Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada ...

33
Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada www.psl.bc.ca Industrial Process Modeling

Transcript of Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada ...

Page 1: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Dave Stropky, VP Research

Process Simulations Ltd.206-2386 East Mall, Vancouver, BC, Canada

www.psl.bc.ca

Industrial Process Modeling

Page 2: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Contents

Introduction to PSL

3D Process Modeling

Process Modeling Information

Industrial Applications

Page 3: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Process Simulations Ltd.

1986 UBC modeling group (pulp and paper)

1993 PSL Incorporated, Recovery Boiler Model

1995 Bark boilers, Hydrocyclones

1998 Headboxes, Lime kilns, Wood Kilns

1999 Digesters

2000 Gasifiers, Clarifiers

2001 Cement Kilns, Coal Fired Boilers

2002 Precipitators, BFB Boilers

2003 Lagoons

2004 Calciners

2006 Multiphase fluidized beds

Page 4: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

PSL INTRODUCTION

Industrial Projects Since 1997

89 Recovery Boilers

25 Bark/Biomass/Power Boilers

13 Lime Kilns

3 Headboxes

4 Precipitators

5 Cement Kilns

4 Gasifiers

1 Precalciner

2 Wastewater Lagoons

10 Others

Page 5: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

PSL INTRODUCTION

PSL Advantages

Independent Analysis

Advanced & Validated Computer Models. UBC connection.

Equipment equipment-specific submodels to predict the behavior of complex processes

Combustion and Flow Analysis Expertise

Advanced, Intuitive, Interactive 3-D display and analysis technologies

Broad Industrial Application Experience

Page 6: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

3D Process

Modeling

Page 7: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Principle of Conservation

MassMomentum

Energy…….

IN = OUT

ININ

OUTOUT

OUTOUT

PROCESS MODELING3D CFD

Page 8: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

PROCESS MODELING

Buildings Jet enginesWeather

Harrier jet

Industrial Equipment

3D CFD Modeling Examples

Page 9: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

PROCESS MODELING

Process Modeling Stages

IN IN PROGRESSPROGRESS

INDUSTRIALINDUSTRIALAPPLICATIONAPPLICATION

Literature review

Plant\Mill interaction

Process knowledge

Commitment of industry

Physical model

Numerical model

Model development

Model validation

Industrial testing

Problem Solving

Model proposed retrofits

Alternate Fuels

Equipment Optimization

Cost Reduction

INITIALINITIALSTAGESTAGE

Page 10: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

3D Process Modeling

Information

Page 11: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

3D Display3D MODEL INFORMATION

Page 12: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Contour/Vector Planes

3D MODEL INFORMATION

Page 13: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Surface Plots

3D MODEL INFORMATION

Page 14: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Isosurface Plots

3D MODEL INFORMATION

Page 15: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Fuel/Air Distributions

3D MODEL INFORMATION

Page 16: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Integrated Information3D MODEL INFORMATION

Distance from Kiln Hood [m]

Te

mp

era

ture

of

Ga

sa

nd

Lim

e[K

]

Vo

lum

eF

ract

ion

of

O2

,CO

2,H

2O

inF

lus

Ga

s[v

ol%

]

Em

issi

on

of

NO

inF

lue

Ga

s[p

pm

v]

Ma

ssF

ract

ion

of

Lim

eC

om

po

ne

nts

[wt%

]

0 20 40 60 80 100

50

01

00

01

50

02

00

0

0

5

10

15

20

25

30

35

40

01

00

20

03

00

40

05

00

0

10

20

30

40

50

60

70

80

90

100

Fe

ed

En

d

Fir

eE

nd

Tgas

CaCO3

CaO

Tck

NO

CO2

O2

H2O

Predicted Axial Profile Data

Page 17: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Industrial

Applications

Page 18: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Recovery BoilersINDUSTRIAL APPLICATONS

• Air System Design• Liquor Injection• Carryover/Plugging• Wall Corrosion• Tube Cracking• Steam Production• Boiler load• Burner Design• NCG Injection• Emissions

Page 19: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Bark BoilersINDUSTRIAL APPLICATONS

• Air System Design• Fuel Injection• Carryover• Wall Corrosion• Steam Production• Boiler load• Grate Design• NCG Injection• Emissions

Page 20: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

PreCalcinersINDUSTRIAL APPLICATONS

• Meal Injection• NOx Reduction• Gas Flow Distributions• Fuel combustion• Emissions• Temperature Profiles• Operational Optimization

Page 21: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

DigestersINDUSTRIAL APPLICATONS

• Chip injection• Flow uniformity• Chip uniformity• Wash/screen

effects

KappaNumber

LigninMass Fraction

CarbohydratesMass Fraction

Chip Compaction

Page 22: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Wastewater LagoonsINDUSTRIAL APPLICATONS

• Flow patterns• Residence Time

Distributions• Biological Models

Page 23: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

PrecipitatorsINDUSTRIAL APPLICATONS

• Flow Distribution• Efficiency• Baffle Design• Inlet/outlet ducting• Screen Design• Egg Crates

Page 24: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

CyclonesINDUSTRIAL APPLICATONS

• Flow Distribution• Particle Distribution• Efficiency• Inlet ducting

Page 25: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

KilnsINDUSTRIAL APPLICATONS

• Flame Profile• Calcination• Brick Failure/

Heat Load• Alternate Fuels• Air/Fuel Ratios• Burner Design• NCG Injection• Emissions

Distance from Kiln Hood [m]

Te

mp

era

ture

of

Ga

sa

nd

Lim

e[K

]

Vo

lum

eF

ract

ion

of

O2

,CO

2,H

2O

inF

lus

Ga

s[v

ol%

]

Em

issi

on

of

NO

inF

lue

Ga

s[p

pm

v]

Ma

ssF

ract

ion

of

Lim

eC

om

po

ne

nts

[wt%

]

0 20 40 60 80 100

500

10

00

15

002

000

0

5

10

15

20

25

30

35

40

01

00

20

03

00

40

05

00

0

10

20

30

40

50

60

70

80

90

100

Fe

ed

En

d

Fir

eE

nd

Tgas

CaCO3

CaO

Tck

NO

CO2

O2

H2O

Predicted Axial Profile Data

Page 26: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

KilnsINDUSTRIAL APPLICATONS

Multi-layer refractory heat transfer model

Heat transfer and lime calcination

CaCO3 = CaO + CO2

Heat absorbed 1.679 MJ/kg CaCO3 @1089K

Page 27: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Kilns: Input DataINDUSTRIAL APPLICATONS

10' 6" Dia.

Barrel Tilt = 1.7899 = 3/8" per 12"o

Burner

4' 2 3/4"

24"24"

9"

5' 6"

2' 9"

17 3/4"

kiln c L

Z

X

Barrel Start(non rotated)

GEOMETRY

Page 28: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Primary Air

Swirl Angle: 45o

Direction same as kiln rotation

Primary Air

Swirl Angle = 0o

Oil Channel8 holes at 1/8" Dia.

Swirl Angle = 0o

Oil Channel12 holes at 3/16" Dia.

Swirl Angle = 0o

R1R3R2

R4

r2

r1

TOP VIEW

SIDE VIEW

BED_ANGLE 31 deg

BARREL_ANGLE 1.79 deg

BURNER_ANGLE_BETA 0.16 deg

BURNER_ANGLE_ALPHA 1.5 deg

SPIN_AIR_ANGLE 45 deg

R1 0.1138 m

R2 0.1626 m

R3 0.1869 m

R4 0.2154 m

Kilns: Input DataINDUSTRIAL APPLICATONS

BURNER GEOMETRY

Page 29: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Kilns: Input DataINDUSTRIAL APPLICATONS

9"70% Alumina

9"Magnel RSV

9"70% Alumina

2-1/2"Greenlite HS

6"Clipper DP

3-1/2"Mix Refratherm

Greenlite

3"Greenlite HS

6"Castable

6"Castable

0' 0m

2'0.

6096

m

9.5'

2.89

56m

19.5

'5.

9436

m

39.5

'12

.039

8

84.5

'25

.755

6m

134.

5'40

.995

6m

216'

65.8

368m

221'

67.3

608m

226.

5'69

.037

2m

Burner

3'0.9144m

6"0.1524m

18"0.4572m

39"0.9906m

102"

2.59

08m

10'

3.04

8m

6' 7

"2.

0066

m

97"

2.46

38m

102"

2.59

08m

108"

2.74

32m

54'16.4592m

ChainSystem

101"

2.56

54m

012

23

34

4

4

0

aTaTaTaTaTaj

jj

thermal conductivity, W/mkT temperature, K

Material4a 3a 2a 1a 0a

Greenlite -2.554e-7 7.878e-4 5.248e-2Refratherm 150 -3.571e-7 8.021e-4 0.1576Magnel RSV 2.394e-12 -1.332e-8 2.771e-5 -0.02586 12.54Kruzite - 70 5.908e-7 -0.0013 2.301Clipper DP -3.571e-7 8.021e-4 0.1576

REFRACTORY

Page 30: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Selected Data Window

Kilns: Operational DataINDUSTRIAL APPLICATONS

DCS Data Analysis

Page 31: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Kilns: Operational DataINDUSTRIAL APPLICATONS

Fuel/Feed/Air Data Analysis

Production rate 274.42 tpd 3.1761 kg/sTotal feed rate 663.12 tpd 7.6750 kg/sSolids content 80% 80%CaCO3 462.23 tpd 5.3498 kg/sDust 57.29 tpd 0.6631 kg/sInerts 10.98 tpd 0.1270 kg/sMoisture 132.62 tpd 1.54 kg/s

663.12 tpd 7.6750 kg/s

Oil flow rate 0.4440 kg/sOil composition 100.00% Carbon 78.30% 0.3477 kg/s Hydrogen 9.88% 0.0439 kg/s

Oxygen 11.57% 0.0514 kg/s

Nitrogen 0.00% 0.0000 kg/s Sulphur 0.14% 0.0006 kg/s

Ash 0.11% 0.0005 kg/s High heat value 44.7040 MJ/kg Density 935.0 kg/m3

Oil temperature 230 oF 383 K

Stoichiometric air ratio for oil combustion 12.0178 kgAir/kgOilStoichiometric air for oil combustion 5.3359 kg/sAtomizing steam flow rate lb/hr 0.08 kg/sMixture flow rate 0.5240Mass fraction of oil in mixture 0.8473Total heat input 19.8 MW

LIME

FUEL

Excess air ratio 8.51%Stochiometric air flow rate*(1+excess air ratio) 5.7900 kg/s

PRIMARY AIR

Primary air flow rate 1.2800 kg/s

Primary air temperature 298.15 KPrimary air density 1.1835 kg/m^3Primary Axial Air 25.0% 0.3200 kg/sPrimary Spin Air 75.0% 0.9600 kg/s

SECONDARY AIRSecondary air temperature 298.15 KSecondary air density 1.1835 kg/m^3Left side flow area 0.2027 m*mRight side flow area 0.2027 m*mLeft side open area ratio 5.00%Right side open area ratio 5.00%Left side flow velocity 13.0334 m/sRight side flow velocity 13.0334 m/sLeft side flow rate 0.1563 kg/sRight side flow rate 0.1563 kg/s

BURNER/HOOD GAP AIRBurner/Hood gap air temperature 298.15 KBurner/Hood gap air density 1.1835 kg/m^3Burner/Hood gap area 0.0488 m*mBurner/Hood gap open area ratio 80.00%Burner/Hood gap velocity 13.0334 m/sBurner/Hood flow rate 0.6018 kg/s

DISCHARGE GRATE AIRDischarge grate air temperature 450 KDischarge grate air density 0.7841 kg/m^3Discharge grate area 0.5226 m*mDischarge grate open area ratio 54.80%Discharge grate velocity 16.0120 m/sDischarge grate flow rate 3.5956 kg/sTotal air flow rate 5.7901 kg/sTotal air flow rate - stochiometric air flow rate 0.0001 kg/s

Air

Page 32: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Kilns: Balance SheetsINDUSTRIAL APPLICATONS

Energy/Mass Balance

Heat Loss (shell) 3.3000 MWFuel Mass Flow Rate 0.5693 kg/sFuel high heating value 57.76 MJ/kgChemical enthalpy from Fuel 32.88 MW Product temperature (into cooler) 991.5 KFuel composition by wt% Product CaCO3 flowrate 0.157 kg/sN2 0.0439% Product CaO flowrate 4.681 kg/sCO2 0.0395% Product Inerts flowrate 0.564 kg/sCH4 99.9166% Physical enthalpy from product 4.22 MWFuel temperature 310.9 K Energy absorbed by calcination 14.90 MWPhysical enthalpy from fuel 0.047 MW Physical enthalpy of H2O released from mud 0.2626 MWTotal enthalpy from fuel 32.93 MW Evaporation heat of H2O released from mud 5.4454 MW

Physical enthalpy of CO2 released from mud 3.5689 MWLime Mud In Total enthalpy from product 28.39 MW

CaCO3 flow to kiln 8.516 kg/s net heat absorbed 27.78 MWCaO flow to kiln 0.000 kg/sFeed moisture flow to kiln 2.414 kg/s Enthapy of H2O vapour into gas phase 6.457692 MWInerts flow to kiln 0.564 kg/s Enthapy of CO2 into gas phase 3.631979 MWMaterial temperature to kiln 322.0 K Total 10.08967 MWPhysical enthalpy from feed 0.61 MWRecycle dust in 0.000 kg/s Total Energy In 45.59 MWRecycle dust temperature 322.0 K Product Energy Out + Heat Loss 31.69 MWPhysical enthalpy from recycle in 0.00 MW Energy taken away by flue gas 13.90 MWTotal enthalpy feed 0.61 MW

Flue Gas Temperature 475.2 K 395.7 FAir Flue gas CO2 mass flowrate 5.242 kg/s

Air composition by wt% Flue gas N2 mass flowrate 10.080 kg/sO2 23.00% Flue gas H2O mass flowrate 3.694 kg/sN2 77.00% Flue gas O2 mass flowrate 0.736 kg/sH2O 0.00% Physical enthalpy from flue gas 13.84 MWPrimary air flowrate 1.956 kg/s Dust Loss 0.000 kg/sPrimary air temperature 338.7 K Dust Loss in flue gas Enthalpy 0.00 MWPrimary air physical enthalpy 0.13 MW Total Enthalpy from flue gas and dust 13.84 MWCooler air flowrate 11.135 kg/sCooler outlet air temperature 434.5 K Flue gas energy balance check -0.06 MWCooler air physical enthalpy 1.83 MWTotal enthalpy air 1.96 MW CO2 from calcination 3.6780 kg/s

Lime Mud Out

FuelDust Loss 0.0% of dry solids MT to ton 1.1023113

Residual Carbonate 2.90% of total product TPD to kg/s 0.0104998

mud feed solids 79.0%

wet feed flowrate 1094.7 TPD 11.494 kg/s 91,224 Lb/hr

CaCO3 in dry feed 93.78%

CaO in dry feed 0.00%

Inerts in dry feed 6.216% of dry solids

100.00%

dry solids 864.8 TPD 9.080 kg/s 72,067 Lb/hr

dust recycle 0.0 TPD 0.000 kg/s

moisture to kiln 229.9 TPD 2.414 kg/s

1094.7 TPD 11.494 kg/s 91,224 Lb/hr

CaCO3 input to kiln 811.0 TPD 8.516 kg/s

CaO input to kiln 0.0 TPD 0.000 kg/s

Inerts input to kiln 53.8 TPD 0.564 kg/s

Estimated material temperature into kiln 120 F 322.0 K

Uncalcined CaCO3 0.1567 kg/s

CaO 4.6811 kg/s 404.5 MT/day 445.8 T/day

CaCO3 input to kiln - uncalcined CaCO3 8.3592 kg/s

CaO from above line (check) 4.6811 kg/s

Residual Carbonate % check 2.900% 0.000% error

Inerts in product 10.45%

Total Product 5.402 kg/s 466.8 MT/day 514.50 T/day

Maximum Product Availability 86.65%

Maximum Availability with Measured Residual Carbonate

Page 33: Dave Stropky, VP Research Process Simulations Ltd. 206-2386 East Mall, Vancouver, BC, Canada  Industrial Process Modeling.

Process Modeling Advantages

3D MODEL INFORMATION

Advanced, intuitive, interactive visual representation of industrial processes based on basic laws of physics

Software can be used to rapidly analyze and rectify process problems, or to create virtual equipment for operator training

Provides engineers and operators with significantly more information for analyzing equipment operations than is currently available

Reduced risk on retrofits and large capital expenditures

Allows for more informed recommendations for operational and design changes

Better equipment performance and reliability

Increased knowledge for operators, engineers, and managers leads to optimized equipment design and operation and ultimately to reduced operational and maintenance costs