Hydrogen Energy Reconversion - 2011

download Hydrogen Energy Reconversion - 2011

of 107

Transcript of Hydrogen Energy Reconversion - 2011

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    1/107

    HydrogenEnergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating future

    Hydrogen Reconversion

    Course Renewable Energies 2011/12

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    2/107

    Hyd

    rogenEne

    rgyTechno

    logy

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Hydrogen Reconversion - Content of the lecture

    1. Introduction1.1 The hydrogen energy system overview

    1.2 The meaning of the hydrogen energy system

    1.3 The Laboratory for Integrated Energy Systems - main parts of the system2. Characteristics of hydrogen3. Thermal properties of ideal gases summary4. Combustion of hydrogen

    4.1 Low heating value LHVH2 and high heating value HHVH2 of hydrogen4.2 Energy density of fuels

    4.3 Heating value of gas mixtures4.4 Minimal air consumption Lmin4.5 Air fuel ratio

    4.6 Low heating value of the air fuel mixture LHVAFM4.7 Volumetric change at the reaction4.8 Methane number of gases

    5. Catalytic combustion of hydrogen5.1 Catalytic burners5.2 Use of catalytic burners in boilers

    6. Hydrogen as a fuel for internal combustion engines (ICE)7. Hydrogen as a fuel for gas turbines

    8. Safe use of hydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    3/107

    Hyd

    rogenEne

    rgyTechno

    logy

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.1 Hydrogen Energy System - Overview

    Hydrogen Energy Reconversion

    Hydrogen Storage System

    Renewable

    Energies

    Sun, Wind, Water

    Photovoltaic

    Installation

    Windmill

    Water Power Station

    ElectrolyseurElectricalEnergy

    Hydrogen Reconversion

    Mechanical Energy

    Thermal Energy

    Electrical Energy

    Gas Turbine,Combustion Engine

    Fuel Cell

    Boiler, Cooker,

    Burner

    Power and Heat

    Cogeneraton Plant

    Hydrogen prod.from biomass

    Hydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    4/107

    Hyd

    rogenEne

    rgyTechno

    logy

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.2 Hydrogen Energy System - Meaning

    unlimited production of hydrogen by electrolysis (electrical energy

    only from renewable energies) or biomass

    reduction of emissions : CO2, CO, HC, NOX, SOX

    substitution of fossil sources of energy - fossil sources of energy are

    not unlimited available

    high efficiency is possible (e.g. fuel cell, heat and power co-

    generation plants)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    5/107

    Hyd

    rogenEne

    rgyTechno

    logy

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.2 Hydrogen Energy System - Meaning

    safety of a hydrogen system is comparable with a natural gas system

    hydrogen infrastructure is actual not presento field tests and projects: ARGEMUC (Munich Airport Project),

    CUTE (Clean Urban Transport for Europe), CEP (Clean-Energy-

    Partnership)

    o hydrogen pipeline systems for chemical industry:Linde (Leuna) 80 km, Air Liquide (Ruhr area) 240 km, also in

    Belgium, France, USA, Canda

    island systems for not grid connected areas are in developement(wind-hydrogen, PV-hydrogen)

    hydrogen storage systems for mobile applications are available

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    6/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.2 Hydrogen Energy System - Meaning

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    7/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.2 Hydrogen Energy System - Meaning

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    8/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.3 Laboratory for Integrated Energy Systems

    100 kW windmill

    Ventis 20-100

    10 kWp photovoltaik

    installation

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    9/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.3 Laboratory for Integrated Energy Systems

    Electrolysis station with storage tank for compressed gaseous hydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    10/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.3 Laboratory for Integrated Energy Systems

    20 kW alcaline electrolyser (ELWATEC)

    350 bar compressor (Hofer) for hydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    11/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.3 Laboratory for Integrated Energy Systems

    450 W experimental fuel cell from ZSW 2 kW power supply system with Ballard NEXA fuel cells

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    12/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.3 Laboratory for Integrated Energy Systems

    20 kW catalytic hydrogen burner (FSE) for a heating boiler

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    13/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    1.3 Laboratory for Integrated Energy Systems

    Experimental car with hydrogen engine (31 kW) Cogeneration plant for hydrogen-natural gas

    mixtures (30 kW)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    14/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    2. Characteristics of hydrogen

    38353240kJ/m3heating value of the mixture

    (st.)

    1,7629,53Vol-%stoichiometric mixture in air

    ca. 40ca. 190cm/slaminar burning velocity (st.)

    1 84 - 75Vol-%ignition limits in air

    0,240,02mJmin. ignition energy in air

    petrolhydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    15/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    2. Characteristics of hydrogen

    Flame temperatures of hydrogen-air mixtures

    Source: Winter, Nietsch: Hydrogen as

    an energy carrier, Springer Verlag 1988

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    16/107

    Hyd

    rogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    2. Characteristics of hydrogen

    Source:

    Winter, Nietsch: Hydrogen

    as an energy carrier,

    Springer Verlag 1988

    Ignition limits of

    hydrogen and methane

    and there mixtures

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    17/107

    HydrogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    2. Characteristics of hydrogen

    Source: Winter, Nietsch: Hydrogen as

    an energy carrier, Springer Verlag 1988

    Minimal ignition energy for H2-air and CH4-air mixtures

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    18/107

    HydrogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    2. Characteristics of hydrogen

    Source: Winter, Nietsch: Hydrogen as

    an energy carrier, Springer Verlag 1988

    Laminar burning velocity of hydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    19/107

    HydrogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    2. Characteristics of hydrogen

    Source: Winter, Nietsch: Hydrogen as

    an energy carrier, Springer Verlag 1988

    Laminar flame velocity of different combustible gases

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    20/107

    HydrogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    3. Thermal properties of ideal gases

    standardstandardstandardstandard conditionsconditionsconditionsconditions ofofofof gasesgasesgasesgases

    two standard conditions (Normal Temperature and Pressure) :

    PhysicalPhysicalPhysicalPhysical standard conditions (DIN 1343)

    p = 1,0133 bar T = 0C = 273,15 K

    TechnicalTechnicalTechnicalTechnical standard conditions (DIN 1945)

    p = 0,981 bar T = 20C = 293,15 K

    Other standard conditions are possible e.g.p = 1,013 bar T = 0C = 273,15 K

    Ideal Gas : molar volume Vm = 22,414 m3/kmol

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    21/107

    HydrogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    4.2 Energy density of fuels

    Source : VDI Berichte 1201:

    W.Strobl, E.Heck;

    Wasserstoff und mgliche

    Zwischenschritte

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    22/107

    HydrogenEne

    rgyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    4.2 Energy density of fuels

    state of

    aggregation : gas

    volume : 2 x 60 dm3

    max. pressure : 200 barmax. capacity : 24 m3 NTP

    material : steel wrapped

    with fibres

    (Aramid)

    Storage unit for hydrogen in an experimental car

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    23/107

    HydrogenEne

    rgyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    4.3 Low Heating Value LHV and High Heating

    Value HHV of gas mixtures

    Low Heating Value : used heat from the combustion, if the exhaust

    gases have the the same temperature like the fuel and air, the water

    in the exhaust gas is only vapourHigh Heating Value : used heat from the combustion, if the exhaust

    gases have the the same temperature like the fuel and air, the water

    vapour in the exhaust gas is completely condensed to liquid water

    for gases:

    CO + H2 + CHn + CmHm + H2S + O2 + SO2 + H2O = 1 [m3/m3]

    LHV = 12600 CO + 10790 H2 + 35800 CH4 + 64300 C2H2 + ... [kJ/m3]

    HHV = 12600 CO + 12800 H2 + 39900 CH4 + 70400 C2H2 + ... [kJ/m3

    ]for solid or liquid fuels:

    c + h + s + o + n + w + a = 1 [kg/kg]

    LHV = HHV 2500 kJ/kg * (9 h + w)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    24/107

    HydrogenEne

    rgyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    4.7 Volumetric change at the reaction for

    hydrogen-air-combustion

    internal mixture formation

    external mixture formation

    air-fuel-ratio [-]

    mole

    -ratio[-]

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    25/107

    HydrogenEne

    rgyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5. Catalytic combustion of hydrogen

    Catalytic heater at FH Stralsund

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    26/107

    HydrogenEne

    rgyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5. Catalytic combustion of hydrogen

    Air

    Hydrogen

    Water vapour

    Porous catalyst

    Schematic model of a hydrogen burner

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    27/107

    HydrogenEne

    rgyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.1 Catalytic burners

    length 8 cm, diameter 1,7 cmBurner stick

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    28/107

    HydrogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.1 Catalytic burners

    Porous surface of the burner stick

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    29/107

    HydrogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.1 Catalytic burners

    Characteristics of the catalytic burner for hydrogen:

    Simple and robust design

    Low combustion temperature (max. 800C) low NOX-emissions

    Complete catalytic combustion at temperatures higher then 500C

    No pre-mixing of hydrogen and air no explosive mixture

    Gap of the pores : 10 m (extinguishing distance of H2 : 64 m, no

    backfiering problems)

    Material : mainly Nickel, doped with Platinum

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    30/107

    HydrogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.1 Catalytic burners experimental results

    Surface temperature of a burner stick at low power Source : T. Panten Labor STL/STM

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    31/107

    HydrogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.1 Catalytic burners experimental results

    Source : T. Panten Labor STL/STMTemperature in the surroundings of a burner stick

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    32/107

    HydrogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.1 Catalytic burners experimental results

    Airflow around the (single) burner stick Source : T. Panten Labor STL/STM

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    33/107

    HydrogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.1 Catalytic burners experimental results

    Airflow around the (single) burner stick Source : T. Panten Labor STL/STM

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    34/107

    HydrogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.2 Use of catalytic burners in boilers

    Catalytic burner for hydrogen in operation outside of the combustion chamber

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    35/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.2 Use of catalytic burners in boilers

    Schematic model of the condensing boiler for hydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    36/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.2 Use of catalytic burners in boilers

    Condensing boiler

    Manufacturer : Buderus Heiztechnik GmbH

    Type : SB 305 U-39

    Year of production : 1995Heat power output : 39 kW (using natural gas)

    Catalytic Burner

    Manufacturer : Fraunhofer Institut for Solar Energy Systems

    Heat power output : 21 kW

    H2-quality : > 99,0 %

    H2-consumption : 120 l/min (standard conditions)

    Device inlet pressure : 3 - 5 bar

    Burner inlet pressure : 18 - 20 mbar

    O2-concentration

    in dry exhaust gas : 13 - 15 Vol-%

    Max. temperature : ca. 800C (at the surface of the burner)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    37/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.2 Use of catalytic burners in boilers parts of

    the burner system

    1 - Ignition coil

    2 - Air inlet control3 - Gas valves

    4 - Cables for thermocouples

    5 - Pressure control unit

    6 - Air deficiency switch

    7 - Pressure control unit with safety valve

    8 - Fan (radial)

    9 - Air filter cover

    10 - Automatic starter unit

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    38/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.2 Use of catalytic burners in boilers operating

    behaviour

    Start behaviour of a catalytic hydrogen burner

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    39/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.2 Use of catalytic burners in boilers operating

    behaviour

    Long time measurement on a catalytic hydrogen burner

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    40/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.2 Use of catalytic burners in boilers operating

    behaviour

    Long time measurement on a catalytic hydrogen burner calculation example

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    41/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.2 Use of catalytic burners in boilers safety system

    1. Monitoring the combustion

    Measuring of the temperature in the combustion chamber (3 points)

    Measuring of a sudden temperature changes

    2. Hydrogen sensor in the exhaust gas channel detects unburnt

    hydrogen

    3. Hydrogen sensor over the boiler detects leakages of hydrogen

    4. Solenoid valves closes the hydrogen supply immediatly if a failureappeares

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    42/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    5.2 Use of catalytic burners in boilers (cookers)

    Autarchic cooker with catalytic hydrogen burner

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    43/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion

    engines (ICE)

    Contents:

    Introduction

    External mixture formation for hydrogen operated engines

    Project : Experimental hydrogen car Ford Escort

    Project : External hydrogen mixture formation for diesel engines

    Internal mixture formation for hydrogen

    Project : Internal mixture formation for hydrogen in a combustion

    chamber

    Summary

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    44/107

    Hy

    drogenEnergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    production of hydrogen by electrolysis (electrical energy only from

    renewable energies)

    substitution of fossil sources of energy reduction of emissions : CO2, CO, HC

    spark ignition and self ignition is possible

    external and internal mixture formation ist possible

    high laminar burning velocity wide ignition limits (in air)

    specific mixture formation and combustion for hydrogen

    safety systems are necessary

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    45/107

    Hy

    drogenEn

    ergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    38353240kJ/m3heating value of the mixture (st.)

    1,7629,53Vol-%stoichiometric mixture in air

    ca. 40ca. 190cm/slaminar burning velocity (st.)

    1 84 - 75Vol-%ignition limits in air

    0,240,02mJmin. ignition energy in air

    petrolhydrogenunitcharacteristics of hydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    46/107

    Hy

    drogenEn

    ergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    status up until now is the use of gaseous hydrogen in engines

    liquid hydrogen only for storage - low temperatures cause problems

    with the material of valves, pipes, pumps

    internal mixture formation is in developement (until now only in

    laboratory experiments) spark ignition of hydrogen is without big problems, only water

    deposits on spark plugs during cold start are problematic

    self ignition until now only in laboratory experiments

    external mixture formation is ready for serial production

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    47/107

    Hy

    drogenEn

    ergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Hydrogen operated Otto-engines - state of development -

    intensive research and developement for hydrogen operated Otto-

    engines started in germany in the 1970s

    most important german automobile manufacturers with self-

    developed engines are :

    BMW (750hL, 12-cylinder Otto-engine, VH=5,4 dm3, P=150 kW)

    Daimler-Benz 1985-1988 (MB310 Truck, 4-cylinder Otto-engine,

    VH=2,3 dm3, P=75 kW) MAN (SL202 Bus, 6-cylinder Otto-engine, VH=12 dm

    3, P=140

    kW)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    48/107

    Hy

    drogenEn

    ergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Fig. : BMW 750 hL (Photo : BMW AG) Fig. : 6-cylinder Otto-engine for Hydrogen

    on the testbed (Photo : BMW AG)

    Fig. : MAN-Bus with H2-Otto engine (Photo : MAN AG)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    49/107

    Hy

    drogenEn

    ergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    BMW Hydrogen 7 (12 Cylinder), year 2006

    Displacement: 6 dm3

    Power: 191 kW

    Torque: 390 Nm at 4300 rpm

    Range: 200 km with H2 + 500 km with petrol

    External mixture formation with:

    > 2 at partial load (for Hydrogen)

    = 1 at full load (for Hydrogen)

    Photos : BMW AG

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    50/107

    Hy

    drogenEn

    ergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    External mixture formation for combustion engines

    single point mixture formation multi point mixture formation

    external mixture formation

    single point injection

    naturally aspirated enginenaturally aspirated engine mixture-charged engine air-charged engine

    sequential multipoint injectiongas mixer

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    51/107

    Hy

    drogenEn

    ergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    self-ignition of the mixture during the intake stroke by :

    hot spots in the cylinder head

    hot exhaust gases

    glowing oil particles in the combustion chamber backfiering into the intake pipes during the intake stroke abnormal combustion (knocking problems)

    NOX-emissions

    lower power output by comparison to petrol

    Hydrogen as fuel for Otto-engines - problems of mixture formation -

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    52/107

    Hy

    drogenEn

    ergyTechn

    ology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Measures for the elimination of the problems

    use of lean mixtures (1,8)

    decreasing of the combustion temperatures (prevent

    NOX-emission and self ignition)

    cooling of hot spots in the cylinder head (prevent selfignition)

    increasing of the ignition energy (prevent self ignition and

    abnormal combustion )

    but it decreases the power output

    avoidance of hydrogen accumulation in the intake manifold

    (prevent backfiering)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    53/107

    Hy

    drogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Requirements to the mixture formation unit

    supply to the engine with lean mixtures at 1,8

    sequential multipoint injection for each cylinder only at the

    intake stroke prevention of leakages in the injectors

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    54/107

    Hy

    drogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Fig.:

    cross-section through the

    cylinder head of a BMW bi-

    fuel engine with intake

    manifold (left); gasolineinjection valve (top); hydrogen

    injection valve (bottom)

    Picture: BMW

    External mixture formation for hydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    55/107

    Hy

    drogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Fig.:

    cross-section of the hydrogen

    engine with fuel injection valve

    MAN H2866 UH

    6-cylinde-4-stroke cycle

    12 litres, 140 kW

    Picture: MAN

    External mixture formation for hydrogen

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    56/107

    Hy

    drogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Project : Experimental hydrogen car Ford Escort

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    57/107

    Hy

    drogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Storage unit for hydrogen

    state of

    Aggregation : gas

    volume : 2 x 60 dm3

    max. pressure : 200 bar

    max. capacity : 24 m3 NTP

    material : steel wrapped with

    fibres (Aramid)

    f f

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    58/107

    Hy

    drogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Safety system

    two solenoid valves close the main hydrogen pipe in case :

    - if one of three gas sensors detects hydrogen

    - if a mechanical shock is detected by a special sensor- if voltage is not present

    - if the crankshaft not turns

    6 H d f l f i t l b ti i

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    59/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Gas detection system

    Fig.: sensor for H2 over the driver seat Fig.: sensor for H2 over the storage unit

    6 H d f l f i t l b ti i

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    60/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Hydrogen gas system in the experimental car

    6 Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    61/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Mixture formation unit for the experimental engine at FH Stralsund

    Fig.: mixtur formation unit for hydrogen Fig.: hydrogen injector

    6 Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    62/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Fig.: hydrogen injector Fig.: H2-control valve

    Mixture formation unit for the experimental engine at FH Stralsund

    6 Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    63/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Fig.: H2-experimental engine Fig.: inlet pressure switch

    Mixture formation unit for the experimental engine at FH Stralsund

    6 Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    64/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Experimental engine at FH Stralsund

    Project : Experimental hydrogen car Ford Escort 1996/1997

    Engine

    manufacturer : Ford

    type : 4 cylinder - 4 stroke Otto engine dispacement : 1400 cm3

    compression ratio : 9,5 : 1

    ignition timing : 10 BTDC

    used air / fuel ratio : 1,8 - 3,0

    max. power : 18 kW (n = 3900 min-1);

    (previously 55 kW with petrol)

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    65/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Project : Experimental hydrogen car Ford Escort 2001/2002/2003

    - new free progammable engine control unit MOTEC M4

    - adaptation of new and additional sensors : engine temperatur, intakeair temperatur, camshaft position

    - adaption of wide band lambda sensor Bosch LSM 11

    - engine fine tuning (dynamometer Bosch FLA 206)

    - emission-analysis (Horiba EXSA 1500)

    - combustion pressure indication and work process of the engine

    Experimental engine at FH Stralsund

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    66/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

    Project : Experimental hydrogen car Ford Escort 2001/2002/2003

    Results after optimization

    max. power : 31 kW (n = 5000 min-1);

    (previously 55 kW with petrol)

    efficiencye : max. 0,39

    ignition timing : 0 - 18 BTDC

    used air / fuel ratio : 1,8 - 2,0

    Experimental engine at FH Stralsund

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    67/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    y g g

    (ICE)

    Engine Control Unit

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    68/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    y g g

    (ICE)

    Sensors for combustion pressure indication and work process of the

    engine

    Fig.: crank angle sensor

    Fig.:cylinder pressure sensor CPS with spark plug adaptor and

    thermocouples TC for intake air and exhaust gas temperature

    TC

    TC

    CPS

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    69/107

    HydrogenEn

    ergyTechnology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    y g g

    (ICE)

    Pressure cycle in cylinder

    pZ(VZ) at different ignition timings, n=2000 min-1, TP=40%, =1,8 (ZZP=IT) (TP=throttle position)

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    70/107

    HydrogenEn

    ergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Knocking problems

    pZ(VZ) at different ignition timings, n=2000 min-1, TP=40%, =1,8 (ZZP=IT) (TP=throttle position)

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    71/107

    HydrogenEn

    ergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Knocking problems

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    72/107

    HydrogenEn

    ergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)Efficiency and Torque

    Md(IT), e(IT) at different ignition timings, n=2000 min-1, TP=40%, =1,8, (ZZP=IT) (TP=throttle position)

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    73/107

    HydrogenEn

    ergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Temperature and NOX-Emissions

    Tproc(), Tex(), NOX() at different air-fuel-ratios, n=2000 min-1,Md=30 Nm, IT=5 BTDC

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    74/107

    HydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Torque Throttle Position

    Torque Md at different engine speed and throttle position (DK=TP=throttle position)

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    75/107

    HydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Efficiency

    Efficiencye at different engine speed and throttle position (DK=TP=throttle position)

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    76/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Power Air Fuel Ratio at WOT

    Tproc(), Tex(), NOX() at different air-fuel-ratios, n=2000 min-1,Md=30 Nm, IT=5 BTDC, WOT=Wide Open Throttle

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    77/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Black: Efficiencye at different engine speed and load (DK=TP=throttle position - load)

    Red: Efficiencye at different engine speed and load equivalent (DK* - load equivalent)

    Efficiency

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    78/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Project : External hydrogen mixture formation for diesel engines

    Fischer-Panda AGT 30.000 PMS

    Engine: YANMAR 4JH3E

    Displacement: 1995 cm

    Rated power: 35 kW (at 3000 min-1)

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    79/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Mixture formation unit

    Air

    H2+Air

    Exhaust gas

    1 gas valve

    2 safety valve

    3 pressure regulator

    4 max. pressure control switch

    5 safety valve

    6 min. pressure control switch

    7 mass flow controller

    8 air filter

    9 hydrogen sensor

    10 mixing chamber

    11 pressure control switch backfiering

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    80/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Efficiency

    Efficiency for Diesel- and Dual-Fuel-Operation depending on diesel fuel mass flow

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    81/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    NOX-Emissions

    NOX-emissions for Diesel- and Dual-Fuel-Operation depending on power output

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    82/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Internal mixture formation for combustion engines

    naturally aspirated engine charged engine

    internal mixture formation

    unit injection system

    exhaust turbocharger

    high pressure injection

    mechanical charger

    injection pumpcommon-rail

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    83/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Project : Internal mixture formation for hydrogen in a combustion chamber

    main responsible persons:

    Prof. Dr.-Ing. W. Beckmann

    Dipl.-Ing. J. Brcker

    carried out from 1996 - 2001 at FH Stralsund

    engineering and design of a high pressure hydrogen injector

    numerical simulation of the injection

    testing the injector in a combustion chamber with constant volume

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    84/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Testbed: constant volume combustion chamber

    A Data acquisition systemMUSYCS

    B Servo amplifier

    C Exhaust gas analyzer

    D Needle lift sensor

    E Servo valve

    F Hydraulic system

    G Injection valve

    H Combustion chamber

    J Hydrogen system

    K Air system and nitrogen purgesystem

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    85/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)Testbed : combustion chamber with constant volume for internal

    mixture formation

    Research

    project at FHStralsund:

    Prof. Dr.-Ing. W.

    Beckmann,

    Dipl.-Ing. J.

    Brcker

    6. Hydrogen as a fuel for internal combustion engines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    86/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)Combustion chamber with constant volume for internal mixture formation

    LHVH2,H2(L),pH2(L),TH2(L)

    pu,Tu

    SN

    V = const. cond. 1

    pAir(Bk)T

    Air(Bk)Air(Bk)mAir(Bk)

    cond. 2

    p(Bk)=f(t)

    T(Bk)

    =f(t)

    m(Bk)=f(t)

    mEx-gas(Bk)

    Indices :

    (u) - ambient conditions

    (L) - conditions in the gas pipe

    (Bk) - cond. in the comb. chamber

    conditions 1 = intake air conditions

    conditions 2 = process conditions

    Research

    project at FHStralsund:

    Prof. Dr.-Ing. W.

    Beckmann,

    Dipl.-Ing. J.

    Brcker

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    87/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Behaviour of the high pressure injector

    Research

    project at FHStralsund:

    Prof. Dr.-Ing. W.

    Beckmann,

    Dipl.-Ing. J.

    Brcker

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    88/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestalten

    understanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    (ICE)

    Research

    project at FHStralsund:

    Prof. Dr.-Ing. W.

    Beckmann,

    Dipl.-Ing. J.

    Brcker

    Combustion process in the constant volume combustion chamber

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    89/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Research

    project at FHStralsund:

    Prof. Dr.-Ing. W.

    Beckmann,

    Dipl.-Ing. J.

    Brcker

    Influence of the air-fuel-ratio on the combustion pressure profil

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    90/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Research

    project at FHStralsund:

    Prof. Dr.-Ing. W.

    Beckmann,

    Dipl.-Ing. J.

    Brcker

    Influence of the ignition timing on the combustion pressure profil

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    91/107

    H

    ydrogenEnergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Summary

    internal combustion engines for hydrogen from some manufacturers

    are ready for serial production

    state of development is the engine with external mixture formation and

    spark ignition

    lower power output compared to petrol engines is the disadvantage

    further developments with internal mixture formation andsupercharged engines for more power output are possible

    improved hydrogen storage systems are necessary

    to build up a hydrogen infrastructure is necessary

    fuel cells with a higher efficiency then combustion engines can be a

    alternative for the future

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    92/107

    H

    ydrogenE

    nergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Emissions of a hydrogen engine

    Engine: MAN H 2866 UH

    Picture: MAN

    6. Hydrogen as a fuel for internal combustion engines

    (ICE)

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    93/107

    H

    ydrogenE

    nergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    NOX-emissions of different hydrogen engine types

    Picture: Hydrogen as an

    energy carrier

    Winter, Nitsch; 1988

    7. Hydrogen as a fuel for gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    94/107

    H

    ydrogenE

    nergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    German Russian cooperation project Cryoplane Source: EADS

    Hydrogen for aircraft engines (gas turbines)

    7. Hydrogen as a fuel for gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    95/107

    H

    ydrogenE

    nergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    German Russian cooperation project Cryoplane participants :

    Tupolev Moscow MAN

    Kusnetsov Samara Max-Planck-Institut

    Daimler Chrysler Messer Griesheim

    Allied Signal Aerospace Uhde

    Linde Lufthansa

    Airport Munich Drger

    BAM Fachhochschule Aachen

    Hydrogen for aircraft engines (gas turbines)

    7. Hydrogen as a fuel for gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    96/107

    H

    ydrogenE

    nergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Overview :

    German Russian cooperation project Cryoplane started 1990

    Target : use of cryogenic fuels (LNG, LH2) for aircraft engines

    1990 1992 analysis of feasibility

    Developement of components for the fuel system and for the aircraft

    engines

    Main part developemet of low-pollutant combustion chambers for

    hydrogen

    Latest activities :

    Tests with special developed combustion chambers for hydrogen

    Operation of gas turbine with hydrogen on a testbed

    Planning of a hydrogen operated airplane

    Hydrogen for aircraft engines (gas turbines)

    7. Hydrogen as a fuel for gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    97/107

    H

    ydrogenE

    nergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Hydrogen for aircraft engines (gas turbines)

    Air-H2-mixing chamber for

    gas turbine GTCP 36-300

    Source: Fachhochschule

    Aachen

    7. Hydrogen as a fuel for gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    98/107

    H

    ydrogenE

    nergyTech

    nology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Hydrogen for aircraft engines (gas turbines)

    NOX-emissions depending

    on load

    Source: Fachhochschule

    Aachen

    7. Hydrogen as a fuel for gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    99/107

    H

    ydrogenE

    nergyTechnology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Hydrogen for aircraft engines (gas turbines)

    Hydrogen injection nozzles

    in the combustion chamber

    NK 88

    Source: H2-Cryoplane,

    Airbus

    7. Hydrogen as a fuel for gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    100/107

    H

    ydrogenE

    nergyTechnology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Hydrogen for aircraft engines (gas turbines)

    Gas turbine P&W 4000

    series

    Source: H2-Cryoplane,

    Airbus

    7. Hydrogen as a fuel for gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    101/107

    H

    ydrogenE

    nergyTechnology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Hydrogen for aircraft engines (gas turbines)

    NOX-Emissions of gasturbines

    Source: H2-Cryoplane,

    Airbus

    7. Hydrogen as a fuel for gas turbines

    f i f i ( i )

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    102/107

    H

    ydrogenE

    nergyTechnology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Hydrogen for aircraft engines (gas turbines)

    Advantage of liquid hydrogen as fuel for airplanes :

    Storage of 3 times more fuel is possible or

    Increasing 3 times the payload

    7. Hydrogen as a fuel for (stationary) gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    103/107

    H

    ydrogenE

    nergyTechnology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Source: Norm Shilling,

    Robert M. Jones

    Process Power Plants

    GE Power Systems

    7. Hydrogen as a fuel for (stationary) gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    104/107

    H

    ydrogenE

    nergyTechnology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Source: Norm Shilling,

    Robert M. Jones

    Process Power Plants

    GE Power Systems

    7. Hydrogen as a fuel for (stationary) gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    105/107

    H

    ydrogenE

    nergyTechnology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Source: Michel Moliere

    GE Energy

    7. Hydrogen as a fuel for (stationary) gas turbines

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    106/107

    H

    ydrogenE

    nergyTechnology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating futureDipl.-Ing. (FH) Christian Sponholz

    Source: Michel Moliere

    GE Energy

    1. Are flammable substances existing ?

    Yes

    No

    2. Is an explosive mixture by dissemination in air possible ? No

    No protection against explosion necessary !

    No protection against explosion necessary !

    8. Safe use of hydrogen - protection against explosion

  • 7/25/2019 Hydrogen Energy Reconversion - 2011

    107/107

    HydrogenEnergyTechnology

    praxis verstehen chancen erkennen zukunft gestaltenunderstanding reality facing challenges creating future

    p y p

    Yes

    3. Analysis of quantities and sources of explosive atmosphere necessary !

    4. Is a dangerous explosive atmosphere possible ?

    Yes

    No No protection against explosion necessary !

    p g p y

    5. Protection against explosion necessary !

    6. Restrict the formation of an explosive atmosphere as far as possible !

    7. Is the formation of an dangerous explosive atmosphere restricted ?

    No

    Yes No further protection against explosion necessary !

    8. Further protection against explosion necessary !

    A dangerous explosive atmosphere is existing by gases and vapours:

    permanent, long-term : Zone 0 at times : Zone 1 rarely, short-term : Zone 2

    9. Prevention of ignition sources :

    at failure-free operation

    at often failures

    at rarely failures

    at failure-free operation

    at often failures

    at failure-free operation

    10. Precautions by design, which limits the effects of an explosion to a safe degree.