Hydrogen storage, distribution and infrastructure - HySafe - R... · Hydrogen storage, distribution...

21
Hydrogen storage, distribution and infrastructure Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau 1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound 2. Hydrogen distribution 3. Hydrogen infrastructure 4. Summary Structure

Transcript of Hydrogen storage, distribution and infrastructure - HySafe - R... · Hydrogen storage, distribution...

Hydrogen storage, distribution and infrastructure

Dr.-Ing. Roland Hamelmann D-23611 Bad Schwartau

1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Hydrogen storage Storage principles Example

Gas - CNG, Pressure vessels

Fluid - Cryo tanks

Physically bound - Metal hydride storage, C-fibre

Chemichally bound - Sodiumborhydride, Ammonia

Criteria

Gravimetric density [kWh/kg] - Weight limited applications

Volumetric density [kWh/m³] - Volume limited applications

Safety - Duty, accident

Efficiency - Energetic effort for in- and output

Application - Mobile/stationary - continous / discontinous - heat coupling

1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Identical with CNG-storage

Large storages (> 106 Nm³ ): Aquifere, Kavernen • England: saline caverns for hydrogen storage (ICI) with 50 bar • France (57-74): Aquifer-storage for für 330 Mio Nm³ town gas (50 % H2)

Small storages: sperical pressure vessels • Low pressure sphere (1,4 MPa, 15.000 Nm³, D=29m) • Cylinder (D = 2,8 m, H = 7,3/10,8/19 m, 1305/2250/4500 Nm³ volume @ 4,5 MPa) • Steel bottles (2-50 dm³): 8,3 Nm³ volume @ 20 MPa, 50 dm³; 11,8 Nm³ volume @ 30 MPa

Stationary storages

Saline caverns

Source: KBB Underground

Saline cavern potential

Source: KBB Underground

Existing caverns

Source: KBB Underground

Cavern spacing

Source: KBB Underground

Capacity

Source: KBB Underground

Cavern building

Source: KBB Underground

Source: Wasserstoff, Info-Blatt Messer Griesheim

Pressure vessels

Hydrogen storage density

Ideal gas: p*V = m*R*T Real gas: p*V = Z*m*R*T

p: pressure V: volume m: mass R: gas constant T: temperature Z: compressibility factor

Example: energy content of a gasholder (V1 = 100 m³, p1 = 250 bar, T1 = 300 K) 1) Standard volume V2 = V1 * p1/p2 * T2/T1 * Z2/Z1

= 100 m³ * 250 * 300/293 * 1/1,142 = 22.414 m³

2) Energy content E = Hi * V = 3,0 kWh/m³ * 22.414 m³ = 67.243 kWh = 67, 2 MWh

3) Electrical equivalent Eel = E * η ≈ 67,2 MWh * 40 % = 26,9 Mwhel

4) Storage density ds = 26,9 Mwhel / 100 m³ = 269 kWhel / m³

Source: Funck, Handbook of Fuel Cells Vol 3, S. 83 (2003)

Similar to pressure tanks for CNG-mobility

Composite tanks are 50-75 % easier than steel (carbon-fibre reinforced aluminium or plastic liner)

Advantages of liner material aluminium plastic

Manufacturing ++ + Permeability ++ + Cyclebility + ++ Cost for liner ++ ++ Cost for fibres + ++ Cost total + ++ Total weight + ++ Safety ++ ++

Mobile pressure vessels

Source: Funck, Handbook of Fuel Cells Vol 3, S. 83 (2003)

Stahl Komposit volume [dm³] 50 50 50 50 pressure [bar] 200 200 400 700 diameter [mm] 220 300 300 300 length [mm] 1.600 1.000 1.000 1.000 weight [kg] 70 25 45 85 stored energy [MJ] 87 87 156 238 stored energy [kWh] 24 24 43 66 stored hydrogen [kg] 0,70 0,70 1,30 2,00 grav. storage density [kWh/kg] 0,35 0,96 0,96 0,78 vol. storage density [kWh/dm³] 0,48 0,48 0,86 1,32

Mobile storage density

Source: Funck, Handbook of Fuel Cells Vol 3, S. 83 (2003)

Similarity to natural gas compression

Specific compression work (isothermal)

wt,isoth. = RH2 * T * Z * ln (p2/p1) mit RH2 = 4,124 kJ/(kg * K) = spec. Gas constant T = temperature [K] Z = (K(p1)+K(p2))/2K(p2) = compressibility factor K(p) = 1+p/150 MPa p1 = start pressure p2 = end pressure

Compressor power

P = wt,isoth. * m/t * 1/h with m/t = flux h = effective efficiency (hydraulical und mechanical losses)

Hydrogen compression

Ex. Hydrogen compression wt,isoth. for compression of 1 Nm³ H2 at 20°C from

a) 1 auf 200 bar: 6.030 kJ/kg 0,149 kWh 5,5 % b) 30 auf 200 bar: 2.179 kJ/kg 0,054 kWh 2,0 %

Eigenenergieverzehr H2-Kompression (h=85%)

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

8,0%

0 100 200 300 400 500 600 700 800Zieldruck [bar]

Eige

nene

rgie

verz

ehr

Startdruck 1 barStartdruck 30 bar

1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Source: Bünger, Wasserstoffspeicherung – Entwicklungsstand und –perspektiven, Vortrag Haus der Technik, Essen (2001)

Cryo storage

Source: www.hyweb.de

similarities to liquid helium handling

temperature at boiling point (20,4 K), pressure 1-10 bar

double wall vessel with vacuum superinsulation (70-100 layers, 25 mm) or perlite-vacuuminsulation

boil-off-rate: vacuum-superinsulation appr. 0,4 %/d vacuum-powderinsulation 1-2 %/d

Tank size: Large: NASA, Cape Canaveral, sphere with 20 m diameter, 3.800 m³ storage volume (270 t LH2), boil-off 0,03 %/d car: volume 120 dm³, passive safety by double wall hull, 100 kg total weight; heat input 2W, standby-time 4 days, boil-off-rate 1%/d

Cryo storage: data

Source: Wolf, Handbook of Fuel Cells Vol 3, S. 95 (2003)

Back-cooling

Application example

Source: www.hyweb.de

Cryogenic process

Worldwide roughly 10 plants in operation (10 … 60 t/d each)

Small liquefiers for research purposes with 200 kg/d

Current effort: 0,9 kWhel. / dm³ LH2 (plus 45 dm³ water)

Future prospects: 0,35 kWhel. / dm³ LH2 with magnetocaloric

process

Liquefaction consumption / energy content (2,36 kWhth. / dm³ LH2) Currently 38,1 % Future 14,8 %

Hydrogen liquefaction

1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Source: Sandrock, Handbook of Fuel Cells Vol 3, S. 101 (2003)

Metal hydrides

Base is reversible storage of hydrogen in metals:

M + ½x H2 ↔ MHx + heat

Van´t Hoffs equation:

ln p = ΔH/RT – ΔS/R (ΔH, ΔS < 0)

hydrogen loading is exothermal

hydrogen deloading is endothermal

Source: Hubert, Otto, Energiewelt Wasserstoff, TÜV Süddeutschland S. 35 (2003)

MH examples

Source: Sandrock, Handbook of Fuel Cells Vol 3, S. 101 (2003)

Activation / hydrogen loading: internal cracking increasing specific surface removing of passivation layers

Gas impurities: lead to a loss of capacity degrade kinetics poison surface

Cycle-stability is influenced by metallugic processes (disintegration)

Safety aspects: toxic, combustible

Costs: metallurgical complex process, high precision needed (200 – 700 €/Nm³ H2) used metals: La, Ti, Zr, Mg, Ca, Fe, Ni, Mn, Co, Al

MH: characteristics

Source: Sandrock, Handbook of Fuel Cells Vol 3, S. 101 (2003)

CH2 MH Dosing 0 0 Heat exchange + - Costs + - Compression - + Safety - + Weight + - Volume - + Cleaning - +

+ Advantagel 0 Equal - Disadvantage

MH vs. CH2

MH: research materials

1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Source: Suda, Handbook of Fuel Cells Vol 3, S. 115 (2003)

Reaction: NaBH4 + 2 H2O → 4 H2 + NaBO2

Masses: 10,84 Gew.-% H2, 51,2 Gew.-% NaBH4

Reaction enthalpy: ΔH = -225 kJ/mol ~ -56 kJ/mol H2

„Hydrogen on Demand“

Pysiologic certain

Sodium borhydride

Source: Hacker, Kordesch, Handbook of Fuel Cells Vol 3, S. 121 (2003)

Reaction: 2 NH3 ↔ N2 + 3 H2

Reaction enthalpy: ΔH = 46 kJ/mol

Common chemical, worldwide logistic chain

With low pressure stored as liquid

Compared to LH2 contains ammonia the 1,7-fold amount of hydrogen (by volume)

Ammonia

Source: Hacker, Kordesch, Handbook of Fuel Cells Vol 3, S. 121 (2003)

NH3-equilibrium

Source: Hacker, Kordesch, Handbook of Fuel Cells Vol 3, S. 121 (2003)

NH3: catalytic splitting

Source: www.fuelcelltoday.de

NH3: railway application

1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Source: Wasserstoff, Info-Blatt Messer Griesheim

Hydrogen supply options

Source: Wurster, LBST, Möglichkeiten der Wasserstoffbereitstellung, Hessischer Mobilitätstag (2003)

Hydrogen pipelines

1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

General aspects

The installation of a hydrogen infrastructure for energetic purposes is technical feasible demand-oriented („chicken-egg-problem“) expensive, but competitive to existing energy systems an economical and ecological „must do“ for the next decades

Hardware is proved in R&D-projects, and the design and erection phase is object of studies. More details:

http://www.h2hamburg.de/downloads/MBA_HH%20H2.pdf http://www.iea.org/work/2007/hydrogen_economy/modelling_seydel.pdf

1. Hydrogen storage a) gaseous b) liquid c) physically bound d) chemically bound

2. Hydrogen distribution

3. Hydrogen infrastructure

4. Summary

Structure

Summary

The installation of a hydrogen infrastructure for energetic purposes is oriented on solutions for the chemical industry. They offer tailored storage and distribution hardware for each demand. The installation of a hydrogen infrastructure for energetic purposes seems to be expensive, but their cost is within the range of existing energy solutions. The installation of a hydrogen infrastructure for energetic purposes will develop within the next decades from local to regional networks.