IJSET_2015_608

download IJSET_2015_608

of 6

Transcript of IJSET_2015_608

  • 7/25/2019 IJSET_2015_608

    1/6

    Heat Transfer

    in

    Plasma-Arc W elding

    In comparing plasma and gas tungsten welding

    arcs significant differences are found in heat

    transfer distribution and efficiency

    B Y J . C . M E T C A L F E A N D M . B . C . Q U I G L E Y

    s t rans fe r re d to the w o rk p iec e

    A co m p a r i so n i s m a d e

    kW g a s t u n g s t e n -a r c . B o t h

    t e m p e r a t u r e ca n b e

    s f e r b y co n ve c t i o n is a n i m

    p r o ce ss , b y w h i ch 2 7 t o 3 1 %

    17 to

    1 9 %

    o f the to ta l power

    w e l d .

    T h u s i n p l a sm a -a r c w e l d i n g , u n l i ke

    t u n g s t e n - a r c w e l d i n g , c o n

    t h e d o m i

    e f f e c t s s o m e w h a t

    It is shown tha t in a 10 kW

    The hea t f l ow to the wo rkp iece in

    tung s ten -a rc we ld ing has been

    min ed p rev ious ly (Re f . 1) . Then i t

    how n tha t in a 100 A, 16 V gas

    s ten -a rc on ly 5% ( less than 100

    d t o t h e w o r k p i e c e b y c o n

    co n d u c t i o n a n d r a d i a t i o n .

    Electricity Generating Board March-

    Engineering Laboratories March-

    Southampton Hants United

    The ma jo r i t y (39%, 630 W) i s due to

    the su r face e f fec ts a t the anod e .

    The a rc used in p lasma a rc w e l d

    i ng (PAW ) i s s ign i f i can t l y d i f fe ren t

    f rom a gas tungs ten -a rc . I t i s c o n

    s t r i c te d by a sma l l nozz le ( t yp ica l l y 3

    m m d iam ) and has a mu ch h ighe r gas

    ve loc i t y and tempe ra tu re as shown in

    Tab le 1 . The h igh gas ve loc i t i es asso

    c ia ted w i th p lasma a rc we ld ing have

    t w o i m p o r t a n t co n se q u e n ce s .

    T h e m o m e n t u m o f t h e g a s s t r e a m

    causes a de f o rm a t io n in the we ld po o l

    su r face and th is can be deve loped to

    for m a 'key ho le ' in the we l d (F igs. 1

    and 2 ) . In th i s mo de o f ope ra t ion a

    h o l e is f o r m e d co m p l e t e l y t h r o u g h t h e

    base me ta l . As the to rch moves a long

    th e w e l d , the me ta l wh ich i s me l ted in

    advance o f the keyho le reso l id i f i e s a t

    the rea r to fo r m the we ld b ead . A l

    t h o u g h " ke yh o l i n g " b e g a n a s a g a s

    we ld ing tech n iqu e , i t i s se ld om used in

    th is manne r today . Keyho les a re a lso

    fo r me d in e lec t ron beam and lase r

    we ld ing , a l tho ugh in these cases they

    a re p ro duc ed ma in ly by the p re ssu re

    o f the evapo ra t ing me ta l and ca l l fo r

    p o w e r d e n s i t i e s a b o ve 1 0 G W / m

    2

    .

    The p ropo r t ion o f the to ta l a rc

    powe r (V I ) t ran s fe r red by conv ect io n

    to the wo rkp iece i s l i ke ly to be much

    h ighe r fo r the p lasma we ld ing a rc

    than fo r the gas

    t u n g s t e n -a r c .

    In th i s pape r an exam ina t ion i s

    made o f the ene rgy t rans fe r to the

    w o r kp i e ce w i t h a p l a sm a w e l d i n g a r c .

    T h e r e l a t i ve co n t r i b u t i o n s f r o m r a d i a

    t i o n ,

    convec t ion and e lec t ron e f fec ts

    a t the anode w i l l be compared w i th

    t h o se f o r t h e G T A W p r o ce ss . A ve r

    aged va lues fo r a rc tem pe ra tu re and

    emiss iv i t y have been deduced and

    a w a i t e xp e r i m e n t a l ve r i f i ca t i o n .

    An assess men t o f the power inpu t

    p r o ce sse s w i t h i n a p l a sm a w e l d i n g

    Fig. 1 Gas flow impinging on surface of

    weld pool before keyhole is produced

    I n

    Fig. 2 Gas flow through keyhole

    Table 1 Comparison of Plasma Arc and Gas Tungsten-Arc Welding

    GTAW PAW

    Gas velocity, m/s

    Arc temperature, K

    Power density, MW /m

    2

    8 0 - 150

    8 0 0 0 - 1 5 0 0 0

    1 0 - 1 0 0

    3 0 0 - 2 0 0 0

    1 0 0 0 0 - 2 0 0 0 0

    10 0 - 10 0 0 0

    W E L D I N G R E S E A R C H S U P P L E M E N T 9 9 - s

  • 7/25/2019 IJSET_2015_608

    2/6

    CN

    10

    1

    O

    CM

    E

    E

    Table 2 Dimensions and

    Process Settings

    2000 10000 20 000

    Fig. 3 Radiation loss

    a rc sho u ld he lp fu tu re inves t iga t ions

    in to the e f fect o f var ia t ion o f the

    we ld in g pa ra me te rs , such as gas

    f low,

    cu r ren t , e tc . on the dep th o f pene

    t ra t ion o f the w e l d . A l t h o u g h p l a sm a

    arc we ld ing i s poss ib le w i th a non -

    t rans fe r red a rc , th i s mode (wh ich i s

    usua l l y rese rved fo r wo rk ing n o n

    conduct ing ma te r ia l s ) w i l l no t be c o n

    s ide red he re .

    P A W P r o p e r t ie s a n d P o w e r F l o w

    T yp i ca l d i m e n s i o n s a n d p o ss i b l e

    proc ess se t t ings are show n in Tab le 2 .

    The va lu es in Ta b le 2 are bas ed on

    e xp e r i m e n t a l e xp e r i e n ce a n d r e p

    resen t reasonab le mean va lues . Fo r

    the pu rpose o f these ca lcu la t ions i t i s

    assumed tha t the a rc tempe ra tu re i s

    un i fo rm. In p rac t i ce th is w i l l be fa i r l y

    va l id across the core (Refs. 2 , 3 ) but

    less so in outer reg ions.

    Electron Effects at the Anode( P e l .)

    Work Function

  • 7/25/2019 IJSET_2015_608

    3/6

    asu rem en ts o r ana ly t i ca l s tud ies

    t r i b u t i o n a c r o s s t h i s t y p e o f

    ing a rc . In these c i rc um stan ces

    oac h i s to f ind an ave rag e

    (T

    a

    ) ac ross the a rc and

    here . I t is , o f co urs e ,

    The tem pe r a tu re may be

    u ce d f r o m t h e t o t a l e n t h a l p y f l o w

    the a rc ( i.e . the ene rgy t ran spo r ted

    m H

    = VI - e lec trod e e f fects

    - rad ia t ion losses

    The losses a t the ca thode ( i .e . tha t

    wh ich i s con duc ted aw ay and

    The rad ia t ion losses ( rad ia l ) we re

    1570 - 2000 = 6230 W

    H = 27 .9 MJ/kg

    p o n d s t o a

    t e m

    T

    a

    = 14200 K.

    Radiation from the Arc The

    P

    ra

    = 0.057

    e A ( T

    a

    / 1 0 0 0 )

    4

    M W

    T

    a

    i s tem pe r a tu r e , A is the su r

    t is the emiss iv i ty o f the

    d e n

    n of a r c t e m p e r a t u r e a n d

    The ma in p rob lem in ca lcu la t ing

    om th e a rc is the se lec t ion

    l d i n g H a n d b o o k ( R e f . 2 ) s u g

    tha t up to 20% and Emmons

    % i s taken fo r the a rc con s ide red

    2

    ) is 2

    the emis siv i ty is

    es ted tha t th i s is the most a pp r o

    e but th is w i l l need

    Radiation to the Weld A s s u m i n g

    the sam e as tha t app ly ing

    \.e. e = 0 .012 an d tha t the

    V then the

    1. To the we ld poo l ass um ing a

    a rc

    A = 113 m m

    2

    and tha t the m ean

    pe r a tu re o f 14200 K s t i l l app l ie s

    T a b l e 3

    T e m p e r

    a tu re ,

    K

    5000

    6000

    7000

    8000

    9000

    10000

    11000

    12000

    13000

    14000

    15000

    16000

    17000

    18000

    19000

    20000

    21000

    22000

    23000

    24000

    25000

    P r o p e r t ie s o f A r g o n a t 1 A t m o s p h e r e ( f r o m R e f s .

    En tha lpy ,

    H ,

    M J / k g

    2.600

    3.127

    3.651

    4.228

    4 .965

    6.124

    8.184

    11.83

    17.78

    26 .12

    35.53

    43 .83

    49 .77

    53.71

    56 .59

    59 .44

    63 .12

    68.61

    76.44

    86.65

    98 .37

    Spec i f i c

    hea t ,

    C

    P

    ,

    k j / k g

    K

    0.519

    0.519

    0.540

    0.628

    0.892

    1.511

    2.721

    4.676

    7.242

    9.251

    9.251

    7.158

    4.730

    3.211

    2.733

    3.135

    4.425

    6.572

    9.084

    11 .218

    12.098

    Dens i ty ,

    >