Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

24
JOURNAL OF COMPUTATIONAL PHYSICS 143, 495–518 (1998) ARTICLE NO. CP975810 1 Hong-Kai Zhao, 2 Barry Merriman, Stanley Osher, and Lihe Wang Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555 Received October 18, 1996; revised July 10, 1997 We reproduce the general behavior of complicated bubble and droplet motions using the variational level set formulation introduced by the authors earlier. Our approach here ignores inertial effects; thus the motion is only correct as an approxi- mation for very viscous problems. However, the steady states are true equilibrium solutions. Inertial forces will be added in future work. The problems include: soap bubbles colliding and merging, drops falling or remaining attached to a (generally irregular) ceiling, and liquid penetrating through a funnel in both two and three di- mensions. Each phase is identified with a particular “level set” function. The zero level set of this function is that particular phase boundary. The level set functions all evolve in time through a constrained gradient descent procedure so as to minimize an energy functional. The functions are coupled through physical constraints and through the requirements that different phases do not overlap and vacuum regions do not develop. Both boundary conditions and inequality constraints are cast in terms of (either local or global) equality constraints. The gradient projection method leads to a system of perturbed (by curvature, if surface tension is involved) Hamilton– Jacobi equations coupled through a constraint. The coupling is enforced using the Lagrange multiplier associated with this constraint. The numerical implementation requires much of the modern level set technology; in particular, we achieve a signifi- cant speed up by using the fast localization algorithm of H.-K. Zhao, M. Kang, B. Merriman, D. Peng, and S. Osher. c 1998 Academic Press 1. INTRODUCTION In this article we shall develop a class of algorithms to capture the behavior of multiphase bubbles and drops in two and three space dimensions. We include some very interesting and recently analyzed steady state cases—e.g. [8], where “double bubbles minimize.” This general class of problems has recently received a lot of attention [19]. 1 Research supported by ARPA/ONR N00014-92-J-1890, NSF DMS94-04942, and ARO DAAH04-95-1-0155 2 H. K. Zhao is currently at: Mathematics Department, Stanford University, Stanford, CA 94305-2125. 495 0021-9991/98 $25.00 Copyright c 1998 by Academic Press All rights of reproduction in any form reserved.

Transcript of Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

Page 1: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

JOURNAL�

OF COMPUTATIONAL PHYSICS143, 495–518�

(1998)ARTICLE�

NO. CP975810

1

Hong-Kai�

Zhao,2�

Barry�

Merriman,Stanley Osher, andLihe Wang

Departmentof Mathematics,University of California, LosAngeles,LosAngeles,California 90095-1555

Received October18,1996;revisedJuly10,1997

We reproducethe generalbehavior of complicatedbubbleanddropletmotionsusing the variational level set formulation introducedby the authorsearlier. Ourapproachhereignoresinertialeffects;thusthemotionis only correctasanapproxi-mationfor very viscousproblems.However, the steadystatesaretrue equilibriumsolutions.Inertial forceswill beaddedin futurework. Theproblemsinclude:soapbubblescolliding andmerging, dropsfalling or remainingattachedto a (generallyirregular)ceiling,andliquid penetratingthrougha funnel in bothtwo andthreedi-mensions.Eachphaseis identifiedwith a particular“level set” function.The zerolevel setof this functionis thatparticularphaseboundary. Thelevel setfunctionsallevolve in time througha constrainedgradientdescentproceduresoasto minimizean energy functional.The functionsarecoupledthroughphysicalconstraintsandthroughtherequirementsthatdifferentphasesdonotoverlapandvacuumregionsdonot develop.Both boundaryconditionsandinequalityconstraintsarecastin termsof (eitherlocalor global)equalityconstraints.Thegradientprojectionmethodleadsto a systemof perturbed(by curvature,if surfacetensionis involved) Hamilton–Jacobiequationscoupledthrougha constraint.The couplingis enforcedusingtheLagrangemultiplier associatedwith this constraint.Thenumericalimplementationrequiresmuchof themodernlevel settechnology;in particular, weachieveasignifi-cant speedup by using the fast localizationalgorithm of H.-K. Zhao,M. Kang,B. Merriman,D. Peng,andS.Osher. c�� 1998AcademicPress

1. INTRODUCTION

In thisarticleweshalldevelopaclassof algorithmstocapturethebehavior of multiphaseb�ubblesanddropsin two andthreespacedimensions.We includesomevery interesting

and recentlyanalyzedsteadystatecases—e.g.[8], where“doublebubblesminimize.” Thisgeneral classof problemshasrecentlyreceived a lot of attention[19].

1 Research�

supportedby ARPA/ONRN00014-92-J-1890,NSFDMS94-04942,andARO DAAH04-95-1-01552 H. K. Zhaois currentlyat:MathematicsDepartment,StanfordUniversity, Stanford,CA 94305-2125.

495�

0021-9991/98�

$25.00Cop

yright c�� 1998by AcademicPressAll rightsof reproductionin any form reserved.

Page 2: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

496 ZHAO ET AL.

W�

e shall use the level set method,first developedin [15], which hasbeensuccess-fully appliedto a varietyof problems,in orderto capturetheevolution of complex inter-f�acesin fluid dynamicsand elsewhere (see,e.g., [13, 14] and the referencestherein).

Topological changesand the developmentof singularitiesposeno difficulties for thismethod.�

As�

initially designedin [15], thelevel-setmethodappliednaturallyto problemsin whichthere�

isacleardistinctionbetween“inside” and“outside”of a(possiblymultiply connected)re� gion. Two phaseflow problemscouplingthemotion to the full Navier–Stokesof Eulerequations� [2, 21] or to heatrelease[3], aswell asunstablevortex sheetmotion[5] andotherunstable� fronts[6], wererecentlysolvedusingthismethod,extendingits utility beyondthegeometry-dri ven motion of the original paper[15]. For two-phaseimmiscibleproblems,the�

zerolevel setof asinglefunctionevolvesastheinterface(perhapsinducingtopologicalchanges).�

In�

the general(at leastthreephase)multiphasecasea new methodologyis needed.In[12], Merriman,Bence,andOsherfirstextendedthelevel setmethodtocomputethemotionof� multiphasejunctions.Also in thatpaper, andin [10, 11] a simplemethodbasedon thedif�

fusionof characteristicfunctionsfollowedbyasimplereassignmentstep,wasshowntobeappropriate for themotionof multiplejunctionscorrespondingtopuremeancurvatureflow.Moregeneralmotioninvolving ratherarbitraryfunctionsof curvature,perhapsdifferentforeach� interfacewas developedin [12] aswell. While themethodin [12] was not restrictedto�

gradientflows, it lacks(sofar)acleartheoreticalbasis.In�

[18] anotherapproachwassuggestedin whichaninfluencematrixbetweeneachpairof� phaseshasto bebuilt a priori. In realproblemsthismatrixcanbeverycomplicatedandmay� not be determinedbeforehand.The normalvelocity may dependon local quantitiessuch� ascurvature,normaldirection,aswell asglobal quantitiesandconstraintssuchasincompressibility�

, vortex sheetstrength,etc.Moreover, themethodin [18] requiresn� � n� 1!level setfunctions.

Our"

methodis basedon thevariationallevel setapproachdevelopedin [22]. As in [12],we# needn� level setfunctions—asmany as therearephases.We associatethesystemwitha physicallymeaningfulenergy functional.A gradientflow is defined;this determinesthenormalvelocityat theinterface.Then� level setfunctionsarecoupledthroughlocaland/orglobal constraints(usuallyboth). This formulationgives us the ability to associateeachphase$ with its differentphysicalproperties,e.g.,surfacetension,density, bulk energy, etc.Also,boundaryconditionsandinequalityconstraintscanbeturnedintoequalityconstraintswhich# we incorporateeasilyinto thealgorithm.

W�

e usethis formulationherein orderto modelseveral interestingmultiphasephenom-ena� in both two andthreedimensions.Theseinclude:several soapbubblescolliding andmerging, dropsfalling from a ceiling andpinchingoff, dropssitting on a table,andfluidflo%

wingthroughanarrow funnel.Ournumericalresultsvalidatecertainexpecteddifferencesbetween�

two andthreedimensions[19].W�

enotethatthemotionis thatinducedby usinggradientdescentonthepotentialenergy;inertial forcesarenot included.Nevertheless,steadystatescomputedthis way involvingcomplicated� multiphaseconfigurationsarecorrect,asis the motion for unsteadyviscousdominated�

flows. Inertial forceswill be includedthrougha level set basedHamilton’sprinciple$ formulationin our futurework; seealso[9].

W�

e alsonotethat Chopp[4], in relatedwork, hasconstructedminimal surfacesin R3&

attached to given curvesby evolving via level setsandmeancurvatureflow. Heenforcesthe

Page 3: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 497

boundary�

conditionsby repeatedlyreattachingthesurfaceto theboundary. Thismethodisdif�

ferentfrom ourpresentapproachwhichusesconstrainedoptimization.

2. PRELIMINARIES: REVIEW OF THE VARIATIONAL LEVEL

SET'

FORMULATION

In�

thisapproachweexpressthepotentialenergy of thesystemhaving n� phases$ in termsof� then� level setfunctions.

Let( )

i * x+ , be�

the level set associatedwith the phasewhich occupiesregion - i . Herex+ .0/ x+ 1 1 x+ 2 2 or� x+ 354 x+ 1 6 x+ 2 7 x+ 3

8 9;:=<i mightbemultiply connected,and>@? i ACB x+ DFE i G x+ H@I 0

J K.

Examplesof quantitieswhichmakeup theenergyassociatedwith thisphaseare:thebulkener� gy,

LNM i OB P QSR x+ T H UWV i X x+ YZY d

[x+ \ (2.1a)

]

where# ^`_ 0J

isadensityfunctionandHa b

x+ c for�

x+ d Re 1 is�

theHeavisidefunction;thegravi-tational�

potentialenergy,

fNg i hGi jlk gm n x+ oSp x+ q Ha rWs i t x+ uZu d

[x+ v (2.1b)

]

where# gm is themagnitudeanddirectionof thegravitationalforce;thesurfaceenergy,

wyx i z{}| ~��W� i � x+ �Z�F� ��� i � x+ �;� � i � x+ � d[

x+ � (2.1c)]

where# ��� x+ �@�5� d[ � dx[ �

Ha �

x+ � is�

theDiracdeltafunction,and� i the�

interfacialsurfacetension.As mentionedabove, thephasesevolve so as to satisfycertainconstraints.Thecentral

constraint� for level set basedmultiphasemotion is that the phasesdo not overlap,andv� acuumregionsdonotdevelop.Thiscanbeexpressedas

n�i � 1

Ha �W�

i � x+   t¡ ¢Z¢¤£ 1 ¥ 0J ¦

x+ § (2.2)]

This¨

is an uncountablyinfinite setof pointwiseconstraintsandis, thus,impracticaltoenforce.� Insteadwe try to replace(2.2)by asingleconstraint:

1

2

n�i © 1

Ha ª¬«

i ­ x+ ® t¡ ¯°¯¤± 1²2

d[

x+ ³ 0J ´

(2.3)]

This¨

was shown in [22] to result in a degenerateconstraint;i.e. the gradientof theconstraint� functionalvanisheson theconstraintset.This makesit unsuitablefor usewithLagrange(

multipliers.Instead,we requirethat

1

n�i ¶ 1

H ·W ¸ i ¹ x+ º t¡ »Z»½¼ 1

2�

d[

x+ ¾À¿ (2.4)]

Page 4: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

498 ZHAO ET AL.

for� ÁÃÂ

0J

assmallaswecanmanagenumerically. In thetriplepointmotionof [22] wefoundÄ corresponded� to thearea(or volume)of onegrid cell. In this paperÅ corresponds� to, atmost,� thearea(or volume)of a few grid cells.

In thecaseof incompressiblefluids,thearea(volume)of eachbubbleordropisconserved.This¨

amountsto requiring

ÆÈÇ É x+ Ê H ËWÌ i Í x+ ΰΠd[

x+ Ï C Ð (2.5)]

(Throughout]

this paper, Ñ will# denoteany small positive constantandC will# denoteanyOÒ Ó

1Ô positi$ veconstant.)The¨

variationallevel setformulationof any of our multiphaseproblems,is thusof theform:

MinimizeÕ

ÖØ×fÙ ÚWÛ

1 Ü x+ Ý;Þàß 2 á x+ âFãåäæäæäæãàç n� è x+ éZé d[

x+ (2.6a)]

subject� to theconstraints

gê i ë¬ì 1 í x+ î;ïàð 2 ñ x+ ò;óõôæôæôæó=ö n� ÷ x+ øZø d[

x+ ù Ci ú iû ü

1 ýõþæþæþæý mÿ � (2.7a)]

Using�

the gradientprojectionmethodof Rosen[17], we obtain the coupledsystemofe� volutionequations,

���i�

t¡ ���

f��

i

� n�j �

1

�j � gê j

���i� iû �

1 ��������� n� � (2.8)]

where# each� j is�

aLagrangemultiplier.Theconstraintssatisfy

d[dt[ � gê j

���1 "! 2

� #%$�$�$�#"&n� ' d[

x+ ( 0J )

j* +

1 ,%-�-�-�, mÿ . (2.9)]

which# determinestheLagrangemultipliersassolutionsof thelinearsystem

m/k0 1

1

2k0 354�687 gê j

9;:=< gê k0 > d[

x+ ?A@ B�C8D gê j E;F8G f

Ù Hd[

x+ I (2.10)]

j* J

1 K�L�L�L�K mÿ M for NPO�Q�R 1 S%T�T�T�S;U m/ V�W (2.11)]

It�

is easyto seethat (a) this systemof equationsdefinedin (2.11) is nonsingularif(] X8Y

gê 1 Z%[�[�[�Z"\8] gê m/ )^

arelinearly independent,and(b) theenergy functionalis nonincreasingin�

that caseand, furthermore,is strictly decreasingif (_8` gê 1 a%b�b�b�a"c8d gê m/ e;f=g fÙ

)^

are alsolinearlyh

independent.Thissystemof evolutionequationsoftencontainsHamilton–Jacobiequationscoupledto

curv� atureandstiff sourceterms.Singularitiesmaydevelopin thesolution.Thenumericalimplementationrequiresmuchof themodernlevel settechnology. See[22] andSection4belo�

w for details.Thecrucialingredientsare:

Page 5: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 499

(i)]

High orderaccurateessentiallynonoscillatoryschemes(originatingin thestudyofhyperbolicconservationlaws[7, 20]) developedfor Hamilton–Jacobiequationsin [15,16].

(ii)]

Reinitializationof eachof the level set functionsto be the signeddistanceto theappropriate interface.This can be easily done by interspersinga few iterationsof thefollowing nonlinearpartialdifferentialevolutionequation,

id[

i jlknm sign� oqpi r�sut v d

[i wyx 1z|{ 0

J }iû ~

1 ��������� mÿ � (2.12)]

with# theevolutionprocedureandthenreplacing� i by�

d[

i . This ideaoriginatedin [21].(iii)]

Usingthedistancefunctionto definecurvatureon or nearthefront in thedefiningEqs.(2.11)for theLagrangemultipliersvia

�i � trace[[

�I � d D

[ 2d[

]� � 1D2d

[]� �

(2.13)]

where# D� 2d[

is�

theHessianof d[

i .

This formulayieldsa constantvalueof � i normalto thefront and,of course,is correcton� thefront.

To speedup thelevel setmethods,particularlyin threedimensions,we have developeda robust localizationtechniquewhich only requirescomputationin a very narrow tube(atmosttwo grid pointswide) nearthefront [23]. An earlierapproachwas developedin [1].Ours"

workseasilyfor multiphaseproblemsin two andthreedimensionsandin thepresenceof� topologicalchanges.The computationalcostis linearly proportionalto the numberofpoints$ on thefront, which is optimal.This methodessentiallyconsistsof moving thetubewith# themotionof thefront andreinitializing the level setfunctiononly in thetube.(SeeFig.�

1). Everythingis donein termsof thevaluesof d[

i for� �

d[

i ����� ,� where� is� �

2µ �

x+ . No“exploring” in x+ space� is required.We useanupwindschemein the reinitializationstep,thus�

avoidingany needfor numericalboundaryconditionsat theboundaryof thetube.Tosummarize:Thevariationallevel setformulationusingthegradientprojectionmethod

is applicableto awidevarietyof complicatedproblemsof bothphysicalandmathematicalinterest.�

Its virtuesare:

(a)]

Themethodis quitestablesincetheassociatedenergy diminishesin time.(b)]

Thelevel setmethoddealswith topologicalchanges,kinks,cusps,andthecomputa-tion�

of geometricpropertiesof thefront, suchascurvatureandunit normal,very naturallyin�

bothtwo andthreedimensions.

FIG. 1. Local level setmethod.

Page 6: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

500�

ZHAO ET AL.

(c)]

Constraints(includingboundaryconditions)areeasilyincorporated.(d)]

Recentlydevelopedaccurateandnonoscillatorynumericalmethodsarenow availablefor�

solvingtheresultingequationsof motion.(e)]

The fast localizationtechnique[23] speedsup the calculationsand makes three-dimensional�

problemsaccessibleonworkstations.

3.�

VARIATIONAL FORMULATIONS FOR MULTIPHASE FLUID PROBLEMS

3.1.�

Soap�

Bubbles

Suppose�

we have � n� � 1� nonoverlappingbubblesB1 � B2 �%������� Bn�   1 in the region ¡ .Each¢

i is�

associatedwith a function ¤ i ¥ x+ ¦ with# §i ¨ x+ ©«ª 0 i

Jf x+ ¬ B

£i ­;® i ¯ x+ °«± 0 i

Jf x+ ² ³µ´ B£ i ¶·

Bi ¸�¹;º i » x+ ¼�½ 0 iJ

f x+ ¾À¿ Bi . WedefineÁ 0�  x+ à to

�bethelevel setfunctionassociatedwith the

re� gionexterior to all bubbles:

ÄÆÅ n� Ç 1

i È 1

ÉBi ÊÌË Bi ÍÏÎ

i.e.,� Ð

0� Ñ x+ ÒÔÓ 0

Jfor x+ in

�theinteriorof thatregion, Õ 0

� Ö x+ ×«Ø 0J

for x+ in�

any oneof thebubbles,Ù0� Ú x+ Û�Ü 0

Jfor x+ on� theboundaryof any oneof thebubbles.

W�

efirst ignoregravity andconsideronlytheenergyduetosurfacetension.Weassumethateach� bubbleconservesits area(volume).Togetherwith ourgeneralmultiphaserequirement(2.3)]

or (2.4), we have the following variationallevel setformulation(which is identicalwith# thatusedin ourwork onoptimaldomaindecomposition[24]):

MinimizeÕ

thesurfaceenergy

ÝßÞ n� à 1

i á 0�â|ã i äåçæ n� è 1

i é 0� ê

i ëíì�î i ï x+ ðlð�ñ òôó i õ x+ ö�÷ d[ x+ ø (3.1)]

subject� to nonoverlapandconservationof volumeconstraints,

1

2 ùn� ú 1

i û 0� H ü�ý i þ x+ ÿlÿ�� 1

2

d[

x+ ����� (3.2a)]

H��

i x+ ��� dx[

Ai � iû �

1 � 2 ��������� n� � 1 � (3.2b)]

In this formulation,at theinterface� i j between�

phaseiû

and j*,� thetotal surfacetension

is� �

i ��� j . Differentsetsof ��� i � n� � 1

i 0� gi ve differentphysicalproblems.If, for example,we

tak�

e all ! i " 0J

for iû #

1 $�%�%�%�$ n� & 1 and ' 0� ( 1, thenall the bubbleswhich touchinitially

will# merge into onebig circle (sphere)andthe steadystatewill be a family of circlesorspheres.� This is a problemfor which thesurfacetensionbetweenany two bubblesis zeroand thatbetweenany bubbleandtheair is 1.

Another�

approachto this special,interestingproblemwas taken in [9] usingonly onelevel set, thus requiring somedecisionsat merging. However, that paperalso includedinertial�

forcessothat thedynamicswas time accurate,causingbubblesto vibrate,astheyshould.� Weshallhandlethissituationin thefuturethroughalevel setversionof Hamilton’sv� ariationalprinciple.

Page 7: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 501�

Another�

interestingcaseoccurswhen ) 0� *,+

1 -,. 2� / 0

J 05�

for two bubbleswhich initiallytouch.�

Thentheinterfacebetweenthetwo bubblesandtheinterfacebetweeneachbubbleand theair hassurfacetensionone.In the three-dimensionalversionof two bubbleswiththe�

samevolume,a long standingconjecturewas proven in [8], i.e. that two sphereswitha disc asthe commoninterfacearethe global minimizer. This solutionis realizedin ourcalculations,� asseenin Figs.7 and9.

W�

eusetheprojection-gradientmethod,rescale(asin [22]),andarriveatthetimeevolutionequations�132

i4t¡ 5 x+ 6 t

¡ 798;: <>=i ? x+ @ t¡ ACB DFEHG i

IKJi L x+ M t¡ NO PKQi R x+ S t¡ TCU VXW i Y[Z

n� \ 1

j ]

0� Ha ^_

j ` x+ a t¡ b�b�c 1 d (3.3a

])

iû e

0J f

1 g�h�h�hig n� j 1 kml 0� n 0,

Jwith boundaryconditions

oqpir

n� s x+ tvu 0 oJ

n wyx (3.3b]

)

TheLagrangemultipliersarez i { iû | 1 }�~�~�~�} n� � 1,correspondingto (3.2b),and� corres-�ponding$ to (3.2a).They aredeterminedfrom (2.11),properlyscaled,by thelinearsystem

[mÿ i j ]�n� � n� �

��

1����n� � 1

�b�

1

b�

2����

b�

n�� (3.3c

])

where#

mÿ 11 �n� � 1

i � 0� �

����i � x+ � t¡ ���i� �>� i ��� x+ � t¡ ���i�

n�   1

j ¡

0� H ¢£ j

¤�¤ x+ ¥ t¡ ¦�¦�¦�§ 1

2�

d[

x+ (3.3d]

)

mÿ i i ¨ ©Kª�«­¬ i ® 1 ¯ x+ ° t¡ ±�±i² ³>´ i µ 1 ¶ x+ · t¡ ¸C¹ d[ x+ º iû »

2µ ¼�½�½�½�¼

n� ¾ (3.3e]

)

mÿ i 1 ¿ mÿ 1i À ÁKÂ�ÃÄ i Å 1 Æ x+ Ç t¡ È�ÈiÉ Ê>Ë i Ì 1 Í x+ Î t¡ ÏiÐn� Ñ 1

j Ò

0� H ÓÔ j

Õ x+ Ö t¡ ×�×ÙØ 1 d[

x+ Ú(3.3f]

)iû Û

2 Ü�Ý�Ý�Ý�Ü n� Þmÿ i j ß 0

J àotherwise� á (3.3g

])

b�

1 ân� ã 1

i ä 0� å

æ�çèi é x+ ê t¡ ë�ëiì í>î i ï x+ ð t¡ ñiò

n� ó 1

j ô

0� Ha õ­ö

j ÷ x+ ø t¡ ù�ù�ú 1

û üþý ÿi

���i � x+ � t¡ �� ��i x+ � t¡ �� d

[x+ (3.3h

])

b�

i � ������� i � 1 � x+ � t¡ ����� ��� i � 1 � x+ ! t¡ "�"�# $&%('i ) 1

*�+i , 1 - x+ . t¡ /0 1�2i 3 1 4 x+ 5 t¡ 6�7 d

[x+ 8

(3.3i]

)iû 9

2µ :<;�;=;=:

n� >

Page 8: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

502�

ZHAO ET AL.

The¨

symmetricmatrix [mÿ i j ]�

ispositivedefiniteif (2.4) is satisfied(not (2.3)—thatgivesa degeneracy). We seethat theLagrangemultiplier correspondingto theminimal overlapand /or vacuumconstraint(3.2a)actsto couplethe ? i so� asto satisfythis crucialproperty.

For @ i AB 0J

and C i D 0J

andconstant,then,exceptfor thecouplingconstraints,we have aHamilton–Jacobi�

equationcorrespondingto motionby a constantspeedE i ,� perturbedbyFi times�

thecurvature.This familiarproblemarisesthroughoutthelevel surfaceworld andnumericalG techniquesandanalyticalresultsdoexist [15].

W�

enotethatin thespecialone-bubblecaseasinglelevel setis adequate—see[9]. In thepresent$ framework, if we consider(3.1)–(3.3)with any two nonnegative constantsH 0

� I(J1,�

so� that K 0� LNM

1 O 1, we have thesamemotionasin thesinglelevel setcaseup to a trivialtime�

scaling.Theproofof this factis illuminating.Wepresentit here:

PRQ0� S x+ T t¡ UV

t¡ WYX Z�[ 0� \ x+ ] t¡ ^�_ ` 0

� a&b c�d 0� e x+ f t¡ gh i�j0� k x+ l t¡ m�n oqp

1

j r

0� Ha sut

j v x+ w t¡ x�xzy 1 (3.4a)

]

{}|1 ~ x+ � t¡ ��

t¡ �Y� ��� 1 � x+ � t¡ ��� � 1 �&����

1 � x+ � t¡ �� ���1 � x+ � t¡ ��� �q� 1 �q�

1

j �

0� H �u� j

  x+ ¡ t¡ ¢�¢¤£ 1 ¥(3.4b)]

W�

eassumethat 1i ¦ 0� H §u¨ i © x+ ª t¡ «�«¤¬ 1 ­ b

� ®¯ 0J

on theinterfaceanddenotefor iû °

0J ±

1,

²´³�µu¶ i ·�¸ ¹�º i » d[ x+ ¼ A½ ¾

area ¿ lengthh À

of� theinterfaceÁÂ�Ã�ÄuÅ i ÆÈÇ É�Ê i Ë [ ÌÎÍ=ÏuÐ�Ñ i ÒÔÓ Õ�Ö i × Ø ]� d

[x+ Ù K

Ú Ûtotal�

mean curvature of the interface, then(3.3(c)–(i))]

herebecomes

Ü2Ab2 Ý�Þ�ß Abà 1 áãâuä 1 åqæ 0

� ç bK�

èAb½ é�ê�ë

A½ ì

1 íïî 1KÚ (3.4c)

]

from which we find ðòñôóöõ 0� ÷ Ab and, moreimportantly, ø 1 ù K ú A û ¯üþý a veragemean

curv� ature.If we have initialized sothat the ÿ ’s arereplacedby distancefunctions,then � 0

� �����1

in�

this caseandwegetfor each� i � iû � 0J

1,

��i

t¡�x+ � t¡ ��� 1

2� ���

i � x+ � t¡ ��� ��� �! i " x+ # t¡ $% &!'i ( x+ ) t¡ *�+ , ¯- . (3.4d)

]

This¨

is thesinglelevel setformulationwith one-halfthespeed.

3.2.�

DropsFalling andPinchingOff from theCeiling

W�

e considera waterdropinitially in contactwith theceiling.Thesurfacetensionforcetends�

to keepit attachedwhile gravity pulls it down. A steadystateshapeattachedto theceiling� may be obtained,or the waterdrop may fall. The geometricshapeof the steadystate� solutionsandthe topologicaltransitionsasit leaves theceiling arequite interestingand challengingproblems—see,e.g. [19] for an interestingapproachto the latter. Thev� ariationallevel setformulationallows usto computethesteadystates(if any) accuratelyand alsogives us a reasonablemotionif accelerationaffectsarenegligible.

Page 9: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 503�

FIG./

2. Drop0

on theceiling.

In�

Fig. 2 we show the liquid drop, the ambientair, andthe ceiling, all in contact.Thetotal�

energy is thesurfaceenergy plus thegravitationalpotentialenergy of thedrop.Thelineh

(point) of contactof the threephasesis subjectto the surfacetensionof the threesurf� aces.Sinceit is massless,thevectorresultantof thethreetensionsmustaddto zeroinan y direction.Thecontactanglesatisfies1 1 243 2

� 57638 cos� 8 .

W�

ehave two constraints.Thefirst is just thatthevolume(area)of thedropis preserved.The¨

otheris theboundaryconditionat theceiling; i.e., thedropcannotpenetratethewall.W�

e turn this into anequalityconstraintusingthelevel setformulation.Wefirst constructaleh

vel setfunction, 9;: x+ < ,� which is thesigneddistancefrom theceiling.Thusthezerolevelset� coincideswith thesurfaceof theceiling (seeFigs.2, 3). Thenwe constructa surfacetension�

function =?>A@CB defined�

on thezerolevel setof D :

E?FHGCIKJ L M 1 N4O 2 P if Q;R x+ SUT 0J V

W38 if

� X;Yx+ ZU[ 0

J \ (3.5)]

Ne]

xt weconsidertwo cases:

Case1.^ _ 1 `ba 2 or� ced�f�g 2. SeeFig. 3(a).Theliquid wetsthesolid with theamountof� wettingincreasingas h increases

�to i . We initialize theconfigurationfor thedropasin

Fig. 3(a). It is easyto seethat theenergy functionalto beminimizedis composedof thesurf� aceenergy of thedrop,

j kmlAnol x+ pqpsr t�uov x+ w�x y?zA{C| d[

x+ } (3.6a)]

and thegravitationalenergy of thedrop,

~ H �A��� x+ �q� H �q����� x+ ��� h� �

x+ � g dê x+ � (3.6b)]

FIG. 3. Level setsfor thedrop-on-ceilingproblem.

Page 10: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

504�

ZHAO ET AL.

FIG./

4. (a)Liquid in a funnel;(b) funnelwall.

where# gê is the gravity constantandh� �

x+ � is the altitude.The volume(area)conservationconstraint� for thedropbecomes

� H �A��� x+ �q� H �q���;� x+ �q� dx[ �

A (3.7a)]

and the no penetrationboundarycondition at the ceiling surfacecan be written as theconstraint�

� Ha �q���o�

x+  q  Ha ¡A¢;¡ x+ £q£ d[

x+ ¤ 0J ¥

(3.7b)]

The¨

variationallevel setformulationof theproblemthusbecomes:

MinimizeÕ

¦4§ ¨ [ ©mªA«oª x+ ¬q¬s­ ®�¯o° x+ ±q±s² ³?´AµC¶¸· Ha ¹Aº�¹

x+ »q» Ha ¼q½�¾;¿ x+ ÀqÀ hÁ  x+ à gê ]�d[

x+ Ä (3.8a)]

Subject�

to

Å H ÆqÇ�ÈoÉ x+ ÊqÊ H ËAÌ;Ë x+ ÍqÍ d[

x+ Î 0J

(3.8b)

Ï H ÐAÑoÐ x+ ÒqÒ H ÓqÔ�Õ;Ö x+ ×q× d[

x+ Ø A Ù (3.8c)]

Using�

thegradientprojectionmethod,wegettheevolutionequationfor ÚoÛ x+ Ü t¡ ÝÞàß�á

x+ â t¡ ãät¡ åçæ è�éoê x+ ë t¡ ì�í î�ï ð?ñAòCóõô�öo÷ x+ ø t¡ ùú û�üoý

x+ þ t¡ ÿ��� Ha ������

x+ � hÁ � x+ � gê �� Ha ����

x+ ������� Ha ������

x+ ��� � (3.9)]

Page 11: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 505�

FIG. 5. Fourbubblesmerging in 2D. � 0 � 1 "! 1 #%$ 2 &(' 3 )(* 4 + 0.

FIG./

6. Double0

bubbleminimizerin 2D. , 0 -(. 1 /%0 2 1 02 5.

Page 12: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

506�

ZHAO ET AL.

FIG. 7. Doublebubbleminimizerwith equalsurfacetension.

where# 35476 are the Lagrangemultipliers for the boundaryconstraintand volume (area)constraint,� respectively. Usingthefactthat

H 8�98 x+ :�: H ;�<>=@? x+ A�A�B 0J C

(3.10a)]

Ha 2 D�E@D x+ FGF�H H

a I�JIx+ K�K�L (3.10b)

]

we# getthefollowing decoupledlinearsystemfor theLagrangemultipliers MON7P :

Q R%SUT�VXW�Y Z%[]\ Ha ^�_^ x+ `�` d[

x+ acb d%eUf�gXh�i j5k]l mon pXq�rts5u5vw x5y]z Ha {�|{

x} ~�~ d[

x} (3.10c)�

� �%�U������� �5���H� ������

x} ��� d�

x} � �%�U������� �5��� � � ¡X¢�£¥¤§¦%¨© ª%«]¬ ­ hÁ ®

x} ¯ gê H� °�±�²³

x} ´�´ d�

x} µ(3.10d)�

Page 13: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 507¶

FIG. 8. Doublebubbleminimizerwith unequalsurfacetension.

e have obtainednumericalresultsfor thesteadystateshapewhengravity is smallor thedif¸

ferenceof thesurfacetensionsis large(notshownhere).In theoppositecasewhengravityis¹

largeor thedifferenceof thesurfacetensionsis small,thedropfalls.In threedimensions,pinchofº f canoccurdueto gravity andthe curvatureeffect—seeFig. 11—which is whathappens»

in reallife. In two dimensions,pinchoff occursduesolelyto gravity—Figs.10,12,and¼ 16. This requiresa larger ratio betweengravity andthedifferenceof surfacetensionthan½

in threedimensions.

Remark¾

3.2¿

.^ W·

enotethat(3.9)and((3.10)(d))indicatethatatsteadystatetheshapeofthe½

dropsatisfiesthewell-known Laplace–Youngequation,

ÀÂÁoà Ä%ÅÆ Ç5È>É Ê hÁ Ë

x} Ì gÍ Î

Page 14: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

508¶

ZHAO ET AL.

i.e.,¹

ÏsurfÐ acetensionÑ�Ò curvÓ atureÔÖÕØ× altitude¼ Ù�Ú graÛ vitationalconstantÜ�Ý

Case2Þ.^ ß 2 àâá 1 orã ä¥åâæÖç 2. (SeeFig. 3(b).)Thiscasecanoccurfor certainliquids,e.g.

mercury. Hereweuseadifferentlevel setconfigurationfor thedrop;seeFig.3(b).Now theconstrainedÓ minimizationproblembecomesformally exactly asabove. Notecarefully thedif¸

ferentregionsfor which èâé 0ê

in Figs.(3a)and(3b). In this case,thedropeitherstaysonã theceilingor fallsdown withoutpinchoff. SeeFigs.12,13,and17.

In bothcases,theboundaryconstraintmaybedegeneratewhich meansthat(3.10c)justreadsë 0 ì 0

êandwemayset íïî 0

êin (3.9).

Also thegeometricshapeof theceiling canbequitearbitrary, e.g.a dropfalling from awedge.ð Theonlymodificationneededcomesin thedefinitionof ñò x} ó —thesigneddistancefunction.Numericalresultsareshown in Figs.16and17.

3.3.¿

Drô

opsSittingon theFloor

If wereversethedirectionof thegravity andturn thepicturein Section3.2upsidedownand¼ do thesamefor Figs.3aandb, we canpreciselymodelthe liquid dropsitting on thefloor case.SeeFigs.14and15.Of course,in theunwettedwall, thedropspreads,while inthe½

wettedwall case,thedroprisesto astationaryconfiguration.

3.4.¿

Liquid Penetrating througha NarrowFunnel

Supposeõ

wehaveanarrow funnelshapedasin Fig. 4. Certainfluidsflow slowly throughthe½

funnel due to gravity or someother gradientinducedforce. Becauseof the surfacetension,½

roundsurfaces(arcs)areformedboth on the top andbottom.The liquid may ormay not go throughthe fluid dependingon the curvatureon the top andbottom,surfacetension½

constantandweightof fluid. Thismodelproblemcanbeformulatedalmostexactlyas¼ in Section3.2exceptamorecomplicatedbarrierfunction ö÷ x} ø hasto beconstructedforthe½

funnelasin Fig. 4, where ùú x} û�ü 0ê

in theopencomplementof the region shown forwhichð ýþ x} ÿ�� 0:

êMinimize�

E � ������� x} � ��� ����� x} ��� ��� x} ��� H ���� x} � � hÁ ! x} " g dÍ x} #

subjectÐ to

$ H� %'&�%

x} ( ( H� )*�)

x} + + d�

x} , 0ê

- H� ./�.

x} 0 0 H� 1 243�5

x} 6 6 d�

x} 7 A8 9

Someõ

numericalcalculationsareshown in Figs.18,19,20,and21.

Page 15: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 509¶

4. NUMERICAL IMPLEMENTATION AND RESULTS

In all theseexamples,wehavetousenumericalapproximationsfor theHeavisidefunctionand¼ Dirac functionwhicharedefinedas

H� :<;

x} =?>1 @ x} ACBED0ê F

x} GIH4JEK1

2Þ 1 L x} MON 1P sinÐ Q x}R SUT x} V�WYX[Z

\^]<_x} `?a d H

� b<cx} d

dx� e

0ê f g

x} h�iYjlk1

2Þ m 1 n cosÓ o x}p qsr x} t�uwvEx

whereð y is the numericalwidth of our z�{ x} | and¼ H } x} ~ ,� which we take to be the grid size����� x} .Thenumericalmethodsdevelopedin [22] Section3 aredirectly applicableto the four

problemsº describedin Section3above,exceptfor theimplementationof thenew constraints.For thesoapbubbleproblem,thesystemof Eqs.(3.3c)hasto besolved for the � i —thiswð asalsomentionedfor theoptimaldecompositionof domainproblemin [22, Eqs.(2.20)–(2.21)].�

No new difficultiesareencountered.F�or thefalling dropproblemwehaveasimpledecoupledsystem(3.10c),(3.10d)for the

tw½

o Lagrangemultipliers,andthesystemcanbecomedegeneratebecausetheleft andrightsidesÐ of (3.10c)will (andshould)vanishif thedropfalls. A similar situationarisesin theliquid throughfunnelcase.

This�

meansthatthenopenetrationconstraintdoesnottakeeffectuntil penetrationoccurs;then½

theconstraintstopsits progress.In ournumericalcalculations,wehavefoundthatthesizeÐ of thatpenetrationis atmostonegrid cell, asin thecasefor thenooverlappingandnov� acuumconstraint.Sincethevaluesof surfacetensionaredifferentfor theinterfacebetweenthe½

liquid andair andfor the interfacebetweenliquid andwall (wettedvs unwetted),wefirst definedoursurfacetensionas

��� x} �E�����'���E��������� H � �4��� x} � ��  x} ¡£¢¥¤whereð ¦�§ is thedifferencebetweenthetwo surfacetensions.In our numericalcalculation,weð usethenumericalapproximationH

� ¨<©x} ª and,¼ thus,causea smoothedout transitionin

surfÐ acetension,within a boundarylayer. We found someimprovementin the numericalresults,ë i.e. reductionof the thicknessof penetrationanda somewhat smootherinterfacewhenð weusedthefollowing shift in theargumentof thenumericalHeavisidefunction,

«�¬ x} ­E®�¯�°±³²l´¶µ�·�¸�¹ Hº�» ¼4½�¾ x} ¿?ÀÂÁÄÃ�Å x} ÆÈÇ¥ÉThis�

is probablybecausethestiffestchangein thesurfacetensionis now shiftedawayfromthe½

boundary. Thusweusedthisapproximationto H� Ê Ë4Ì�Í

in¹

thecalculationswhichfollow.In Fig. (5) four two-dimensional(2D) bubblesmerge while the areaof eachbubble

is¹

preserved.We take Î 0Ï Ð 1 ÑÓÒ 1 ÔOÕ 2 Öw× 3

Ø ÙwÚ4 Û 0.

êThis is a real merging casesincethe

interfacelengthbetweenany two bubblesdoesnot affect theenergy. We seethattheinnerbÜubblesdo not becomea circle. This shows that we have very little numericalviscosity.

Page 16: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

510¶

ZHAO ET AL.

FIG. 9. Doublebubbleminimizerwith equalsurfacetension.

Figure6isa2D double-bubbleminimizercase,whereÝ 0Ï Þwß

1 àOá 2 â 0ê ã

5;¶

i.e.,eachinterfacehas»

thesamesurfacetension.Weseethe120ä angles¼ form at thetriple point.W·

enext calculatebubblesmergingin 3D.Figure7showsadumbbellin adoughnutwhichis¹

a local minimizerfor thedoublebubbleminimizercasein [8]. Here å 0Ï æOç

1 èwé 2ê ë 0

ê ì5.¶

If we let the surfacetensionof the dumbbellbe smallerthan the surfacetensionof thedoughnut,¸

thenwe seethatthedoughnutcutsthedumbbellin two in Fig. 8. Figure9 is aninterestingdoublebubbleminimizercasewherethesmallerball emergesfrom theinteriorofã abiggerball.

Iní

Fig. 10, a 2D liquid (e.g.,water)droplet tries to stayon the ceiling by wetting theceilingÓ surfaceasmuchaspossible.Sincegravity is large enoughrelative to the surfacetension,½

we seepinchoff. Figure11 is a similar 3D dropletcalculation,but thegravity canbeÜ

considerablysmallerthanin the 2D calculationfor pinchoff to occur. Figures12 and13 show respectively 2D and3D calculationscorrespondingto case2 (e.g.,mercury)inSectionõ

3.2.Figures14and15arecomputationsfor thesteadystateshapesfor dropssittingonã thefloor in 2D,correspondingto wetted(water)or unwetted(mercury)cases.Againthe

Page 17: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 511¶

FIG. 10. Falling dropin 2D. Surfacetensionwith unwettedwall î 0ï 1, air ð 1, andgravity ñ 400.

FIG.ò

11. Fó

alling dropin 3D. Surfacetensionwith unwettedwall ô 0õ 5, air ö 1, andgravity ÷ 100.

Page 18: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

512¶

ZHAO ET AL.

FIG. 12. Falling dropin 2D. Surfacetensionwith wettedwall ø 0ù 2, air ú 0û 5, andgravity ü 100.

FIG. 13.

Page 19: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 513¶

FIG. 14. Surfacetensionwith unwettedwall ý 0þ 2, air ÿ 0� 3, andgravity � 50.

FIG.ò

15. Drop�

sittingonfloor in 2D. Surfacetensionwith wettedwall � 0� 5, air � 0� 6, andgravity � 1.

Page 20: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

514¶

ZHAO ET AL.

FIG. 16. Drop falling from wedge in 2D. Surface tension with unwetted wall � 0 1, air 0� 2, andgravity � 100.

balanceÜ

is betweenthesurfacetensionforcesandgravity. Figures16and17show how thedrops¸

fall from thetip of awedgein 2D. Figure16correspondsto thewettedcase;Fig. 17correspondsÓ to theunwettedcase.

Figures18 and19 show liquid flowing througha narrow funnelin 2D. Figure18 showsthe½

fluid going throughthe funnel. Due to the degeneracy of the boundaryconstraints,ourã numericalresultsshow theliquid slightly penetratingthewall. By refiningthegrid inFig.�

19,wecanseethatthesizeof thepenetrationisalsoreduced.Thesizeof thepenetrationis aboutonegrid cell. In Fig.20,weshow aliquid atrestin a2D funnel.Finally, in Fig.21,weð show a liquid goingthroughanasymmetricfunnel.

In Figs.18 and19 we print out the areaat varioustimes.We losearound13% on the200Þ

200Þ

grid calculation,9% on the300 � 300¿

grid calculation.However, we notethatmostof the loss(andoccasionalgain) occursvery early. For example,if we pick up thecalculationÓ at t� � 0

ê �02ê

thelossis zeroup to threedecimalplacesin therefinedcalculationand¼ 0.4%on thecrudergrid. This is typical for ourmethod.

5.�

CONCLUSIONS

e have developeda variationallevel setapproachto capturethe behavior of bubblesand¼ dropletmotionsinvolving several phases.The method,asusual,handlestopologicalchangesÓ easilyandautomaticallyandis relatively easyto program.Theapproachignoresinertial¹

effects.Thesewill be includedin futurework. Themethodis fast(overnighton awð orkstationfor athree-dimensionalproblem)andlocalboundaryconditionsaretreatedviaa¼ penaltymethod.

Page 21: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 515¶

FIG. 17. Drop falling from wedgein 2D. Surfacetensionwith wettedwall � 0� 1, air � 0� 2, andgravity � 100.

FIG.ò

18. Liquid�

flows throughfunnelin 2D. Surfacetensionwith wall � 0� 1, air � 0� 2, andgravity � 100.

Page 22: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

516¶

ZHAO ET AL.

FIG. 19. Refinedgrid versionof Fig. 18.

FIG.ò

20. Liquid�

at restin funnel.

Page 23: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

BEHAVIOR OF BUBBLESAND DROPS 517¶

FIG. 21. Liquid flowing throughasymmetricfunnel.g� � 50, surfacetensionwith the funnel 0! 1, surfacetension

"with theair # 0$ 2.

Our%

resultsseemto reproducetheessentialphysicsof theproblemsstudied.Area lossfor demandingproblemsis essentiallynil, after the (dynamic)calculationsettlesdown.Ov%

erall,weloseasmuchas9%ona300 & 300¿

grid calculation.Wewill addressthis issue,using' amoresophisticatedreinitializationscheme,in futurework.

REFERENCES

1. D. AdalsteinssonandJ.A. Sethian,A fastlevel setmethodfor propagatinginterfaces,J(. Comput.Phys.118,

269(1995).

2. Y. C. Chang,T. Y. Hou,B. Merriman,andS.Osher, A level setformulationfor Eulerianinterfacecapturingmethodsfor incompressiblefluid flows,J

(. Comput.Phys.124, 449(1996).

3. S. Chen,B. Merriman,S. Osher, andP. Smereka,A simple level setmethodfor solving Stefan problems,J

(. Comput.Phys.135 (1997),8–29.

4. D. Chopp,Computingminimal surfacesvia level setcurvatureflow, J(. Comput.Phys.106, 77 (1993).

5. E. HarabetianandS.Osher, Re)

gularizationof Ill-PosedProblemsVia theLevel SetApproach, UCLA CAMReport95-41,1995.[SIAM J.Appl. Math.,to appear]

6. E.Harabetian,S.Osher,andC.-W.Shu,An Eulerianapproachfor vortex motionusingalevelsetregularizationprocedure,* J

(. Comput.Phys.127, 15 (1996).

7. A Harten,B. Engquist,S.Osher, andS.R.Chakravarthy, Uniformly highorderaccurateessentiallynonoscil-latoryschemes,III, J

(. Comput.Phys.71, 231(1987).

8. J. Hass,M. Hutchings,andR. Schlafly, Thedoublebubbleconjecture,Electr+

on. Res.AnnounceAMS1, 98(1995).

9. M. Kang,A,

LevelSetApproach for theMotionof SoapBubbleswith Curvatureor Acceleration, Ph.D.thesis,UCLA,

-CAM Report96-19,1996.

Page 24: Hong-KaiZhao, Barry Merriman, Stanley Osher, and Lihe Wang

518¶

ZHAO ET AL.

10. P. Mascarenhas,Dif.

fusionGeneratedMotionbyMeanCurvature, UCLA CAM Report92-33,1992.

11. B. Merriman,J.Bence,andS.Osher, Diffusiongeneratedmotionbymeancurvature,in AMSSelectedLecturesin Mathematics,TheComputationalCrystalGrower’s Workshop, editedby J.Taylor (AMS, Providence,RI,(1993),p. 73. [UCLA CAM Report92-18,1992]

12. B. Merriman,J. Bence,andS. Osher, Motion of multiple junctions:A level setapproach,J/. Comput.Phys.

12, 334(1994).

13. S.Osher, Subscalecapturingin numericalanalysis,in Proc. Int. Congressof Mathematicians,Zurich, 1994(Birkhauser, Zurich,1995),p. 1448.

14. S.Osher, Subscalecapturingin CFD, in CFD Review (Wiley, Chichester, 1995),p. 182.

15. S. Osherand J. A. Sethian,Frontspropagatingwith curvaturedependentspeed:Algorithms basedon aHamilton–Jacobiformulation,J

/. Comput.Phys.79, 12 (1988).

16. S.OsherandC.-W. Shu,High-orderessentiallynonoscillatoryschemesfor Hamilton–Jacobiequations,SIAM0

J/. Numer. Anal.28

1, 907(1991).

17. G. Rosen,Thegradientprojectionmethodfor nonlinearprogramming.Part II. Nonlinearconstraints,J/. Soc.

Indus.2

Appl.Math.9, 514(1961).

18. J.A. Sethian,Theory, AlgorithmsandApplicationsof LevelSetMethodsfor PropagatingInterfaces, CPAM,U.C.

-Berkeley Report,PAM-651, 1995.[ACTA Numerica,1995]

19. X. D. Shi,M. P. Brenner, andS.R. Nagel,A cascadeof structurein adropfalling from a faucet,preprint.

20. C.-W. ShuandS.Osher, Efficient implementationof essentiallynonoscillatoryshock-capturingschemesII,J

/. Comput.Phys.83, 32 (1989).

21. M. Sussman,P. Smereka,and S. Osher, A level set approachfor computingsolutionsto incompressibletw

"o-phaseflow, J

/. Comput.Phys.114, 146(1994).

22. H.-K. Zhao,T. Chan,B. Merriman,andS. Osher, A variationallevel setapproachto multiphasemotion,J./

Comput.Phys.127, 179(1996).

23. H.-K. Zhao,M. Kang,B. Merriman,D. Peng,andS.Osher, A PDEbasedfastlocal level setmethod,UCLACAM Report98-25,1998.

24. H.-K. Zhao,J.-P. Shao,S.Osher, T. Chan,andB. Merriman,preprint.