Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and...

21
18.07.2011 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound 2. Hydrogen distribution 3. Hydrogen infrastructure 4. Summary Structure

Transcript of Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and...

Page 1: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

1

Hydrogen storage, distribution and

infrastructure

Dr.-Ing. Roland Hamelmann

D-23611 Bad Schwartau

1. Hydrogen storage

a) gaseous

b) liquid

c) physically bound

d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Page 2: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

2

Hydrogen storage

Storage principles Example

Gas - CNG, Pressure vessels

Fluid - Cryo tanks

Physically bound - Metal hydride storage, C-fibre

Chemichally bound - Sodiumborhydride, Ammonia

Criteria

Gravimetric density [kWh/kg] - Weight limited applications

Volumetric density [kWh/m³] - Volume limited applications

Safety - Duty, accident

Efficiency - Energetic effort for in- and output

Application - Mobile/stationary

- continous / discontinous

- heat coupling

1. Hydrogen storage

a) gaseous

b) liquid

c) physically bound

d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Page 3: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

3

Identical with CNG-storage

Large storages (> 106 Nm³ ): Aquifere, Kavernen

• England: saline caverns for hydrogen storage (ICI) with 50 bar

• France (57-74): Aquifer-storage for für 330 Mio Nm³ town gas (50 % H2)

Small storages: sperical pressure vessels

• Low pressure sphere (1,4 MPa, 15.000 Nm³, D=29m)

• Cylinder (D = 2,8 m, H = 7,3/10,8/19 m, 1305/2250/4500 Nm³ volume @ 4,5 MPa)

• Steel bottles (2-50 dm³): 8,3 Nm³ volume @ 20 MPa, 50 dm³;

11,8 Nm³ volume @ 30 MPa

Stationary storages

Saline caverns

Source: KBB Underground

Page 4: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

4

Saline cavern potential

Source: KBB Underground

Existing caverns

Source: KBB Underground

Page 5: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

5

Cavern spacing

Source: KBB Underground

Capacity

Source: KBB Underground

Page 6: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

6

Cavern building

Source: KBB Underground

Source: Wasserstoff, Info-Blatt Messer Griesheim

Pressure vessels

Page 7: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

7

Hydrogen storage density

Ideal gas: p*V = m*R*T

Real gas: p*V = Z*m*R*T

p: pressure

V: volume

m: mass

R: gas constant

T: temperature

Z: compressibility factor

Example: energy content of a gasholder (V1 = 100 m³, p1 = 250 bar, T1 = 300 K)

1) Standard volume V2 = V1 * p1/p2 * T2/T1 * Z2/Z1

= 100 m³ * 250 * 300/293 * 1/1,142 = 22.414 m³

2) Energy content E = Hi * V

= 3,0 kWh/m³ * 22.414 m³ = 67.243 kWh = 67, 2 MWh

3) Electrical equivalent Eel = E * η ≈ 67,2 MWh * 40 % = 26,9 Mwhel

4) Storage density ds = 26,9 Mwhel / 100 m³ = 269 kWhel / m³

Source: Funck, Handbook of Fuel Cells Vol 3, S. 83 (2003)

Similar to pressure tanks for CNG-mobility

Composite tanks are 50-75 % easier than steel

(carbon-fibre reinforced aluminium or plastic liner)

Advantages of liner material

aluminium plastic

Manufacturing ++ +

Permeability ++ +

Cyclebility + ++

Cost for liner ++ ++

Cost for fibres + ++

Cost total + ++

Total weight + ++

Safety ++ ++

Mobile pressure vessels

Page 8: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

8

Source: Funck, Handbook of Fuel Cells Vol 3, S. 83 (2003)

Stahl Komposit

volume [dm³] 50 50 50 50

pressure [bar] 200 200 400 700

diameter [mm] 220 300 300 300

length [mm] 1.600 1.000 1.000 1.000

weight [kg] 70 25 45 85

stored energy [MJ] 87 87 156 238

stored energy [kWh] 24 24 43 66

stored hydrogen [kg] 0,70 0,70 1,30 2,00

grav. storage density [kWh/kg] 0,35 0,96 0,96 0,78

vol. storage density [kWh/dm³] 0,48 0,48 0,86 1,32

Mobile storage density

Source: Funck, Handbook of Fuel Cells Vol 3, S. 83 (2003)

Similarity to natural gas compression

Specific compression work (isothermal)

wt,isoth. = RH2 * T * Z * ln (p2/p1) mit

RH2 = 4,124 kJ/(kg * K) = spec. Gas constant

T = temperature [K]

Z = (K(p1)+K(p2))/2K(p2) = compressibility factor K(p) = 1+p/150 MPa

p1 = start pressure

p2 = end pressure

Compressor power

P = wt,isoth. * m/t * 1/h with

m/t = flux

h = effective efficiency (hydraulical und mechanical losses)

Hydrogen compression

Page 9: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

9

Ex. Hydrogen compression

wt,isoth. for compression of 1 Nm³ H2 at 20°C from

a) 1 auf 200 bar: 6.030 kJ/kg ≙ 0,149 kWh ≙ 5,5 %

b) 30 auf 200 bar: 2.179 kJ/kg ≙ 0,054 kWh ≙ 2,0 %

Eigenenergieverzehr H2-Kompression (h=85%)

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

8,0%

0 100 200 300 400 500 600 700 800

Zieldruck [bar]

Eig

en

en

erg

ieve

rze

hr

Startdruck 1 bar

Startdruck 30 bar

1. Hydrogen storage

a) gaseous

b) liquid

c) physically bound

d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Page 10: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

10

Source: Bünger, Wasserstoffspeicherung – Entwicklungsstand und –perspektiven, Vortrag Haus der Technik, Essen (2001)

Cryo storage

Source: www.hyweb.de

similarities to liquid helium handling

temperature at boiling point (20,4 K), pressure 1-10 bar

double wall vessel with

vacuum superinsulation (70-100 layers, 25 mm) or

perlite-vacuuminsulation

boil-off-rate:

vacuum-superinsulation appr. 0,4 %/d

vacuum-powderinsulation 1-2 %/d

Tank size:

Large: NASA, Cape Canaveral, sphere with 20 m diameter, 3.800

m³ storage volume (270 t LH2), boil-off 0,03 %/d

car: volume 120 dm³, passive safety by double wall hull, 100 kg

total weight; heat input 2W, standby-time 4 days, boil-off-rate 1%/d

Cryo storage: data

Page 11: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

11

Source: Wolf, Handbook of Fuel Cells Vol 3, S. 95 (2003)

Back-cooling

Application example

Page 12: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

12

Source: www.hyweb.de

Cryogenic process

Worldwide roughly 10 plants in operation (10 … 60 t/d each)

Small liquefiers for research purposes with 200 kg/d

Current effort: 0,9 kWhel. / dm³ LH2 (plus 45 dm³ water)

Future prospects: 0,35 kWhel. / dm³ LH2 with magnetocaloric

process

Liquefaction consumption / energy content (2,36 kWhth. / dm³ LH2)

Currently 38,1 %

Future 14,8 %

Hydrogen liquefaction

1. Hydrogen storage

a) gaseous

b) liquid

c) physically bound

d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Page 13: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

13

Source: Sandrock, Handbook of Fuel Cells Vol 3, S. 101 (2003)

Metal hydrides

Base is reversible storage of hydrogen

in metals:

M + ½x H2 ↔ MHx + heat

Van´t Hoffs equation:

ln p = ΔH/RT – ΔS/R (ΔH, ΔS < 0)

hydrogen loading is exothermal

hydrogen deloading is endothermal

Source: Hubert, Otto, Energiewelt Wasserstoff, TÜV Süddeutschland S. 35 (2003)

MH examples

Page 14: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

14

Source: Sandrock, Handbook of Fuel Cells Vol 3, S. 101 (2003)

Activation / hydrogen loading:

internal cracking

increasing specific surface

removing of passivation layers

Gas impurities:

lead to a loss of capacity

degrade kinetics

poison surface

Cycle-stability is influenced by metallugic processes (disintegration)

Safety aspects: toxic, combustible

Costs: metallurgical complex process, high precision needed

(200 – 700 €/Nm³ H2)

used metals: La, Ti, Zr, Mg, Ca, Fe, Ni, Mn, Co, Al

MH: characteristics

Source: Sandrock, Handbook of Fuel Cells Vol 3, S. 101 (2003)

CH2 MH

Dosing 0 0

Heat exchange + -

Costs + -

Compression - +

Safety - +

Weight + -

Volume - +

Cleaning - +

+ Advantagel 0 Equal - Disadvantage

MH vs. CH2

Page 15: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

15

MH: research materials

1. Hydrogen storage

a) gaseous

b) liquid

c) physically bound

d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Page 16: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

16

Source: Suda, Handbook of Fuel Cells Vol 3, S. 115 (2003)

Reaction: NaBH4 + 2 H2O → 4 H2 + NaBO2

Masses: 10,84 Gew.-% H2, 51,2 Gew.-% NaBH4

Reaction enthalpy: ΔH = -225 kJ/mol ~ -56 kJ/mol H2

„Hydrogen on Demand“

Pysiologic certain

Sodium borhydride

Source: Hacker, Kordesch, Handbook of Fuel Cells Vol 3, S. 121 (2003)

Reaction: 2 NH3 ↔ N2 + 3 H2

Reaction enthalpy: ΔH = 46 kJ/mol

Common chemical, worldwide logistic chain

With low pressure stored as liquid

Compared to LH2 contains ammonia the 1,7-fold amount

of hydrogen (by volume)

Ammonia

Page 17: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

17

Source: Hacker, Kordesch, Handbook of Fuel Cells Vol 3, S. 121 (2003)

NH3-equilibrium

Source: Hacker, Kordesch, Handbook of Fuel Cells Vol 3, S. 121 (2003)

NH3: catalytic splitting

Page 18: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

18

Source: www.fuelcelltoday.de

NH3: railway application

1. Hydrogen storage

a) gaseous

b) liquid

c) physically bound

d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Page 19: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

19

Source: Wasserstoff, Info-Blatt Messer Griesheim

Hydrogen supply options

Source: Wurster, LBST, Möglichkeiten der Wasserstoffbereitstellung, Hessischer Mobilitätstag (2003)

Hydrogen pipelines

Page 20: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

20

1. Hydrogen storage

a) gaseous

b) liquid

c) physically bound

d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

General aspects

The installation of a hydrogen infrastructure for energetic purposes is

technical feasible

demand-oriented („chicken-egg-problem“)

expensive, but competitive to existing energy systems

an economical and ecological „must do“ for the next decades

Hardware is proved in R&D-projects, and the design and erection phase is

object of studies.

More details:

http://www.h2hamburg.de/downloads/MBA_HH%20H2.pdf

http://www.iea.org/work/2007/hydrogen_economy/modelling_seydel.pdf

Page 21: Hydrogen storage, distribution and infrastructure - … 1 Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous

18.07.2011

21

1. Hydrogen storage

a) gaseous

b) liquid

c) physically bound

d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Summary

The installation of a hydrogen infrastructure for energetic

purposes is oriented on solutions for the chemical industry.

They offer tailored storage and distribution hardware for

each demand.

The installation of a hydrogen infrastructure for energetic

purposes seems to be expensive, but their cost is within the

range of existing energy solutions.

The installation of a hydrogen infrastructure for energetic

purposes will develop within the next decades from local to

regional networks.