Heuristic Optimization Strategies in Finance - An · PDF file Heuristic Optimization...
date post
08-Oct-2020Category
Documents
view
3download
0
Embed Size (px)
Transcript of Heuristic Optimization Strategies in Finance - An · PDF file Heuristic Optimization...
logo
Heuristic Optimization Strategies in Finance - An Overview
Marianna Lyra
COMISEF Fellows’ Workshop: Numerical Methods and Optimization in Finance
Financial support from the EU Commission through COMISEF is gratefully acknowledged
June 18, 2009
logo
Marianna Lyra Early Stage Researcher - COMISEF Research Network
1 BA Business Administration - minor Finance, UCY
2 MSc Finance, UCY 3 PhD student JLU Giessen, DE 4 Research Interests: Apply
Optimization Heuristics in Finance (Credit Risk Management)
5 Contact Info: http://comisef.wikidot.com/ mariannalyra
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
1 Introduction Financial World Complexity
2 Heuristic Optimization Techniques Classical concept Differential Evolution
3 Financial Applications Optimization heuristic strategies in finance
4 Conclusion Have in mind
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
1 Introduction Financial World Complexity
2 Heuristic Optimization Techniques Classical concept Differential Evolution
3 Financial Applications Optimization heuristic strategies in finance
4 Conclusion Have in mind
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Financial World
Financial world
Optimization
Financial problems
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Complexity
Least median of squares residuals as a function of α and β
Multiple local minima (optima) Apply optimization heuristic techniques
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
1 Introduction Financial World Complexity
2 Heuristic Optimization Techniques Classical concept Differential Evolution
3 Financial Applications Optimization heuristic strategies in finance
4 Conclusion Have in mind
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Classical concept
Local search procedure
1: Generate initial solution xc
2: while stopping criteria not met do 3: Select xn ∈ N (xc) (neighbor to current solution) 4: if f (xn) < f (xc) then 5: xc = xn
6: end if 7: end while
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Classical concept
Heuristic Techniques
uulll lll
lll lll
l
))RRR RRRR
RRRR RRR
_ _ _ _ _ _� �
� �
_ _ _ _ _ _Construction methods Local search methods
Trajectory methods mmm
mmm
vvmmm mm Population search
OOO OOO
''OO OO
Threshold accepting
� � �
Differential evolution
� � �
Tabu search
Genetic algorithms
Hybrid Meta Heuristics
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Classical concept
Heuristic Techniques
uulll lll
lll lll
l
))RRR RRRR
RRRR RRR
_ _ _ _ _ _� �
� �_ _ _ _ _ _Construction methods Local search methods
Trajectory methods nnn
nnn n
wwnnnn nn Population search
PPP PPP
P
((PP P
Threshold accepting
� � �
Differential evolution
� � �
Tabu search
Genetic algorithms
Hybrid Meta Heuristics
99dd
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Population based heuristic with remarkable performance in continuous numerical problems.
Example
Capital Asset Pricing Model (CAPM): Risk-return equilibrium.
ri,t − r st = α + β(rm,t − r st ) + εi,t (1)
Least Median of Squares Estimators (LMS) (Rousseeuw and Leroy (1987)):
min α,β
(med(ε2i,t)) (2)
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Optimal parameter estimation of CAPM using LMS estimators
1 Generate random set values α and β (initial solutions)
2 Evaluate initial solutions minimizing LMS 3 Generate new candidate solutions from the
initial one 4 Evaluate new candidate solutions minimizing
LMS 5 Repeat until a very good solution is found
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Optimal parameter estimation of CAPM using LMS estimators
1 Generate random set values α and β (initial solutions)
2 Evaluate initial solutions minimizing LMS 3 Generate new candidate solutions from the
initial one 4 Evaluate new candidate solutions minimizing
LMS 5 Repeat until a very good solution is found
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Optimal parameter estimation of CAPM using LMS estimators
1 Generate random set values α and β (initial solutions)
2 Evaluate initial solutions minimizing LMS 3 Generate new candidate solutions from the
initial one 4 Evaluate new candidate solutions minimizing
LMS 5 Repeat until a very good solution is found
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Optimal parameter estimation of CAPM using LMS estimators
1 Generate random set values α and β (initial solutions)
2 Evaluate initial solutions minimizing LMS 3 Generate new candidate solutions from the
initial one 4 Evaluate new candidate solutions minimizing
LMS 5 Repeat until a very good solution is found
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Optimal parameter estimation of CAPM using LMS estimators
1 Generate random set values α and β (initial solutions)
2 Evaluate initial solutions minimizing LMS 3 Generate new candidate solutions from the
initial one 4 Evaluate new candidate solutions minimizing
LMS 5 Repeat until a very good solution is found
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Optimal parameter estimation of CAPM using LMS estimators
Initialization Step 1 & 2: Generate and evaluate random set values α[−1, 2] and β[0, 1] (initial solutions)
P(0)=
d
1 2
np
minα,β(med(ε2i,t))
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Optimal parameter estimation of CAPM using LMS estimators
Initialization Step 1 & 2: Generate and evaluate random set values α[−1, 2] and β[0, 1] (initial solutions)
P(0)=
d
1 2
np
minα,β(med(ε2i,t))
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Optimal parameter estimation of CAPM using LMS estimators
Generate new candidate solutions from the initial one Step 3a: Differential mutation
P(0)1,i =
1 2 ... r3 ... r1 ... r2 ... np
P(υ)1,i = P
(0) 1,r1
+ F × (P(0)1,r2 - P (0) 1,r3
)
F scale factor ∈ [0, 1+] determines speed of shrinkage
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
... ... u1 ud
CR CR
uniform crossover
... u1
ud
P(u)1,i . . . P (u) d ,i
Random crossover Step 3b: Crossover elements from P(0)1,i and P
(υ) 1,i
1 Generate for each parameter a uniform random number, ud ∈ [0, 1]
2 Determine the crossover probability, CR ∈ [0, 1]
3 Only if u < CR, P(u)1,i = P (υ) 1,i
4 else P(u)1,i = P (0) 1,i
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
Differential Evolution Optimal parameter estimation of CAPM using LMS estimators
Generate new candidate solutions from the initial one Step 3a: Differential mutation
P(0)1,i =
1 2 ... r3 ... r1 ... r2 ... np P(υ)2,i = P
(0) 2,r1
+ F × (P(0)2,r2 - P (0) 2,r3
)
F scale factor ∈ [0, 1+] determines speed of shrinkage
logo
Introduction Heuristic Optimization Techniques Financial Applications Conclusion
Differential Evolution
... ... u1 ud
CR CR
uniform crossover