons leads to isospin inhomogeneity.

– Only possible, if typical fluctuation distance compares to neutron

diffusion length (d = 200m − 500km during BBN).

– For same average η, usually overproduction of light elements.

Page 28: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

Summary

• Standard BBN well established and in concordance with measured light

element abundances and WMAP and spans nine orders of magnitude.

• Described by ’reaction network in an expanding box’, with the parameters

η, τn, g∗ and 11 reaction rates.

• Still difficulties in determining primordial abundances.

• Insight into chemical evolution of universe (especially HII-regions) and

astrophysics of stars.

Page 29: Introduction - Technische Universität Darmstadtcrunch.ikp.physik.tu-darmstadt.de/.../BBN.pdf · 2005. 1. 14. · The Three Steps of BBN 3 Step 3: Nucleosynthesis At T = 0:3MeV and

References

• E. Kolb and M. Turner, “The Early Universe”.

• B. Fields and S. Sarkar, astro-ph/0406663.

• R. Cyburt, astro-ph/0401091.

• S. Burles, K. Nollett and M. Turner, astro-ph/9903300.

• D. Schramm and M. Turner, astro-ph/9706069.

• K. Jedamzik, astro-ph/9805156.