Industrial Process Modeling

28
Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada www.psl.bc.ca Industrial Process Modeling

description

Industrial Process Modeling. Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada www.psl.bc.ca. Contents. Introduction to PSL 3D Process Modeling Process Modeling Information Industrial Applications. Process Simulations Ltd. - PowerPoint PPT Presentation

Transcript of Industrial Process Modeling

Page 1: Industrial Process Modeling

Dave Stropky, VP Research

Process Simulations Ltd.206-2386 East Mall, Vancouver, BC, Canada

www.psl.bc.ca

Industrial Process Modeling

Page 2: Industrial Process Modeling

Contents

Introduction to PSL

3D Process Modeling

Process Modeling Information

Industrial Applications

Page 3: Industrial Process Modeling

Process Simulations Ltd.1986 UBC modeling group (pulp and paper)1993 PSL Incorporated, Recovery Boiler Model1995 Bark boilers, Hydrocyclones1998 Headboxes, Lime kilns, Wood Kilns1999 Digesters2000 Gasifiers, Clarifiers2001 Cement Kilns, Coal Fired Boilers2002 Precipitators, BFB Boilers2003 Lagoons2004 Calciners2006 Multiphase fluidized beds

Page 4: Industrial Process Modeling

PSL INTRODUCTIONIndustrial Projects Since 1997

89 Recovery Boilers 25 Bark/Biomass/Power Boilers 13 Lime Kilns 3 Headboxes 4 Precipitators 5 Cement Kilns 4 Gasifiers 1 Precalciner 2 Wastewater Lagoons 10 Others

Page 5: Industrial Process Modeling

PSL INTRODUCTIONPSL Advantages

Independent Analysis

Advanced & Validated Computer Models. UBC connection.

Equipment equipment-specific submodels to predict the behavior of complex processes

Combustion and Flow Analysis Expertise

Advanced, Intuitive, Interactive 3-D display and analysis technologies

Broad Industrial Application Experience

Page 6: Industrial Process Modeling

3D ProcessModeling

Page 7: Industrial Process Modeling

Principle of Conservation

MassMomentum

Energy…….

IN = OUT

ININ

OUTOUT

OUTOUT

PROCESS MODELING 3D CFD

Page 8: Industrial Process Modeling

PROCESS MODELING

Buildings Jet enginesWeather

Harrier jet

Industrial Equipment

3D CFD Modeling Examples

Page 9: Industrial Process Modeling

IndustrialApplications

Page 10: Industrial Process Modeling

Recovery BoilersINDUSTRIAL APPLICATONS

• Air System Design• Liquor Injection• Carryover/Plugging• Wall Corrosion• Tube Cracking• Steam Production• Boiler load• Burner Design• NCG Injection• Emissions

Page 11: Industrial Process Modeling

Bark BoilersINDUSTRIAL APPLICATONS

• Air System Design• Fuel Injection• Carryover• Wall Corrosion• Steam Production• Boiler load• Grate Design• NCG Injection• Emissions

Page 12: Industrial Process Modeling

PreCalcinersINDUSTRIAL APPLICATONS

• Meal Injection• NOx Reduction• Gas Flow Distributions• Fuel combustion• Emissions• Temperature Profiles• Operational Optimization

Page 13: Industrial Process Modeling

DigestersINDUSTRIAL APPLICATONS

• Chip injection• Flow uniformity• Chip uniformity• Wash/screen

effects

KappaNumber

LigninMass Fraction

CarbohydratesMass Fraction

Chip Compaction

Page 14: Industrial Process Modeling

Wastewater LagoonsINDUSTRIAL APPLICATONS

• Flow patterns• Residence Time

Distributions• Biological Models

Page 15: Industrial Process Modeling

PrecipitatorsINDUSTRIAL APPLICATONS

• Flow Distribution• Efficiency• Baffle Design• Inlet/outlet ducting• Screen Design• Egg Crates

Page 16: Industrial Process Modeling

CyclonesINDUSTRIAL APPLICATONS

• Flow Distribution• Particle Distribution• Efficiency• Inlet ducting

Page 17: Industrial Process Modeling

KilnsINDUSTRIAL APPLICATONS

• Flame Profile• Calcination• Brick Failure/

Heat Load• Alternate Fuels• Air/Fuel Ratios• Burner Design• NCG Injection• Emissions

Distance from Kiln Hood [m]

Tem

pera

ture

ofG

asan

dLi

me

[K]

Volu

me

Frac

tion

ofO

2,C

O2,

H2O

inFl

usG

as[v

ol%

]

Em

issi

onof

NO

inFl

ueG

as[p

pmv]

Mas

sFr

actio

nof

Lim

eC

ompo

nent

s[w

t%]

0 20 40 60 80 100

500

1000

1500

2000

0

5

10

15

20

25

30

35

40

010

020

030

040

050

0

0

10

20

30

40

50

60

70

80

90

100

Feed

End

Fire

End

Tgas

CaCO3

CaO

Tck

NO

CO2

O2

H2O

Predicted Axial Profile Data

Page 18: Industrial Process Modeling

KilnsINDUSTRIAL APPLICATONS

Multi-layer refractory heat transfer model Heat transfer and lime calcination

CaCO3 = CaO + CO2

Heat absorbed 1.679 MJ/kg CaCO3 @1089K

Page 19: Industrial Process Modeling

Kilns: Input DataINDUSTRIAL APPLICATONS

10' 6" Dia.

Barrel Tilt = 1.7899 = 3/8" per 12"o

Burner

4' 2 3/4"

24" 24"

9"

5' 6"

2' 9"

17 3/4"

kiln c L

Z

X

Barrel Start(non rotated)

GEOMETRY

Page 20: Industrial Process Modeling

Primary AirSwirl Angle: 45o

Direction same as kiln rotation

Primary AirSwirl Angle = 0o

Oil Channel8 holes at 1/8" Dia.

Swirl Angle = 0o

Oil Channel12 holes at 3/16" Dia.

Swirl Angle = 0o

R1 R3R2

R4

r2

r1

TOP VIEW

SIDE VIEW

BED_ANGLE 31 deg

BARREL_ANGLE 1.79 deg

BURNER_ANGLE_BETA 0.16 deg

BURNER_ANGLE_ALPHA 1.5 deg

SPIN_AIR_ANGLE 45 deg

R1 0.1138 m

R2 0.1626 m

R3 0.1869 m

R4 0.2154 m

Kilns: Input DataINDUSTRIAL APPLICATONS

BURNER GEOMETRY

Page 21: Industrial Process Modeling

Kilns: Input DataINDUSTRIAL APPLICATONS

9"70% Alumina

9"Magnel RSV

9"70% Alumina

2-1/2"Greenlite HS

6"Clipper DP

3-1/2"Mix Refratherm

Greenlite

3"Greenlite HS

6"Castable

6"Castable

0' 0m

2'0.

6096

m

9.5'

2.89

56m

19.5

'5.

9436

m

39.5

'12

.039

8

84.5

'25

.755

6m

134.

5'40

.995

6m

216'

65.8

368m

221'

67.3

608m

226.

5'69

.037

2m

Burner

3'0.9144m

6"0.1524m

18"0.4572m

39"0.9906m

102"

2.59

08m

10'

3.04

8m

6' 7

"2.

0066

m

97"

2.46

38m

102"

2.59

08m

108"

2.74

32m

54'16.4592m

ChainSystem

101"

2.56

54m

012

23

34

4

4

0

aTaTaTaTaTaj

jj

thermal conductivity, W/mkT temperature, K

Material4a 3a 2a 1a 0a

Greenlite -2.554e-7 7.878e-4 5.248e-2Refratherm 150 -3.571e-7 8.021e-4 0.1576Magnel RSV 2.394e-12 -1.332e-8 2.771e-5 -0.02586 12.54Kruzite - 70 5.908e-7 -0.0013 2.301Clipper DP -3.571e-7 8.021e-4 0.1576

REFRACTORY

Page 22: Industrial Process Modeling

Selected Data Window

Kilns: Operational DataINDUSTRIAL APPLICATONS

DCS Data Analysis

Page 23: Industrial Process Modeling

Kilns: Operational DataINDUSTRIAL APPLICATONS

Fuel/Feed/Air Data Analysis

Production rate 274.42 tpd 3.1761 kg/sTotal feed rate 663.12 tpd 7.6750 kg/sSolids content 80% 80%CaCO3 462.23 tpd 5.3498 kg/sDust 57.29 tpd 0.6631 kg/sInerts 10.98 tpd 0.1270 kg/sMoisture 132.62 tpd 1.54 kg/s

663.12 tpd 7.6750 kg/s

Oil flow rate 0.4440 kg/sOil composition 100.00% Carbon 78.30% 0.3477 kg/s Hydrogen 9.88% 0.0439 kg/s Oxygen 11.57% 0.0514 kg/s Nitrogen 0.00% 0.0000 kg/s Sulphur 0.14% 0.0006 kg/s Ash 0.11% 0.0005 kg/s High heat value 44.7040 MJ/kg Density 935.0 kg/m3Oil temperature 230 oF 383 KStoichiometric air ratio for oil combustion 12.0178 kgAir/kgOilStoichiometric air for oil combustion 5.3359 kg/sAtomizing steam flow rate lb/hr 0.08 kg/sMixture flow rate 0.5240Mass fraction of oil in mixture 0.8473Total heat input 19.8 MW

LIME

FUEL

Excess air ratio 8.51%Stochiometric air flow rate*(1+excess air ratio) 5.7900 kg/s

PRIMARY AIRPrimary air flow rate 1.2800 kg/sPrimary air temperature 298.15 KPrimary air density 1.1835 kg/m^3Primary Axial Air 25.0% 0.3200 kg/sPrimary Spin Air 75.0% 0.9600 kg/s

SECONDARY AIRSecondary air temperature 298.15 KSecondary air density 1.1835 kg/m^3Left side flow area 0.2027 m*mRight side flow area 0.2027 m*mLeft side open area ratio 5.00%Right side open area ratio 5.00%Left side flow velocity 13.0334 m/sRight side flow velocity 13.0334 m/sLeft side flow rate 0.1563 kg/sRight side flow rate 0.1563 kg/s

BURNER/HOOD GAP AIRBurner/Hood gap air temperature 298.15 KBurner/Hood gap air density 1.1835 kg/m^3Burner/Hood gap area 0.0488 m*mBurner/Hood gap open area ratio 80.00%Burner/Hood gap velocity 13.0334 m/sBurner/Hood flow rate 0.6018 kg/s

DISCHARGE GRATE AIRDischarge grate air temperature 450 KDischarge grate air density 0.7841 kg/m^3Discharge grate area 0.5226 m*mDischarge grate open area ratio 54.80%Discharge grate velocity 16.0120 m/sDischarge grate flow rate 3.5956 kg/sTotal air flow rate 5.7901 kg/sTotal air flow rate - stochiometric air flow rate 0.0001 kg/s

Air

Page 24: Industrial Process Modeling

Kilns: Balance SheetsINDUSTRIAL APPLICATONS

Energy/Mass Balance

Heat Loss (shell) 3.3000 MWFuel Mass Flow Rate 0.5693 kg/sFuel high heating value 57.76 MJ/kgChemical enthalpy from Fuel 32.88 MW Product temperature (into cooler) 991.5 KFuel composition by wt% Product CaCO3 flowrate 0.157 kg/sN2 0.0439% Product CaO flowrate 4.681 kg/sCO2 0.0395% Product Inerts flowrate 0.564 kg/sCH4 99.9166% Physical enthalpy from product 4.22 MWFuel temperature 310.9 K Energy absorbed by calcination 14.90 MWPhysical enthalpy from fuel 0.047 MW Physical enthalpy of H2O released from mud 0.2626 MWTotal enthalpy from fuel 32.93 MW Evaporation heat of H2O released from mud 5.4454 MW

Physical enthalpy of CO2 released from mud 3.5689 MWLime Mud In Total enthalpy from product 28.39 MW

CaCO3 flow to kiln 8.516 kg/s net heat absorbed 27.78 MWCaO flow to kiln 0.000 kg/sFeed moisture flow to kiln 2.414 kg/s Enthapy of H2O vapour into gas phase 6.457692 MWInerts flow to kiln 0.564 kg/s Enthapy of CO2 into gas phase 3.631979 MWMaterial temperature to kiln 322.0 K Total 10.08967 MWPhysical enthalpy from feed 0.61 MWRecycle dust in 0.000 kg/s Total Energy In 45.59 MWRecycle dust temperature 322.0 K Product Energy Out + Heat Loss 31.69 MWPhysical enthalpy from recycle in 0.00 MW Energy taken away by flue gas 13.90 MWTotal enthalpy feed 0.61 MW

Flue Gas Temperature 475.2 K 395.7 FAir Flue gas CO2 mass flowrate 5.242 kg/s

Air composition by wt% Flue gas N2 mass flowrate 10.080 kg/sO2 23.00% Flue gas H2O mass flowrate 3.694 kg/sN2 77.00% Flue gas O2 mass flowrate 0.736 kg/sH2O 0.00% Physical enthalpy from flue gas 13.84 MWPrimary air flowrate 1.956 kg/s Dust Loss 0.000 kg/sPrimary air temperature 338.7 K Dust Loss in flue gas Enthalpy 0.00 MWPrimary air physical enthalpy 0.13 MW Total Enthalpy from flue gas and dust 13.84 MWCooler air flowrate 11.135 kg/sCooler outlet air temperature 434.5 K Flue gas energy balance check -0.06 MWCooler air physical enthalpy 1.83 MWTotal enthalpy air 1.96 MW CO2 from calcination 3.6780 kg/s

Lime Mud Out

FuelDust Loss 0.0% of dry solids MT to ton 1.1023113

Residual Carbonate 2.90% of total product TPD to kg/s 0.0104998

mud feed solids 79.0%wet feed flowrate 1094.7 TPD 11.494 kg/s 91,224 Lb/hr

CaCO3 in dry feed 93.78%CaO in dry feed 0.00%

Inerts in dry feed 6.216% of dry solids

100.00%

dry solids 864.8 TPD 9.080 kg/s 72,067 Lb/hrdust recycle 0.0 TPD 0.000 kg/s

moisture to kiln 229.9 TPD 2.414 kg/s

1094.7 TPD 11.494 kg/s 91,224 Lb/hr

CaCO3 input to kiln 811.0 TPD 8.516 kg/s

CaO input to kiln 0.0 TPD 0.000 kg/s

Inerts input to kiln 53.8 TPD 0.564 kg/s

Estimated material temperature into kiln 120 F 322.0 K

Uncalcined CaCO3 0.1567 kg/sCaO 4.6811 kg/s 404.5 MT/day 445.8 T/day

CaCO3 input to kiln - uncalcined CaCO3 8.3592 kg/s

CaO from above line (check) 4.6811 kg/sResidual Carbonate % check 2.900% 0.000% error

Inerts in product 10.45%

Total Product 5.402 kg/s 466.8 MT/day 514.50 T/dayMaximum Product Availability 86.65%

Maximum Availability with Measured Residual Carbonate

Page 25: Industrial Process Modeling

Contour/Vector Planes3D MODEL INFORMATION

Page 26: Industrial Process Modeling

Surface Plots3D MODEL INFORMATION

Page 27: Industrial Process Modeling

Integrated Information3D MODEL INFORMATION

Distance from Kiln Hood [m]

Tem

pera

ture

ofG

asan

dLi

me

[K]

Vol

ume

Frac

tion

ofO

2,C

O2,

H2O

inFl

usG

as[v

ol%

]

Em

issi

onof

NO

inFl

ueG

as[p

pmv]

Mas

sFr

actio

nof

Lim

eC

ompo

nent

s[w

t%]

0 20 40 60 80 100

500

1000

1500

2000

0

5

10

15

20

25

30

35

40

010

020

030

040

050

0

0

10

20

30

40

50

60

70

80

90

100

Feed

End

Fire

End

Tgas

CaCO3

CaO

Tck

NO

CO2

O2

H2O

Predicted Axial Profile Data

Page 28: Industrial Process Modeling

Process Modeling Advantages3D MODEL INFORMATION

Advanced, intuitive, interactive visual representation of industrial processes based on basic laws of physics

Software can be used to rapidly analyze and rectify process problems, or to create virtual equipment for operator training

Provides engineers and operators with significantly more information for analyzing equipment operations than is currently available

Reduced risk on retrofits and large capital expenditures Allows for more informed recommendations for operational

and design changes Better equipment performance and reliability Increased knowledge for operators, engineers, and

managers leads to optimized equipment design and operation and ultimately to reduced operational and maintenance costs