Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas...

206
Herramientas Analíticas en la Clasificación de Mieles en Base a Criterios de Calidad e Inocuidad TESIS DOCTORAL Presentada por: Marisol Juan Borrás Dirigida por: Dra. Isabel Escriche Roberto Valencia, Febrero de 2016

Transcript of Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas...

Page 1: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Herramientas Analíticas en la

Clasificación de Mieles en Base a

Criterios de Calidad e Inocuidad

TESIS DOCTORAL

Presentada por:

Marisol Juan Borrás

Dirigida por:

Dra. Isabel Escriche Roberto

Valencia, Febrero de 2016

Page 2: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 3: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Dra. Isabel Escriche Roberto, Catedrática de Universidad, perteneciente al Departamento de Tecnología de Alimentos de la Universitat Politécnica de Valencia e Investigadora del Instituto de Ingeniería de Alimentos para el Desarrollo de la misma Universidad,

Hace constar que:

La memoria titulada “Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad” que presenta Dª Marisol Juan Borrás para optar al grado de Doctor por la Universitat Politécnica de Valencia, ha sido realizada en el Instituto de Ingeniería de Alimentos para el Desarrollo (IuIAD – UPV) bajo su dirección y que reúne las condiciones para ser defendida por su autora.

Valencia, 28 de Diciembre 2015

Fdo. Isabel Escriche Roberto

Page 4: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 5: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

A mis padres

Page 6: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 7: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Agradecimientos

Quiero agradecer en primer lugar a mi directora de Tesis Dra. Isabel Escriche Roberto la

ayuda y el apoyo que me ha prestado para poder llevar a cabo este proyecto. Así como el

trabajo y la lucha que compartimos juntas por una ilusión que empezó hace ya 10 años, y

que aunque ha tropezado con algunos obstáculos sigue adelante.

Quiero dar las gracias a todos los alumnos tanto españoles como extranjeros que han

pasado por el Laboratorio de la Miel, y que en mayor o menor medida, todos han

contribuido con su granito de arena al trabajo que llevamos a cabo en este laboratorio.

Especialmente recuerdo la etapa que compartí con Melinda, mientras realizaba su tesis

doctoral, que tantas cosas compartimos como compañeras y madres que empiezan.

Agradezco de corazón la ayuda que he recibido de mi compañera y amiga Angela, que

también compartió conmigo su camino al realizar su tesis doctoral.

Quiero agradecer a mi compañero Román, su apoyo, consejos, paciencia y masajes

mientras realizaba esta tesis. Así como el esfuerzo cuidando de nuestros hijos y de mí.

Gracias.

Page 8: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 9: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Resumen

I

Resumen

La miel, consumida por el hombre desde hace miles de años debido a sus propiedades

organolépticas y terapéuticas, es el producto de la unión entre el mundo animal, la abeja

(Apis melífera), y el vegetal, el néctar de las flores y/o secreciones azucaradas de las

plantas o insectos. Hoy en día las empresas envasadoras y comercializadoras de miel,

para cumplir las exigencias legales y comerciales, deben llevar a cabo una etapa previa al

proceso industrial que consiste en clasificar las mieles que entran en la empresa como

materia prima, tanto en lo que respecta a criterios de calidad como de inocuidad. Entre

los primeros, además de los referentes al cumplimiento de los niveles de los parámetros

fisicoquímicos exigidos por la normativa nacional e internacional, destaca la necesidad de

clasificar las mieles atendiendo al origen botánico, por el consiguiente valor añadido que

implica para las empresas. En este sentido, la búsqueda de nuevas herramientas

analíticas que faciliten la diferenciación botánica de las mieles sería de gran utilidad para

el sector apícola. Esto es debido a que la metodología tradicional basada en la

cuantificación del contenido polínico presenta no solo el inconveniente de requerir

personal experto, sino además el de estar sujeto a interferencias, especialmente cuando

el contenido polínico esté infrarrepresentado, como sucede en algunos tipos de miel.

Otro aspecto esencial para el sector, es el relacionado con la posible presencia en la miel

de residuos químicos (antibióticos o pesticidas) como consecuencia directa de los

tratamientos veterinarios o indirecta de los tratamientos agrícolas. A este respecto,

garantizar el cumplimiento de la legislación y la reducción de riesgos para el consumidor

es un requisito fundamental en el campo de la Seguridad Alimentaria. Para ello, se debe

controlar la materia prima en la recepción industrial, llevando a cabo los análisis

adecuados mediante métodos validados y contrastados.

En este sentido, la presente tesis doctoral se plantea con dos objetivos claramente

diferenciados: 1. Evaluar las técnicas que se vienen utilizando de forma rutinaria en el

control de calidad de mieles, tanto a nivel industrial como comercial, y compararlas con

otras alternativas no convencionales y 2. Evaluar la efectividad del control de la materia

prima (llevado a cabo en la etapa de recepción industrial) para cumplir los límites legales

establecidos en lo referente a la presencia de residuos químicos en miel. Además, valorar

el riesgo para el consumidor como consecuencia de la exposición a dichos residuos

cuando legalmente tenga establecido un LMR (Límite máximo de residuos).

De los resultados obtenidos se concluye que, en general, los parámetros fisicoquímicos,

que se vienen utilizando de forma convencional en la clasificación de mieles, no permiten

una buena diferenciación de las mismas en términos de monofloralidad. Si bien, el origen

botánico de las mieles tiene un claro impacto en algunos de ellos, como es el color y la

conductividad eléctrica, los niveles de ciertos parámetros fisicoquímicos pueden variar

en función del año de recolección (especialmente el color) y de las prácticas apícolas. En

este sentido, el apicultor tiene un importante papel en la variabilidad de algunos de estos

Page 10: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Resumen

II

parámetros, especialmente en lo que respecta al HMF y la humedad, e incluso al color

varietal característico que el mercado requiere. Por lo tanto, unas buenas prácticas

apícolas son vitales para obtener el producto que el consumidor espera y la legislación

exige.

Las técnicas alternativas ensayadas en el presente estudio, como es el caso de la

identificación de compuestos volátiles característicos en la fracción volátil de las mieles,

y la aplicación de un sistema de lengua electrónica construido con sensores metálicos,

han proporcionado resultados útiles y esperanzadores en clasificación de mieles para

complementar la información obtenida mediante el análisis polínico.

La utilización de marcadores químicos, como es el caso del antranilato de metilo en las

mieles de cítrico, resulta especialmente útil cuando éstas presenten un bajo porcentaje

de polen de la especie botánica de la que mayoritariamente procedan (por variedades

híbridas estériles o producción de polen y néctar no simultánea). Sin embargo,

inexplicablemente las transacciones comerciales son, en ocasiones más exigentes con

esta variedad de miel que con otras, ya que no solo exigen la presencia de un porcentaje

de polen mínimo de Citrus spp. (10-20%), sino que además requieren un nivel de

antranilato de metilo no inferior a 2 mg/kg. En este sentido, la presente tesis doctoral

propone reconsiderar la concentración requerida de este compuesto para la miel de

cítricos españoles, a un valor mínimo de 1.2 mg/kg (superior al sugerido en otros estudios

para mieles de cítrico italianas), y además sólo tener en cuenta este parámetro en el caso

de las mieles con un sorprendente bajo porcentaje de polen de cítricos, y después de la

evaluación de sus propiedades organolépticas y fisicoquímicas.

La presencia de determinados compuestos, en la fracción volátil de las mieles, resulta

determinante en su diferenciación; siendo el origen botánico el que mayor influencia

tiene en su discriminación y en menor medida el origen geográfico. Por ejemplo,

carvacrol y -terpineno son característicos de la miel de tilo; -pineno y 3-methyl-2-

butanol de la miel de girasol, y óxido de cis-linalool de la miel de acacia.

Con relación a la lengua electrónica, construida con sensores metálicos, la combinación

de la información con ella generada junto con la aplicación de adecuadas técnicas

estadísticas multivariantes (Análisis de Componentes Principales y Redes Neuronales) ha

demostrado que este sistema permite la diferenciación de mieles según su origen

botánico con un porcentaje de éxito del 100%. Además, se ha confirmado una buena

correlación entre la lengua electrónica y la capacidad antioxidante de las mieles (0.9666).

En lo que respecta al control de residuos químicos, los resultados confirman que un

control de calidad apropiado en la recepción de la materia prima, aplicando una

metodología analítica adecuada y validada, resulta eficaz para reducir en la miel

comercializada el riesgo de exposición por la presencia de sulfonamidas. En este sentido,

se puede considerar que está garantizada la seguridad del consumidor de miel en lo que

respecta no solo a la presencia de sulfamidas, sino también de otras sustancias químicas

Page 11: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Resumen

III

como antibióticos y pesticidas, ya que el control que las empresas llevan a cabo de forma

rutinaria los engloba a todos.

En relación al riesgo de exposición a pesticidas a través del consumo de miel, se concluye

que, aunque en el estudio llevado a cabo en muestras comerciales, no se superó el Límite

Máximo de Residuos (LMR) para ninguno de los pesticidas analizados, el consumidor está

expuesto a muchos de ellos a concentraciones inferiores a dichos límites (especialmente

para los acaricidas destinados al tratamiento de la varroa). Sin embargo, el “Indice de

Peligro” (Hazard Index: HI) para la presencia de pesticidas en las mieles obtenido como

sumatorio del peligro individual de cada pesticida (Hazard Quotient: HQ) presente en

ellas, fue en el peor de los casos 500 veces inferior al valor de 1, considerado como límite

de aceptabilidad. Aunque los consumidores no están expuestos a niveles tóxicos de

pesticidas a través del consumo de miel, sin embargo, siguiendo el principio de que una

exposición tiene que ser “tan baja como sea razonablemente posible”, el sector primario,

apicultores y agricultores, debe hacer un mayor esfuerzo ya que sus prácticas pueden

influir directamente en el problema de la presencia de residuos en la miel.

Page 12: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 13: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Resumen

V

Resum

La mel, consumida per l'home des de fa milers d'anys degut a les seues propietats

organolèptiques i terapèutiques, és el producte de la unió entre el món animal, l'abella

(Apis mel·lífera), i el vegetal, el nèctar de les flors y/o secrecions ensucrades de les plantes

o insectes. Hui en dia les empreses envasadores i comercialitzadores de mel, per a

complir les exigències legals i comercials, han de dur a terme una etapa prèvia al procés

industrial que consistix a classificar les mels que entren en l'empresa com a matèria

primera, tant pel que fa a criteris de qualitat com d'innocuïtat. Entre els primers, a més

dels referents al compliment dels nivells dels paràmetres fisicoquímics exigits per la

normativa nacional i internacional, destaca la necessitat de classificar les mels atenent a

l'origen botànic, pel consegüent valor afegit que implica per a les empreses. En este

sentit, la busca de noves ferramentes analítiques que faciliten la diferenciació botànica

de les mels seria de gran utilitat per al sector apícola; ja que la metodologia tradicional

basada en la quantificació del contingut pol·línic presenta no sols l'inconvenient de

requerir personal expert, sinó a més el d'estar subjecte a interferències, especialment

quan el contingut pol·línic estiga infra-representat, com succeïx en alguns tipus de mel.

Un altre aspecte essencial per al sector, és el relacionat amb la possible presència en la

mel de residus químics (antibiòtics o pesticides) com a conseqüència directa dels

tractaments veterinaris o indirecta dels tractaments agrícoles. A este respecte, garantir

el compliment de la legislació i la reducció de riscos per al consumidor és un requisit

fonamental en matèria de Seguretat Alimentària. Per a això, s'ha de controlar la matèria

primera en la recepció industrial, duent a terme les anàlisis adequats per mitjà de

mètodes validats i contrastats.

En este sentit, la present tesi doctoral es planteja amb dos objectius clarament

diferenciats: 1. Avaluar les tècniques que s'utilitzen de forma rutinària en el control de

qualitat de mels, tant a nivell industrial com comercial, i comparar-les amb altres

alternatives no convencionals i 2. Avaluar l'efectivitat del control de la matèria primera

(dut a terme en l'etapa de recepció industrial) per a complir els límits legals establits pel

que fa a la presència de residus químics en mel. A més, valorar el risc per al consumidor

com a conseqüència de l'exposició als anomenats residus quan legalment tinguen establit

un LMR (Límit màxim de residus).

Dels resultats obtinguts es conclou que, en general, els paràmetres fisicoquímics, que

s'utilitzen de forma convencional en la classificació de mels, no permeten una bona

diferenciació de les mateixes en termes de monofloralidat. Si bé, l'origen botànic de les

mels té un clar impacte en alguns d'ells, com és el color i la conductivitat elèctrica, els

nivells de certs paràmetres fisicoquímics poden variar en funció de l'any de recol·lecció

(especialment el color) i de les pràctiques apícoles.En este sentit, l'apicultor té un

important paper en la variabilitat d'alguns d'estos paràmetres, especialment pel que fa al

HMF i la humitat, i inclús al color varietal característic que el mercat requerix. Per tant,

Page 14: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Resumen

VI

unes bones pràctiques apícoles són vitals per a obtindre el producte que el consumidor

espera i la legislació exigix.

Les tècniques alternatives assajades en el present estudi, com és el cas de la identificació

de compostos volàtils característics en la fracció volàtil de les mels, i l'aplicació d'un

sistema de llengua electrònica construït amb sensors metàl·lics, han proporcionat

resultats útils i esperançadors en classificació de mels per a complementar la informació

obtinguda per mitjà de l'anàlisi pol·línica.

La utilització de marcadors químics, com és el cas de l'antranilato de metil en les mels de

cítric, resulta especialment útil quan estes presenten un baix percentatge de pol·len de

l'espècie botànica de què majoritàriament procedisquen (per varietats híbrides estèrils o

producció de pol·len i nèctar no simultània). No obstant això, inexplicablement les

transaccions comercials són, de vegades més exigents amb esta varietat de mel que amb

altres, ja que no sols exigixen la presència d'un percentatge de pol·len mínim de Citrus

spp. (mínim 10-20%), sinó que a més requerixen un mínim contingut d'antranilato de

metil (2 mg/kg) .En este sentit, la present tesi doctoral proposa reconsiderar el nivell de

MA requerit per a la mel espanyola de cítrics, a un valor mínim de 1.2 mg/kg (superior al

suggerit en altres estudis per a mels de cítric italianes), i a més només tindre en compte

este paràmetre en el cas de les mels amb un sorprenent baix percentatge de pol·len de

cítrics, i després de l'avaluació de les seues propietats organolèptiques i fisicoquímiques.

La presència de determinats compostos, en la fracció volàtil de les mels, resulta

determinant en la seva diferenciació; sent l'origen botànic el que major influència té en

la discriminació i en menor mesurada l'origen geogràfic. Per exemple, carvacrol i -

terpineno són característics de la mel de til·ler; -pineno i 3-methyl-2-butanol de la mel

de girasol, i òxid de cis-linalool de la mel d'acàcia.En relació amb la llengua electrònica,

construïda amb sensors metàl·lics, la combinació de la informació amb ella generada

juntament amb l'aplicació d'adequades tècniques estadístiques multivariant (Anàlisis de

Components Principals i Xarxes Neuronals) ha demostrat que aquest sistema permet la

diferenciació de mels segons el seu origen botànic amb un percentatge d'èxit del 100%.

A més, s'ha confirmat una bona correlació entre la llengua electrònica i la capacitat

antioxidant de les mels (0.9666).

Pel que fa al control de residus químics, els resultats confirmen que un control de qualitat

apropiat en la recepció de la matèria primera, aplicant una metodologia analítica

adequada i validada, resulta eficaç per reduir en la mel comercialitzada el risc d'exposició

per la presència de sulfonamides. En aquest sentit, es pot considerar que està garantida

la seguretat del consumidor de mel en el que respecta no tan sols a la presència de

sulfamides, sinó també d'altres substàncies químiques com a antibiòtics i pesticides, ja

que el control que les empreses duen a terme de forma rutinària els engloba a tots.

En relació al risc d'exposició a pesticides a través del consum de mel, es conclou que,

encara que en l'estudi dut a terme en mostres comercials, no es va superar el Límit Màxim

Page 15: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Resumen

VII

de Residus (LMR) para cap dels pesticides analitzats, el consumidor està exposat a molts

d'ells a concentracions inferiors a aquests límits (especialment per als acaricides destinats

al tractament de la varroa). No obstant això, el “Indice de Perill” (Hazard Index: HI) per a

la presència de pesticides en les mels, obtingut com a sumatori del perill individual de

cada pesticida (Hazard Quotient: HQ) present en elles, va anar en el pitjor dels casos 500

vegades inferior al valor d'1, considerat com a límit d'acceptabilitat. Encara que els

consumidors no estan exposats a nivells tòxics de pesticides a través del consum de mel,

no obstant això, seguint el principi que una exposició ha de ser “tan baixa com sigui

raonablement possible”, el sector primari, apicultors i agricultors, ha de fer un esforç ja

que les seves pràctiques poden influir directament en el problema de la presència de

residus en la mel.

Page 16: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 17: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Resumen

IX

Abstract

Honey, consumed by people for thousands of years due to its organoleptic and

therapeutic properties, is the product of the union of two worlds, the animal (the bee

Apis mellifera), and the plant (nectar from flowers and/or sweet secretions from plants

and insects). Today, the honey packaging and retail business must classify honey before

the manufacturing process, taking into account quality and safety criteria in order to

meet legal and commercial requirements. In addition to the requirements relating to

compliance with the levels of physico-chemical parameters obligatory by national and

international law, the quality criteria require classification according to botanical origin,

which results in added value for the companies. In this regard, looking for new analytical

tools that facilitate the botanical differentiation of honey would be useful for the

beekeeping sector. This is because the traditional method based on the quantification of

the pollen content not only has the disadvantage of requiring skilled technicians, but is

also sometimes subject to interference, especially when the pollen content is

underrepresented, as occurs in some types of honey.

Another essential aspect for the sector, is that related to the possible presence of

chemical residues (antibiotics or pesticides) in honey, as a direct consequence of

veterinary treatments or indirectly due to agricultural treatments. In this regard,

guaranteeing compliance with the legislation and reducing risks to consumers is an

essential requirement in the field of food safety. For this reason, on receiving batches of

raw honey, the packaging industry must conduct proper analysis using proven and

validated methods.

Taking this into account, the present PhD thesis has two distinct objectives: 1. To evaluate

the techniques that have been used routinely in the quality control of honey, at both an

industrial and commercial level, and to compare them with other unconventional

alternatives, and 2. To evaluate the effectiveness of monitoring the raw material in the

packaging industry (carried out on receiving batches of raw honey,) to meet the legal

limits regarding the presence of chemical residues. Also, to assess the risk to the

consumer as a result of exposure to such residues when there is a legally established

maximum residue limit (MRLs).

Based on the results obtained it is concluded that, in general, the physicochemical

parameters that have been used conventionally in the classification of honey do not

permit good differentiation in terms of monoflorality. While the botanical origin of honey

has a clear impact on some of them, such as the color and electrical conductivity, levels

of certain physicochemical parameters may vary depending on the year of harvest

(especially color) and beekeeping practices. In this line, the beekeeper has an important

role in the variability of some of these parameters, especially in regard to HMF and

moisture, and even in the characteristic varietal color that the market requires.

Page 18: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Resumen

X

Therefore, good beekeeping practices are essential to obtain the product that the

consumer expects and legislation requires.

The alternative techniques tested in this study, such as identifying characteristic volatile

compounds in the volatile fraction of honey, and the application of an electronic tongue

made with metals, have provided useful and promising results in the classification of

honey to complement the information obtained by pollen analysis.

The use of chemical fingerprinting, such as for methyl anthranilate in citrus blossom

honey, is particularly useful when the percentage of pollen is particularly low, as in the

case of sterile hybrids or when pollen and nectar production is not simultaneous.

However, inexplicably commercial transactions are sometimes more demanding with this

type of honey than with others, as they not only require the presence of a minimum

percentage of Citrus spp. pollen (at least 10-20%), but also require a minimum presence

of methyl anthranilate (2 mg/kg). This PhD thesis suggests reconsidering the level of this

compound required in Spanish citrus honey; proposing a minimum value of 1.2 mg/kg

(greater than that recommended in other studies for Italian citrus honey). However, only

taking this parameter into consideration in the case of honey with a surprising low

percentage of citrus pollen, and after evaluating its organoleptic and physicochemical

properties.

The presence of certain compounds, in the volatile fraction of the honey, is decisive in its

differentiation; botanical origin having the greatest influence on discrimination and to a

lesser extent the geographical origin. For example, carvacrol and -terpinene are

characteristic of tilia honey; -pinene and 3-methyl-2-butanol of sunflower honey; and

cis-linalool oxide of acacia honey.

The information obtained with an electronic tongue (made with metal sensors) in

combination with appropriate multivariate statistical techniques (Principal Component

Analysis and Neural Networks) has demonstrated that this system allows the

differentiation of honey by botanical origin with a success rate of 100%. A good

correlation between the electronic tongue and the antioxidant capacity of honey has also

been confirmed (0.9666).

With regard to the control of chemical residues, the results confirm that proper quality

control on receiving batches of raw honey, applying appropriate validated analytical

methods, is effective in reducing the risk of exposure to sulfonamides in commercialized

honey. In this respect, it can be considered that honey consumer safety, with regard not

only to the presence of sulfonamides, but also to other chemical residues such as

antibiotics and pesticides is guaranteed, as the control that companies carry out routinely

covers all this aspects.

Regarding the risk of exposure to pesticides through consumption of honey, it is

concluded that, although in this study, carried out with commercial samples, the

Page 19: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Resumen

XI

Maximum Residue Level (MRL) was not exceeded for any of the pesticides analyzed; the

consumer is exposed to many of them at concentrations below these limits (especially

acaricides used against varroa). However, the "hazard index" (HI) for the presence of

pesticides in honey obtained as the addition of the individual risk of each pesticide

(Hazard Quotient: HQ) present in them, was in the worst case 500 times lower than the

value of 1, considered as the limit of acceptability. Although consumers are not exposed

to toxic levels of pesticides through consumption of honey; the principle that exposure

to residues has to be "as low as reasonably possible", means that the primary sector,

beekeepers and farmers, has to strive to improve their practices as these directly

influence the problem of the presence of residues in honey.

Page 20: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 21: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 22: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 23: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Indice

XIII

Indice General

1. Introducción

1.1. La miel como producto…………………………………………………………………………….. 1 1.1.1. Formación de la miel 1 1.1.2. Composición de la miel y su implicación en la calidad 2

Carbohidratos 2 Humedad 5 Enzimas 5 Compuestos aromáticos 7 Antioxidantes en la miel 8 Otros componentes 8

1.2. Marco legislativo…………………………………………………………………………..……..….. 9 1.2.1. Autenticidad y Frescura 11

Métodos analíticos para la detección de adulteraciones en miel 12 1.2.2. Seguridad 13

Residuos químicos y su determinación 13

Control de los residuos 15

Métodos analíticos de control de residuos químicos. Validación 15

1.3. Clasificación industrial de la miel…………………………………………………..…………. 17 1.3.1. Métodos tradicionales en la clasificación de mieles 17

Análisis melisopalinológico 19

Análisis sensorial 20 Análisis físico-químico y color 21

1.3.2. Métodos alternativos en la clasificación de mieles 23 1.4. El sector…………………………..…………………….……………………………………..…………. 27

1.4.1. Producción primaria 27 1.4.2. Procesado de la miel y controles 28 1.4.3. España en el Contexto de Producción y Comercialización de miel 30

1.5. Bibliografía…………………………………………………………….……………………….……….. 31

2. Objetivos

2.1. Objetivo general…………………………………………………………………………..………….. 43

2.2. Objetivos específicos………………………………………………..……………………..………. 43

3. Resultados

3.1. Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper…………………………………………………………………………….……………….…………

49

3.2. Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey………………………………………….…………………….…………………..

65

3.3. Potenciometric tongues with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity……………………………………………………………………………………………………….…..

85

3.4. Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys…………………………………..……….

105

Page 24: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Indice

XIV

3.5. Routine quality control in honey packaging companies as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS……………………………………………………….…………………….…..

129

3.6. Mixture-risk-assessment of pesticide residues in retail polyfloral honey……………………………………………………………………………………………...…………….…

151

4. Conclusiones

4.1. Conclusiones del objetivo general 1…………………………………………………….…… 171

4.2. Conclusiones del objetivo general 2……………………………………………………….… 173

Conclusión general de la tesis…………………………………………………………………………. 176

Page 25: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Indice

XV

Índice de figuras

Figura 1.1.- Abejas depositando miel en el panal……………………………………..……… 2

Figura 1.2.-Reacciones de equilibrio entre la fructosa y el HMF en medio ácido. 1 Fructosa, 2 Fructofuranosa, 3–4 Dos etapas intermedias de deshidratación, 5 HMF……………………………………………………………………………………..

5

Figura 1.3.- Rueda de olor y aroma de la miel (IHC, 2001)……………………………….. 21 Figura 1.4.- Esquema de los componentes que forman la lengua electrónica…….…..… 26 Figura 1.5.-Desoperculado de las celdillas y extracción de miel por centrifugación………………………………………………………………………………………….....…..

27

Figura 1.6.- Diagrama de flujo del procesado de miel……………….………….………….. 29

Figura 1.7.- Producción mundial de miel en 2012 (en T)…………….……….…………… 30 Figura 1.8.- Producción de miel en Europa en 2012 (en T)…………….………………… 31 Figura 3.1.1.- Pictures corresponding to the predominant pollen present in each type of unifloral honey and the minimum percentage of pollen required to classify a honey as belonging to a specific botanical genus considered in the present work……………………………………………………….…………………………………….…….

55

Figura 3.1.2.-Multiple correspondence analyses of the quality parameters coded as intervals with projected varieties of honey. M: moisture; C: colour; HMF: hydroxymethylfurfural……………………………………………..…………………………….

57

Figura 3.2.1.-Box and whisker plots for pollen, MA, HMF, electrical conductivity, moisture and colour for honeys from the bee-keepers (B) and retail outlets (R). Samples harvested in 2011…………………………………………...……...

74

Figura 3.3.1.-PCA biplot (scores and loadings) of the variables (physicochemical parameters, sugars, color and total antioxidant activity) and honey samples: C (orange blossom); R (rosemary); T (thyme); S (sunflower); W (winter savory honey); H (honeydew honey). Next to each sample the percentage of the relevant predominant pollen is shown…………………………….….

94

Figura 3.3.2.-PCA biplot (scores and loadings) from the measurements obtained with the 8 electrodes together (4 noble and 4 non-noble metals: “Au, Pt, Ir, Rh, Ag, Ni, Co and Cu”). C (orange blossom); R (rosemary); T (thyme); S (sunflower); W (winter savory honey); H (honeydew honey)………..…

96

Figura 3.3.3.- PCA biplot (scores and loadings) from the measurements obtained with the 5 electrodes together (4 non-noble metals “Ag, Ni, Co and Cu”, plus Au). C (orange blossom); R (rosemary); T (thyme); S (sunflower); W (winter savory honey); H (honeydew honey)……………………………………………….…..

97

Figura 3.3.4.- Predicted versus actual values of total antioxidant capacity given by the MLR model. A) 8 electrodes: 4 noble metals “Au, Pt, Ir and Rh” plus 4 non-noble metals “Ag, Ni, Co and Cu” and B) 4 non-noble “Ag, Ni, Co and Cu” metals plus Au……………………………………………………………………………………………….…

99

Figura 3.4.1.-Biplot for the two principal components of the PCA model for the physicochemical parameters, sugars (fructose “F”, glucose “G” sucrose “S” and F/G ratio) and colour (Pfund and CIEL*a*b) in acacia, sunflower and tilia honeys harvested in the different countries: Spain (Sp), Romania (Ro), and Czech Republic (Cz)…………………………………………………………………………………..………

116

Page 26: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Indice

XVI

Figura 3.4.2.- Biplot for the two principal components of the PCA model for the volatiles compounds identified in acacia, sunflower and tilia honeys harvested in the different countries: Spain (Sp), Romania (Ro), and Czech Republic(Cz)……………………………………………………………………………………………………..

119

Figura 3.5.1.- Calibration curves obtained for sulfanilamide (A) and sulfamethoxazole (B) in methanol solution (white circles) and in standard additions in blank honey sample (asterisks)…………………………………….……………….

137

Figura 3.5.2.-Selected reaction monitoring (SRM) chromatogram of a blank

honey extract (A) and the same honey fortified at 20 g/kg (B) with all the sulfonamides studied.(1)Sulfanilamide; (2) Sulfathiazole; (3) Sulfadiazine; (4) Sulfapyridine; (5) Sulfamerazine; (6) Sulfamethazine; (7) Sulfamethizole; (8) Sulfachloropyridazine; (9) Sulfamethoxazole; (10) Sulfadimethoxine; (11) Sulfaquinoxaline; (M) Matrix…………………………………………………………………..………..

138

Figura 3.6.1.-Hazard Index of the mixture of 11 pesticides in the 22 samples (own-brands and well-known brands labelled as polyfloral). Different colours in the bars refer to the contribution of each pesticide (HQ) in the HI of each brand. Country origin: SE (Southern Europe); Ch (China); CA (Central America); SA (South America); Th (Thailand); Ce (Chile); ? (unknown origin)……………..…....

163

Page 27: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

1. INTRODUCCIÓN

Page 28: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 29: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 30: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 31: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

1

1. Introducción

1.1.-La miel como producto

1.1.1. Formación de la miel

La miel, consumida por el hombre desde hace miles de años, es el producto de la unión

entre el mundo animal, la abeja (Apis melífera), y el vegetal, el néctar de las flores y/o

secreciones azucaradas de las plantas o insectos. Hoy en día sigue siendo el mismo

alimento que nuestros antepasados consumían con importantes propiedades

nutricionales y terapéuticas, así como con características sensoriales muy atractivas.

No se sabe a ciencia cierta desde cuando el hombre introdujo la miel en su dieta, sin

embargo, sí que hay constancia de que ya la recolectaba hace más de 8000 años, como

queda patente en las pinturas rupestres de la cueva de la Araña (Bicorp, Valencia). Hasta

la aparición del azúcar cristalizado, hace unos 2600 años, la miel ha sido el alimento para

endulzar por excelencia.

Las abejas producen la miel a partir de néctar o de secreciones azucaradas. El néctar es

una disolución acuosa de azúcares (sacarosa, glucosa y fructosa) en diferentes

proporciones y de otras sustancias como sales minerales, ácidos orgánicos, aromas, etc.).

Es segregado por las plantas en los nectarios, situados habitualmente en la flor, aunque

también en las hojas o estípulas. Estos nectarios se encuentran en lugares estratégicos

con la finalidad de que los insectos “atrapen” los granos de polen en su cuerpo y

garanticen así la polinización. Este hecho ocasiona que el polen, en mayor o menor

cantidad, se encuentre presente en la miel. Además del néctar, las abejas recogen y

transforman las secreciones azucaradas o mielatos de ciertas plantas, así como de ciertos

insectos chupadores de savia, homópteros, que viven parásitos sobre algunas plantas y

succionan de ellas la savia elaborada.

Las abejas recolectan las soluciones azucaradas que tienen a su disposición cerca de la

colmena, si bien es cierto que tienen predilección por ciertas especies botánicas (Crane,

1975). En una primera etapa, las abejas pecoreadoras, absorben con su lengua el néctar

de las flores que visitan o los mielatos, los introducen en su buche y vuelven a la colmena

para regurgitarlos, posteriormente, los vuelven a absorber o los pasan a otras abejas,

Page 32: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

2

incorporando así enzimas adicionales (diastasa y glucoxidasa) y continuando con la

transformación iniciada en el buche de la abeja recolectora. En este proceso se incorpora

también la enzima invertasa, que ayuda a transformar el néctar o las secreciones de las

plantas en miel. Los líquidos azucarados depositados en el panal siguen deshidratándose

y experimentando transformaciones bioquímicas. Las abejas ventiladoras con el

movimiento de sus alas producen unas corrientes de aire, introduciendo del exterior aire

seco y eliminando del interior el húmedo. De esta manera, consiguen rebajar el

porcentaje de humedad hasta llegar a un 16-20%, grado de maduración que tiene la miel

cuando las obreras operculan, es decir sellan la celda con una fina capa de cera. Es en

este momento cuando la miel está lista para ser recogida del panal por los apicultores

(Del Baño Breis, 2000). Este nivel de concentración de agua, hace a la miel un producto

biológico bastante estable, impidiendo que los hongos y las levaduras encuentren un

medio favorable para su desarrollo. Sin embargo, la miel sigue transformándose, por

acción de las enzimas, una vez extraída de los panales y durante su almacenamiento

posterior (Figura 1.1).

Figura 1.1.- Abejas depositando miel en el panal

1.1.2. Composición de la miel y su implicación en la calidad

La miel es básicamente una solución de azúcares en agua y aproximadamente un 1% de

otros constituyentes menores (Tabla 1.1). Estos componentes le confieren unas

características de color, sabor y aroma típico, así como ciertas propiedades físico-

químicas, típicas del origen botánico de las plantas de las que procede. Las características

intrínsecas de cada miel, además, pueden variar en función de la climatología, el estado

de la colmena y las prácticas apícolas (Sáenz & Gómez, 2000).

Carbohidratos

Los carbohidratos son los principales componentes de la miel, siendo los mayoritarios los

monosacáridos fructosa y glucosa, representado solo ellos casi el 80%. En menor

proporción se encuentran los disacáridos sacarosa y maltosa, y por último otros

disacáridos y oligosacáridos como erlosa, turanosa, melecitosa, etc. La composición en

Page 33: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

3

azúcares de una miel puede estar relacionada con: la procedencia botánica, el estado de

madurez, la adulteración, la capacidad de cristalizar, la capacidad de fermentación, el

desarrollo de hidroximetilfurfural (HMF), etc.

Tabla 1.1- Rango de variabilidad de los componentes químicos de la miel

Componentes mayoritarios (99%) g/100g

Fructosa 21.7-53.9 Glucosa 20.4-44.4 Sacarosa 0.0-7.6 Otros azucares 0.1-16.0

Componentes minoritarios (1%) g/100g

Minerales 0.02-1.03 Nitrógeno (proteínas) 0.00-0.13 Enzimas >0.1% Aromas >0.1% Otros >0.1%

Fuente: Codex alimentarius, 2001

La relación de ciertos monosacáridos, como son la fructosa y glucosa (F/G), puede ser útil

para la caracterización botánica de las mieles. Así por ejemplo, altos ratios F/G son

propios de la mieles de acacia y castaño, por el contrario bajos ratios F/G son típicos de

mieles de girasol, colza y diente de león (Persano-Oddo & Piro, 2004).

El porcentaje de sacarosa de una miel puede depender no solo de su procedencia

botánica sino también de su estado de maduración. Una miel extraída del panal antes de

que esté madura, puede tener un excesivo contenido en sacarosa, pudiendo superar el

nivel permitido por la legislación (máximo de 5% en general, o entre 10%-15% en ciertas

excepciones) (Serra-Bonvehí & Ventura, 1995). El contenido del resto de azúcares

minoritarios (producidos por la acción de la invertasa) es mayor en las mieles de mielada

que en las de néctar, difiriendo poco entre ellas (Bogdanov, 2011).

El conocimiento de la composición de los diferentes azúcares presentes en la miel puede

proporcionar información sobre su posible adulteración. La miel puede adulterarse por

la adición directamente de jarabes azucarados (jarabes de azucares invertidos, jarabes de

caña de azúcar o remolacha, jarabes de arce, etc.).

La relación de los dos principales azucares de la miel, fructosa y glucosa (F/G), condiciona

tanto la capacidad de cristalizar como su velocidad. La miel es una solución sobresaturada

de azúcares; por ello en su estado líquido es bastante inestable y tiene una tendencia

natural a cristalizar. La fructosa al ser más soluble en agua permanece fluida, siendo la

glucosa la que cristaliza debido a su menor solubilidad (Hamdan, 2010). Una miel con un

ratio F/G >1.33 tardará en cristalizar, sin embargo, cuando éste sea <1.11 el fenómeno

Page 34: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

4

se producirá más rápidamente (Smanalieva & Senge, 2009). White et al. (1962)

demostraron que la concentración de glucosa y el contenido de humedad de una miel

(G/H) ayudan a predecir la tendencia de una miel a la cristalización. Así, para valores de

esta relación inferiores a 1.60 la capacidad de cristalización de una miel es prácticamente

nula o muy lenta, en cambio para valores superiores a 2 es más rápida y completa.

Además de estos factores, el fenómeno de la cristalización también estará condicionado

por la presencia en la miel de “semillas o núcleos de cristalización”, como son: granos de

polen, partículas de cera, impureza, burbujas de aire, etc.

Un problema asociado a la cristalización es la fermentación, algunas mieles cristalizan

uniformemente y otras parcialmente, formando en muchas ocasiones 2 fases; quedando

los cristales en el fondo y la fase más liquida en la superficie. Cuando esto sucede, en la

parte superior rica en agua se favorece el desarrollo de las levaduras (propias de un

alimento de origen animal, principalmente genero Bacillus), comenzando entonces la

transformación de los azúcares en alcohol y la producción de dióxido de carbono (Zamora

& Chirife, 2006). Es necesario un contenido de 100 levaduras/g miel para que el proceso

tenga lugar, así como un contenido en humedad superior a 20% y una temperatura

ambiente de unos 25ºC (Díaz-Moreno, 2009).

La deshidratación espontanea en un medio ácido como es la miel, especialmente de la

fructosa y de la glucosa, produce un aldehído cíclico llamado hidroximetilfurfural (HMF)

(C6H6O3) (Figura 1.2). Esta reacción se acelera por el calor y el tiempo. La miel recién

extraída con buenas prácticas de manipulación contiene pequeños porcentajes de este

aldehído (0 a 7 mg/kg), sin embargo, se incrementa con el sobrecalentamiento y/o

envejecimiento de la miel, siendo más pronunciado cuanto más ácida es esta (Sancho et

al., 1992). Por este motivo, para garantizar que la miel llegue al consumidor lo más fresca

posible y sin alteración de sus características intrínsecas, la legislación establece que este

parámetro no debe ser superior a 40 mg/kg durante toda la vida útil de la miel. La

destinada a uso industrial y miel de origen procedente de regiones de clima tropical y

mezclas de estas puede llegar a contener un máximo de 80 mg/kg (Tabla 1.3) (Real

Decreto 1049/2003). Es por ello que en las transacciones comerciales, este parámetro se

utiliza como indicador de la frescura de la miel (Fallico et al., 2004).

Page 35: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

5

Figura 1.2.- Reacciones de equilibrio entre la fructosa y el HMF en medio ácido.1: Fructosa, 2: Fructofuranosa, 3–4: Etapas intermedias de deshidratación, 5HMF (Stahlberg et al., 2011).

Humedad

El nivel de agua de una miel contribuye en su peso específico, viscosidad, sabor, calidad

y en definitiva en el valor comercial del producto (Sáenz & Gómez, 2000). Su contenido

está comprendido entre 14 y 21%, con un promedio de 17%. El contenido de agua va a

depender del origen botánico de la miel, las condiciones climáticas, la temporada de

producción, la manipulación humana y las condiciones de almacenamiento, y por todo

ello, va a influir en su calidad final (Gallina et al., 2010). Bajos porcentajes de agua

dificultan la manejabilidad de la miel, por el contrario altos porcentajes pueden propiciar

efectos negativos ya mencionados como es la fermentación. Si una miel llega a la

industria con un alto contenido en agua, propiciado bien por la climatología anual o por

una extracción prematura del panal, existe el riesgo de que posteriormente en el

almacenamiento pueda fermentar por levaduras osmófilas. Aunque esto no ocasiona

ningún peligro de salud para el consumidor, invalidará el producto para su

comercialización, con la consecuente pérdida económica para la industria (tiempo y

dinero). Con valores de humedad <17.1% desaparece prácticamente este peligro. Sin

embargo, con valores por encima de este nivel la posibilidad de fermentación aumenta

considerablemente en función de la carga microbiana (Belitz & Grosch, 1997).

Enzimas

Las enzimas son componentes minoritarios de la miel, cuya presencia diferencia

claramente la miel de otros edulcorantes. Algunas de ellas son introducidas por las abejas

procedentes de su tracto gastrointestinal y otras proceden del néctar o mielatos (Anclan,

1998). Las enzimas son las encargadas de transformar los azúcares del néctar o de los

mielatos. Las diastasas (α-amilasas), son enzimas transformadoras de almidón, que

proceden tanto de la abeja como del néctar. No está clara su función en el proceso de

obtención de la miel, ya que el néctar no contiene almidón (White, 1978; Ropa, 2010),

aunque al parecer estas enzimas participa en la digestión del polen (del Baño-Breis,

Page 36: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

6

2000). La invertasa (α-glucosadas), de origen animal, es la encargada de desdoblarla

sacarosa en fructosa y glucosa (E 1).

C12H22O11 +H2O ------ C6H12O6 +C6H12O6 Eq. (1)

Las mieles frescas no procesadas de diferentes procedencias florales presentan grandes

variaciones en su actividad diastásica (Tabla 1.2). Esta variación es debida a las diferencias

de pH entre mieles, a la cantidad de néctar que procesan las abejas en un momento dado

y a las diferencias en la forma de recolección de cada abeja pecoreadora (Nacional Hoyen

Borde, 2015). Aunque de manera general las enzimas son sensibles al calor, la diastasa es

relativamente estable al calor y al almacenamiento, por el contrario la invertasa es mucho

más susceptible. Estas dos enzimas juegan un papel muy importante en la calidad de la

miel y son usadas como indicadoras de la pérdida de su frescura (Bogdanov, 2011), tanto

por envejecimiento como por un excesivo calentamiento durante su procesado. Cabe

destacar que la legislación solo contempla la actividad de la diastasa, aun siendo la más

estable al calor. Esto unido al hecho de la gran variabilidad que presenta esta enzima en

los diferentes tipos de miel, hace pensar que su nivel no está muy correlacionado con la

calidad de la miel (Visquert, 2015). Aun así, la legislación, para preservar la naturaleza

biológica de la miel, establece que el contenido enzimático de diastasas no deberá ser

menor de 8 ID (escala Schade), salvo en el caso de mieles que por su origen de manera

natural tienen bajo contenido enzimático (p.e. miel de cítricos), en cuyo caso este valor

no debe ser menor de 3 ID.

La glucosa-oxidasa, de origen animal, actúa sobre la glucosa para producir ácido glucónico

y peróxido de hidrogeno. Este compuesto actúa como antibacteriano protegiendo a la

miel hasta que esté madura (Eq 2). Es una enzima sensible a la luz, que está activa en el

néctar, pero inactiva en la miel, aunque puede volver a activarse si la miel es diluida. Otras

enzimas como la fosfatasa acida y la catalasa se encuentran también presentes en las

mieles (White, 1978; Crane, 1990; Sáenz & Gómez, 2000).

D-glucosa + O2-----D-gluconolactona----- ácido glucónico+H2O2 Eq. (2)

La fosfatasa ácida, está presente principalmente en el polen, aunque también en el

néctar. Esta enzima está relacionada con la fermentación de la miel, de manera que

aquellas presenten mayores valores de actividad de esta enzima tendrán una mayor

tendencia a fermentar. Dicha actividad está fuertemente influenciada por el pH de la

miel, por lo que a mayores valores de pH, mayor es su actividad.

El estudio de la actividad enzimática de una miel puede ayudar a detectar cierto tipo de

adulteraciones. En ocasiones se adiciona fraudulentamente a la miel jarabes de azúcares

invertidos (HFCS) (producidos enzimáticamente a partir de -amilasay-amilasa), o bien

Page 37: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

7

se adicionan directamente enzimas (-fructofuranosidasa) para compensar la

disminución de actividad enzimática por la adición de estos jarabes.

Tabla 1.2.- Contenido diastásico en mieles de diferentes orígenes. Unidades expresadas como valores de la escala Schade.

Origen floral Índice diastasico (ID)

Azahar 4.25 Trébol 5.73 Pimienta 13.2 Milflores 22.0 Eucalipto 24.0 Trigo sarraceno 36.8

Un método que posibilita la detección de algunos de estos enzimas ajenos a la miel, se

basa en la comparación de la actividad enzimática (diastasa) antes y después de someter

la miel a un tratamiento térmico; éste destruye completamente la diastasa y no a las

enzimas adicionadas. Si después del tratamiento se detecta actividad enzimática, ésta es

debida a la presencia de las enzimas resistentes adicionadas en la adulteración. Para

poner de manifiesto la adulteración de la miel por adición de siropes de azúcar invertido

tipo C3, se evalúa la presencia de la enzima -fructofuranosidasa, mediante la detección

cromatográfica de los metabolitos que ésta produce a partir de la adición de un sustrato

específico.

Compuestos aromáticos

Los compuestos volátiles (ácidos alifáticos y aromáticos, aldehídos, cetonas y alcoholes,

etc.), junto con los azúcares, los ácidos de la miel, así como ciertos componentes del

néctar contribuyen definitivamente en su aroma y sabor. Muchos estudios se han llevado

a cabo en las últimas décadas en relación a los componentes volátiles de las diferentes

variedades de mieles y distintas procedencias (Radovic et al., 2001; Soria et al., 2003; De

la Fuente, 2005; Castro-Vázquez et al., 2009). En algunos de ellos la caracterización de la

fracción volátil ha ayudado en la autentificación de su origen botánico (Kadar et al, 2011).

Un ejemplo claro de este hecho lo encontramos en la miel de azahar (Citrus spp.), que se

caracteriza por la presencia en ella del metilantranilato (MA). Se trata de un compuesto

volátil específico del néctar de la miel de cítricos, y característico de aroma propio de su

flor (ISO 5496,2006). Su presencia en la miel indica que las abejas han recogido el néctar

de las flores de cítricos (White & Bryant, 1996; Castro-Vázquez et al., 2007). Por esta

razón el MA ha sido y sigue siendo usado como marcador de este tipo de mieles y puede

ser una buena herramienta para la clasificación de la miel de azahar cuando el nivel de

contenido en polen es muy bajo, como suele suceder en este tipo de mieles (Sesta et al.,

2008).

Page 38: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

8

Antioxidantes en la miel

La miel fresca posee una actividad antioxidante significativa, similar a la de muchas frutas

y verduras (Gheldof et al., 2002). Las plantas contienen una variedad de derivados

polifenólicos, y por lo tanto, cuando las abejas recogen el néctar o los mielatos, estos

compuestos bioactivos son transferidos de las plantas a la miel (Silici et al., 2010). Los

compuestos fenólicos, antioxidantes naturales, (especialmente flavonoides) constituyen

un grupo importante por sus propiedades funcionales y su importancia terapéutica (Yao

et al., 2004). Mieles con altos niveles de antioxidantes, pueden contribuir a mejorar la

salud humana (Oroian & Escriche, 2015).

Varios estudios han demostrado una fuerte correlación entre el contenido de

compuestos fenólicos en mieles de diversas fuentes florales, sus capacidades

antioxidantes y actividades antibacterianas (Gheldof et al., 2002; Meda et al., 2005;

Escriche et al., 2011; Álvarez -Suárez et al., 2012; Escuredo et al., 2012).

Otros componentes

Además de los anteriormente citados, la miel contiene otros componentes entre los que

destacan: aminoácidos, ácidos, proteínas y minerales. Los aminoácidos libres están

presentes en aproximadamente 100 mg/100 g materia seca. Entre éstos destaca la

prolina (procedente de las abejas) que constituye entre el 50 y 85% de esta fracción

aminoacídica. El ácido más abundante es el ácido glucónico, aunque también están

presentes otros como: acético, butírico, cítrico, fórmico, láctico, málico, piroglutámico, y

succínico. La presencia de estos ácidos le confiere el pH ácido a la miel, comprendido en

un rango de 3.4 a 6.1. Este medio ácido inhibe la presencia y crecimiento de

microorganismos. Las proteínas en la miel representan una cantidad muy pequeña y su

presencia está ligada, mayoritariamente a los granos de polen que se encuentran en ella;

su contenido aproximado es de 0.26 g/100 g de proteínas. El contenido en sales minerales

varía notablemente con relación al origen botánico, a las condiciones edáfico-climáticas,

así como a las técnicas de extracción; oscila entre 0.1 y 0.2 %, siendo el elemento

dominante el potasio, seguido de: cloro, azufre, sodio, calcio, fósforo, magnesio,

manganeso, silicio, hierro y cobre (Belitz & Grosch, 1997). Algunos autores han observado

correlación entre el contenido en minerales y el color de las mieles (González-Miret,

2005).

Page 39: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

9

1.2.-Marco legislativo

Los criterios de calidad para la miel están definidos tanto por el Codex Alimentarius (2001)

para la miel como por la Comisión Europea (Directiva 2001/110/CE), con escasas

diferencias entre ellos. El Codex es un referente internacional que ha servido de base

para elaborar normas más específicas a nivel de cada país (Oyarzun et al., 2005). En

ambos estándares se describen los parámetros de calidad de la miel, definiendo sus

mínimos y máximos. En España, el Real Decreto 1049/2003, transposición de la citada

Directiva, establece la norma relativa a la calidad de la miel y define los criterios de

diferentes parámetros físico-químicos (comentados en el apartado 1.1.2) (Tabla 1.3), así

como otras condiciones que deben de cumplir las mieles vendidas en el territorio

español. Se recoge que la miel vendida como tal no debe tener ningún ingrediente

(incluyendo aditivos alimentarios), no debe contener nada que no sea miel. Asimismo, no

debe presentar ningún aroma o sabor que provenga de su procesado o almacenamiento.

Tampoco debe presentar principios de fermentación o estar fermentada. La miel no debe

ser sometida a calentamiento hasta tal punto que éste le pueda inducir cambios

esenciales en su composición o daños en su calidad.

Los métodos analíticos para el análisis de los parámetros fisicoquímicos, son recogidos

por la legislación española en el BOE 145 (1986). Además, también se han publicado

métodos revisados y recopilados por la Comisión Internacional de la Miel (IHC) (Bogdanov

et al., 2002). La IHC se constituyó en el año 1990 con la finalidad de desarrollar y mejorar

las normas relativas a los estándares de calidad de la miel.

Los criterios de calidad recogidos en las diversas normativas se centran en tres conceptos:

autenticidad, frescura y seguridad.

Page 40: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

10

Tabla 1.3.- Características composicionales de la miel según los estándares europeos (Directiva 2001/110/CE).

Contenido de azúcares

-Contenido de fructosa y glucosa (suma de ambas)

Miel de flores…………………………………………………………………………………….……. ≥60 g/100 g

Miel de mielada, mezclas de miel de mielada con miel de flores….……….… ≥ 45 g/100 g

-Contenido de sacarosa

En general……………………………………………………………………………………….….…. ≤5 g/100 g

Falsa acacia (Robinia pseudoacacia), alfalfa (Medicago sativa), Banksia de

Menzies (Banksia menziesii), Sulla (Hedysarum), Eucalipto rojo

(Eucalyptus camaldulensis), Eucryphia lucida, Eucryphia milliganii, Citrus

spp. …………………………………………………………………..……………………….…………..

≤10 g/100 g

Espliego «Lavandula spp.», borraja «Borago officinalis»…………..….…………

≤15 g/100 g

Contenido de agua

En general……………………………………………………………………………….…………………….. ≤20%

Miel de brezo «Calluna» y miel para uso industrial en general………....….… ≤23%

Miel de brezo «Calluna vulgaris » para uso industrial……………………….……….

≤25%

Contenido de sólidos insolubles en agua

En general………………………………………………………………………………………………….….. ≤0,1 g/100 g

Miel prensada………………………………………………………………………………….…………....

≤0,5 g/100 g

Conductividad eléctrica

Miel no incluida en la enumeración de los dos párrafos más abajo indicados, y

mezclas de estas mieles……………………………………………………………….……….……....

<0,8 mS/cm

Miel de mielada y miel de castaño, y mezclas de éstas, excepto con las mieles

que se enumeran a continuación…………………………………….…..…………………………

≥0,8 mS/cm

Excepciones: madroño «Arbutus unedo», argaña «Erica», eucalipto, tilo «Tilia

spp», brezo «Calluna vulgaris», manuka o jelly bush «Leptospermum», árbol

del té «Melaleuca spp.»

Ácidos libres

En general………………………………………………………………..……………….…………….…..… ≤50 miliequivalentes

de ácidos/ kg

Miel para uso industrial………………………………………..…………………………………….…. ≤80 miliequivalentes

de ácidos/ kg

Índice diastásico (escala de Schade)

En general, excepto miel para uso industrial…………………..…………….…….……….. no menos de 8

Mieles con un bajo contenido natural de enzimas (por ejemplo, mieles de

cítricos) y un contenido de HMF no superior a 15 mg/kg………………………….…..

no menos de 3

HMF

En general, excepto miel para uso industrial…………………………….………….………… ≤40 mg/kg

Miel de origen declarado procedente de regiones de clima tropical y mezclas

de estas mieles……………………………………………………………………………………..……….

≤80 mg/kg.

Page 41: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

11

1.2.1. Autenticidad y frescura

La miel al ser un edulcorante con precio elevado ha sido y es hoy día muy susceptible de

adulteraciones y fraudes. La miel adulterada apareció en el mercado mundial en la

década de 1970, coincidiendo con el desarrollo industrial de los jarabes provenientes de

materias primas vegetales como los de maíz de alta fructosa (JMAF) (Cordella et al.,

2002). Datos recientes publicados por la Comisión Europea demuestran que la miel sigue

siendo objeto de estos fraudes (Parlamento Europeo, 2013). Según este estudio, la miel

ocupa la sexta posición entre los diez alimentos con mayor riesgo de sufrir fraude

alimentario (aceite de oliva, pescado, alimentos ecológicos, leche, cereales, miel y jarabe

de arce, café y té, especias, vino y zumos de frutas). En la última década la miel

adulterada, procedente mayoritariamente de países terceros como China, están

causando un importante problema para el sector, por la competencia desleal que esto

implica (White, 2000; Bogdanov & Martin, 2002; Chen et al., 2011). La Tabla 1.4 muestra

como ejemplo algunas de las alertas alimentarias que al respecto han tenido lugar en los

últimos años.

Tabla 1.4.- Alertas relativas a mieles adulteradas de venta en comercios de distintos países.

Origen Fecha publicación

Malasia 2 octubre 2012

Nueva Zelanda 12 junio 2012

Nueva Zelanda 21 mayo 2012

Arabia Saudí 6 febrero 2013

Turquía 30 marzo 2013

Turquía 3 octubre 2011

Vietnam

12 septiembre 2012

Fuente: FDA (USA)

La extracción prematura de la miel del panal también implica un fraude ya que la

legislación define a la miel como “la sustancia natural….., que las abejas recolectan,

transforman combinándolas con sustancias específicas propias, depositan, deshidratan,

almacenan y dejan en colmenas para que madure” (Directiva 2001/100/CE; Real Decreto

1049/2003). La miel debe de madurar dentro del panal, y solo debe ser extraída por el

apicultor en el momento adecuado de maduración. Si se recolecta antes de tiempo, la

sustancia azucarada resultante tiene un elevado contenido en agua, llegando fácilmente

a sobrepasar el 25%. Este tipo de fraude, se ha observado también en mieles procedentes

de China y probablemente en otros países (Bogdanov & Martin, 2002).

El ultrafiltrado de la miel, tiene por objeto quitar su polen para impedir identificar la

fuente botánica y/o geográfica de la misma. Esta práctica dificúltala detección de posibles

fraudes, bien sea en la declaración del país o países de origen o bien en la variedad

Page 42: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

12

botánica expresada en la etiqueta; impidiendo por consiguiente su trazabilidad. Es un

procedimiento que requiere de alta tecnología, en el que la miel se calienta generalmente

diluida con agua, y se fuerza a pasar, a alta presión, a través de unos filtros de malla muy

pequeña, finalmente el exceso de humedad es eliminada. En el mercado de Estados

Unidos durante años se han encontrado mieles filtradas (Schneider, 2011).

Por ello, para proteger a la miel recientemente la unión europea modificó una parte de

la Directiva 2001/110/CE, estableciendo en la nueva Directiva 2014/63/UE que la

eliminación parcial o total del polen de la miel está específicamente prohibida y aduce

que “el polen entra en la colmena como resultado de la actividad de las abejas y está

presente en la miel de forma natural, con independencia de que los explotadores de

empresas alimentarias extraigan o no esa miel”.

Métodos analíticos para la detección de adulteraciones en miel

La Comisión Europea 2001/110/EC, con la finalidad de asegurar un negocio justo,

proteger a los consumidores del fraude y mantener un alto nivel de capacidad de su

identificación, está fomentando la investigación y el desarrollo de métodos analíticos que

faciliten la detección de dichas prácticas. Una parte importante del trabajo de la Comisión

Internacional de la Miel (IHC) en los últimos años se ha centrado en cuestiones relativas

a la autenticidad de la miel.

Son muchos los trabajos publicados por diferentes autores en relación a la aplicación de

técnicas analíticas que permiten detectar las adulteraciones de la miel; sin embargo,

ninguna de dichas técnicas resulta concluyente por si misma ya que, tal y como se ha

comentado, son muy diferentes los procedimientos llevados a cabo para realizar tales

adulteraciones: incorporación de jarabes (jarabes de maíz, de caña de azúcar, de agave,

etc.), adición de enzimas, incorporación de colorantes, extracción prematura de la miel

del panal, etc. Además, como sucede siempre, “la técnica de la adulteración” va siempre

un paso por delante de la de la “técnica de la detección”.

Entre las diferentes técnicas que actualmente existen para la detección de adulteraciones

en la miel cabe mencionar:

Estudio del residuo microscópico. Esta técnica se emplea como un primer

cribado para identificar la adición de jarabes de caña de azúcar o de maíz,

evaluando en la miel el residuo microscópico presente (Kerkvliet & Meijer, 2000)

y posteriormente verificando con la medida de su relación isotópica 13C/12C de

miel y su proteína (Simsek et al., 2012; Tosun, 2013).

Métodos isotópicos a través de la resonancia magnética nuclear (SNIF-NMR) que

permiten obtener los espectros característicos de la miel sin adulterar (Cote et

al., 2003). Posteriormente, se comparan éstos con las mieles sospechosas de

estar adulteradas.

Page 43: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

13

Evaluación del perfil de azúcares por métodos cromatográficos. Esta técnica es

especialmente recomendada para la detección de jarabes de remolacha (Elflein

& Raezke, 2005; Cabañero et al., 2006).

Espectroscopía de infrarrojos, por transformada de Fourier, que combinada con

análisis multivariantes son capaces de determinar el nivel de adición de azúcar

a la miel (fructosa, sacarosa y jarabe de maíz) (Sivakesava & Irudayaraj, 2001;

Kelly et al, 2006).

Cromatografía capilar de gases (GC) para la detección de oligosacáridos ajenos

a la miel. Especialmente útil para adición de jarabes de maíz ricos en fructosa

(HFCS) (Low & South, 1995).

Determinación de glicerol, butanediol y etanol mediante test enzimáticos que

permitirá determinar adulteración por “miel inmadura”. Se admite un máximo

de 300 mg/kg de glicerol para mieles de néctar y un máximo de 150 mg/kg de

etanol para mieles de néctar españolas e italianas Además estas técnicas se

complementan mediante la detección de altos niveles de levaduras muertas por

microscopía óptica. (Huidobro et al., 1994; Flores et al., 2002).

1.2.2. Seguridad

En materia de seguridad la miel, al igual que cualquier otro alimento, no debe contener

microorganismos o residuos químicos que puedan alterar la salud del consumidor.

Debido a la baja aw de la miel, desde el punto de vista microbiológico es muy estable y no

contiene microrganismos tóxicos. La única excepción puede ser la presencia de esporas

de Clostridium botulinum, motivo por el cual las empresas envasadoras suelen indicar en

la etiqueta que el producto no es apto para niños menores de 1 año.

Residuos químicos y su determinación

En lo que respecta a la presencia de residuos, la miel puede tener sustancias químicas

procedentes tanto de los tratamientos veterinarios (contaminación directa) como de la

contaminación agrícola (contaminación indirecta). Las abejas padecen enfermedades

infecciosas, y en ciertas ocasiones los apicultores se ven obligados a aplicar

medicamentos veterinarios. Las que más problemas causan a la apicultura a nivel

mundial, por afectar a larvas y pupas, son la Loque americana (AFB) producida por el

bacilo Paenibacillus larvae y la Loque europea (EFB) producida por la bacteria no

esporulante Melissococcus pluton (Hammel et al., 2008). Para el tratamiento de AFB se

utilizan compuestos de la familia de las sulfamidas y para la EFB se usan las tetraciclinas,

ya que las sulfamidas no tienen acción curativa para esta última (Mundo Apícola,

2012).Actualmente en la Unión Europea no se han fijado límite máximos de residuos

(LMR) para medicamentos veterinarios en los productos de la colmena, lo que significa

que éstos compuestos nunca deben estar presentes por encima del límite de

cuantificación del método analítico utilizado (Maudens et al., 2004). A pesar de su

Page 44: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

14

prohibición, no es infrecuente la utilización de sulfonamidas y otros antibióticos con fines

sanitarios apícolas.

Por otro lado, la abeja melífera se ve afectada por la presencia de parásitos que

disminuyen su producción, y en mayor medida provocan su muerte. El más importante

es el ácaro Varroa destructor (Anderson & Trueman, 2000), considerado como la más

problemática plaga de Apis mellifera en el mundo, la varroasis (Sammataro & Finley,

2004). Este ácaro provoca pérdidas directas de producción e indirectas en la polinización

de cultivos (Ledoux et al., 2000). El ácaro parasita las larvas de abeja en la propia celdilla

y, desde ese momento, la abeja llevará el parásito que, además de alimentarse de su

hemolinfa, le producirá un tremendo desgaste energético durante el pecoreo, llevándola

hasta la extenuación y por consiguiente a su muerte (Willians, 2000). La varroasis se ha

expandido con el tiempo y hoy se encuentra presente en todas las regiones de

importancia apícola. Para luchar contra este parásito se utilizan diferentes pesticidas con

acción acaricida. Entre los principios activos más usados actualmente en España

encontramos el coumafos (organofosforado), el amitraz (amidina) y el tau-fluvalinato

(piretroide). Los organofosforados y piretroides inhiben la transmisión de estímulos en el

sistema nervioso de los ácaros (Simon-Delso, 2015; Soderlund, 2012). Las amidinas son

antagonistas de los receptores de la octopamina en el cerebro de los parásitos,

provocando hiperexcitabilidad, seguidamente parálisis y muerte. Al aplicar estos

tratamientos en la colmena, si no se llevan a cabo de manera adecuada, pueden aparecer

posteriormente sus residuos en la miel.

La vía indirecta que ocasiona la presencia de residuos en la miel es la debida a los

tratamientos agrícolas llevados a cabo porros agricultores para proteger a los cultivos de

plagas y enfermedades (Kujawski & Namiesnik, 2008).Las abejas entran en contacto con

estos plaguicidas agrícolas durante la actividad de recogida del néctar (en un radio de 3-

6 km de la colmena) (Beekman & Ratnieks, 2000; Rial-Otero et al., 2007). Alrededor del

80% de los insecticidas agrícolas que se usan actualmente en Europa son

organofosforados y carbamatos (Blasco et al., 2011). En los últimos años han aparecido

otros insecticidas llamados neocotinoides, que vienen siendo muy usados, por presentar

una serie de ventajas en la agricultura: son altamente eficaces, selectivos, de efecto

prolongado y no presentan resistencia cruzada como los carbamatos, organofosforados

o piretroides sintéticos. Sin embargo cuando la abeja entra en contacto con los

insecticidas neonicotinoides su sistema nervioso central se ve afectado, provocando su

desorientación y muerte por su incapacidad de volver a la colmena, ya que son agonistas

en los receptores postsinapticos del receptor de la acetilcolina nicotínica del sistema

central de los insectos (Taner & Czerwenka, 2011).

La combinación de la exposición a dosis subletales de pesticidas, y la presencia de la

varroasis, junto con otros problemas que pueda tener la colmena, a menudo producen

un efecto sinérgico sobre el comportamiento de las abejas provocando su muerte,

originando lo que se viene denominando como síndrome de despoblamiento o

Page 45: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

15

disminución de las abejas en la colmena (Colony Collapse Disorder, CCD) (Williamson &

Wright, 2013.; Van Engelsdorp et al., 2009). Los dos últimos años han sido dramáticos en

relación al CCD, ya que un elevado número de colmenas lo mostraron provocando una

disminución de su rendimiento entre el 30 y el 50%. Este hecho ha determinado que este

episodio, en muchos casos, haya sido el más grave desde el primer embate de la varroa

a finales de los años 80 (Calatayud & Simó, 2015).

Control de los residuos

Actualmente, a este respecto, se exige el cumplimiento del Plan de Control de Residuos

acordado por la Unión Europea y llevado a cabo por la Autoridad Europea de Seguridad

Alimentaria (EFSA). Con ello, se persiguen los siguientes objetivos: garantizar la

protección de la salud humana, controlar y vigilar las transacciones de alimentos de

acuerdo a la ley, y facilitar el comercio mundial de piensos y alimentos seguros y

saludables; todo ello teniendo en cuenta las normas y acuerdos internacionales. Cuando

los pesticidas son usados de la manera recomendada, no deberían implicar un riesgo para

el consumidor. Sin embargo, una mala aplicación de los mismos (dosis, procedimiento,

período, etc.) podría causar la contaminación del aire, agua, suelos además de las

especies animales (García-Chao et al., 2010) y de sus productos. En la UE, desde

septiembre de 2008, ha entrado en vigor el Reglamento que establece las normas

revisadas sobre los residuos de plaguicidas (Reglamento CE 396/2005). En la base de

datos de la página web de la Comisión Europea (EU Pesticides database, 2015) se

encuentran los límites máximos de residuos (LMR) relativos a todas las matrices

alimentarias y a todos los plaguicidas. Los LMR establecidos de los diferentes pesticidas

para la miel abarcan un rango de concentraciones que van desde 10 hasta 50 g/kg. Por

otro lado el Reglamento 37/2010 sobre tratamientos farmacológicos en animales

productores de alimentos, en relación a las abejas (tejido diana: la miel) fija los límites

máximos de 2 productos acaricidas: el amitraz (puede estar presente hasta un máximo

de 200 g/kg) y el coumafos (puede estar presente hasta un máximo de 100 g/kg).

Métodos analíticos de control de residuos químicos. Validación

Para evitar introducir estos residuos en la cadena alimentaria y reducir riesgos para la

salud humana, el control de su presencia en la miel es un requisito fundamental de

seguridad alimentaria (Bargańska et al., 2013). Entre las diferentes técnicas analíticas que

se utilizan con este propósito, destacan el test Elisa y el Charm como técnicas cualitativas

(screening), ambas ampliamente establecidas para el análisis de sulfamidas y antibióticos.

Asimismo, existen diversos métodos cuantitativos tanto para el análisis de antibióticos,

sulfamidas y pesticidas. Entre estos métodos cabe destacar la cromatografía líquida y de

gases, unidas a diferentes técnicas de detección, como son de ultravioleta (Viñas et al.,

2004; Carrasco-Pancorbo et al., 2008), de fluorescencia (Pang et al., 2005; Tsai et al.,

2010) o de espectrometría de masas (MS/MS) (Kaufman et al., 2002; Khong et al., 2005;

Pang et al., 2006). Actualmente la técnica de elección es LC-MS/MS junto con GC-MS/MS,

Page 46: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

16

ya que permiten la cuantificación de residuos (a niveles de concentraciones de g/kg)

con una alta sensibilidad y selectividad en matrices biológicas.

Los laboratorios analíticos que se dedican al análisis de residuos químicos tienen la

obligación de validar los métodos analíticos antes de su aplicación. En este sentido, hay

que realizar una serie de comprobaciones que aseguren que el método es

científicamente correcto en las condiciones en que va a ser aplicado. En el proceso de

validación se deben comprobar sus características técnicas en cuanto a selectividad y

especificidad, sensibilidad, linealidad, límite de detección, límite de cuantificación,

exactitud y precisión. El proceso para determinar la exactitud de los métodos se lleva a

cabo con materiales de referencia certificados, si es posible, o con muestras enriquecidas

artificialmente en el caso de no disponer de los materiales de referencia adecuados. La

precisión del método se calcula mediante el análisis repetido de una misma muestra.

Respecto al control de calidad externo, el laboratorio debe participar en ejercicios de

intercomparación y ensayos de aptitud que se organizan a nivel nacional e internacional

en el contexto de los métodos a validar considerando tanto el tipo de matriz como de

analito.

Con respecto a la validación del método, existen guías, proporcionadas por diferentes

organizaciones: la Directiva 2002/657/EC, la guía Sanco, la International Conference for

Harmonization (ICH, 1996), la guía Eurachem (2014). Todas ellas presentan ligeras

variaciones, sin embargo, tienen un objetivo común: establecer un sistema armonizado

de aseguramiento de la calidad para asegurar la exactitud y la comparabilidad de los

resultados analíticos.

La Directiva 2002/657/EC, relativa al funcionamiento de los métodos analíticos y la

interpretación de los resultados, establece una serie de requisitos para llevar a cabo la

validación de métodos analíticos tanto cualitativos como cuantitativos. En ella se definen

los criterios de funcionamiento y otros requisitos que son función de la técnica usada,

para la detección y cuantificación (LC-UV-Vis, LC-fluorimetría, ICP-MS, LC-MS/MS,…). Para

demostrar que el método analítico cumple los criterios de funcionamiento la citada

directiva establece los parámetros que hay que estudiar e indica que la validación puede

realizarse a través de un estudio interlaboratorios, o de acuerdo con métodos

alternativos en un solo laboratorio, o mediante la validación interna (Tabla 1.5).

El Comité sobre Residuos de Plaguicidas (CCPR, 2013) de la Comisión del Codex

Alimentarius (FAO y OMS) en relación al Programa conjunto sobre Residuos de

Plaguicidas para su control en los alimentos, considera que la guía SANCO/2007/3131

ofrece una cobertura en profundidad de la validación de métodos para residuos de

plaguicidas. El documento SANCO Validación de métodos y procedimientos del control de

la calidad para el análisis de residuos de plaguicidas en los alimentos y los piensos

contiene directrices sobre criterios de rendimiento, incluyendo límites de recuperación y

precisión. Abarca las exigencias y evaluaciones a aplicar a los datos obtenidos de los

Page 47: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

17

métodos de análisis. Además la guía, en respecto a la utilización de técnicas de

espectrometría de masas, especifica los requisitos necesarios, en relación a las

intensidades relativas de los iones obtenidos, para la identificación de compuestos y sus

tolerancias máximas.

Tabla 1.5.-Criterios de validación de métodos analíticos según la Directica 2002/657/EC.

Parámetros a evaluar independientes del método

Parámetros a evaluar dependientes del método

Especificidad La recuperación Veracidad Respetabilidad Robustez: cambios menores Reproducibilidad intralaboratorio Estabilidad Reproducibilidad

El límite de decisión (CCα) Capacidad de detección (CCβ) Curvas de calibración Robustez: cambios importantes

1.3.-Clasificación industrial de la miel

1.3.1. Métodos tradicionales en la clasificación de mieles

El origen botánico del néctar o de los mielatos empleados por las abejas para producir

miel será determinante en sus características y propiedades organolépticas. La miel de

flores, se puede clasificar en: a) miel unifloral o monofloral, cuando el néctar procede

principalmente de un especie botánica, de la que toma el nombre (miel de colza, miel de

romero, miel de azahar, miel de girasol, miel de cantueso, miel de castaño, etc.) y b) miel

multifloral, polifloral o milflores, que es aquella procedente del néctar de diversas

especies botánicas, sin que predomine ninguna de ellas. Por otro lado cuando la materia

prima no ha sido el néctar, la miel se puede denominar como “miel de mielada”. Estas

mieles contienen menor número de pólenes de plantas entomófilas y una cantidad mayor

de pólenes de plantas anemófilas, restos de hifas, esporas de hongos y algas verdes

indicadoras de mielada. Se suelen considerar como bioindicadores de mielada

determinadas clorofíceas (algas verdes) del género Pleurococcus y, en menor medida,

especies de los géneros Chlorococcus y Cystococcus y que normalmente aparecen

agrupas en estructuras “coloniales” denominadas cenobios (Garcia-Pérez, 2003).

Las mieles monoflorales son importantes en el mercado de la miel, por tener un mayor

valor añadido. Su producción depende tanto del apicultor, de la gestión que este hace a

través de la selección del sitio y de la recolección selectiva, como del industrial que mezcla

diferentes mieles para conformar lotes homogéneos. El aumento de los niveles de

Page 48: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

18

exigencia por parte del consumidor y la apreciación que este tiene por la mieles

monoflorales, están abriendo nuevos nichos de mercado, que presentan una

oportunidad para el sector de la miel. En España y otros países como Italia y Francia casi

la mitad de la miel comercializada tiene una denominación botánica.

Las diversas denominaciones botánicas deben ser verificables, a fin de proteger al

consumidor, y de preservar la genuinidad de las mismas. Tanto el estándar para la miel

Codex Alimentarius (Codex Alimentarius, 2001) como el europeo (Comisión Europea,

2002) permiten usar denominaciones específicas para las mieles producidas a partir de

fuentes botánicas concretas (miel de romero, miel de eucalipto, miel de girasol,…),

siempre que éstas procedan esencialmente del origen indicado y tengan las

correspondientes características fisicoquímicas, organolépticas y microscópicas

(Persano-Oddo & Bogdanov, 2004). Sin embargo, aunque estas normas especifican

algunos límites para la denominación de miel de flores y mieles de mielada, no establecen

ningún criterio legal para mieles monoflorales, por lo tanto no garantizan un control

eficaz de la monofloralidad para estas denominaciones. Algunos autores (Gómez-Pajuelo,

2004; Sáenz & Gómez, 2000) así como ciertos laboratorios europeos han establecido

límites para las mieles monoflorales, que pueden servir como control de calidad a nivel

nacional, pero presentan el inconveniente de que estos límites pueden variar entre

países, lo que implica una dificultad para el comercio internacional de este tipo de mieles.

Existen D.O. que especifican que para que una miel pueda ser considerada como

monofloral de una especie botánica, ésta debe tener un mínimo porcentaje de polen de

dicha variedad de miel. Por ejemplo, están reconocidas entre otras, con una calidad

diferenciada mediante D.O.P. las mieles españolas de Granada, La Alcarria, Tenerife y

Villuercas-Ibores; con I.G.P. las mieles de Galicia; con Marcas de Calidad de comunidades

autónomas la miel de azahar y la miel de romero con Marca C.V., etc. Cabe mencionar

que a menudo, la importación de ciertas mieles monoflorales ha sido rechazada debido

al incumplimiento de los límites locales (Persano-Oddo & Bogdanov, 2004).

No es fácil definir una miel como monofloral, ya que como se ha dicho no hay referencia

de mieles puras monoflorales, puesto que las abejas pecorean siempre en diferentes

especies botánicas incluso cuando hay una especie predominante. Ciertos tipos de mieles

pueden ser producidos en varios países con diferentes niveles de 'unifloralidad', a raíz de

la mayor o menor presencia de la planta correspondiente, y esto puede conducir a una

percepción ligeramente diferente, de un país a otro. El enfoque clásico para verificar la

denominación botánica de la miel tiene en cuenta tres metodologías complementarias,

el análisis sensorial, el físico-químico y el melisopalinológico. La decisión de clasificar una

miel como monofloral se debe basar en una interpretación global delos resultados

obtenidos por estas tres metodologías. Este enfoque clásico para la definición de mieles

monoflorales conlleva el uso de técnicas laboriosas que deben ser llevadas a cabo por

personal experto. Este hecho es especialmente evidente en el análisis del polen, ya que

los técnicos encargados de esta tarea deben tener amplia experiencia en el

Page 49: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

19

reconocimiento de la morfología y otros aspectos de los pólenes de las diferentes

especies botánicas. El técnico también debe ser conocedor de los aspectos sensoriales

característicos de las diferentes variedades de miel. A pesar de la problemática

relacionada con estas dos metodologías, en la actualidad la industria sigue utilizándolos

para la clasificación botánica de las mieles como parte del control rutinario realizado en

la etapa de recepción.

Análisis melisopalinológico

La miel contiene células de polen como consecuencia del arrastre por adhesión al cuerpo

de la abeja. Este hecho es precisamente el fundamento del análisis polínico, que asume

que una determinada cantidad del polen de cada especie, permanece en la miel, y por lo

tanto a partir de su estudio es posible conocer su origen floral. En definitiva, el polen

proporciona una buena huella digital de la procedencia botánica, así como del medio

ambiente donde esa miel ha sido cosechada. El estudio y reconocimiento microscópico

de la morfología de los granos de polen de las diferentes especies botánicas, y la

asignación de las frecuencias relativas de aparición de las mismas, con la finalidad de

asignar una variedad a la miel, es lo que se denomina melisopalinología. Por lo tanto, el

análisis de polen es útil tanto para determinar el origen botánico de las mieles como de

la zona geográfica de procedencia (Persano Oddo & Bogdanov, 2004).

No existe un método oficial para llevar a cabo este análisis. La International Commission

for Bee Botany en 1978 elaboró y publicó un método melisopalinológico (Louveaux et al.,

1978), y aunque posteriormente diversos autores propusieron otras metodologías, hoy

en día sigue siendo un método establecido en la mayoría de los laboratorios europeos

que realizan controles de calidad rutinarios a la miel. En 2004 Von Der Ohe et al.

implementaron y validaron esta metodología, la consistencia del método fue probada en

un ensayo interlaboratorio en el que participaron 9 países europeos.

El principal punto crítico del análisis melisopalinológico sigue siendo la correcta

identificación del polen y la interpretación posterior de los resultados, así como de la

discriminación de las especies melíferas y/o nectaríferas. Es importante destacar que la

presencia por ejemplo de un 20% de polen de una determinada especie presente en la

miel no indica, sin más, que la miel se ha formado con un 20% de néctar procedente de

dicha planta, sino que esta proporción puede ser mayor o menor. De manera general

para poder definir una miel como monofloral, el contenido de polen de la especie vegetal

dominante deberá ser ≥ 45% (polen predominante). Se establecen excepciones para

especies en las que el polen puede estar supra-representado (castaño, eucalipto o

myosotis, etc.) o infra-representado (azahar, romero, tilo) (Celis & Díez, 1995; Sáenz &

Gómez, 2000).

Aunque no está claramente determinada la relación entre la cantidad de néctar usada

para producir una miel y la proporción de pólenes en el sedimento polínico de ésta, se

Page 50: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

20

sabe que depende de una serie de factores que deben ser tenidos en cuenta, son los

llamados factores primarios, secundarios y terciarios.

El aporte primario es el procedente de la flor en la que pecorea la abeja. Los granos de

polen caen en el néctar de la propia flor, por las acciones mecánicas bien del aire o bien

de ciertos animales. La succión de néctar por parte de la abeja arrastra estos granos en

suspensión. Este fenómeno está influenciado directamente por distintos factores:

la arquitectura floral (flores abiertas, tubulares, cerradas, etc.). Por ejemplo, en el caso de lavandas y cítricos, el polen se deposita en polinias o en los estambres curvados hacia fuera, lo que conlleva a que el néctar contenga poco polen.

coincidencia de la secreción nectarífera con la dehiscencia de la antera.

localización cercana de los estambres a los nectarios.

tamaño y ornamentación de los granos: influyen en la cantidad susceptible de ser filtrada por el proventrículo en el buche melario.

distancia entre la fuente nectarífera y la colmena: a mayor distancia, más tiempo dura la filtración y más se reduce el contenido polínico en la materia prima.

El aporte secundario al sedimento de la miel, se debe a granos de polen presente en el

microambiente que hay en el interior de la colmena. Estos entran a través de la piquera

por corrientes de aire o son traídos en el cuerpo de la abeja al rozar con las anteras.

El aporte terciario, lo constituye el modo de extracción de la miel del panal. El uso de

instrumentos para desopercular los cuadros provoca la apertura de las celdillas con

polen, incorporándose éste a la miel. Este aporte es relevante, sobre todo en aquellos

casos en que la extracción se realiza por prensado de los panales o tipo de colmena,

debido a que las celdillas que contienen polen (si las hay) son también procesadas y su

contenido pasa a formar parte del producto final. A partir de extracciones por

centrifugación, el aporte polínico terciario puede ser también considerable (Del Baño-

Breis, 2000).

Análisis sensorial

La calidad sensorial de un alimento determina la aceptación del mismo por parte del

consumidor y su decisión de volver a comprarlo, por ello debe de ser muy tenida en

cuenta por productores y envasadores al establecer la diferencia entre sus productos

(Díaz-Moreno, 2009). El consumidor de miel define sus preferencias en base a la vista, el

olfato y la boca. En el caso concreto de la miel, la evaluación sensorial va a permitir definir

su origen botánico, así como identificar y detectar algunos defectos tales como:

fermentación, impurezas, olores y sabores extraños, etc.

Queda claro que la miel de una determinada procedencia botánica está definida por

ciertas características organolépticas. Para una correcta clasificación de la miel en base a

su origen botánico, el dictamen organoléptico es fundamental. No solo es una ayuda para

completar la información obtenida en el estudio polínico y fisicoquímico; sino que en

ocasiones resulta determinante para sacar conclusiones (ej. miel de lavanda). Así, por

Page 51: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

21

ejemplo: la miel de romero tiene un aroma poco intenso, con notas alcanforadas y tonos

florales aumentando la intensidad de los aromas en boca; la miel de eucalipto se define

por su aroma intenso y persistente a madera mojada, con gusto dulce y notas ligeramente

ácidas y la miel de espliego por su aroma muy intenso, siendo al gusto dulce con tonos

ácidos y ligeramente salado (Gómez-Pajuelo, 2004). En la Figura 1.3 se muestra la rueda

resultado de la estandarización de la terminología para definir sensorialmente a una miel

(odour and aroma wheel for honey) realizada por un grupo de trabajo de la IHC (Piana et

al., 2004).

Figura 1.3.-Rueda de olor y aroma de la miel (IHC, 2001)

Análisis físico-químico y color

Los métodos físico-químicos utilizados para el control rutinario de la calidad de la miel

han sido validados y armonizadas por la Comisión Internacional de la Miel (IHC) y pueden

ser utilizados dentro del alcance tanto del Codex Alimentarius Honey Standard (Codex

Alimentarius, 2001) como de la Directiva de la Unión Europea (European Commission,

2002).

La conductividad eléctrica es un parámetro de calidad de gran utilidad para la clasificación

de mieles (Persano-Oddo & Piro, 2004). El hecho de que la conductividad eléctrica se

Page 52: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

22

correlacione bien con el contenido mineral de la miel, permite distinguir perfectamente

la miel de mielada de la de néctar. La conductividad se determina en un conductímetro a

20°C, considerando el peso de la muestra sin humedad; expresando el resultado en

mS/cm (Accorti et al., 1987).

La actividad enzimática difiere entre tipos de mieles, pudiéndose utilizar para su

clasificación siempre y cuando se trate de mieles frescas y crudas ya que como se ha

comentado anteriormente, algunas enzimas como la diastasa desciende con el

calentamiento y el almacenamiento (Visquert, 2015). La medida de la actividad diastásica

se puede llevar a cabo por 2 procedimientos: 1. Definido por el BOE 145/1986, basado en

la determinación de la velocidad de hidrólisis del almidón en una disolución de miel y

medición del punto final de la reacción por espectrofotometría a una absorbancia de

660nm; 2. El método Phadebas descrito por la IHC, se basa en la medida de la

hidrolización de un sustrato estandarizado (pastillas) por la acción de la enzima diastasa.

En ambos casos ocurre que esta reacción produce una solución azulada, cuya intensidad

es proporcional a la cantidad de enzima presente. Este método presenta la ventaja de ser

más rápido y fiable que el anterior (variabilidad del almidón usado), ya que usa un

sustrato estandarizado. En ambos casos, la absorbancia de la solución es directamente

proporcional a la actividad diastásica de la muestra.

Los azúcares de una miel; se pueden determinar por diferentes métodos, siendo la

cromatografía liquida (HPLC) el más extensamente utilizado, en diferentes modalidades:

detección de índice de refracción (IR), detección de la dispersión de luz (ELSD) o iónico

(PAD). La cromatografía de gases con ionización de llama (FID) es también útil en el

análisis de azúcares. Presenta la ventaja frente a la cromatografía líquida de permitir

mayor sensibilidad en la detección de azúcares minoritarios. Por el contrario, su mayor

inconveniente es que se requiere una etapa previa de derivatización de la muestra, lo

que lo convierte en un método muy tedioso. Otro método ampliamente extendido, por

su rapidez y facilidad en el análisis de azúcares, son los kits enzimáticos, especialmente

en lo que se refiere a la determinación de fructosa, glucosa y sacarosa. Este

procedimiento aunque no es especialmente precisos, sirve como método de rutina en el

control de calidad de la miel.

El colores la propiedad física percibida de manera más inmediata por el consumidor. Es

un criterio muy útil para la clasificación de mieles monoflorales, variando desde blanco

agua, a través de tonos ámbar, hasta casi negro. Algunas mieles presentan tonalidades

típicas, como son el color amarillo brillante (miel de girasol), verdoso o rojizo (miel de

tomillo, brezo). Para medir el color el método más extensamente usado es el colorímetro

PFund, que se basa en la comparación óptica de la miel con una escala de color. También

se puede medir con técnicas que miden la reflectancia o transmitancia de la muestra,

para ello se usan equipos conocidos como espectrofotómetros o colorímetros

triestimulos (espacios cromáticos CIELAB). En el año 2004 apareció en el mercado un

espectrofotómetro (Hanna) específico para medir el color de la miel, cuyos resultados se

Page 53: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

23

expresan en la misma escala de color Pfund (mm), y por su gran versatilidad es hoy en día

ampliamente usado en los laboratorios de control de calidad de mieles.

1.3.2. Métodos alternativos en la clasificación de mieles

En las últimas décadas se vienen desarrollando métodos alternativos para la clasificación

de mieles, que aunque están dando resultados prometedores a nivel científico, en su

mayoría no están validados ni armonizados para ser empleados como análisis de rutina.

En general se trata de técnicas analíticas que generan una enorme cantidad de datos, por

lo que para dar resultados concluyentes, se requiere del apoyo de técnicas estadísticas

multivariantes. En la Tabla 1.6 se resume la utilidad de los métodos tradicionales, así

como de los nuevos que actualmente se están desarrollando y aplicando.

Entre los nuevos métodos cabría mencionar:

La espectroscopia de infrarrojos (IR). Se fundamenta en la absorción de la radiación IR por

parte de las moléculas en vibración. En principio, cada molécula presenta un espectro IR

característico (huella dactilar), debido a que la mayoría de las moléculas tienen algunas

vibraciones que, al activarse, provocan la absorción de una determinada longitud de onda

en la zona del espectro electromagnético correspondiente al infrarrojo. De esta forma,

analizando cuales son las longitudes de onda que absorbe un compuesto en la zona del

infrarrojo, podemos obtener información acerca de las moléculas que componen dicho

compuesto. Así, en la miel se determinan los espectros significativos en las regiones de

absorción de diferentes grupos funcionales de los componentes de la miel, por ejemplo

los C–O y C–OH de la glucosa y fructosa. De esta manera se estudia el ratio F/G

característico de los diferentes orígenes botánicos y se obtienen sus F/G tipificados, que

posteriormente se compararan con los de la miel a estudiar.

Compuestos fenólicos (flavonoides). Son metabolitos secundarios de los vegetales,

necesarios para su desarrollo y defensa frente a infecciones por microorganismos que las

atacan. La miel al proceder de las plantas (néctares y mieladas) contiene pequeñas partes

de estos compuestos. Desde que se descubrió la existencia de compuestos fenólicos en

la miel ha resultado ser un importante tema de estudio. Por una parte ha resultado de

gran interés para conocer mejor sus propiedades beneficiosas en el organismo humano,

y por otra permite explorar un campo en la caracterización geográfica/botánica de este

producto (Tomás-Barberán et al., 1994). En un estudio llevado a cabo por estos autores

sobre miel de La Alcarria concluyen que al analizar mieles de distinto origen geográfico,

las mieles tropicales carecen de ciertos compuestos característicos hallados en La

Alcarria; y por otra parte analizando mieles monoflorales del mismo origen demostraron

que el análisis discriminante clasificó el 85,7% de las mieles monoflorales correctamente.

Estos autores concluyeron que el análisis de flavonoides puede ser de gran utilidad en

estudios de origen y caracterización de mieles.

Page 54: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

24

En un reciente estudio llevado a cabo por Escriche et al. (2014) sobre diferentes mieles

españolas, deduce que el origen botánico afecta al perfil de flavonoides y compuestos

fenólicos lo suficientemente como para permitir la discriminación entre ellas. En la miel

de cítricos encontraron predominio de hesperetina, en la de romero de kaempferol,

crisina, pinocembrina, ácido cafeico y naringenina y en la de mielada, miricetina,

quercetina, galangina, y en particular el ácido p- cumárico.

Análisis de los componentes volátiles por GC-MS, como una medida indirecta de la

percepción aromática de las mieles, es uno de los métodos más prometedores para la

diferenciación de mieles (Bogdanov et al., 2004). Son numerosos los compuestos que han

sido identificados como característicos de algunas fuentes florales, lo que se refleja en

las recientes publicaciones mencionadas en el punto 1.1.2. Los componentes volátiles

contribuyen significativamente al flavour de la miel y está claro que varían con el origen

floral. Aunque cabe señalar que los resultados del análisis, sobre los compuestos del

aroma de la miel, dependen de las técnicas de aislamiento, así como de los métodos de

detección. Un análisis cuidadoso de los componentes de la fracción volátil en la miel

podría ser una herramienta útil para la caracterización de la fuente botánica (Anklam,

1998).

Análisis de aminoácidos. Las relaciones entre las concentraciones de diversos

aminoácidos pueden ser útiles para determinar el origen geográfico de una miel. De igual

manera, los perfiles de aminoácidos podrían dar una indicación de la fuente botánica de

muestras de miel. En un estudio llevado a cabo sobre la composición de aminoácidos,

analizados por GC-MS, en mieles de acacia, cítrico, castaño, rododendro, romero y tilo se

concluyó que ciertos aminoácidos como arginina, triptófano y cistina son característicos

de algunos tipos de mieles florales. Sin embargo, es el perfil general de todos ellos el que

puede permitir la diferenciación entre tipos de miel e incluso en función del origen

geográfico (Pirini et al., 1992).

Análisis de proteínas. El análisis de proteínas mediante electroforesis de gel de

poliacrilamidas junto con la aplicación de un análisis discriminante, permitió una cierta

clasificación de mieles gallegas (Rodríguez Otero et al., 1990). Sin embargo, estos autores

llegaron a la conclusión de que el análisis de los perfiles de aminoácidos parece ser más

adecuado, para la detección del origen botánico y geográfico, que el de la composición

de proteínas.

La determinación de minerales y oligoelementos en la miel podrían ser adecuados para la

detección de origen geográfico, debido al hecho de que éstos se ven afectados en gran

medida por la contaminación ambiental. La investigación de estos perfiles de elementos

traza en combinación con técnicas de evaluación de datos estadísticos podría ser un

enfoque prometedor (Sevlimli et al., 1992; Rodríguez -Otero et al., 1995).

Page 55: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

25

Tabla 1.6.- Métodos para la determinación del análisis botánico de mieles (Bogdanov et al., 2004)

Métodos y Parámetros Estado

Métodos clásicos

Determinación de parámetros fisicoquímicos rutinarios: conductividad eléctrica, azucares, ratio F/G, actividad enzimática, prolina, color, rotación óptica, pH, acidez

Junto con el análisis sensorial y el polínico la conductividad y el ratio F/G son muy útiles Parámetros rutinarios pueden ser determinados por espectroscopia IR

Otros métodos

Determinación de polifenoles por HPLC Presenta buenos resultados, aunque son métodos laboriosos para ser de rutina

Determinación de componentes volátiles por espacio de cabeza o SPME seguido de GC-MS o narices electrónicas

Métodos prometedores, que debería ser investigados y desarrollados para análisis cuantitativo de volátiles

Lenguas electrónicas Son también prometedoras, pero no se encuentran disponibles en laboratorios de alimentos de manera habitual

Aminoácidos Tienen algún poder discriminante pero dependen del origen geográfico

Análisis de inmunotransferencia de las proteínas de la miel, originadas por el polen

Método complementario al clásico melisopalinológico

Elementos traza Muestra alguna discriminación, pero puede depender del origen geográfico y de la climatología

Ácidos carboxílicos alifáticos Limitado poder discriminante ya que muchos ácidos son aporte de la abeja

Espectroscopia de infrarrojos (IR) Prometedor nuevo y rápido método, que debería ser desarrollado

Espectrometría de masas por pirolisis Prometedor nuevo método, aunque necesita cara instrumentación

La composición de ácidos orgánicos en la miel. El perfil de ácidos orgánicos y su evaluación

mediante métodos estadísticos puede resultar útil para proporcionar información

adicional sobre mieles de diversas fuentes. En miel de rewarewa de Nueva Zelanda

(Knightea excelsa), se han identificado treinta y dos ácidos dicarboxílicos alifáticos

(analizados por GC), tres de ellos se han propuesto como marcadores (Wilkins et al.,

Page 56: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

26

1995). Cherchi et al. (1994) en un estudio de ácidos orgánicos alifáticos de mieles italianas

describieron un método de extracción en fase solida (SPE) y posterior análisis por HPLC.

Las lenguas electrónicas. Entre las técnicas actualmente más prometedoras, destacan las

lenguas electrónicas, ya que se trata de equipos de medida rápidos y de bajo coste

(García-Breijo, 2005). Según la IUPAC, una lengua electrónica es "un sistema multisensor,

que poseen una baja selectividad y que utilizan procedimientos matemáticos avanzados

para el procesamiento de las señales obtenidas. Estos procedimientos matemáticos están

basados en la formación de Patrones de Reconocimiento y/o Análisis de datos

Multivariados, como son las Redes Neuronales Artificiales (RNA), los Análisis por

Componentes Principales (PCA), etc. (Campos et al., 2013). Las lenguas electrónicas están

siendo aplicadas en el control de calidad de diferentes alimentos: aguas minerales

(Martínez-Máñez et al., 2005), (Zhuiykov, 2012), vinos (Campos et al., 2013), leche (Dias

et al., 2009), miel (Dias et al., 2008; Kadar, 2011), etc.

La lengua electrónica consta de: un conjunto de sensores de distinta especificidad, una

instrumentación para adquirir la señal y un sistema de procesado de datos (ver Figura

1.4) (Jiménez et al., 2002). Los sensores electroquímicos transforman el efecto de la

interacción electroquímica analito-electrodo en una señal. El instrumento para adquirir

la señal (sistema de medida), se encarga de captar las señales eléctricas generadas por

los sensores, y, posteriormente, digitalizarlas y enviarlas al sistema de procesado de

datos. Sistema de procesado de datos (Software), creado con los algoritmos apropiados,

permite procesar las señales obtenidas por el sistema de medida (Jiménez et al., 2002).

Figura 1.4.- Esquema de los componentes que forman la lengua electrónica (Alcañiz, 2011).

Page 57: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

27

1.4.-El sector

1.4.1. Producción primaria

El proceso de producción de la miel comienza cuando el apicultor decide poner las

colmenas en una determinada zona geográfica, con la finalidad de cosechar un tipo de

miel determinado. Una vez la miel ha sido producida por las abeja y está ya madura el

apicultor extrae la miel de los panales, bien in situ en el campo o bien transportando los

cuadros para extraer la miel posteriormente. El paso siguiente es extraerla miel

(normalmente por centrifugación), eliminando la capa de cera que han depositado las

abejas para tapar las celdillas (desoperculado) (Figura 1.5). La miel se recoge en bidones

metálicos (aprox. 300 kg) que se cierran y serán la materia prima que entra en las

industrias de procesado y envasado de miel.

Figura 1.5.- Desoperculado de las celdillas y extracción de miel por centrifugación

La calidad con la que entra la miel en la industria es responsabilidad del apicultor. De él

depende cosechar en el momento adecuado de maduración (humedad) y conservar los

bidones en un lugar fresco y seco. Pero además, hay otro aspecto importante relacionado

con los tratamientos veterinarios. Las abejas desarrollan infecciones y se requiere la

aplicación de tratamientos químicos con antibióticos, sulfamidas, acaricidas, etc. Estos

tratamientos de deben aplicar en el momento adecuado y a dosis correctas. De no ser

así, el resultado es una miel contaminada por dichas sustancias.

En los últimos años los problemas de presencia de residuos han aumentado, por ello las

administraciones y los compradores están cada vez más alerta. Otra fuente de residuos

químicos en la miel es la debida a los pesticidas utilizados en los tratamientos agrícolas,

que llegan a la miel por la ubicación de los panales próximos a zonas de cultivo. Este

problema es usual en mieles de cultivo como el azahar, el girasol, el almendro, etc.

Page 58: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

28

1.4.2. Procesado de la miel y controles

En la industria actual el control de la calidad del proceso es fundamental para conseguir

un producto adecuado que cumpla los requisitos y exigencias establecidos, y esto tiene

especial relevancia en la industria alimentaria, ya que el producto final va a tener

incidencia en la salud humana. Por parte de las administraciones y de los consumidores

cada vez es mayor la exigencia de alimentos con mayores índices de calidad y de

seguridad. La administración debe asegurar un nivel elevado de protección de la salud de

las personas, y el consumidor tiene derecho a disponer de un producto adecuado a sus

exigencias y expectativas.

La industria de la miel, como parte del sector agroalimentario, debe controlar la calidad

tanto en la recepción de su materia prima, como en el proceso, hasta la expedición del

producto terminado. Entre los parámetros más frecuentemente controlados por las

empresas envasadoras los residuos químicos ocupan un lugar destacado, además de las

características organolépticas (sabor y aroma), color, contenido de humedad, frescura de

la miel (medida por la diastasa y el contenido de HMF), composición de azúcares

mayoritarios y el examen microscópico para la determinación de origen botánico y

geográfico. Este control de calidad de la miel tiene dos propósitos principales, por un lado

el de verificar su autenticidad, es decir, para revelar posibles fraudes tales como mieles

adulteradas etc. y por otro el determinar su calidad con respecto a las necesidades del

procesador y del mercado.

La mayoría de las empresas envasadoras de miel tienen establecidos ciertos parámetros

de calidad internos tanto para la materia prima que adquieren, bien directamente de los

apicultores, bien de terceros, así como para el producto terminado listo para la venta. De

esta manera controlan la producción, ajustando los costes a los requisitos del producto y

a sus diferentes niveles de calidad. Dichos niveles de calidad pueden ser los requeridos

por el mercado, o bien por otra empresa bajo cuyo sello se comercializará el producto. El

proceso que se lleva a cabo en la industria de manera general sigue el diagrama de flujo

de la Figura 1.6.

Page 59: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

29

Figura 1.6.- Diagrama de flujo del procesado de miel.

Retirada impurezas

Almacenamiento

Introducción de Lote a Cámara

≤53ºC/24-48 h

Creación de un Lote

Volcado de bidones en la balsa y

Homogeneización

Filtrado

Recepción y Etiquetado de bidones

Toma de muestra

Análisis

según ETs

Envasado en bidones

Almacenamiento

No OK OK

Expedición

Page 60: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

30

1.4.3. España en el contexto de producción y comercialización de miel

Según datos extraídos de la FAO, casi la mitad de la producción mundial de miel del año

2012 se concentró en Asia (737.000 toneladas), correspondiendo a China 436.000

toneladas, lo que representa el 60%. El segundo continente productor fue Europa seguido

de América y finalmente África y Oceanía (Figura1.7).

Figura 1.7.- Producción mundial de miel en 2012 (en Toneladas)

Dentro de Europa los principales productores de miel en 2012 fueron Ucrania, España y

Rumania (Figura 1.8). España cuenta con el mayor número de colmenas y tasa de

profesionalización, dentro de la Unión Europea. El censo total de colmenas, verificado

sobre la base del Registro de explotaciones apícolas en el estado español, ascendió a

2.533.270 (abril de 2012). La mayor parte de dicho censo se encuentra repartido en

Andalucía (22.25%), Extremadura (18.64%), Comunidad Valenciana (15.55%) y Castilla y

León (14.94%). Un 78.7 % del total de las colmenas de España pertenecen a apicultores

profesionales (dato de diciembre de 2012). Esto significa que pertenecen a explotaciones

apícolas con más de 150 colmenas (dato superior al del conjunto de la UE, que sólo

cuenta con un 32.8% de las colmenas en manos de apicultores profesionales).

Según DataComex, en 2012 el 89.8% de la miel importada por España procedía de

terceros países, especialmente China (14.232 toneladas), seguido por Argentina (587

toneladas), lo que supone 3.7% del total. Según la misma fuente, México habría

exportado a nuestro país en 2012 un total de 309 toneladas, lo que constituiría

únicamente un 2% del total.

Los principales destinos en la UE de las exportaciones de miel desde España en 2012

fueron Francia con 5.734 toneladas (34.8%), Alemania con 4.201 toneladas (25.5%), Italia

con 1.495 toneladas (9.1%) y Portugal con 1.114 toneladas (6.8%) (COAG, 2015).

Asia 46%

Europe22%

Africa10%

America20%

Oceania 2%

Page 61: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

31

Figura1.8.- Producción de miel en Europa en 2012 (en Toneladas). Datos según FAO

1.5.-Bibliografía

Accorti M., Piazza M.G. & Persano-Oddo L. (1987). La conductivité électrique et le

contenu en cendre du miel, Apiacta 22, 19–20.

Alcañiz M. (2011). Diseño de un sistema de lengua electrónica basado en técnicas electroquímicas voltamétricas y su aplicación en el ámbito agroalimentario. Tesis doctoral. Universidad Politécnica de Valencia. Departamento de Ingeniería Electrónica.

Álvarez-Suárez J.M., Giampieria F., González-Paramás A.M., Damianic E., Astolfid P. & Martínez-Sanchez G. (2012) Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food and Chemical Toxicology, 50 (5), 1508–1516.

Anderson D. L. & Trueman J. W. H. (2000). Varroa jacobsoni (Acari: Varroidae) is more than one species. Experimental & applied acarology, 24(3), 165-189.

Anklam E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food chemistry, 63(4), 549-562.

Bargańska Ż., Ślebioda M. & Namieśnik J. (2013). Pesticide residues levels in honey from apiaries located of Northern Poland. Food Control, 31(1), 196-201.Beekman M., & Ratnieks F. L. W. (2000). Long‐range foraging by the honey‐bee, Apis mellifera L. Functional Ecology, 14(4), 490-496.

Beekman M. & Ratnieks F. L. W. (2000). Long-range foraging by the honey-bee, Apis mellifera L. Functional Ecology, 14: 490-496.

Belitz H. D. & Grosch W. (1997). Química de los Alimentos. Editorial Acribia. Zaragoza, España.

Bulgaria3%

Republica Checa3%

Francia4% Alemania

6%

Grecia5%

Hungria6%

Italia3%

Polonia4%

Portugal3%

Rumania8%

Serbia2%

España11%

Ukrania25%

Reino Unido2%

Resto12%

Page 62: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

32

Blasco C., Vázquez-Roig P., Onghena M., Masia A. & Picó Y. (2011). Analysis of insecticides in honey by liquid chromatography-ion trap-mass spectrometry: Comparison of different extraction procedures. Journal of Chromatography A, 1218, 4892-4901.

BOE 145.Orden de 12 de junio de 1986 por la que se aprueban los métodos oficiales de análisis para la miel.

Bogdanov S. & Martin P. (2002). Honey Authenticity: a Review. Swiss Bee Research Centre.

Bogdanov S., Martin P. & Lullmann C. (2002). Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld.

Bogdanov S., Ruoff K. & Persano Oddo L. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie, 35(Suppl 1), 4-17.

Bogdanov S. (2011). The Honey Book. Bee Product Science. www.bee-hexagon.net.

Brookes S.T., Barrie A. & Davies J.E. (1991). A rapid 13C/12C test for determination of corn syrups in honey, J. Assoc. Off. Anal. Chem. 74, 627-629.

Cabañero A.I., Recio J.L. & Ruperez M. (2006). Liquid chromatography coupled to isotope ratio mass spectrometry: A new perspective on honey adulteration detection, Journal of agricultural and food chemistry 54, 9719-9727.

Calatayud F. & Simó E. Una Varroa cada vez más virulenta. Apitemas -apipatologia y sanidad.http://www.apiads.es/index.php/apitemas, Consultada en septiembre de 2015.

Campos I., Bataller R., Armero R., Gandía J. M., Soto J., Martinez-Mañez R. & Gil-Sánchez L. (2013).Monitoring grape ripeness using a voltammetric electronic tongue. Food Research International 54, 1369–1375.

Carrasco-Pancorbo A., Casado-TerronesS., Segura-Carretero A. & Fernández-Gutiérrez A. (2008). Reversed-phase high-performance liquid chromatography coupled to ultraviolet and electrospray time-of-flight mass spectrometry on-line detection for the separation of eight tetracyclines in honey samples. Journal of Chromatography A, 1195(1), 107-116.

Castro-Vazquez L., Diaz-Maroto M.C. & Pérez-Coello M.S. (2007). Aroma composition and new chemical markers of Spanish citrus honeys. Food Chemistry, 103, 601-606.

Castro-Vazquez L., Diaz-Maroto M.C., González-Viñas M.A. & Pérez-Coello M.S. (2009). Differentiation on monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chemistry, 112, 1022-1030.

CCPR- Comité sobre Residuos de Plaguicidas del Codex Alimentarius, (2013). Consultada en noviembre de 2015. ftp://ftp.fao.org/Codex/Meetings/ccpr/ccpr45/pr45_12s.pdf

Celis M. & Díez M. J. (1995). Análisis polínico de mieles en la cabrera baja (montes de León, España). Acta Botanica Malacitana, 20: 91-96.

Page 63: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

33

Chen L., Xue X., Ye Z., Zhou J., Chen F. & Zhao J. (2011). Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy. Food Chemistry 128, 1110–1114.

Cherchi A., Spanedda L., Tuberoso C. & Cabras P. (1994). Solid-phase extraction and high-performance liquid chromatographic determination of organic acids in honey. Journal of Chromatography A, 669(1), 59-64.

COAG. Coordinadora de Organizacines de Agricultores y Ganaderos. Informes-Apicultura. Anuario Agrario 2015. Consultada en septiembre de 2015. http://www.coag.org/rep_ficheros_web/e7a475275366fdbc0bed13f9f2b9d198.pdf

Codex Alimentarius. (2001). Draft revised standard for honey. Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Communities L10, 47-52.

Commission Regulation (EU) N º 37/2010 of 22 December 2009 on pharmacologically

active substances and their classification regarding maximum residue limits in

foodstuffs of animal origin.

Cordella C., Antinelli J. F., Aurieres C., Faucon J. P., Cabrol-Bass D. & Sbirrazzuoli N. (2002). Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior. Journal of Agriculture Food Chemistry, 50, 203–208.

Cote J., Casabianca H., Chardon S., Lheritier J. &Grenier-Loustalot M. F. (2003). Application of carbohydrate analysis to verify honey authenticity. Journal of Chromatography A, 1021, 145–155.

Crane E. (1975). Honey: a comprehensive survey /edited by Eva Crane. London:

Heinemann for the Bee Research Association.

Crane E. (1990). Bees and Beekeeping. Scientific, Practice and World Resources. 1st ed.,

Heinemann Newnes, Halley Court, Jordan Hill, Oxford OX2 8EJ, London, UK.

DataComex -Estadísticas del Comercio Exterior–Ministerio de Economía y Competitividad. datacomex.comercio.es. Consultada en noviembre de 2015.

Dias L.A., Peres A.M., Vilas-Boas M., Rocha M.A., Estevinho L. & Machado A.A.S.C. (2008). An electronic tongue for honey classification, Microchim Acta, 163, 97–102.

Dias L.A., Peres A.M., Veloso A.C.A., Reis F.S., Vilas-Boas M. & Machado A.A.S.C. (2009). An electronic tongue taste evaluation: Identification of goat milk adulteration. Sensors and Actuators B: Chemical, 136 (1), 209–217.

Directiva 2001/110/CE del Consejo de 20 de diciembre de 2001 relativa a la miel. Comunidad Europea.

Directiva 2002/657/EC. Decisión de la comisión, por la que se aplica la Directiva 96/23/CE del Consejo en cuanto al funcionamiento de los métodos analíticos y la interpretación de los resultados.

Page 64: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

34

Directiva 2014/63/UE del Parlamento Europeo y del Consejo, de 15 de mayo de 2014, por la que se modifica la Directiva 2001/110/CE relativa a la miel

Del Baño Breis F. (2000). Mieles y Pólenes: palinoteca de la Región de Murcia.

De la Fuente E., Martinez-Castro I. & Sanz J. (2005). Characterization of Spanish unifloral honeys by solid phase microextraction and gas chromatography-mass spectrometry. Journal of Separation Science, 28, 1093–1100.

Diaz-Moreno A. (2009). La influencia de las condiciones de almacenamiento sobre la calidad físico-química y biológica de la miel. Tesis doctoral. Universidad de Zaragoza.

Elflein L. & Raezke K.P. (2005). Coupling of liquid chromatography with carbon stable isotope ratio mass spectrometry (LC-IRMS) – a promising new technique for detection of sugar adulteration of honey, Apimondia abstracts Ireland 2005, Apimondia International Apicultural Congress, Dublin, Ireland, 35-36.

Escriche I., Kadar M., Juan-Borrás M. & Domenech E. (2014). Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food chemistry, 142, 135-143.

Escriche I., Kadar M., Juan-Borrás M. & Domenech E. (2011). Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Research International, 44, 1504-1513.

Escuredo O., Silva L., Valentao P., Seijo M.C. & Andrade P. (2012). Assessing Rubus honey value: pollen and phenolic compounds content and antibacterial capacity. Food Chemistry, 130 (3), pp. 671–678.

EU Pesticides database: http://ec.europa.eu/food/plant/pesticides. Consultada en

octubre 2015.

Eurachem (2014). The Fitness for Purpose of Analytical Methods ALaboratory Guide to

Method Validation and Related Topics.

Fallico B., Zappala M., Arena E. & Verzera A. (2004). Effects of conditioning on HMF

content in unifloral honeys. Food Chemistry, 85, 305–313.

Fattori S. (2004). La Miel: Propiedades, Composición Y Análisis Físico-Químico.

Apimondia.

Floris I., Satta A., Carpana E. & Sabatini A.G. (2002). The ethanol content as a useful

parameter for the identification of honey. Symposio II Ruol della Recerca in

Apicoltura, Bologna.

Gallina A., Stocco N. & Mutinelli F. (2010). Karl Fischer Titration to determine moisture in honey: A new simplified approach. Food control, 21(6), 942-944.

García-Breijo E. (2005). Diseño de un sistema multisensor en tecnología thick-film; fabricación, caracterización y estudio de su aplicabilidad a la medida de parámetros físico-químicos. Tesis doctoral. Universidad Politécnica de Valencia. Departamento de Ingeniería Electrónica.

Page 65: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

35

García-Chao M., Agruña M. J., Flores-Calvete G., Sakkas V., Llompart M. & Dagnac T. (2010). Validation of an off line solid phase extraction liquid chromatography-tandem mass spectrometry method for the determination of systemic insecticide residues in honey and pollen samples collected in apiaries from NW Spain. Analytica Chimica Acta, 672, 107-113.

Garcia-Pérez R. (2003). Estudio palinologico y colorimétrico de mieles monoflorales de la Región de Murcia.Proyecto final de carrera. Uniniversidad Politécnica de Cartagena.

Gheldof N., Wang X.H. & Engeseth N. (2002). Identification and quantification of antioxidant components of honeys from various floral sources. Journal of Agricultural and Food Chemistry, 50 (21), 5870–5877.

Gómez-Pajuelo A. (2004). Mieles de España y Portugal. Montagud editores. Barcelona,

González-Miret M. L., Terrab A., Hernanz D., Fernández-Recamales M. A. & Heredia F. J. (2005). Multivariate correlation between color and mineral composition of honeys and by their botanical origin. Journal of agricultural and food chemistry, 53(7), 2574-2580.

Hamdan K. (2010). Crystallization of Honey. Bee World, 87 (4), 71-74.

Hammel Y. A., Mohamed R., Gremaud E., LeBreton M. H. & Guy P. A. (2008). Multi-screening approach to monitor and quantify 42 antibiotic residues in honey by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 1177(1), 58-76.

Huidobro J.F., Rea M.E, de Andrade P.C.B., Sanchez M.P., Sancho M.T., Muniategui S. & Simal-Lozano J. (1994). Enzymatic determination of primary alcohols as apparent ethanol content in honey. J. Agr. Food Chem. 42, 1975-1978.

ICH (2005).Validation of Analytical Procedures: Methodology, adoptedin 1996, Geneva Q2B, in 2005 incorporated in Q2(R1).

ISO 5496 (2006). Sensory Analysis. Methodology. Initiation and training of assessors in the detection and recognition of odours.

Jiménez C., Muñoz F. J., Bratov A. & Domínguez C. (2002). Lenguas electrónicas: sensores químicos aplicados a la medida del sabor y al control de calidad de los alimentos, Percepnet, 13, 1697-4131, Octubre.

Kadar M., Juan Borrás M., Carot J. M., Doménech E. & Escriche I. (2011).Volatile fraction composition and physicochemical parameters as tools for the differentiation of lemon blosson honey and orange blosson honey. Journal of the Science of Food and Agriculture, 91, 2768 – 2776.

Kaufmann A., Roth S., Ryser B. & Widmer M. (2002). Quantitative LC/MS-MS

determination of sulfonamides and some other antibiotics in honey. Journal of

AOAC International, 85 (4), 853-860.

Kelly J. D., Petisco C. & Downey G. (2006). Application of Fourier transform midinfrared spectroscopy to the discrimination between Irish artisanal honey and such honey

Page 66: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

36

adulterated with various sugar syrups. Journal of agricultural and food chemistry, 54(17), 6166-6171.

Kerkvliet J.D. & Meijer H.A.J. (2000). Adulteration of honey: relation between microscopic analysis and deltaC-13 measurements, Apidologie 31, 717-726.

Khong S. P., Hammel Y. A. & Guy P. A. (2005). Analysis of tetracyclines in honey by high‐

performance liquid chromatography/tandem mass spectrometry. Rapid

communications in mass spectrometry, 19(4), 493-502.

Kujawski M. W. & Namiesnik J. (2008). Challenges in preparing honey samples for

chromatographic determination of contaminants and trace residues. Trends in

Analytical Chemistry, Vol. 27 (9), 785-793.

Ledoux M. N., Pernal S. F., Higo H. A. & Winston M. L. (2000). Development of a bioassay

to test the orientation behaviour of the honey bee ectoparasite, Varroa jacobsoni.

Journal of Apicultural Research, 39(1-2), 47-54.

Louveaux J., Maurizio A. &Vorwohl G. (1978). Methods of Melissopalynology. Bee World,

59(4), 139-157.

Low N.H. & South W. (1995). Determination of honey authenticity by capillary gas chromatography, J. Assoc. Off. Anal. Chem. 78, 1106-1113.

Martínez Máñez R., Soto J., García-Breijo E., Gil L., Ibáñez J. & Llobet E. (2005). An

“electronic tongue” design for the qualitative analysis of natural waters. Sensors

and Actuators B: Chemical, 104(2), 302–307.

Maudens K. E., Zhang G. F. & Lambert W. E. (2004). Quantitative analysis of twelve

sulfonamides in honey after acidic hydrolysis by high-performance liquid

chromatography with post-column derivatization and fluorescence detection.

Journal of Chromatography A, 1047(1), 85-92.

Meda A., Lamien C.E., Romito M., Millogo J. & Nacoulma O.G. (2005). Determination of

the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well

their radical scavenging activity. Food chemistry, 91(3), 571-577.

Mundo Apícola. Loque Europea, http://www.mundoapicola.com/pdf/loqueeuropea.pdf.

Consultada en Mayo 2012.

National Honey Board. (www.honey.com). Consultada en septiembre de 2015.

Oroian M. & Escriche I. (2015). Antioxidants: Characterization, natural sources, extraction

and analysis. Food Research International, 74, 10-36.

Oyarzun M.T., Figueroa A. & Tartanac F. (2005). Oportunidades de mejoramiento en la

calidad e inocuidad de la cadena productiva de la miel en Chile. Organización de las

Naciones Unidas para la Agricultura y la Alimentación, Santiago de Chile.

Pang G. F., Cao Y. Z., Zhang J. J., Jia G. Q., Fan C. L. & Li X. M. (2005). Simultaneous

Determination of Oxytetracycline, Tetracycline, Chlortetracycline and Doxycycline

Page 67: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

37

in Poultry Meat by High Performance Liquid Chromatography. Journal of

Instrumental Analysis, 24(4), 61.

Pang G. F., Fan C. L., Liu Y. M., Cao Y. Z., Zhang J. J., Fu B. L. & Wu Y. P. (2006). Multi-

residue method for the determination of 450 pesticide residues in honey, fruit juice

and wine by double-cartridge solid-phase extraction/gas chromatography-mass

spectrometry and liquid chromatography-tandem mass spectrometry. Food

additives and contaminants, 23(8), 777-810.

Parlamento Europeo (2013). Report on the food crisis, fraud in the food chain and the

control thereof [2013/2091(INI)].

Persano-Oddo L. & Piro R. (2004). Main European unifloral honeys: descriptive sheets,

Apidologie 35 (Suppl. 1), S38–S81.

Persano-Oddo L. & Bogdanov S. (2004). Determination of honey botanical origin:

problems and issues. Apidologie 35, S2–S3.

Piana L., Persano-Oddo L., Bentabol A., Bruneau E., Bogdanov S. &Guyot S. (2004).

Sensory analysis applied to honey: state of the art. Apidologie, 35, S26–S37.

Pirini A, Conte L.S, Francioso O. & Lercker G. (1992). Capillary gas chromatographic determination of free amino acids in honey as a means of discrimination between different botanical sources. Journal of High Resolution Chromatography, 15,165–170.

Raude-Roberg L. (1994). Analyse der Saccharide spaltenden Enzyme des Bienenhonigs,

Ph.D. thesis, Niedersächsisches Institut für Bienenkunde, Celle, Germany.

Radovic B.S., Careri M., Mangia A, Musci M., Gerboles M. & Anklam E. (2001). Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chemistry, 72 (4), 511–520.

Real Decreto 1049/2003, de 1 de agosto, por el que se aprueba la Norma de calidad relativa a la miel.

Reglamento (CE) 396/2005 del parlamento europeo y del consejo de 23 de febrero de 2005 relativo a los límites máximos de residuos de plaguicidas en alimentos y piensos de origen vegetal y animal.

Reglamento 37/2010 (UE). Relativo a las sustancias farmacológicamente activas y su clasificación por lo que se refiere a los límites máximos de residuos en los productos alimenticios de origen animal. Diario Oficial de la Comunidad Europea, L15, 1-72.

Rial-Otero R., Gaspar E. M., Moura I. & Capelo J. L. (2007). Chromatrographic-based

methods for pesticide determination in honey: An overview. Talanta, 71, 503-514.

Rodriguez-Otero J. L., Paseiro P., Simal J. & Cepeda A. (1990). Intento de caracterización

de las mieles naturales de Galicia mediante las fracciones proteicas separadas por

electroforesis. In Anales de Bromatologia (Vol. 42, No. 1, pp. 83-98). Sociedad

Española de Bromatologia.

Page 68: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

38

Rodriguez-Otero J. L., Paseiro P., Simal J., Terradillos L. & Cepeda A. (1995). Silicon,

phosphorus, sulphur, chlorine and ash contents of Spanish commercial

honeys.Zeitschrift für Lebensmittel-Untersuchung und Forschung, 200(3), 233-234.

Ropa D. (2010). Comparison of Mineral and Enzyme Levels in Raw and Processed Honey.

Wisconsin: Ropa Science Research.

Rossmann A., Lüllmann C. & Schmidt H.L. (1992). Massenspektrometrische Kohlenstoff-

und Wasserstoff-Isotopen-Verhältnismessung zur Authentizitätsprüfung bei

Honigen, Zeitschrift für Lebensmittel-Untersuchung und -Forschung 195, 307-311.

Sáenz C. & Gómez C. (2000). Mieles españolas. Características e identificación mediante

el análisis del polen. Ediciones Mundi-Prensa. Madrid (España).

Sammataro D. & Finley J. (2004).Obervations of the ectoparasitic bee mite Varroa destructor in honey bee (Apis mellifera) cells infected with chalkbrood (Ascosphaera apis). Journal of Apicultural Research, 43(1), 28-30.

Sancho M. T., Muniategui S., Huidobro J. F. & Simal Lozano J. (1992). Aging of honey. Journal of Agricultural and Food Chemistry, 40(1), 134-138.

Schneider A. (2011). Ultra-filtering Removes Pollen, Hides Honey Origins. http://www.foodsafetynews.com/2011/11/tests-show-most-store-honey-isnt-honey/#.Vky44XYve01. Consultada en noviembre de 2015.

Serra-Bonvehí J. & Ventura F. (1995). Characterization of Citrus honey produced in Spain. Journal of Agricultural and Food Chemistry, 43, 2053–2057.

Sesta G., Piana L, Persano-Oddo L., Lusco L. & Belligoli P. (2008). Methyl anthranilate in Citrus honey. Analytical method and suitability as a chemical marker. Apidologie, 39 (3), 334-342.

Sevimli H., Bayulgen N. & Varinlioglu A. (1992). Determination of trace elements in honey by INAA in Turkey. Journal of radioanalytical and nuclear chemistry, 165(5), 319-325.

Silici S., Sagdic O. & Ekici L. (2010). Total phenolic content, antiradical, antioxidant,

andantimicrobial activities of Rhododendron honeys. Food Chem., 121, 238-243.

Sivakesava S. & Irudayaraj J. (2001). A rapid spectroscopic technique for determining honey adulteration with corn syrup. Journal of Food Science, 66(6), 787-791.

Simon-Delso N., Amaral-Rogers V. & Belzunces L.P. (2015). Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environmental Science and Pollution Research International 22, 5-34.

Simsek A., Bilsel M. & Goren A. C. (2012). 12C/ 13C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chemistry, 130, 1115-1121.

Smanalieva J. & Senge B. (2009). Analytical and rheological investigations into selected unifloral German honey. Eur Food Res Technol, 229,107–113.

Page 69: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

39

Soderlund D.M. (2012). Molecular Mechanisms of Pyrethroid Insecticide Neurotoxicity: Recent Advances. Archives of Toxicology, 86 (2), 165-181.

Soria A. C., Martínez‐Castro I. & Sanz J. (2003). Analysis of volatile composition of honey by solid phase microextraction and gas chromatography‐mass spectrometry. Journal of Separation Science, 26(9‐10), 793-801.

Ståhlberg T., Fu W., Woodley J. M. & Riisager A. (2011). Synthesis of 5‐(Hydroxymethyl) furfural in Ionic Liquids: Paving the Way to Renewable Chemicals. ChemSusChem, 4(4), 451-458.

Taner G. & Czerwenka C. (2011). LC-MS/MS Analysis of Neonicotinoid Insecticides in Honey: Methodology and Residue Findings in Austrian Honeys J. Agric. Food Chem., 59, 12271–12277.

Tomás-Barberán F.A, Ferreres F., Ortiz A. & Fernández M.C. (1994). Estudio sobre el contenido en flavonoides de las Mieles de La Alcarria: su aplicación a la caracterización Geográfico-Botánica. Convenio de colaboración entre el Consejo Superior de Investigaciones Científicas y la Junta de Comunidades de Castilla-La Mancha.Ed, CSIC. ISBN: 8460618323.

Tosun M. (2013). Detection of adulteration in honey samples added various sugar syrups with 12C/13C isotope ratio analysis method. Food Chemistry, 138, 1629-1632.

Tsai W. H., Chuang H. Y., Chen H. H., Wu Y. W., Cheng S. H., & Huang T. C. (2010).

Application of sugaring-out extraction for the determination of sulfonamides in

honey by high-performance liquid chromatography with fluorescence detection.

Journal of Chromatography A, 1217(49), 7812-7815.

Van Engelsdorp D., Evans J., Saegerman C., Mullin C., Haubruge E, Nguyen B.K., Frazier

M., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R. & Pettis J.S.

(2009). Colony Collapse Disorder: A Descriptive Study. Available at:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006481.

Visquert M. (2015).Tesis Doctoral. Influencia de las condiciones térmicas en la calidad de la miel. Universidad Politécnica de Valencia.

Viñas P., Balsalobre N., López-Erroz C. & Hernández-Córdoba M. (2004). Liquid chromatography with ultraviolet absorbance detection for the analysis of tetracycline residues in honey. Journal of Chromatography A, 1022(1), 125-129.

Von Der Ohe W, Persano-Oddo P., Piana L, Morlot M. & Martin P. (2004). Harmonized methods of melissopalynology. Apidologie, 35, S18–S25.

White Jr. (1978). Advances in Food Research Volume 24, Pag iii-vii, 1-378. Capitulo: Honey Original Research Article, 287-374, ISBN: 978-0-12-016424-0. Edited by C.O. Chicheste.

White J. W., Riethof M. L., Subers M. H. & Kushnir I. (1962). Composition of American honeys. Tech Bull. U.S. Dep. Agric., 1261.

Page 70: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Introducción

40

White J.W. (1992). Internal standard stable carbon isotope ratio method for determination of C-4 plant sugars in honey: Collaborative study, and evaluation of improved protein preparation procedure, J. AOAC Int, 75, 543-548.

White J.W. & Bryant V.M. (1996). Assessing Citrus honey quality: pollen and methyl anthranilate content. Journal of Agricultural and Food Chemistry, 44, 3423–3425.

White J.W., Winters K., Martin P. & Rossmann A. (1998). Stable carbon isotope ratio analysis of honey: Validation of internal standard procedure for worldwide application. Journal of AOAC International, 81, 610-619.

White J.W. (2000). Isotope ratio testing of honey: Demystifying the internal standard test. Am. Bee J. 140, 318-321

Wilkins A. L. & Lu Y. (1995). Extractives from New Zealand honeys. 5. Aliphatic dicarboxylic acids in New Zealand rewarewa (Knightea excelsa) honey. Journal of Agricultural and Food Chemistry, 43(12), 3021-3025.

Williams D. L. (2000). A veterinary approach to the European honey bee (Apis mellifera). The Veterinary Journal, 160(1), 61-73.

Williamson S. M. & Wright G. A. (2013). Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. The Journal of experimental biology, 216(10), 1799-1807.

Yao L., Jiang Y., Singanusong R., Datta, N. & Raymont K. (2004). Phenolic acids and abscisic acid in Australian Eucalyptus honeys and their potential for floral authentication. Food Chemistry, 86(2), 169-177.

Zamora M.C. & Chirife J. (2006). Determination of water activity change due to crystallization in honeys from Argentina. Food Control, 17 (1), 59–64.

Zhuiykov S. (2012). Solid-state sensors monitoring parameters of water quality for the next generation of wireless sensor networks. Sensors and Actuators B: Chemical, 161 (1), 1-20.

Page 71: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

2. OBJETIVOS

Page 72: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 73: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Objetivos

43

2. Objetivos

2.1.-Objetivo general

La presente tesis doctoral plantea dos objetivos generales:

2.1.1. Evaluar las técnicas que se vienen utilizando de forma rutinaria en el control de

calidad de mieles, tanto a nivel industrial como comercial, y compararlas con otras

alternativas no convencionales.

2.1.2. Evaluar la efectividad del control de la materia prima (llevado a cabo en la etapa

de recepción industrial) para cumplir los límites legales establecidos en lo referente a la

presencia de residuos químicos en miel. Además, valorar el riesgo para el consumidor

como consecuencia de la exposición a dichos residuos cuando legalmente tenga

establecido un LMR (Límite máximo de residuos).

2.2.-Objetivos específicos

2.2.1. Analizar en la etapa de recepción de las industrias de envasado de miel, la materia

prima mediante las técnicas de rutina llevadas a cabo por la industria para la clasificación

y control de calidad de las mismas.

2.2.2. Evaluar la influencia del tipo de miel, año de cosecha y prácticas apícolas en la

variabilidad de los valores obtenidos mediante las técnicas de rutina.

2.2.3. Evaluar la efectividad del análisis de metilantranilato como técnica

complementaria en la clasificación botánica de mieles españolas de cítrico.

2.2.4. Estudiar la capacidad discriminatoria de una lengua potenciométrica, desarrollada

a partir de una combinación de electrodos metálicos, para la diferenciación de mieles.

Page 74: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Objetivos

44

2.2.5. Estudiar la capacidad discriminatoria de las técnicas convencionales (polínico,

color, químicas y fisicoquímicas) para la clasificación de mieles de diferentes

procedencias botánicas y geográficas.

2.2.6. Estudiar la capacidad discriminatoria del análisis de la fracción volátil para la

clasificación de mieles de diferentes procedencias botánicas y geográficas.

2.2.7. Evaluar la presencia de sulfamidas en muestras de miel procedentes de la etapa

de recepción de diferentes industrias envasadoras de miel, así como en muestras

comerciales procedentes de las mismas industrias.

2.2.8. Cuantificar la presencia de diferentes pesticidas provenientes de tratamientos

veterinarios o agrícolas, en mieles milflores comerciales (marcas blancas y líderes del

mercado).

2.2.9. Evaluar la influencia del origen geográfico en la presencia de pesticidas en mieles

milflores comerciales.

2.2.10. Evaluar el riesgo total para el consumidor en relación a la presencia de pesticidas

en mieles.

Page 75: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

3. RESULTADOS

Page 76: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 77: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Marisol Juan-Borrás, Angela Periche, Eva Domenech, Isabel Escriche

Journal of Chemistry, (2015).http://dx.doi.org/10.1155/2015/929658

3.1. Physicochemical quality parameters at the reception stage of

the honey packaging process: Influence of type of honey, year of

harvest and beekeeper

Page 78: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 79: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

49

Abstract

The aim of this paper was to evaluate the influence of the type of honey, year of collection

and the beekeeper on the main physicochemical quality parameters

(hydroxymethylfurfural “HMF”, moisture and colour), measured on reception of the raw

honey. 1593 samples (11 types of honey categorized by means of pollinic analysis),

provided by 98 beekeepers, from 2009 to 2013, were analyzed. Colour was the parameter

most affected by the type of honey and year, whereas HMF was the least affected in both

cases. The clearest honeys were found to have the greatest moisture (orange, rosemary

and lemon) and the darkest had the least moisture (lavender stoechas, eucalyptus,

sunflower, honeydew and retama). Lavender, polyfloral and thyme had intermediate

values of these parameters. For moisture, most samples were in accordance with

international requirements (less than 20 g/100 g). All values were below the required

limit for HMF (40mg/kg), although a few of them were abnormally high as they were raw

honeys (i.e. 2% of the samples had values higher than 20 mg/kg). The fact that all the

inadequate samples came from specific beekeepers, highlights the importance of their

role, suggesting that training in good practices is the key to guarantee honey quality

before it reaches the industry.

Keywords: honey quality, HMF, moisture, colour, year of harvest, beekeeper

1. Introduction

Food products have to satisfy numerous quality criteria before commercialization,

especially in industrialized countries, where there is a need for high quality products with

well-defined characteristics. Honey is not an exception and must be delivered to the

consumer with its essential composition and quality minimally altered with respect to

freshly harvested honey (Codex Alimentarius, 2001). There are international and

sometimes local regulations that specify honey quality (Council Directive 2001/110;

DOGV No. 4167/2002). Therefore, on receiving batches of raw honey the packaging

industry has to carry out a wide range of analyses, such as quantification of pollen and

physicochemical parameters (hydroxymethylfurfural “HMF”, moisture and colour, among

others). There are two main reasons for this: 1)to facilitate the classification of honeys

according to their botanical origin (considering the pollinic percentage and colour) and 2)

Page 80: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

50

to meet the legislated mandatory requirements during commercialization (e.g. HMF

content less than 40 mg/kg or moisture content less than 20g/100g)(Council Directive

2001/110).

Honey classified as unifloral always has a higher commercial value than polyfloral. For this

reason, the industry realizes this task prior to packaging, when according to information

provided by the beekeeper there is a reasonable probability that a honey can be classified

as unifloral. The identification and quantification of the percentage of pollen by

microscopic examination is used to authenticate the botanical origin of honey (Von Der

Ohe et al., 2004; Escriche et al., 2012; Panseri et al., 2013). The colour of honey is directly

related to the botanical source of the nectar, and therefore can help in the classification

of unifloral honeys. In addition, this parameter has commercial value as it is used as a

criterion of acceptance or rejection by the consumers; however, it is only regulated by

some Quality Marks (DOGV No. 4167/2002).

HMF is the most consistent indicator of honey freshness as it is practically absent in

freshly harvested honey. However, it increases during handling, extraction, conditioning

or storage operations, and also, as a consequence of the liquefaction and pasteurization

carried out to improve manageability and destroy the crystallization nuclei (Visquert et

al., 2014). Honey packaging plants must be very demanding about the HMF content of

raw honey, as they are obliged by law to comply with the requirement established for

this parameter during the best-before-date printed on the label. The moisture content of

honey depends on the season in which it is harvested, the climatic conditions and the

good practices carried out by the beekeepers (Persano-Oddo & Piro, 2004). This

parameter has a decisive influence on viscosity, flavour and palatability, but overall on

crystallization and fermentation (Turhana et al., 2008). These two alterations modify the

appearance, and therefore contribute to customer rejection, consequently causing losses

to the industry.

The honey packaging industry realises the importance of legal compliance but also the

necessity of providing consumers with consistent quality. When the process is controlled

carefully, the key to a quality end product lies in the good quality of the raw material.

Knowledge about the origin of the variability of the critical parameters of physicochemical

quality is essential to take measures to improve the quality of the raw honey.

Consequently, the probability that the commercialized honey does not meet the required

specifications will be reduced. Therefore, the objective of this paper was to evaluate the

influence of the type of honey, year of collection and the beekeeper’s role on the main

physicochemical quality parameters analysed (HMF, moisture and colour) on reception

in packaging companies.

Page 81: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

51

2. Materials and Methods

2.1.-Honey samples

A total of 1593 samples of raw honey, collected over five years (from 2009 to 2013) in

the routine checks that take place on reception of raw honey, were analysed. These

samples came from four commercial organizations (provided by 98 beekeepers) located

in the Valencian region (Spain). The samples represented the most common varieties

available in Spain: 231 (14.5%) orange blossom (Citrus spp.); 111 (7%) lemon blossom

(Citrus limon); 216 (13.6%) rosemary (Rosmarinus officinalis); 135 (8.5%) sunflower

(Helianthus annuus); 34 (2.1%) thyme (Thymus spp.);27 (1.7%) lavender (Lavandula spp.);

14 (0.9%) lavender stoechas (Lavandula stoechas); 26 (1.6%) retama (Lygos

sphaerocarpa); 76 (4.8%) eucalyptus (Eucalyptus spp.); 117 (7.3%) honeydew honey, and

605 (38%) polyfloral.

The botanical categorization of all the batches was carried out by means of pollinic

analysis.

2.2.-Analytical Determinations

2.2.1. Melissopalynological analysis

The percentage of pollen was obtained for each sample following the recommendations

of the International Commission for Bee Botany (Von Der Ohe et al., 2004). Microscopic

examination was carried out at the magnification that was most suitable for identifying

the various elements in the sediment (400 to 1000×). A light microscope (Zeiss Axio

Imager, Göttingen, Germany) at a magnification power of x 400 with DpxView LE image

analysis software attached to a DeltaPix digital camera was used.

2.2.2. Physicochemical and colour analysis

Hydroxymethylfurfural content “HMF” (White method), and moisture content were

analyzed in accordance with the Harmonized Methods of the European Honey

Commission (Bogdanov, 2002). Colour was determined using a millimetre Pfund scale C

221 Honey Color Analyzer (Hanna Instruments). All tests were performed in triplicate.

Page 82: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

52

2.3. Statistical analyses

A multifactor analysis of variance (ANOVA) (using Statgraphics Centurion for Windows)

was applied to study the influence of the type of honey and the year of harvesting on the

HMF, moisture and colour. LSD contrast (least significant difference) with level of

significance = 5% was used to analyse the differences between means. A multiple

correspondence analysis was applied using the statistical software SPAD (version 6.0), to

group types of honey based on the quality parameters analysed and also to better

understand the relationship between the parameters and the honeys.

3. Results and Discussion

3.1.-Botanical origin

The first step in this study was to carry out the botanical categorization of all the batches

by means of pollinic analysis. As an example, Figure 1 shows several pictures

corresponding to the predominant pollen present in each type of unifloral honey. Next

to each botanical name, the minimum percentage of pollen required to classify a honey

as belonging to a specific botanical genus considered in the present work is shown. These

values represent the minimums commonly used in the industry and recommended by

different authors and Quality Marks (DOGV No. 4167/2002; Von Der Ohe et al., 2004;

Persano-Oddo & Piro, 2004; Saenz-Laín & Gómez-Ferreras, 2000; Persano-Oddo &

Bogdanov, 2004; Gómez-Pajuelo, 2004; Soria et al., 2004). Honey was classified as

honeydew, if the ratio of honeydew elements to that of pollen grains exceeded 3, and

the conductivity was higher than 0.8mS/cm (Council Directive 2001/110).Finally, honey

was classified as polyfloral, if it did not contain sufficient pollen from a specific botanical

species.

Page 83: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

53

3.2.-Influence of type of honey and year of harvest on the

physicochemical parameters

Table 1 shows the descriptive statistics (mean and standard deviation) of HMF, moisture

and colour parameters analysed considering the type of honey and year of harvest. In

addition, this table shows the ANOVA results (F-ratio and significant differences) obtained

for these two factors. The interaction between both factors was not significant.

Considering that the higher the F-ratio, the greater the effect that a factor has on a

variable, colour was the parameter most affected by the factors “type of honey” and

“year”, whereas HMF was the least affected in both cases, as was expected.

A Kolmogorov-Smirnov test (data not shown) demonstrated that data related to moisture

and colour were normally distributed; however, the HMF data were not normally

distributed as their descriptive statistics showed a strong positive skew (Skewness

coefficient=2.7) and a high positive kurtosis (Kurtosis coefficient=10.1).

HMF ranged between a minimum value of <0.5 mg/kg (data that are present in all

varieties) and a maximum of 37.4mg/kg, 37.9mg/kg and 39.8 mg/kg in sunflower honey,

orange blossom honey and polyfloral honey, respectively. Although all values were below

the required limit of 40mg/kg, it is obvious that some of them would be considered as

unacceptable as they were raw honeys. It should be noted that these outlying values are

not frequent, in fact, only 2% of samples had values higher than 20 mg HMF/kg, and less

than 0.5%of samples had values higher than 30 mg HMF/kg. In contrast with the before

mentioned type of honeys, retama, eucalyptus, lavender stoechas and lemon honeys had

maximum values of 7.4, 9.7, 10.2 and 10.3, respectively.

With respect to the moisture, it can be observed (Table 1) that a high value of this

parameter is characteristic of certain types of honey, such as thyme and rosemary with

average values equal or higher than 19.5 g/100 g. Some specific batches of orange

blossom, lemon tree, rosemary, sunflower, thyme, lavender, honeydew and polyfloral

honeys also exceeded 20g/100g moisture. On the contrary, this percentage was quite low

in some varieties such as lavender stoechas, retama and eucalyptus. In general, unifloral

honeys show some typical differences in water content depending on season and climate

(Persano-Oddo & Piro, 2004). Taking into account the fact that the moisture content of

honey has to be lower than 20g/100g (Council Directive 2001/110), the values obtained

in this work were not always satisfactory for the honey packaging industry.

With regard to colour, the results shown in this work were as expected for these varieties

of honey (Piazza & Persano-Oddo, 2004). A large range of variation between the

minimum and maximum was observed. Logically, the greatest difference was detected in

polyfloral honey with a range of 7 to 130 mm Pfund. Some types of honey such rosemary,

lemon and orange are in general characterized by a light colour which makes them highly

Page 84: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

54

valued commercially. However, these honeys were sometimes darker than is

commercially desirable, ranging from 0.1 and 2 mm, to 50, 69, 62 mm, respectively. The

color of these types of honey can sometimes be strongly influenced by the nectar of other

flowers that bees do to sip. On the contrary, honeydew honey and retama honey were in

general the darkest (among the monovarietal honeys), reaching up to 120 mm on the

Pfund scale. In these types of honey the dark colour is traditionally a highly valued

characteristic. Furthermore, today it is well known that the darker a honey is, the higher

the nutritional value, due to the high mineral content and the antioxidant activity

(Persano-Oddo et al., 2008; Tornuka et al., 2013).

In relation to colour, although no limits are established by the general regulations

(Council Directive 2001/110), specific quality marks limit values according to varieties,

e.g. for citrus and rosemary less than 30mm Pfund in Valencian region regulation (DOGV

No. 4167/2002) and less than 30 and 35mm Pfund, respectively in Granada PDO (BOE

24621/2002); for lavender stoechas and thyme values must be above 50 and 55 mm

Pfund respectively in Granada PDO.

In order to detect possible grouping of the types of honeys according to the quality

parameters evaluated, a multiple correspondence analysis was carried out (Figure 2)

(Preys, 2007). Due to the requirements of the analysis, quality parameters were coded

categorically as intervals. The parameter values were: moisture (g/100g)[<16, 16-17, 17-

18, 18-19, 19-20, >20]; colour (Pfund scale)[<20, 20-30, 30-40, 40-50, 50-60, 60-70, 70-

80, >80]; hydroxymethylfurfural [<0.50, 0.51–1.00, 1.01–1.50, 1.51-2.00, 2.01-2.50, 2.51-

3.50, 3.51-5.00, 5.01-6.50, 6.51-10.00, >10]. In addition, information about the variety of

honey was projected on the biplot in order to link this factor to quality parameter

intervals.

The projection of the varieties on the graph showed three clear groups: left (orange

blossom, lemon and rosemary); centre (thyme, lavender and polyfloral) and right

(sunflower, lavender stoechas, retama, eucalyptus and honeydew). These groups are also

related to certain categories of the quality parameters: the clearest honeys with the

highest moisture on the left and the darkest ones with the least moisture on the right.

The remaining honeys, with intermediate values of these parameters, are located in the

central area of the graph.

The second axis distinguishes samples depending on whether values of

hydroxymethylfurfural are close to the maximum, the minimum, or remain around

intermediate values. In this way, minimum values of HMF are located at the top of the

Figure 2 (<0.50 HMF), whereas maximum values can be found at the bottom (>10 HMF)”

(9.1%). In both cases these categories have a high relative contribution to this second

axis, as shown in brackets. The remaining categories of HMF are distributed between

these two reference points, but this distribution is not progressive along the axis.

Page 85: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

55

Figure 1.- Pictures corresponding to the predominant pollen present in each type of unifloral honey and the minimum percentage of pollen required to classify a honey as belonging to a specific botanical genus considered in the present work.

Citrus sinensis (>10 % pollen) Citrus limon (>10 % pollen)

Rosmarinus officinalis (>10% pollen

Helianthus annuus (>45% pollen) Thymus sp. (>12% pollen)

Lavandula latifolia (>12% pollen)

Lavandula stoechas (>12% pollen ) Lygos sphaerocarpa (>35% pollen )

Eucaliptus sp. (>70% pollen)

Honeydew

Page 86: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

56

Table 1. Descriptive statistics for moisture, colour and HMF for each variety of honey and year of harvesting.ANOVA results (F-ratio and

significant differences) obtained for two factors: type of honey and yearof harvest.

Type of honey HMF (mg/kg) Moisture (g/100g) Colour (Pfund scale)

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Orange blossom 4.6de 6.4 <0.5 37.9 18.7c 1.3 15.5 23.3 27a 17 2 62

Lemon tree 2.1ab 2.3 <0.5 10.3 18.3b 1.5 15.0 21.6 26a 14 1 69

Rosemary 3.2bc 3.2 <0.5 27.3 19.9d 2.1 15.0 25.0 25a 15 0 50

Sunflower 3.3bc 4.3 <0.5 37.4 16.7a 1.3 14.6 21.2 70d 10 38 72

Thyme 4.1bcd 7.2 <0.5 35.6 19.5d 1.6 16.2 22.9 66cd 21 18 90

Lavender 6.1d 6.2 <0.5 22.9 17.9ab 2.2 15.7 25.2 48b 21 6 91

Lavender stoechas 3.4abcde 3.5 <0.5 10.2 16.5a 1.0 15.2 18.1 66cd 13 36 78

Retama 1.0a 1.7 <0.5 7.4 16.4a 0.7 14.7 17.5 84e 10 63 120

Eucalyptus 3.8cd 2.7 <0.5 9.7 16.6a 0.8 15.1 19.8 70d 11 35 89

Honeydew 4.5de 3.1 <0.5 27.2 16.5a 1.4 13.9 22.0 90e 13 57 127

Polyfloral 4.5cd 4.8 <0.5 39.8 17.7ab 1.8 14.8 24.1 64c 19 7 130

ANOVA F ratio 4.42*** 49.0*** 221***

Year of harvest HMF(mg/kg) Moisture(g/100g) Colour(Pfund scale)

Mean SD Min Max Mean SD Min Max Mean SD Min Max

2009 3.1a 3.4 <0.5 19.4 17.1ª 1.5 14.8 24.0 72e 18 13 130

2010 5.0c 5.9 <0.5 37.9 18.0bc 1.7 15.0 23.6 62d 24 10 127

2011 4.0b 4.8 <0.5 37.4 18.2cd 2.0 13.9 25.0 51c 27 2 125

2012 2.9a 3.6 <0.5 26.8 18.4d 1.9 15.5 25.2 47b 27 3 120

2013 4.1bc 6.2 <0.5 39.8 17.9b 1.7 14.2 22.1 40ª 26 0 110

ANOVA F ratio 7.14*** 17.32*** 55.94***

***p<0.001. For each factor, different letters in each column indicate homogeneous groups (significant differences at 95% confidence level as

obtained by the LSD test)

Page 87: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

57

Figure 2.- Multiple correspondence analyses of the quality parameters coded as intervals with projected varieties of honey. M: moisture; C:colour; HMF: hydroxymethylfurfural.

3.3.-Influence of the beekeeper on the physicochemical

parameters

In order to evaluate the influence of the beekeeper on the physicochemical parameters,

the six most abundant honey types analysed in this work were considered (see section

2.1): orange blossom, lemon blossom, rosemary, sunflower, honeydew and polyfloral. An

ANOVA was carried out for every type of honey and every physicochemical parameter,

considering the factor beekeeper (Table 2). For this statistical analysis, beekeepers who

contributed less than 10 batches to the study were not considered. It can be observed

that the beekeeper has a significant influence on all the parameters evaluated and on all

the types of honey studied.

In relation to the quality parameters, HMF and moisture, although only a few values

exceeded the recommended limits these values came from specific types of honey and

beekeepers. What is clear is that if some beekeepers can work very well, which is

reflected in low values of both parameters, others should be able to also.

Page 88: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

58

Colour differences are more justifiable in comparison to those observed for the before

mentioned parameters. That is to say, for the same honey type the accompanying flora

has a large influence on the variations in colour. However, it is important to note that

beekeepers also have an influence on this parameter since they are responsible for the

mix of the types of honey when cutting the honey from the honeycomb.

Due to the fact that beekeepers have a key role in honey quality parameters, it is

important to monitor their handling practices, although this is not always possible if they

operate in distant countries.

Page 89: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

59

Table 2. Influence of the beekeeper on the physicochemical parameters (HMF, moisture and colour) and different types of honey.ANOVA

results (F-ratio and significant differences) for the factor: beekeeper.

Type of Honey HMF (mg/kg) Moisture (g/100g) Colour (Pfund scale)

Mean (SD) Min-Max ANOVA

F ratio

Mean (SD) Min-Max ANOVA

F ratio

Mean (SD) Min-Max ANOVA

F ratio

Orange blossom 5.5 (7.8) <0.5-37.8 15.3*** 19 (1) 16-23 4.3*** 26 (16) 2-89 5.48***

Lemon tree 2.2 (2.4) <0.5-10.3 19.2*** 18 (1) 15-22 11.2*** 27 (14) 1-69 2.35*

Rosemary 19.9 (2.1) <0.5-27.3 9.3*** 20 (2) 16-25 2.1* 26 (16) 0-75 3.09***

Sunflower 3 (5) 0-10 2.06* 17 (1) 15-21 16.3*** 70 (9) 43-90 1.88*

Honeydew 6 (6) <0.5-27.3 10.18*** 17 (1) 15-22 4.1*** 90 (12) 57-118 15.8***

Polyfloral 4.5 (4.8) <0.5-39.8 9.08*** 18 (2) 15-24 4.5*** 64.(19) 7-116 3.6***

* p<0.05; ***p<0.001

Page 90: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

60

4. Conclusion

Consideration of the botanical origin of the eleven types of honey analysed permitted

grouping according to the physicochemical parameters. The clearest honeys were at the

same time the ones with the highest moisture while the darkest honeys were found to

have the lowest moisture levels. Colour was the parameter most affected by the type of

honey and year of harvesting, whereas HMF was the least affected in both cases. There

were some unacceptable outliers from specific beekeepers which exceeded the

permitted values for moisture and the recommended values of HMF. This indicates the

important role that the beekeeper has in attaining raw honey with the correct

physicochemical parameters, and even the characteristic colour which the market

requires. When the process is controlled carefully, the key to the quality of the end

product lies in the good quality of the raw material. Therefore, adequate training in good

beekeeping practices is vital to obtain the product that the consumer expects and

legislation requires.

5. References

BOE 24621. (2002) Reglamento de la Denominación de Origen Protegida "Miel de

Granada" y de su Consejo Regulador. 44261-44268.

Bogdanov S. (2002). Harmonized methods of the International Honey Commission. Bern,

Switzerland: Swiss Bee Research Centre, FAM, Liebefeld, CH 3003.

Codex Alimentarius. (2001). Revised Codex Standard for Honey. Codex Stan 12-1981.

Codex Alimentarius Commission. Rev. 1(1987). Rev. 2.

Council Directive 2001/110 (2002) relating to honey. Official Journal of the European

Communities. L10, 47-52.

Page 91: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

61

DOGV No. 4167. (2002). Reglamento de la Marca de Calidad CV para miel de azahar y

romero in Diario Oficial de la Generalitat Valenciana. Área de publicaciones de la

Presidencia de la Generalitat Publishing, Valencia (Spain).

Escriche I., Kadar M., Domenech E. & Gil-Sánchez L. (2012).A potentiometric electronic

tongue for the discrimination of honey according to the botanical origin.

Comparison with traditional methodologies: Physicochemical parameters and

volatile profile.J. Food Eng. 109, 449-456.

Gómez-Pajuelo A. (2004). Origen botánico de la miel, in Montagud (Eds.), Mieles de

España y Portugal. Barcelona, Spain, pp. 50-56.

Panseri S., Manzo A., Chiesa L.M. & Giorgi, A. (2013). Melissopalynological and Volatile

Compounds Analysis of Buckwheat Honey from Different Geographical Origins and

Their Role in Botanical Determination. Journal of Chemistry, Volume 2013, Article

ID 904202, 11 pages.

Persano-Oddo L. & Bogdanov S. (2004). Determination of honey botanical origin:

Problems and issues. Apidologie. 35, 2-3.

Persano-Oddo L. & Piro R. (2004). Main European unifloral honeys: Descriptive sheets.

Apidologie. 35, 38-81.

Persano-Oddo L., Heard T., Rodríguez-Malaver A., Pérez R.A, Fernández-Muiño M.A.,

Sancho M.T., Von der Ohe W., Sesta G., Lusco L. & Vit P. (2008). Composition and

antioxidant activity of Trigona carbonaria honey from Australia. J. Med. Food, 11,

789-794.

Piazza M. G. & Persano-Oddo L. (2004). Bibliographical review of the main European

unifloral honeys. Apidologie. 35(1), 94-111.

Preys S., Vigneau E., Mazerolles G., Cheynier V. & Bertrand D. (2007). Multivariate

prototype approach for authentication of food products. Chemometr Intell Lab. 87,

200-207.

Saenz C. & Gómez C. (2000). Mieles españolas: Características e identificación mediante

el análisis del polen, ed. Mundi-Prensa, España.

Soria A.C., González M., de Lorenzo C., Martınez-Castro I. & Sanz, J. (2004).

Characterization of artisanal honeys from Madrid (Central Spain) on the basis of

their melissopalynological, physicochemical and volatile composition data. Food

Chem. 85, 121-130.

Tornuka F., Karamanb S., Ozturk, I., Toker O. S., Tastemurb B., Sagdica O., Doganb M. &

Kayacierb A. (2013). Quality characterization of artisanal and retail Turkish blossom

honeys: Determination of physicochemical, microbiological, bioactive properties

and aroma profile. Ind Crop Prod., 46, 124-131.

Page 92: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Physicochemical quality parameters at the reception stage of the honey packaging process: Influence of type of honey, year of harvest and beekeeper

62

Turhana I., Tetika N., Karhana M., Gurelb F. & Tavukcuoglua, H.R. (2008). Quality of

honeys influenced by thermal treatment. LWT - Food Sci. Technol. 41, 1396-1399.

Visquert M., Vargas M. & Escriche I. (2014). Effect of postharvest storage conditions on

the colour and freshness parameters of raw honey. Inter J. Food Sci. and Tech., 49,

181-187.

Von Der Ohe W., Persano-Oddo L., Piana M. L., Morlot M. & Martin, P. (2004).

Harmonized methods of melissopalynology. Apidologie, 35

Page 93: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Marisol Juan-Borrás, Angela Periche, Eva Domenech, Isabel Escriche

International Journal of Food Science & Technology, 50 (7),

1690–1696. (2015)

3.2. Correlation between methyl anthranilate level and percentage of

pollen in Spanish citrus honey

Page 94: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 95: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

65

Abstract

The common level of methyl anthranilate (MA) in Spanish citrus honey and the

correlation between this compound and the percentage of citrus pollen (sometimes

underrepresented) is evaluated. The MA analysis methodology was validated before

analyzing the honeys (harvested in 2011 and 2012), which were characterized by pollen,

MA, hydroxymethylfurfural, electrical conductivity, moisture and colour. Pollen ranged 1-

88% and MA 0.5-5.9 mg/kg and there was no quantitative correlation between both.

However, significant correlations with moderate Pearson coefficients were observed:

MA/electrical conductivity (-0.678); MA/colour (-0.559); pollen/electrical conductivity (-

0.553) and pollen/colour (-0.556). 89.2 % of samples from 2011 and 95.4% from 2012

had the required level of citrus pollen (at least 10%), although only 53.5% and 61.4%,

respectively, had the commercially required of MA (2 mg/kg,). Only about half of the

samples satisfied both parameters. The MA value should be recommended only when

the honey has an unexpectedly low percentage of citrus pollen, and after assessing

organoleptic and physicochemical parameters.

Keywords: citrus honey, methyl anthranilate, Citrus spp. pollen, correlation, validation,

melissopalynological analysis, electrical conductivity, colour.

1. Introduction

Traditionally, honey is authenticated by identifying and quantifying the percentage of

pollen (Bogdanov, 2002). However, in the case of citrus varieties this melissopalynological

analysis alone, widely used for other types of monofloral honey, is sometimes not

sufficient. The problem lies in the fact that the production of pollen and nectar in citrus

blossom is not always simultaneous. Which is to say that citrus trees sometimes produce

nectar before the anther produces pollen. Apart from this, bees occasionally collect

nectar from sterile hybrid varieties of citrus trees, which are characterized by their small

amounts of pollen. For these reasons the percentage of pollen in citrus honey may be

lower than expected (Molins, et al., 1995). This clearly implies a difficulty in relation to

the minimum percentage of pollen from Citrus spp. required for this type of honey: 10%

(Persano-Oddo, et al., 1995; Molins et al., 1995; DOGV, 2002); 12% (Gómez-Pajuelo,

Page 96: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

66

2004); 18.6% (Persano-Oddo & Piro, 2004); ≥5 % (Rodriguez et al., 2010). This is a

problem for the commercialization of this valuable type of honey since it can be unfairly

rejected, even though its organoleptic characteristics are undisputed.

Methyl anthranilate (MA) is a specific compound in citrus blossom nectar; its aroma is

characteristic of this type of flower (ISO 5496, 2006) which may vary depending on the

citrus cultivars (Jabalpurwala, et al., 2009). The presence of this compound in a honey

indicates that the bees have taken nectar from citrus trees (White, 1966; White & Bryant,

1996; Castro-Vazquez, et al., 2007). For this reason, MA has been used for decades as a

marker in citrus honey and should be a good tool for the classification of citrus honey

when the level of pollen is very low. However, at present, commercial transactions

require that citrus honey has a minimum citrus pollen content (between 10 and 20%),

together with a methyl anthranilate level of at least 2 mg/kg (Sesta, et al., 2008).

According to the data reported by different authors, the quantity of MA in the nectar

citrus varies, depending on the country. Citrus honey from Florida has a mean value of

3.10 mg/kg of MA (SD = 0.91) (White & Bryant, 1996). However, Sesta et al., in 2008

suggested that a minimum content of 0.5 mg/kg is sufficient for Citrus honey produced

in Italy. There are a few old studies related to the level of this aromatic compound in

Spanish citrus honey: minimum of 0.5 mg/kg (Serra-Bonvehí, 1988), and average of 2.3

mg/kg (SD=0.5) (Ferreres, et al., 1994; Serra-Bonvehí & Ventura, 1995).In addition to

variation due to geographic origin, levels of MA can differ depending on storage

conditions (Serra-Bonvehí & Ventura, 1995; White & Bryant, 1996; Sesta et al, 2008).

Therefore, it is important to take this into consideration in order to make appropriate

comparisons.

Clearly, there is a great disagreement about the required level of MA in citrus honey.

However, the origin of this discrepancy could in part be in the application of different

analytical techniques over the last three decades: HPLC-DAD (Ferreres, et al., 1994; Nozal,

et al., 2001; Sesta et al, 2008), Photometry (White & Bryant, 1996),HS-SPME-GC (Bertelli,

et al., 2008; Papotti, et al., 2009; Papotti, et al., 2012), P&T/GC-MS-thermal desorption

(Escriche, et al., 2011). As there is no official methodology described for the analysis of

MA, the only way to ensure the quality of the obtained results is to validate the

quantification methodology.

For the above mentioned reasons, the present work aims to evaluate the level of MA in

Spanish citrus honey and to determine the extent to which this level can be related to the

percentage of pollen from citrus genus. In order to ensure the utility of the

chromatographic procedure used to quantify this compound, it was validated before

analyzing the samples.

Page 97: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

67

2. Materials and Methods

2.1.-Honey samples

Ninety eight different samples of Spanish citrus honey were used in this study. The

samples were harvested in the only areas (East and South) of Spain where citrus trees

grow. The same beekeepers (B) directly supplied twenty eight samples from 2011 and

fifty samples in 2012, ensuring that the hives had been located in citrus groves. The

remaining twenty samples (10 from 2011 and 10 from 2012) were purchased, in the same

period of time, in different retail outlets (R) in the city of Valencia, checking in all cases

that they were sold as citrus honey harvested in Spain. A melissopalynological analysis

was carried out on all samples to ascertain the percentage of pollen of Citrus spp.

All samples were analysed as soon as they were received in the laboratory. Samples that

came from beekeepers were sent to the laboratory immediately after they were

harvested. None of the samples used exhibited signs of crystallization.

2.2.-Melissopalynological analysis

Pollen analysis was performed using the recommendations of the International

Commission for Bee Botany (Von der Ohe, et al., 2004), without an acetolysis solution to

preserve all the components. Slides were prepared as follows: 10 g of honey were

dissolved in acidulated water (H2SO4, 5%) on a heating plate at 40 ºC. Subsequently, it

was centrifuged, the supernatant was decanted and the precipitate was suspended in 10

mL of distilled water. A second centrifugation was performed, the supernatant was

decanted off and 0.2 mL of water was added to the precipitate. After stirring, 0.2 mL were

deposited on a slide and dried. Finally a drop of glycerin was used to seal the coverslip. A

light microscope (Zeiss Axio Imager, Göttingen, Germany) with DpxView LE image analysis

software attached to a DeltaPix digital camera was used in this analysis. A count of at

least 600 pollen grains was performed observing at ×400–1000 magnifications. These

grains of pollen were classified according to pollen morphology as in the literature

(Carretero, 1989; Saenz & Gómez, 2000).

Page 98: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

68

2.3.-Methyl anthranilate analysis

2.3.1. Methodology

A HPLC-DAD (Diode-Array Detection) method, based on Sesta et al. (2008), was used in

the present work for MA determination. The method consists of acid hydrolysis, followed

by extraction with copolymer cartridges and then chromatographic analysis. An LC Agilent

1120 Compact LC, including a binary pump, a thermostat column compartment, an auto-

sampler and a UV detector were used. The chromatographic column and the software

system used in the HPLC-UV method was the same as that used for the HMF analysis.

Chromatographic separation was carried out with a mobile phase consisting of water (A)

and acetonitrile (B). Binary gradient conditions were used: first an isocratic step from 0

to 3.1 min with 70% A, and then a linear gradient was applied arriving at 42% A in 2 min.

After that, a second linear gradient was applied arriving at 10% A, held for 2 min, and re-

equilibrates to the initial conditions in 3 min. The flow-rate was 1 mL/min. The injection

volume was 20 L, and the oven column was maintained at 30 ºC. The MA was monitored

at 335 nm.

A HPLC Alliance 2695, with a 2996 photodiode array detector (Waters, USA), equipped

with the same column, was also used to corroborate the absorbance spectra, necessary

for the identification of MA. The UV absorbance spectrum of MA presented an intense

absorbance peak at 218 nm and 2 less intense peaks at 245 and 334 nm. As noted by

Sesta et al. (2008), it was considered more appropriate to quantify at the absorbance of

334 nm as it presents less interference than the other ones.

Under the specified chromatographic conditions the MA peak was eluted at a retention

time of about 6.8 min. Quantification was realized by means of matrix calibration curves

obtained from spiked fortified blank samples. In order to ensure the quality of the results

and evaluate the stability of the proposed method, an internal quality control (a spiked

blank sample with a final concentration of 2 mg/kg) was injected in the equipment as a

first step before each batch of sample.

In all cases a polyfloral honey with absence of MA was used as a honey blank. The absence

of citrus pollen in this honey was corroborated previously.

Reagents and standards solutions

HPLC-grade acetonitrile was purchased from VWR and the standard MA (purity > 99%)

from Merck (Darmstadt, Germany). Analytical grade sulphuric acid was from Scharlab

(Barcelona, Spain). For Solid Phase Extraction, Oasis HLB cartridges (200 mg/6 mL) from

Waters were used. De-ionized water of MilliQ quality was used throughout.

The stock standard solution of MA was prepared by weighing the appropriate amount of

the pure standard and diluting it with water to obtain a final concentration of 1 mg/mL.

Page 99: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

69

The working standard solution was obtained at a concentration of 0.1 mg/mL in H2SO4

1M in the same way as the samples. The stock standard solution was stored at -20ºC and

the working standard solution was at +4ºC.

Validation of the MA analysis method

The guidelines established by Commission Decision (2002), were followed in order to

validate the MA analytical methodology. To this end several parameters were studied:

linearity, accuracy and precision (repeatability and reproducibility). The accuracy of the

method was established through recovery studies and the precision by: repeatability or

intraday precision (RSDr) and reproducibility or interday precision (RSDR). LODs (limit of

detection) and LOQs (limit of quantification) were estimated as the amount of analyte for

which signal-to-noise ratios (S/N) were higher than 3 and 10 respectively.

2.4.-Physicochemical and colour analysis

5-hydroxymethylfurfural (HMF) determined by HPLC-UV methodology and

physicochemical parameters (moisture content and electrical conductivity) were

analyzed as described in “Harmonized Methods of the European Honey Commission”

(Bogdanov, 2002). The chromatographic column used for the analysis of HMF was a

ZORBAX Eclipse Plus C18 (4.6 x 150 mm, 5 m particle size) purchased from Agilent

(Agilent Technologies, USA). The mobile phase for this analysis was water-methanol

(90:10, v:v), with a flow rate of 1 mL min-1. The detector was set to 285 nm. The EZChrom

Elite system software was used for HPLC data processing. Colour was determined with a

millimeter Pfund scale C 221 Honey Color Analyzer (Hanna Instruments, Spain). All

analyses were performed in triplicate.

2.5.-Statistical analysis

The pollen percentage, physicochemical (MA, HMF, electrical conductivity) and colour

data were analyzed by a multifactor analysis of variance (ANOVA) (significance level α =

0.05) (using Statgraphics Centurion for Windows) to study the influence of the year of

harvesting and the type of sample (beekeeper and retail).The method used for multiple

comparisons was the LSD test (least significant difference) with a significance level α =

0.05. The bivariate Pearson correlations were obtained (significance level α = 0.05) to

measure the strength and direction of the linear relationships between pairs of variables

using SPSS 16.0. The contingency table analysis (cross tabulations) was carried out to

evaluate the interrelation between pollen and MA, considering these variables as

categorical, using the same SPSS 16.0 (IBM).

Page 100: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

70

3. Results and Discussion

3.1.-Validation of methyl anthranilate analytical

methodology

The results from the validation procedure are shown in Table 1.In order to obtain the

linearity evaluation an external standard calibration curve was constructed using spiked

fortified blank honey (honey without MA) with final concentration levels of: 0.5, 1, 2, 3

and 5 mg of MA/kg honey. These concentrations covered the values of this compound

which were expected to be found in the honey samples. Six replicates were carried out

for each level. Injections were performed in triplicate. A calibration curve was obtained

by plotting the peak area of the compound at each level versus the concentration of MA

added to the sample. A good linearity response in the range of the concentration

considered was observed, with a correlation coefficient (R2=0.995) between peak areas

and injected nominal concentrations.

The recovery studies were performed by adding known quantities of MA to the blank

honey (0.5, 1, 2, 3 and 5 mg of MA/kg). All spiked fortified sample levels were done in

triplicate and analyzed by the HPLC method. The results displayed in Table 1 show that

the method used led to recovery of MA between 96 and 105% for the concentration

range studied. The relative standard deviation (RSD) corresponding to recovery values

ranged from 6.0 to 11.6%. As these values were less than 20%, the accuracy of the

analytical method was confirmed (Commission Decision, 2002).

Repeatability (RSDr) was evaluated by performing the assay on six replicates of fortified

honey samples, at the same levels (0.5, 1, 2, 3 and 5 mg of MA/kg), and performed by the

same operator on the same day. To evaluate reproducibility (RSDR) the experiment was

carried out on 3 consecutive days, with 2 different operators. The results were expressed

as the percentage of relative standard deviation of the measurements.

As shown in Table 1, intra-day precision (RSDr) ranged from 1.40% to 7.20% and inter-day

precision (RSDR) from 4.50% to 13.96%. These RSD values are in complete agreement

with Commission Decision (2002), requirements since they were always lower than 20%

for all the concentration levels assayed. Therefore it can be concluded that the method

used has good precision. The LOQ obtained was 0.1 mg of MA/kg. The results of the

validation demonstrate that the applied analytical procedure guarantees satisfactory the

quantitative values of MA obtained in the samples analyzed.

Page 101: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

71

Table 1. Validation parameters (accuracy and precision) of methyl anthranilate (MA) methodology. The numbers in brackets are the relative standard deviation. Six replicates were carried out for each level.

Intra-day-precision Inter-day-precision

MA Added

(mg/kg)

Mean Recovery

RSD (%)

Mean value (mg kg-1)

RSDr (%)

Mean value (mg kg-1)

RSDR (%)

0.5 96.0 (6.0) 0.50 (4.10) 0.49 (12.00)

1.0 105.0 (6.5) 1.08 (7.20) 1.03 (5. 80)

2.0 104.0 (10.8) 2.10 (4.11) 2.06 (13.96)

3.0 99.0 (11.6) 2.63 (4.02) 2.36 (13.70)

5.0 100.0 (6.4) 5.06 (1.40) 5.05 (4.50)

3.2.-Melissopalynological, physicochemical, colour and

methyl anthranilate characterization

Table 2 shows the percentage of Citrus spp. pollen, the average values of MA and the

physicochemical parameters quantified (HMF, electrical conductivity, and moisture), as

well as the colour of each of the samples supplied by beekeepers (B) and purchased in

retail outlets (R) in 2011 and in 2012. In addition, this table shows the result (P-value, F-

ratio and minimum and maximum LSD values) of the multifactor ANOVA carried out

considering the factors: year of collection (2011 and 2012) and “type of sample” of citrus

honey (beekeepers and retail). The respective double interactions were not significant in

any case (data not shown). Figure 1 shows the box and whisker plots for all the values

obtained in order to facilitate the comparison of variability patterns between the four

sources of citrus honey (beekeepers 2011; beekeepers 2012; retail 2011 and retail 2012).

The citrus pollen percentage varied significantly among type of samples (beekeepers and

retail) but not among years of harvesting. This percentage ranged from 1 to 88

(average=34) and from 1 to 69 (average=33) in beekeeper samples from 2011 and 2012,

respectively. With regard to the supermarket samples, the pollen percentage ranged

from 7 to 40 (average=18) and from 8 to 42 (average=19), respectively.

Page 102: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

72

Table 2.-Percentage of Citrus spp. pollen, average values (n = 3) of methyl anthranilate (MA) and physicochemical parameters (HMF, electrical conductivity, moisture) and the colour of each of the samples supplied by beekeepers (B) (28 from 2011 and 50 from 2012) and purchased in retail outlets (R) (10 from 2011 and 10 from 2012). Average and standard deviation (in brackets) for each parameter. Multifactor ANOVA results (P-value, F-ratio, minimum and maximum LSD values) obtained for the factors: year (2011 and 2012) and sample (beekeepers and retail).

Pollen

(% Citrus spp.)

MA

(mg/kg)

HMF

(mg/kg)

Electrical

conductivity

(S cm-1)

Moisture

(mg/100g)

Colour

(mm Pfund)

Samples 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012

B01 48 35 1.9 1.4 5.1 1.2 264 167 15.4 15.4 36 2

B02 42 48 3.2 2.5 1.1 0.5 183 150 15.5 16.7 28 3

B03 73 47 2.1 3.6 4.0 1.4 241 161 16.2 14.5 37 5

B04 48 40 1.2 3.3 3.7 1.7 243 157 17.9 17.8 27 6

B05 36 68 1.3 3.5 1.7 1.6 167 163 15.5 17.2 17 6

B06 1 47 0.5 4.5 11.8 1.6 283 164 16.8 16.4 37 7

B07 5 46 1.3 3.3 7.6 1.5 248 167 16.2 18.0 32 9

B08 30 69 0.9 3.5 9.4 2.0 271 169 15.8 17.4 43 11

B09 27 4 1.5 4.7 3.8 1.5 208 187 16.3 14.5 35 11

B10 63 48 3.8 5.9 1.7 1.1 167 161 18.6 18.2 20 11

B11 57 60 4.0 2.5 1.5 2.6 172 170 17.8 16.3 20 11

B12 33 37 2.2 1.1 1.5 0.7 194 233 17.2 15.9 22 19

B13 42 37 2.2 2.9 2.4 4.3 198 183 16.7 18.0 26 13

B14 46 23 2.5 2.2 3.2 2.6 189 210 16.6 14.3 19 18

B15 12 48 1.9 2.9 16.5 4.6 205 188 16.6 16.9 33 14

B16 36 1 2.1 3.6 7.9 2.2 202 254 16.5 14.8 25 16

B17 43 37 2.2 2.6 5.4 3.8 185 207 17.3 14.0 22 18

B18 88 30 1.3 1.6 25.0 3.0 212 290 16.3 13.2 35 20

B19 53 65 3.8 2.4 3.8 3.9 208 233 15.4 16.1 24 20

B20 8 12 1.1 1.5 5.6 7.1 215 238 16.0 17.1 33 21

B21 19 42 1.9 2.3 8.7 4.5 210 246 14.8 23.3 39 21

B22 11 35 2.9 2.3 7.6 5.2 228 222 15.8 16.7 37 22

B23 35 10 2.1 1.9 6.8 3.9 209 288 13.8 13.3 37 23

B24 17 20 1.9 2.9 4.6 4.9 266 239 16.6 14.5 40 24

B25 10 45 2.4 1.6 0.7 4.2 169 259 17.8 13.3 20 24

B26 42 26 1.9 1.7 4.9 2.8 233 273 18.6 14.7 32 25

B27 14 20 2.2 2.7 4.8 7.9 255 258 15.4 16.8 40 27

B28 12 28 2.7 0.8 0.9 5.3 220 312 15.6 14.4 37 27

B29 30 2.5 11.1 241 17.2 27

B30 19 1.4 4.1 332 13.3 29

B31 27 2.0 5.2 273 13.8 29

B32 34 1.3 4.3 278 13.6 29

B33 32 3.0 4.1 278 16.4 30

B34 12 1.9 7.2 315 16.5 32

B35 36 1.0 4.3 313 14.9 33

B36 31 1.1 6.0 288 16.9 33

B37 15 2.6 9.7 242 17.2 34

B38 16 1.1 2.9 381 13.1 36

B39 24 2.6 7.8 236 17.4 36

Page 103: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

73

Table 2 (cont.)

Pollen

(% Citrus spp)

MA

(mg/kg)

HMF

(mg/kg)

Electrical

conductivity

(S cm-1)

Moisture

(mg/100g)

Colour

(mm Pfund)

Samples 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012

B40 16 2.4 9.5 224 18.1 36

B41 17 1.7 4.5 357 16.4 37

B42 15 1.4 5.8 373 15.9 40

B43 13 2.5 3.1 217 16.0 38

B44 30 1.2 10.8 284 17.1 40

B45 35 1.4 1.2 167 15.4 2

B46 48 2.5 0 150 16.7 3

B47 47 3.6 1.4 161 14.5 5

B48 40 3.3 1.7 157 17.8 6

B49 68 3.5 1.6 163 17.2 6

B50 47 4.5 1.6 164 16.4 7

Average 34(21) 33(17) 2.1(0.9) 2.4 (1.8) 5.8(5.2) 4.1(2.6) 217(7) 230 (63) 16.3(0.2) 16.0(1.7) 31(2) 20(11)

R01 15 8 0.7 2.0 34.3 25.2 175 240 16.6 16.6 50 44

R02 14 42 1.5 1.9 17.0 33.1 255 220 17.9 16.4 39 50

R03 8 9 0.8 1.8 32.0 32.2 171 210 16.3 18.7 47 26

R04 25 11 0.6 0.7 17.7 25.3 208 229 18.3 18.3 58 39

R05 21 28 1.7 1.7 21.8 30.4 320 193 16.3 16.4 58 26

R06 9 26 2.9 1.5 33.8 14.1 191 245 16.2 16.5 37 45

R07 10 11 1.2 1.4 24.3 16.0 240 244 16.9 16.3 37 40

R08 7 22 2.4 1.0 34.3 17.1 238 198 17.5 16.2 48 28

R09 26 16 1.4 2.9 42.4 22.0 228 235 15.2 17.0 51 35

R10 40 16 1.9 0.8 24.8 33.1 229 234 15.6 16.9 37 36

Average 18 (10) 19(11) 1.5(0.7) 1.6(0.7) 28.2(8.1) 25.2(7.5)) 228 (12) 224 (19) 16.5(0.3) 16.9(0.8) 46(3) 37(8)

Year factor

P-value F-ratio LSD-2011 (min/max) LSD-2012 (min/max)

0.679 0.17

22.50/31.26

19.08/31.51

0.038 4.41

1.60/2.12

1.97/2.71

0.518 0.42

13.85/16.78

12.40/16.57

0.353 0.87

202.11/239.31

215.33/249.95

0.846 0.04

16.02/16.78

15.96/16.96

0.006 7.72

33.06/40.61

26.01/33.04

Sample factor

P-value F-ratio LSD-B

(min/max) LSD-R

(min/max)

0.0004 13.01

29.38/36.65

12.48/25.84

0.203 1.64

2.03/2.46

1.56/2.35

0.0000 242.52

3.64/6.08

22.70/27.19

0.605 0.27

217.45/242.53

201.25/245.46

0.079 3.13

15.85/16.45

16.16/17.26

0.0000 25.24

24.12/29.21

35.21/44.19

Page 104: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

74

Figure 1.- Box and whisker plots for pollen, MA, HMF, electrical conductivity, moisture and colour for honeys from the bee-keepers (B) and retail outlets (R). Samples harvested in 2011 and in 2012.

Similarly, for MA the biggest dispersion between maximum and minimum corresponds to

beekeeper samples (0.5-4.0 mg/kg in 2011 and 0.8-5.9 mg/kg in 2012) with means of 2.1

and 2.4 mg/kg, respectively; where as the retail samples ranged from 0.6 to 2.9 mg/kg

(mean= 1.5 mg/kg) for 2011 and from 0.7 to 2.9 mg/kg (mean= 1.6 mg/kg) for 2012. In

general, although not significant differences were observed for MA related to the type of

sample, the lowest values and the lowest dispersion for MA (the same as for % of pollen)

were detected, as expected, in retail samples. This is because the honey packaging

industry mixes the raw honeys to produce relatively homogeneous batches to meet the

requirements and specifications that companies have for each type of monofloral honey

such as citrus honey. After reception, these industries analyse the physicochemical

properties and pollen of the raw honey in order to discern the characteristics of the raw

batches and be able to mix them appropriately.

Page 105: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

75

The HMF of the beekeeper honeys showed relatively low average values (5.8mg/kg for

2011 and 4.1mg/kg for 2012). However, unexpectedly high values of 16.5 and 25 mg/kg

were observed in 2011, probably due to sporadic bad practices. Such high values were

not observed in 2012 in any case. As commercialized honeys are usually thermally treated

(liquefied and pasteurized) by the industry, the highest values were usually and

unsurprisingly found in the retail honeys. It should to be pointed out that one sample

exceeded the overall permitted limit of 40 mg/kg for HMF (Council Directive 2001/110

relating to honey, 2002).

Electrical conductivity was quite low in the majority of the samples, as expected for the

type of honeys under consideration (Persano-Oddo & Piro, 2004; Bogdanov, et al., 2004).

The average values were very similar in both types of samples (217 and 230 Scm-1 in the

beekeeper samples, and 228 and 224 Scm-1 in the retail ones) without significant

differences neither year nor type of sample.

In the same way no significant differences were found for moisture in relation to both

factors, and maximum values did not exceed 19.0 g/100g (Cano, et al., 2001), with one

exception of 23.3 g/100g (in beekeeper samples of 2012). Beekeeper samples exhibited

lower minimum values, reaching 13.1 g/100g, whereas the minimum value for retail

samples was 15.2 g/100g. Being spring honeys, higher moisture values than those

observed could be expected (Serra-Bonvehí, 1988). Again, a lesser dispersion of moisture

values, reflecting greater homogeneity, can be seen for retail honey due to processing

practices, as mentioned previously.

On the contrary, with regard to colour, significant differences were found both for year

and supplier factors. Beekeeper samples had lower values, especially those from 2012.

Retail samples reached values of up to 58 mm Pfund. These higher values could be mainly

due to the influence of industrial thermal treatments (liquefaction and pasteurization)

(Visquert et al., 2014). Although colour level is not a requirement for citrus honey

commercialization, if this honey were sold with a specific quality mark, then particular

colour requirements would have to be met. This is the case of the Valencian Quality mark

(DOGV, 2002) which requires a maximum of 30 mm on the Pfund scale to benefit from

this Mark. Considering this level, all of the retail samples and more than half of those

from beekeepers in 2011 were above it. However, in the case of beekeeper samples from

2012, more than 75% had values lower than 30 mm on the Pfund scale.

Page 106: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

76

3.3.-Relationship between the analysed parameters In order to ascertain the possible linear dependence between the analysed variables,

Pearson correlation coefficients were calculated for each pair of variables. Only the

beekeeper samples were considered in this correlation since the lack of freshness of the

retail samples (high HMF values) could have influenced the correlated variables (Serra-

Bonvehí, 1988; Sesta et al., 2008).

Table 3 shows the correlation matrix obtained; the number in brackets is the P-value

which tests the statistical significance of the estimated correlations at the 95.0%

confidence level. Although some of the correlations are significant since P-values are

below 0.05, the strength of the linear relationship between each pair of variables is far

from the value +1 or -1. The best correlations are shown for colour and HMF (0.674 for

2011 and 0.706 for 2012) and for colour and electrical conductivity (0.596 for 2011 and

0.812 for 2012). The observed correlation between colour and HMF is coherent

considering that since from harvesting, honey tends to increase HMF and colour naturally

as a result of Maillard reactions (Sancho, et al., 1992). The correlation between colour

and electrical conductivity is widely accepted. In general terms, the darker the honey the

higher electrical conductivity. Since the samples considered for this correlation were only

the unprocessed honeys, the mineral content was the main cause of this relationship

(Bogdanov et al., 2004).

Previous works considered that the MA value could be related to the percentage of pollen

and to other specific physicochemical parameters such as moisture and HMF (Serra-

Bonvehí, 1988). These authors suggest that MA content decreases with the loss of

freshness, with one year old samples showing a lower level of this compound than fresh

samples.

However no good linear relationship between MA and HMF (-0.375 for 2011 and -0.336

for 2012) was observed in this present work. Similarly, there was also no correlation

between MA and moisture, despite claims by Serra-Bonvehí (1988) that high moisture

content can cause aromatic losses in honey to the point of reducing MA content. It is

important to highlight that the range of moistures found in this work was too narrow to

draw conclusions about the influence of moisture on this parameter.

In relation to the other physicochemical parameters (electrical conductivity and colour),

significant correlations, with moderate Pearson coefficients were observed between

them and MA, and pollen, especially for 2012 samples, with values of: MA/electrical

conductivity=-0.678; MA/colour=-0.559; pollen/electrical conductivity=-0.553 and

pollen/colour=-0.556. However, on the contrary to what was expected, there was no

Page 107: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

Table 3. Correlation matrix (Pearson correlation coefficients) between percentage of pollen (Citrus spp.), methyl anthranilate (MA), HMF, moisture, electrical conductivity and colour. Samples harvested in 2011 and 2012.

Pollen MA HMF Moisture Electrical conductivity

2011 2012 2011 2012 2011 2012 2011 2012 2011 2012

MA (mg/kg) 0.347

(0.062)

0.253

(0.098)

HMF(mg/kg) -0.292

(0.011)

-0.380

(0.011)

-0.375

(0.001)

-0.336

(0.026)

Moisture (g/100g) 0.090 0.285 0.037 0.303 -0.069 0.200

(0.437) (0.061) (0.754) (0.046) (0.556) (0.194)

Electrical conductivity

(S/cm-1)

-0.213

(0.065)

-0.553

(0.000)

-0.334

(0.003)

-0.678

(0.000)

0.101

(0.386)

0.413

(0.005)

-0.132

(0.255)

-0.352

(0.019)

Pfund colour (mm) -0.401

(0.003)

-0.556

(0.000)

-0.519

(0.000)

-0.559

(0.000)

0.674

(0.000)

0.706

(0.000)

-0.189

(0.102)

-0.107

(0.491)

0.596

(0.000)

0.812

(0.000)

Numbers in brackets = P-value

77

Page 108: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

78

correlation between MA and the percentage of pollen, the coefficient being 0.347 and

0.253 for samples from 2011 and 2012, respectively.

Once the limited quantitative correlation between MA and the percentage of pollen was

demonstrated, it seemed interesting to try to correlate them from a qualitative point of

view. Therefore both variables were now considered to be categorical. For this purpose,

the samples were classified according to whether they fulfilled the criteria for minimum

level of pollen [Citrus spp. pollen higher than 10%: Molins et al., 1995; Persano-Oddo, et

al, 1995; DOGV, 2002] and minimum level of MA [2 mg/kg: Persano-Oddo & Piro, 2004;

Sesta et al., 2008 and commercial criteria according to the Spanish industry]. As a

consequence, a contingency table was made (only the beekeeper samples were

considered since they were always raw samples and not mixed) (Table 4), which is a

double entry constructed by listing the variable “pollen” as rows and the variable “MA”

as columns. Each variable has only two levels: comply or not comply. Each cell in the table

represents the percentage of samples that satisfy the criterion of the row (% of Citrus spp

pollen) or the column (MA concentration), both (% pollen and MA) or neither. Of all the

observations, 89.2% (in 2011) and 95.4% (in 2012) comply with the pollen requirement

(at least 10% citrus pollen) for a Mark of Quality (e.g. the Valencian Quality Mark: DOGV,

2002). In the case of methyl anthranilate the percentage of compliance (at least 2 mg/kg)

was 53.5 and 61.4%, respectively. As mentioned above, in the case of citrus varieties, in

addition to pollen, the methyl anthranilate content is required for commercial

transactions, as was suggested several years ago by some European laboratories (Sesta

et al., 2008).

Table 4.-Contingency table for pollen (comply with 10% of Citrus spp. pollen) and MA (comply

with 2 mg/kg).Samples harvested in 2011 and 2012.

Comply with

MA2mg/kg

Not comply

MA2mg/kg

Total

2011 2012 2011 2012 2011 2012

Comply with pollen

10% Citrus spp 53.5% 56.8% 35.7% 38.6% 89.2% 95.4%

Not comply with pollen

10% Citrus spp 0% 4.6% 10.8% 0% 10.8% 4.6%

Total 53.5% 61.4% 46.5% 38.6% 100.0% 100.0%

In this work, 53.5% for 2011 and 56.8% for 2012 of the samples fulfilled both % pollen

and MA concentration. On the other hand, 35.7 % and 38.6 % of the samples met % pollen

but not MA, and 4.6 % of the samples from 2012 complied with MA but not % pollen.

Finally, 10.8% of samples from 2011 met neither % pollen nor MA.

It does not seem logical that MA, a parameter that has been proposed to complement

the information given by pollen in citrus honeys when pollen is under-represented, is

Page 109: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

79

actually an impediment to its classification. The way that MA is being applied does not

seem to help this purpose. In fact, if melissopalynological analysis alone were considered

in this study, as in other types of monofloral honey, 89.2 % of samples from 2011 and

95.4% from 2012 would be accepted. However, 35.7 % and 38.6% of the samples,

respectively, which complied with the pollen requirement would be rejected

commercially for not reaching 2 mg/kg for MA.

According to the results obtained, the criterion of 2 mg/kg for MA seems to be too

demanding, and therefore not suitable for Spanish citrus honeys. Studies carried out by

other authors on this type of honey from Spain and Italy (Sesta et al., 2008; Papotti et al.,

2009), concluded that MA content was usually lower than the commercial requirement

of 2 mg/kg. This fact was demonstrated even in honeys, which obviously had the sensory

characteristics of this type of honey. Maybe, for these Mediterranean countries it would

be appropriate to propose a lower value than is expected in other parts of the world

(White & Bryant, 1996). According to the results, it seems more appropriate to only

demand this value in the case of honeys with an unexpectedly low percentage of citrus

pollen. That is, honeys with the typical physicochemical and sensory characteristics of

citrus honey (light amber colour, evident notes of acidity and a very unique flavour due

to the presence of specific aromatic substances) but without sufficient citrus pollen for

this type of honey (Escriche, et al., 2011).

6. Conclusion

The results showed that there was a very weak linear correlation between the level of

methyl anthranilate and the percentage of pollen in the samples analysed. In almost half

of the cases the quantity of MA in Spanish citrus honey was lower than the commercial

requirement, which was also reported by other authors for Italian citrus honey. This

occurs even though the honeys have a more than sufficient commercial level of citrus

pollen. This paper proposes reconsidering the level of MA required in Spanish citrus

honey and applying a more realistic value. But above all, to only take this parameter into

account in the case of honeys with a surprisingly low percentage of citrus pollen, and

after evaluating their organoleptic and physicochemical properties.

Page 110: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

80

Acknowledgment

This study forms part of a project funded by the company Melazahar Cooperativa

Valenciana (Spain), with the title of "Idoneidad del metilantranilato en la clasificación de

mieles de azahar (UPV: 27115)” for which the authors are grateful.

7. References

Bertelli D., Papotti G., Lolli M., Sabatini A.G. &Plessi M. (2008). Development of an

HS_SPME_GC method to determine the methyl anthranilate in Citrus honey. Food

Chemistry, 108, 297-303.

Bogdanov S. (2002). Harmonized methods of the International Honey Commission. Swiss

Bee Research Centre, FAM, Liebefeld, CH 3003 Bern, Switzerland.

Bogdanov S., Ruoff K. & Persano-Oddo L. (2004). Physico-chemical methods for the

characterization of unifloral honeys: a review. Apidologie, 35, 4-17.

Cano C. B., Felsner M. L., Matos J. R., Bruns R. E, Whatanabe H. M. & Almeida-Muradian,

L. B. (2001). Comparison of Methods for Determining Moisture Content of Citrus

and Eucalyptus Brazilian Honeys by Refractometry. Journal of Food Composition

and Analysis, 14, 101-109.

Carretero J. L. (1989). Análisis polínico de la miel (1st ed.). Multi-Prensa, Madrid, España.

Castro-Vazque, L., Diaz-Marot, M.C. & Pérez-Coello M.S. (2007). Aroma composition and

new chemical markers of Spanish citrus honeys. Food Chemistry, 103, 601-606.

Commission Decision 2002/657/EC of 12 August (2002). Implementing Council Directive

96/23/EC concerning the performance of analytical methods and the interpretation

of results, OJEC L221, 8-36. Brusels, Belgium.

Council Directive 2001/110 relating to honey (2002). Official Journal of the European

Communities, 12.1.2002.

DOGV (Valencian Region Regulation) No. 4167 (2002). Reglamento de la Marca de Calidad

CV para miel de azahar y romero, in: Diario Oficial de la Generalitat Valenciana. Área

de publicaciones de la Presidencia de la Generalitat Publishing.

Page 111: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

81

Escriche I., Kadar M., Juan-Borrás, M. & Domenech E. (2011). Using flavonoids, phenolic

compounds and headspace volatile profile for botanical authentication of lemon

and orange honeys. Food Research International, 44 (5), 1504-1513.

Ferreres F., Giner J.M. & Tomás-Barberán F.A. (1994). A comparative study of hesperetin

and methyl anthranilate as markers of the floral origin of citrus honey, Journal of

the Science of Food and Agriculture, 65, 371-372.

Gómez-Pajuelo A. (2004). Origen botánico de la miel, In: Montagud S.A (Ed). Mieles de

España y Portugal (pp. 50-56). Barcelona, Spain.

ISO 5496 (2006). Sensory Analysis. Methodology. Initiation and training of assessors in

the detection and recognition of odours.

Jabalpurwala F.A., Smoot J. M. & Rouseff R. L. (2009). A comparison of citrus blossom

volatiles. Phytochemistry, 70, 1428-1434.

Molins J. L., Perea F., Montilla J., Martinez E. & Guerra E. (1995). Characterization du miel

d’orange (Citrus sp.) produit en Espagne, au moyen de son spectre pollinique.

Lagascalia, 18, 71-82.

Nozal M., Bernal J., Toribio L., Jiménez J. J. & Martín M.T. (2001). High-performance liquid

chromatographic determination of methyl anthranilate, hydroxymethylfurfural and

related compounds in honey. Journal of Chromatography A, 917, 95-103.

Papotti G., Bertelli D., Lolli M., Sabatini A.G. & Plessi M. (2009). Methyl anthranilate

content in Italian citrus honeys determined by HS-SPME-GC. International Journal

of Food Science and Technology, 44, 1933-1938.

Papotti G., Bertelli D. & Plessi M. (2012). Use of HS-SPME-GC-MS for the classification of

Italian lemon, orange and citrus spp. Honeys. International Journal of Food Science

and Technology, 47, 2352 -2358.

Persano-Oddo L., Piazza M.G., Sabatini A.G. &Accorti M. (1995). Characterization of

unifloral honeys. Apidologie, 26, 453-465.

Persano-Oddo L. & Piro R. (2004). Main European unifloral honeys: descriptive sheets.

Apidologie, 35, S38–S81.

Rodriguez I., Serrano S., Galán H., Ubera J. L. & Jodral M. (2010). Characterisation of Sierra

Morena citrus blossom honey (Citrus sp). International Journal of Food Science and

Technology, 45, 2008-2015.

Saenz C. & Gómez C. (2000). Mieles españolas. Características e identificación mediante

el análisis del polen. (1st ed.). Multi-Prensa, Madrid, España.

Sancho M.T., Muniategui S., Huidobro J. F. & Simal J. (1992). Aging of honey. Journal of

Agricultural and Food Chemistry, 40, 134–138.

Page 112: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Correlation between methyl anthranilate level and percentage of pollen in Spanish citrus honey

82

Serra-Bonvehí J. (1988). Determinación de antranilato de metilo en la miel de citricos

(Citrus sp.) del Levante Español, y su influencia en la actividad diastásica de la miel.

Alimentaria, 197, 37–40.

Serra-Bonvehí J. & Ventura F. (1995). Characterization of Citrus honey produced in Spain.

Journal of Agricultural and Food Chemistry, 43, 2053–2057.

Sesta G., Piana M.L., Persano-Oddo L., Lusco L. & Belligoli P. (2008). Methyl anthranilate

in Citrus honey. Analytical method and suitability as a chemical marker. Apidologie,

39, 334-342.

Visquert M., Vargas M. & Escriche I. (2014). Effect of postharvest storage conditions on

the colour and freshness parameters of raw honey. International Journal of Food

Science and Technology, 49, 181–187.

Von der Ohe W., Persano-Oddo L., Piana M.L., Morlot M. & Martin P. (2004). Harmonized

methods of melissopalynology. Apidologie, 35, 18-25.

White J. W. (1966). Methyl anthranilate content of citrus honeys. Journal of Food Science,

31, 102-104.

White J.W. &Bryant V.M. (1996). Assessing Citrus honey quality: pollen and methyl

anthranilate content. Journal of Agricultural and Food Chemistry, 44, 3423–3425.

Page 113: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Marisol Juan-Borrás, Juan Soto, Luis Gil-Sánchez, Ana Pascual-Maté, Isabel Escriche

Food Control (En revisión)

3.3. Potenciometric tongues with noble and non-noble metals

for the differentiation of Spanish honeys

considering the antioxidant capacity

Page 114: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 115: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

85

Abstract

Knowledge about the antioxidant level of honey is increasingly important, due to its

implications for health, and as a marketing tool for the industry. The aim of this work was

to evaluate the capacity of a potentiometric electronic tongue, with a combination of

four noble (Au, Pt, Ir and Rh) and four non-noble metals (Ag, Ni, Co and Cu), to

differentiate between types of Spanish honey (orange blossom,

rosemary,thyme,sunflower,winter savory and honeydew honey) according to their

antioxidant level. The botanical categorization of each of the batches was carried out by

means of pollen analysis. The electronic tongue system made with Ag, Ni, Co, Cu and Au

was able to not only differentiate between types of honey but also to predict their total

antioxidant capacity. The discrimination ability of the system was proved by means of a

Neural Network Analysis fuzzy artmap type, with 100% classification success.A prediction

MLR model showed that the best correlation coefficient was for antioxidant activity

(0.9666), then for electrical conductivity (0.8959) and to a lesser extent for the other

parameters considered (aw, moisture and colour). The proposed measurement system

could be a quick, easy option for the honey packaging sector to provide continuous in line

information about a characteristic as important as the antioxidant level.

Keywords: Potentiometric tongue; honey; antioxidant capacity

1. Introduction

Honey has been a highly valued food since ancient times for its organoleptic and

therapeutic characteristics and also nowadays for its antioxidant properties. The demand

for natural antioxidants is increasing constantly as they play an important role in human

health avoiding damage caused by oxidizing agents. It is well known that honey is an

important source of natural antioxidants, one of the reasons why honey consumption is

recommended. Recent research has shown that the antioxidant properties of honey

depend on the nectar of blossoms or exudates of trees and plants visited by bees. In turn,

this is conditioned by the geographical and climatic conditions (Escricheet al., 2014). At

present, their information available to the consumer through labeling is very incomplete.

This is limited at the most to the botanical origin, allowing honey to be classified as

monofloral. There is growing interest in assessing the specific healthy properties of honey

(e.g. antioxidant level), in order to inform consumers and to increase producers profit

margins.

Page 116: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

86

A large number of procedures are used to evaluate the antioxidant potential of honey.

Although these methodologies show good precision, accuracy and reliability, the problem

is that they are inappropriate for in situ monitoring. In addition, these techniques are

destructive, time-consuming and very tedious, requiring highly expert analysts and

specialized equipment (Oroian & Escriche, 2015).

Among the fastest, easy-to-handle measurement techniques that have been tested in

recent years, electronic tongues (based mainly on voltammetry, potentiometry or

impedance spectroscopy), together with multivariate chemometric tools, are the most

promising. The effectiveness of a potentiometric tongue (measuring the electrochemical

balance) made of various metals and metallic compounds (metal oxides and insoluble

metal salts) was successfully applied for the classification of honey according to its

botanical origin although it was less efficient at discriminating between applied thermal

treatments (raw, liquefied and pasteurized) (Escriche et al., 2012). Tiwari et al. (2013)

used an electronic tongue based on the electrochemical information analysis of the

voltammetric scan of a single platinum electrode as a sensor element for discrimination

between several monofloral honey samples. Ulloa et al. in 2013 described the

differentiation of various Portuguese honeys using a sensor obtained by the fusion of an

impedance electronic tongue and optical spectroscopy (UV–Vis–NIR).

The application of a commercially available potentiometric electronic tongue (Astree,

Alpha M.O.S.), either as a unique process (Major et al., 2011) or in combination with a

voltammetric electronic tongue (Wei & Wang, 2014) has been described to classify types

of honey according to botanical and geographical origin.

Using potentiometric electrodes (with metal/metal oxides and insoluble metal salts)

provides information about the presence of compounds through interaction with them

(Soto et al., 2006). For example, metal/metal oxide electrodes are sensors that afford

information about the pH of the medium, the presence of anions which form low soluble

salts with the oxidized metal and the presence of dissolved substances which can form

compounds with the corresponding metals (Escriche et al., 2012). Noble metals, such as

gold or platinum, have been used to determine the redox potential in food systems. The

measurement of the redox potential can be directly related to the content of total

reducing or oxidizing agents present in the sample. Antioxidants, such as polyphenols or

flavonoids, are compounds with reducing character that can cause changes in the

potential of metal polarization as a consequence of both their potential redox and their

relative concentrations (Soto et al., 2013). This suggests that metal sensors could be

useful for the determination of the antioxidant activity of honey.

For this reason the goal of the present study was to evaluate whether a potentiometric

electronic tongue made with a combination of metal electrodes (noble and non-noble) is

able to differentiate between types of Spanish honey according to their antioxidant level.

The specific contribution of each electrode sensor is evaluated, together with the

Page 117: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

87

possibility of a correlation between the potentiometric measures of honey and the

physicochemical parameters and antioxidant capacity.

2. Materials and Methods

2.1.-Honey samples

Six types raw honey harvested in 2014 in different areas of Spain were used in this study.

They are among the most common varieties available in Spain: orange blossom (Citrus

spp.), rosemary (Rosmarinus officinalis), thyme (Thymus spp.), sunflower (Helianthus

annuus), winter savory honey (Satureja montana), and honeydew honey. Three batches

of each type of honey were directly supplied by beekeepers. All samples were sent to the

laboratory immediately after they were harvested.

2.2.-Analytical determinations

2.2.1. Melissopalynological analysis

The botanical categorization of each of the batches were performed by means of pollen

analysis. Quantification of pollen was carried out following the recommendations of the

International Commission for Bee Botany (Von Der Ohe et al., 2004). A light microscope

(Zeiss Axio Imager, Gottingen, Germany) at a magnification power of x400 with DpxView

LE image analysis software attached to a DeltaPix digital camera was used in this analysis.

2.2.2. Colour and physicochemical analysis

Color was determined using a millimeter Pfund scale C 221 Honey Color Analyzer (Hanna

Instruments). Moisture content (by refractrometry: Abbe-type model T1 Atago, USA and

the Chataway table) and electrical conductivity (by conductimetry: Crison Instrument,

Barcelona, Spain, model C830) were analyzed in accordance with the Harmonized

Methods of the European Honey Commission (Bogdanov, 2002). Water activity (aw) was

determined at 25 °C (± 0.2 °C) using an electronic dewpoint water activity meter, Aqualab

Page 118: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

88

Series 4 model TE (Decagon Devices, Pullman,Washington, USA), equipped with a

temperature-control system (Chirife et al., 2006).

2.2.3. Sugar Analysis

Fructose, glucose and sucrose were analyzed as described by Bogdanov et al. (1997) using

a HPAEC high-resolution ionic chromatograph with a pulsed amperometric detector

(PAD) (Bioscan, Methrom, Switzerland) and a Metrosep Carb chromatographic column

(styrene divinylbenzene copolymer, 4.6 × 250 mm). Carbohydrates were eluted with

NaOH 0.1N at a flow rate of 1 mL min-1. Quantification of sugars was realized using

external standards constructing the corresponding calibration curves.

2.2.4. Antioxidant activity

The antioxidant activity (AA) was measured based on the scavenging activities of the

stable DPPH (2,2-diphenyl-1-picrylhydrazyl) (Sigma-Aldrich, Germany) free radical as

described by Shahidi et al. (2006). Accordingly, 1g of the honey sample (diluted in 25 mL

methanol: water, 80:20) was mixed with 3.9 mL of a methanolic solution of DPPH

(0.025mg/mL, prepared in methanol: water (80:20)). After 30 min, the absorbance of the

samples was measured at 515 nm with methanol as a blank, using a spectrophotometer

(JASCO V-630). The quantification was carried out using a standard curve of Trolox (6-

Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid). The results were expressed as

mg of Trolox equivalent per gram of honey.All analyses were performed in triplicate.

2.2.5. Potenciometric tongue

Measurement system

Measurements were performed with tailor-made equipment formed basically by the

following parts: a set of metal electrodes, an electronic system (Martínez-Mañez et al.,

2005), a computer system for digitalization and acquisition of the signal and data analysis

software.

Set of metallic electrodes

The electrochemical measurements were obtained using an electronic tongue consisting

of an array of eight metallic electrodes (1 mm diameter from Aldrich): Noble metals (gold,

platinum, iridium and rhodium); and non-noble metals (copper, silver, nickel and cobalt).

All electrodes were placed in two homemade stainless steel tube (one for the 4 noble

metals and another for the rest) that were used as the body of the electronic tongue. The

different wire electrodes were fixed inside the tube using RS 199-1468 epoxy polymer.

Before use, the surfaces of the electrodes were polished with emery paper, and rinsed

with distilled water. Then they were polished on a felt pad with 0.05m alumina polish

Page 119: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

89

from BAS, washed with distilled water and polished again on a nylon pad with 15.3 and

m diamond polishes. During the measurements, only a simple diamond polishing was

carried out.

Electronic Measurement Equipment

The measuring equipment permitted multiplexed potentiometric measures for 16

independent channels. The potential was measured automatically, sequentially and

cyclically for each of the eight electrodes with respect to the Ag/AgCl reference electrode.

The potentiometric measurements were simply the potential difference between each

electrode and the reference electrode.

Implementation of measures

To carry out a measurement, the set of eight electrodes and the reference electrode were

dipped in a vessel containing 5 g of honey in 25 mL water. Then, the multiplexed reading

of the potential was carried out for 15 min. The time required to reach equilibrium was

usually less than 10 minutes. The data used for multivariate analysis were the average

values of the last 5 min of acquisition (between 10 and 15 min). This process was repeated

three times for each of the 18 samples (6 types of honey x 3 batches).

2.3.-Statistical analysis

An analysis of variance (ANOVA) (using Statgraphics Centurion for Windows) was applied

to study the influence of the type of honey on colour, physicochemical parameters (aw,

moisture and electrical conductivity), sugars and total antioxidant activity. LSD (least

significant difference) at significance level 𝛼 = 5%was used to analyze the differences

between means.

The data matrix obtained with the potentiometric tongue was analyzed using multivariate

statistical techniques: principal component analysis (PCA) and Fuzzy ARTMAP-type

artificial neural network (ANN) were applied to evaluate the possible classification (non-

supervised and supervised, respectively) of the samples. Fuzzy ARTMAP type ANN

(Carpente et al., 1992) is a self-organizing supervised classifier that has been previously

used with nose and tongue electronic systems, with good results for a limited number of

samples, as is the case of the present work (Llobet et al., 1999). The network was

implemented in-house using function macros from basic functions of MATLAB with a

graphical environment (GUI) (Garcia-Breijo et al., 2013) using a simplified version of the

original algorithm (Kasuba, 1993). Multiple linear regression (MLR) was used to model

the relationship between the potentiometric measurement and the physicochemical

parameters. PCA and MLR were performed using the annex SOLO of the MATLAB

program (Eigenvectors Research, Inc.).

Page 120: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

90

3. Results and Discussion

3.1.-Melissopalynological, colour, physicochemical

parameters, sugars and antioxidant activity

Pollen analysis of the honey samples was made as a first step in order to ascertain their

botanical origin. Table 1 illustrates the predominant pollen, colour, physicochemical

parameters, sugars and total antioxidant activity of each honey sample used in this study.

In addition, this table shows the ANOVA results (F-ratio and significant differences)

obtained for the factor “type of honey”. The information about the homogeneous groups

obtained from the ANOVA for every one of the parameters appears (in superscript letters)

in this table next to the information of the first batch of each type of honey. Taking into

account that the higher the F-ratio, the greater the effect that a factor has on a variable,

electrical conductivity, colour and total antioxidant activity were the parameters most

affected by “type of honey”. Moisture, aw, and glucose where less affected, whereas

fructose and sucrose did not show significant differences between types of honey.

Among all the honey samples considered in this study, honeydew honey, as expected,

had the highest electrical conductivity (up to 814S/cm). In fact, this honey has to have

more than 800S/cm to be classed as this type of honey.

Page 121: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

91

Table 1. Predominant pollen of each sample, colour, physicochemical parameters, sugars, total antioxidant activity and ANOVA results (𝐹-ratio and significant

differences) obtained for the factor type of honey. The number before of each type of honey refers to the batch.

Type of honey Predominant pollen Colour

(Pfund scale) aw

Moisture g/100 g

Electrical conductivity

S/cm

Glucose g/100g

Fructose g/100g

Sucrose g/100g

Total antioxidant activity

mg trolox/100g

1. Orange 60% Citrus spp., Diplotaxis spp. , Taraxacum type 10(a) 0.585(a.b)) 17.7(c) 128(a) 32(bc) 43 1 15.81(a)

2. Orange 31% Citrus spp., Taraxacum type 6 0.591 18.0 128 32 44 1 15.81

3.Orange 60% Citrus spp., Taraxacum type,Diplotaxis spp.,

Quercus spp., Olea europaea

8 0.567 17.2 150 30 42 2 15.06

1. Rosemary 36% Rosmarinus officinalis,Taraxacum type

,Thymus spp., Anthyllis citysoides, Quercus spp.,

Citrus spp.

16(a) 0.593(b) 17.2(b,c) 178(a) 32(bc) 45 2 16.04(a)

2. Rosemary 21% Rosmarinus officinalis, Vicia spp., Echium spp. 13 0.594 17.3 118 32 44 2 16.04

3. Rosemary 17% Rosmarinus officinalis, Vicia spp., Echium spp. 0 0.568 16.9 97 30 41 1 11.72

1. Thyme 28% Thymus spp., Prunus dulcis, Centaurea spp.,

Compositae, Satureja montana, Onobrychis

viciiofolia

78(c) 0.561(a) 15.9(a) 517(c) 30(b) 42 1 356.15(c)

2. Thyme 23% Thymus spp., 2% Satureja montana,

Onobrychis viciifolia

69 0.560 15.4 392 31 44 2 257.75

3. Thyme 29 % Thymus spp., Onobrychis viciifolia 89 0.556 15.0 451 30 42 1 318.05

1. Sunflower 51 % Helianthus annuus, 23% Xanthium spp. 55(b) 0.584(b) 16.6(b,c) 316(b) 32(c) 48 2 39.91(a,b)

2. Sunflower 74% Helianthus annuus 67 0.594 16.8 369 36 46 1 51.96

3. Sunflower 70% Helianthus annuus 60 0.618 18.2 359 33 42 2 48.56

Page 122: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

92

Table 1 (cont.)

Type of honey Predominant pollen Colour

(Pfund scale) aw

Moisture g/100 g

Electrical conductivity

S/cm

Glucose g/100g

Fructose g/100g

Sucrose g/100g

Total antioxidant activity

mg trolox/100g

1. Winter savory 35% Satureja montana, Diplotaxis spp.,

Onobrychis viciiofolia, Centaurea spp., Lavandula

latifolia, Thymus spp.

86(c) 0.573(b) 16.2(b,c) 278(b) 30(b,c) 42 1 85.56(b)

2. Winter savory 52% Satureja montana, Onobrychis viciiofolia,

Diplotaxis spp., Apiaceae, Echinops spp.,

Compositae

90 0.606 17.8 292 32 49 2 67.64

3. Winter savory 49% Satureja montana, Centaurea spp.,

Diplotaxis spp., Apiaceae, Citrus spp.

90 0.602 17.6 300 31 45 3 63.66

1. Honeydew 8% Retama sphaerocarpa, Rubus ulmifolius,

Genista type, Erica spp., Diplotaxis spp.

88(c) 0.578(a,b) 16.4(a,b) 809(d) 25(a) 42 1 55.65(b)

2. Honeydew 30% Rubus ulmifolius, 17% Echium spp., 12%

Castanea sativa, Compositae

86 0.580 16.5 809 28 46 3 57.09

3. Honeydew 49% Rubus ulmifolius, 29% Echium spp.,9%

Castanea sativa, Apiaceae, Erica spp., Labiatae,

Genista type

87 0.584 16.4 814 25 39 1 53.76

ANOVA 𝐹-ratio 115.10*** 3.35* 5.87** 170*** 7.8** n.s. n.s. 85***

∗∗∗𝑝< 0.001. For each factor, different letters in each column indicate homogeneous groups (significant differences at 95% confidence level as obtained by the LSD

test). The information about the homogeneous groups appears between brackets and superscript letters in the first row of each group

Page 123: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

93

Thyme honey stands out from the other monofloral honeys due to its high electrical

conductivity values, which reached 517S/cm. This is a very high value considering its

floral origin, much higher than that observed by Karabagias et al. (2014) in thyme honey

from Greece (average value: 399 S/cm). Orange blossom and rosemary honey had the

lowest conductivity (no more than 150 and 178S/cm, respectively), without significant

differences between them.

With respect to colour, the results show that orange blossom and rosemary honey had

the lightest colour with a range of 0 to 16 mm Pfund, and winter savory honey the darkest

showing values up to 90 mm Pfund. The dark colour in honey is traditionally a highly

valued characteristic because it is well known that the darker a honey is, the higher the

mineral content (González-Miret et al., 2005). Therefore, it follows that darker honey has

higher conductivity, to the point that this relationship has been extrapolated to

antioxidant activity, however the results of the present work do not support this idea. In

fact, although the lowest values of total antioxidant activity correspond to the lightest

honeys (orange blossom and rosemary honeys), the darkest honey (winter savory honey)

did not exhibit the greatest antioxidant activity. Of all the analyzed samples, thyme honey

differs significantly in relation to antioxidant activity, as the values of this parameter were

between 4-5 times more than that of winter savory honey and 5-7 times more than

honeydew honey, traditionally considered to have a high antioxidant level.

The PCA bi-plot of scores and loading obtained considering the 18 different samples (6

types of honey x 3 batches), the physicochemical parameters and color variables is shown

in Figure 1, with the aim of evaluating the global effect of the type of honey on these

variables from a descriptive position. The predominant pollen in each sample is placed

next to the code of the botanical name.

Two principal components explained 66% of the variations in the data set: PC1 (44%) and

PC2 (22%). It can be observed that honeydew honey and thyme honey are located in the

right quadrant (although not totally differentiated), next to the highest values of colour,

electrical conductivity and antioxidant activity. The other samples on the left quadrant

without a clear distinction between them. Although the botanical origin of honey had a

clear impact on some of the parameters studied, in general terms a good differentiation

between the types of honey studied was not achieved.

Page 124: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

94

Figure 1. PCA biplot (scores and loadings) of the variables (physicochemical parameters, sugars, color and total antioxidant activity) and honey samples:

C (orange blossom); R (rosemary); T (thyme); S (sunflower); W (winter savory honey); H (honeydew honey). Next to each sample the percentage of the

relevant predominant pollen is shown.

C-60%C-31%

C-60%

R-36%

R-21%

R-17%

T-28%

T-23%

T-29%

S-51%

S-74%S-70%

W-35%

W-52%W-49%

H-8%

Antioxidant activity

H-8%

H-8%

Colour

Electrical conductivity

aw

MoistureGlucose

Fructose

Sucrose

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4

PC

2 (

22

%)

PC1 (44%)

Page 125: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

95

3.2.-Potentiometric electronic tongue information: PCA

and artificial neural networks classifications

A PCA analysis (unsupervised procedure) was applied to check if there was a spontaneous

classification from the data generated by the eight electrodes, without previously

defining the categories of the samples. Figure 2 shows the PCA biplot (scores and

loadings) from the measurements obtained with the eight electrodes together, noble and

non-noble metals. Two components explained 92% of the total variance (PC1=72% and

PC2=20%). It can be observed that a good discrimination was found between types of

honey. Samples of thyme honey and honeydew honey showed the clearest separation

between them and with the rest of the samples; PC1 promotes the best discrimination of

thyme honey and PC2 of the honeydew honey. This figure also shows that sunflower and

winter savory are well differentiated, whereas citrus and rosemary have the most similar

behavior in terms of potentiometric tongue response.

With respect to the contribution of each electrode in the calculation of PC1andPC2values,

it can be seen that two electrodes (Co and Cu) have very different behavior to the rest.

This is particularly important with regards to their influence on the PC2, since the

variation of the contribution of these two electrodes is not relevant to PC1. This figure

shows that the location of the four noble metal electrodes (Au, Pt, Ir and Rh) are very

close to each other, which implies that their behavior is quite similar. Furthermore, the

position of these four metals is relatively close to the other two non-noble metals:

especially Ag, and to a lesser extent Ni. Consequently, it was considered appropriate to

simplify the electrode system, reducing the four noble metals to one, Au, which was

selected because is easier to obtain and to work with in comparison to the other three

noble metals (Pt, Ir, Rh). Therefore, a new PCA was carried out (Figure 3) only using the

information from five electrodes: the four non-noble metals (Ag, Ni, Co, Cu) plus Au. It

can be observed that the position of the samples in Figure 3 is quite similar to Figure 2.

In the case of Figure 3 the three noble electrodes: Au, Ag and Ni, exhibited similar but

slightly different behaviour, while the other two metals(Co and Cu) still presented

different behaviour to each other and the rest. In this way it was possible to simplify the

measure system without losing information.

With the aim of complementing the information given by the PCA, an artificial neural

network analysis, as a supervised procedure, was applied. The type of neural network

used in this work was Fuzzy Artmap (Carpenter, Gossberg, Markuzon, Reynolds & Rosen,

1992) that has been previously used with nose and tongue electronic systems, with good

results for a limited number of samples (Llobet et al., 1999), as is the case of the present

work. In this analysis the available data were divided into two groups; one group was used

Page 126: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

96

Figure 2. PCA biplot (scores and loadings) from the measurements obtained with the 8 electrodes together (4 noble and 4 non-noble metals: “Au, Pt, Ir,

Rh, Ag, Ni, Co and Cu”). C (orange blossom); R (rosemary); T (thyme); S (sunflower); W (winter savory honey); H (honeydew honey).

H1 H1

H1

H2 H2

H2H3

H3

H3

S1

S3

S1

S2S2S2

S3

S3S1

R1R1

R1

R2

R3

R2

R3

R2

R3

T1

T1

T1

T2

T2

T2T3

T3 T3

W1W1

W1

W2

W2W2

W3

W3 W3 C1

C1

C1

C3

C2

C3

C3

C2

C2

Ir

Rh

Pt

Au

Ag

Co

Cu

Ni

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5

PC

2 (

20

%)

PC1 (72%)

Page 127: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

97

Figure 3. PCA biplot (scores and loadings) from the measurements obtained with the 5 electrodes together (4 non-noble metals “Ag, Ni, Co and Cu”, plus

Au). C (orange blossom); R (rosemary); T (thyme); S (sunflower); W (winter savory honey); H (honeydew honey).

H1 H1

H1

H2

H2

H2H3

H3

H3

S 1

S3

S 1

S 2S 2S 2

S3

S 3

S1

R1R1

R1

R2

R3

R2

R3

R2

R3

T1

T1

T1

T2T2

T2

T3

T3

T3

W1W1

W1

W2

W2W2

W3W3

W3C1

C1C1

C3

C2

C3

C3

C2

C2

Au

Ag

Co

Cu

Ni

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

-1 -0,9 -0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5

PC

2 (

20

%)

PC1 (72%)

Page 128: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

98

for network training and obtaining the prediction model of the categories, and the other

group to verify the neural network and to estimate the degree of success in the

classification of new data into the established categories. The data distribution was as

follows: of the54 total input data 6types of honey x 3 batches x 3repetitions), two-

thirds(36) of the data were used for training and a third (18) for validation; ensuring that

each category(types of honey) was represented proportionally in both the training and

the validation groups. That is to say, for training the matrix of measurements of each

electrode was: 6 types of honey x 2 batches x 3repetitions, and for validation: 6 types of

honey x 1 batches x 3repetitions.-

The optimum model was achieved by obtaining a scan of the operating parameters of the

neural network. After that, the data of verification were applied to check the rate of

success/failures for the identification of each sample in the appropriate category. The

classification success (data not shown) was 100%. The same result was obtained

considering the starting 8 electrodes (4 noble and 4 non-noble metals). This demonstrates

that the electrode measurement system made with the 5 metals was useful for the

classification of samples of honey depending on the floral origin.

3.3.-Correlation of potentiometric data with

physicochemical parameters: MLR analysis

With the aim of verifying whether the data given by the electronic tongue system is useful

to predict relevant information provided by the physicochemical parameters, a MLR

analysis (Multiple Linear Regression) was applied. To perform the MLR analysis, the data

of 36 samples were taken to create the prediction model and the remaining 18 samples

were used to verify the performed model. That is to say, the same separation of samples

previously used in the neural network analysis.

A prediction MLR model was carried out for each the physicochemical parameters (aw,

conductivity, moisture), colour and antioxidant activity, and the potentiometric

experimental data from the metallic electrodes. The analysis was made twice, on one

hand considering the eight electrodes (4 noble metals plus 4 non-noble metals) and on

the other hand considering just the 5 selected electrodes (4 non-noble metals plus Au).

Table 2 shows the MLR results including the values of the slope, intercept, regression

coefficient and number of latent variables. A good correlation exists for total antioxidant

activity and electrical conductivity.

Page 129: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

99

Table 2. MLR prediction results for the physicochemical parameters (aw, conductivity, moisture), colour and antioxidant activity

4 non-noble metals +4 noble metals

4 non-noble metals

+Au

Parameters Correlation

coefficient

Slope Intercept Correlation

coefficient

Slope Intercept

aW 0.4860 0.516 0.279 0.4790 0.445 0.319

Electrical

conductivity

0.9050 0.850 25.359 0.8959 0.813 51.126

Moisture 0.7380 0.646 5.905 0.7040 0.558 7.311

Colour 0.5300 0.634 14.529 0.7400 0.755 8.895

Antioxidant Activity 0.9665 0.970 11.162 0.9666 0.911 22.256

The best correlation coefficient was for the antioxidant activity using the 4 non-noble

metals plus Au (0.9666), although it was very similar to that obtained with all the

electrodes (0.9665). In the case of electrical conductivity, the correlation coefficients

were 0.8959 and 0.9049, respectively. A weaker correlation exists for the rest of the

parameters, especially for aw. Figure 4 shows the MLR graph corresponding to measured

values vs. predicted values of the antioxidant activity in both cases.

Figure 4. Predicted versus actual values of total antioxidant capacity given by the MLR model. A) 8 electrodes: 4 noble metals “Au, Pt, Ir and Rh” plus 4 non-noble metals “Ag, Ni, Co and Cu” and B) 4 non-noble “Ag, Ni, Co and Cu” metals plus Au.

Page 130: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

100

A previous study found a remarkable correlation between physicochemical parameters

such as colour Pfund (0.9580) and diastase activity (0.9260) and data from an electronic

tongue, made of three metals (Au, Ag and Cu) and four metal compounds (Ag2O, AgCl,

Ag2CO3 and Cu2O) (Escriche et al., 2012). However, the correlation with total antioxidant

activity was much weaker (0.7660). The new electronic tongue proposed here is a great

improvement over the previous one from the point of view of its ability to differentiate

honey from the point of view of antioxidant capacity.

4. Conclusion

An electronic tongue system made of 5 metals: 4 non-noble metals (copper, silver, nickel

and cobalt) and just one noble metal (Au) is able to not only differentiate between types

of honey but also to predict their total antioxidant capacity.

The differentiation was most marked for thyme and honeydew honey and much weaker

for citrus and rosemary honey. The discrimination ability of the measurement system was

evaluated by means of an ANN fuzzy artmap type analysis, showing that the classification

success was 100%.

In summary, the proposed measurement system could be a good tool for the honey

packaging industry to provide continuous information about a factor as important as

antioxidant capacity. The importance of knowledge about this component in honey is

increasing, not only due to its implications for health, but also in terms of marketing.

The promising results obtained highlight the need to continue researching the validation

of this approach to corroborate the efficacy of the proposed electronic tongue, using a

wide variety of honey types with different botanical and geographical origins.

Acknowledgment

The authors thank the Generalitat Valenciana (Spain) for funding the project

AICO/2015/104.

Page 131: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

101

5. References

Bogdanov S. (2002). Harmonized methods of the International Honey Commission Swiss

Bee Research Centre, FAM, Liebefeld, CH 3003 Bern, Switzerland.

Bogdanov S., Martin P. & Lüllman C. (1997). Harmonised methods of the European Honey

Commission. Apidologie, extra issue, 1–59.

Carpenter G. A., Gossberg S., Markuzon N., Reynolds I, & Rosen D. (1992). Fuzzy Artmap:

a neural network architecture for incremental supervised learning of analog

multidimensional maps. IEEE Trans Neural Network, 3, 698-713.

Chirife J., Zamora M. C. & Motto A. (2006). The correlation between water activity and %

moisture in honey. Fundamental aspects and application to Argentine honeys

Journal of Food Engineering, 72, 287-292.

Escriche I., Kadar M., Domenech E. & Gil-Sánchez L. (2012). A potentiometric electronic

tongue for the discrimination of honey according to the botanical origin.

Comparison with traditional methodologies: Physicochemical parameters and

volatile profile. Journal of Food Engineering, 109, 449-456.

Escriche I., Kadar M., Juan-Borrás M. & Domenech E. (2014). Suitability of antioxidant

capacity, flavonoids and phenolic acids for floral authentication of Spanish honey.

Impact of industrial thermal treatment. Food Chemistry, 142, 135–143.

Garcia-Breijo E., Garrigues J. & Gil-Sánchez L. (2013). Optimization of an Embedded

Simplified Fuzzy ARTMAP Implemented on a Microcontroller using MATLAB GUI

Environment”.Pattern Recognition: Practices, Perspectives and Challenges. Nova

Science Publishers (Hauppauge NY, EEUU).

González-Miret M .L., Terrab A., Hernanz D., Fernández-Recamales M. A. & Heredia F.J.

(2005). Multivariate correlation between color and mineral composition of honeys

and by their botanical origin.Journal of Agriculture and Food Chemistry, 6, 53(7),

2574-80

Karabagias I. K., Vavoura M. V., Nikolaou C., Badeka A. V., Kontakos S. & Kontominas M.G.

(2014). Floral authentication of Greek unifloral honeys based on the combination

of phenolic compounds, physicochemical parameters and chemometrics. Food

Research International, 62, 753–760.

Kasuba T. (1993). Simplified Fuzzy ARTMAP. Al Expert, 18-25.

Page 132: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Potenciometric tongues

with noble and non-noble metals for the differentiation of Spanish honeys considering the antioxidant capacity

102

Llobet E., Hines E.L., Gardner J.W., Bartlett P.N. & Mottram T.T. (1999). Fuzzy ARTMAP

based electronic nose data analysis. Sensors and actuators b-chemical, 61, 183-190.

Major N., Markovic K., Krpan M., Saric G., Hruskar M. & Vahcic N. (2011). Rapid honey

characterization and botanical classification by an electronic tongue. Talanta, 85,

569–574.

Martınez-Máñez R., Soto J., Garcia-Breijo E., Gil L., Ibáñez J. & Llobet E. (2005). An

“electronic tongue” design for the qualitative analysis of natural waters. Sensors

and Actuators, B 104, 302–307.

Oroian M. & Escriche I. (2015). Antioxidants: characterization, natural sources, extraction

and analysis. Food Research International, 74, 10-36.

Shahidi F., Liyana-Pathirana C. M. & Wall D. S. (2006). Antioxidant activity of white and

black sesame seeds and their hull fractions. Food Chemistry, 99, 478–483.

Soto J., Labrador R. H., Marcos M. D., Martınez-Máñez R., Coll C., García-Breijo E. & Gil L.

(2006). Introduction of a model for describing the redox potential in faradic

electrodes. Journal of Electroanalytical Chemistry, 594, 96–104.

Soto J., Campos I. & Martínez-Máñez R. (2013). Monitoring Wastewater Treatment Using

Voltammetric Electronic Tongues. In S.C. Mukhopadhyay & A. Mason (Eds.).Smart

Sensors for Real-Time Water Quality Monitoring (pp. 65–103). Springer- Verlag

Berlin Heidelberg.

Tiwari K., Tudu B., Bandyopadhyay R., & Chatterjee A. (2013). Identificattion of

monofloral honey using voltammetric electronic tongue. Journal of Food

Engineering, 117, 205-210.

Ulloa P. A., Guerra R., Cavaco A.M., Rosa da Costa A. M. & Figueira A.C. (2013).

Determination of the botanical origin of honey by sensor fusion of impedance e-

tongue and optical spectroscopy. Computers and Electronics in Agriculture, 94, 1-

11.

Von Der Ohe W., Persano-Oddo L., Piana M. L. Morlot M. & Martin P. (2004). Harmonized

methods of melissopalynology, Apidologie, 35, 18-25.

Wei Z. & Wang J. (2014). Tracing floral and geographical origins of honeys by

potentiometric and voltammetric electronic tongue. Computers and Electronics in

Agriculture, 108, 112-122.

Page 133: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Marisol Juan-Borrás, Eva Domenech, Magdalenka Hellebrandova, Isabel

Escriche

Food Research International 60, 86-94. (2014)

3.4. Effect of country origin on physicochemical, sugar and volatile

composition of acacia, sunflower and tilia honeys

Page 134: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 135: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

105

Abstract

The aim of this study was to evaluate the influence of country (Spain, Romania, and Czech

Republic) and botanical origin, on the physicochemical (HMF, diastase activity, moisture

content, electrical conductivity), colour (Pfund scale and CIEL*a*b*), principal sugars

(glucose, fructose and sucrose) and volatile composition of acacia, sunflower and tilia

honeys. PCA analyses considering these variables showed that honey type had a far

greater influence on the differentiation of samples (above all due to the presence of

certain volatile compounds such as carvacrol and -terpinene for tilia honey;-pinene

and 3-methyl-2-butanol for sunflower honey, and cis-linalool oxide for acacia honey) than

geographical origin. Discriminant models obtained for each kind of botanical honey

(classified 100% for acacia and tilia honeys and 93.8% for sunflower of the cross-validated

cases) confirmed that differentiation of honeys according to their country was mainly

based on volatile compounds (For instance: 2-methyl-2-butenal and 2-methyl-2-

propanol, for acacia honeys; 1-hexanol and -pinene, for sunflower honeys and 3-

methyl-1-butanol and hotrienol, for tilia honey) and to a lesser extent on certain

physicochemical parameters such as diastase, sucrose and conductivity, respectively.

Correct classification of all samples was achieved with the exception of 10% of the

sunflower honeys from the Czech Republic. The results suggest that the presented

models are potentially useful tools for the classification of acacia, sunflower and tilia

honeys according to the country of origin.

Keywords

Acacia honey; sunflower honey; tilia honey; country origin; physicochemical parameters;

volatile compounds

1. Introduction

Consumers appreciate the possibility to choose between different unifloral honeys as

they have specific organoleptic characteristics and different attributable therapeutic

properties. Since these unifloral honeys are part of the import-export market, they offer

beekeepers and the industry the opportunity to obtain higher prices in comparison to

those without a determined botanical origin. Physicochemical properties and colour are

taken into account when the market price of honey is fixed, and they can be measured

Page 136: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

106

to classify and typify the raw batches before entering the packaging process. Specifically,

colour is one of the most valuable attributes since it is considered to represent the

preferred honey flavour, and therefore directly contributes to consumer acceptability

(Visquert et al., 2014).

The physicochemical properties of honeys with the same floral source can vary to some

extent as a consequence of different climatic conditions or different geographical origins

(Anklam, 1998).The use of botanical appellation of honey together with geographical

origin is becoming a good option to protect and promote this traditional food in different

countries.

Melissopalynological characterization is commonly used for the classification of honey

according to its uniflorality, and sometimes its geographical origin. However, in some

cases the percentage of pollen is not always decisive because the production of pollen

and nectar by flowers is not always simultaneous, varying between countries and even

within the same country according to the geographical area (Feás et al., 2010a; Feás et

al., 2010b). For this reason, in addition to the quantification of pollen, the combination

of multi-component analysis and chemometric techniques is now the most efficient

approach to guarantee the authentication of honey (Anklam, 1998; Terrab et al., 2003;

Ruoff et al., 2007; Kropf et al., 2010). Among these procedures, physicochemical

(electrical conductivity,diastase activity, moisture, etc.), colour and chemical analyses

(such as sugars, among others) have been widely used in the characterization of unifloral

honeys (Persano-Oddo & Bogdanow, 2004; Ruoff et al., 2007; Escriche et al., 2011;Oroian

et al., 2013).

However, the discriminative power of the physicochemical properties and colour varies

according to the botanical origin, and the geographical and climatic conditions as a

consequence of their influence on the flowering or secretions of plants. For this reason,

as suggested by Persano-Oddo & Bogdanow, 2004, the broader the analytical scope

considered, the more accurate the classification of a specific honey.

Hence, considering that the flavour and aroma of honey are directly related to its volatile

compounds, it is reasonable to consider that volatile fraction analysis could be of great

importance to reach a better understanding of the intrinsic characteristics of honey

(Cuevas-Glory et al., 2007; Aliferis et al., 2010). The importance of this analytical

determination on its own or as a complement to the information provided by other

methodologies is reflected in different studies published in the last decade (Radovic et

al., 2001; Serra-Bonvehí & Ventura-Coll, 2003).

There are many works focused on the characterization of honey from different botanical

or geographical origins. However, to our knowledge there are no publications about the

combined use of physicochemical, sugar and volatile composition for this purpose, nor

the comparison of specific unifloral honeys (with the same botanical origin), from

Page 137: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

107

different countries. For this reason, the aim of this study was to determine the influence

of the country (Spain, Romania, and Czech Republic) on the physicochemical, sugar and

volatile composition of acacia, sunflower and tilia honeys.

2. Materials and Methods

2.1.-Honey samples

A total of 80 raw unifloral honey samples (collected from beekeepers in 2011) with

different botanical origins: Acacia (Robinia pseudoacacia), sunflower (Helianthus annuus)

and tilia or lime (Tilia sp), and from different countries (Spain, Romania, and the Czech

Republic) were analysed. The acacia and sunflower honeys came from the three countries

mentioned above, whereas tilia honey was only from Romania and the Czech Republic

since it is practically inexistent in Spain. In summary, of the 80 raw samples, 30 came from

Romania (10 acacia, 10 sunflower and 10 tilia, all of them from the Transylvanian region);

another 30 came from the Czech Republic (10 acacia, 10 sunflower and 10 tilia, all of

them from the Central Bohemian region) and 20 from Spain (10 acacia from northern

Spain and 10 sunflower from central Spain).

In order to guarantee the botanical origin of the samples, the percentage of pollen was

measured for each one, following the recommendations of the International Commission

for Bee Botany (Von Der Ohe et al., 2004). A light microscope (Zeiss Axio Imager,

Göttingen, Germany) at a magnification power of x 400 with DpxView LE image analysis

software attached to a DeltaPix digital camera was used in this analysis. According to this

analysis, a honey was considered to be from acacia trees if the pollen from Robinia

pseudoacacia L. was not lower than 45%; from sunflower, if the pollen from Helianthus

annuus L. was not lower than 60% and from tilia trees if the pollen from Tilia spp. was not

lower than 45% (Saenz & Gómez, 1999; Gómez-Pajuelo, 2004; Von Der Ohe, et al.,

2004;Persano-Oddo & Piro, 2004). Samples were classified on arrival at the laboratory

and were preserved at 12ºC until they were analysed. None of the samples exhibited

signs of fermentation or granulation before initiating the analyses.

Page 138: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

108

2.2.-Analytical determinations

2.2.1. Physicochemical and colour analyses

Diastase activity (Phadebas method), 5-Hydroxymethylfurfural content “HMF” (White

method), electrical conductivity (by conductimetry), and moisture content (by

refractrometry) were analysed in accordance with the Harmonized Methods of the

European Honey Commission (Bogdanov, 2002). Colour was determined using a

millimetre Pfund scale C 221 Honey Color Analyzer (Hanna Instruments) and a

spectrocolorimeter Minolta CM-3600d (Osaka, Japan). Translucency was determined by

applying the Kubelka-Munk theory for multiple scattering of the reflection spectra

(Hutchings, 1999). Colour coordinates were obtained from R, between 400 and 700 nm

for D65 illuminant and 2º observer. All tests were performed in triplicate.

Chromatic parameters Chroma (eq. 1) and hue (eq. 2), were calculated from L*, a* and

b* coordinates.

(eq.1)

(eq.2)

2.2.2.Sugar determination

Sugar (fructose, glucose and sucrose) analysis was carried out as described by Bogdanov

et al. (1997). Separation of carbohydrates took place in a HPAEC-PAD high-resolution

ionic chromatograph with a pulsed amperometric detector (PAD) (Bioscan, Methrom,

Switzerland) and a Metrosep Carb chromatographic column (styrene divinylbenzene

copolymer, 4.6 x 250 mm). Carbohydrates were eluted with NaOH 0.1N at a flow rate of

1 mL min-1. Quantification of sugars was carried out using external standards. The

corresponding calibration curves were constructed covering the values of the three

sugars which were expected to be found in the honey samples. For fructose, glucose and

sucrose, respectively, the correlation coefficients (R2) were: 0.995, 0.996 and 0.996; the

LODs (limit of detection) were: 0.01g/100g,0.01g/100g and 0.05g/100g and the LOQs

(limit of quantification) were: 0.05g/100g, 0.05g/100g and 0.1g/100g.

All analyses were carried out in triplicate.

22 *** baC ab

*

**

a

barctgh ab

Page 139: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

109

2.2.3. Volatil compounds analysis

Extraction

Volatile compounds were extracted by purge and trap at 45ºC for 20 minutes and trapped

in a glass tube packed with Tenax TA (20-35 mesh), bubbling purified nitrogen (100 mL

min-1) through the sample (Escriche et al., 2011). Next, the compounds were thermally

desorbed at 220ºC for 10 minutes (at 10 mL min-1 helium flow) (TurboMatrix TD, Perkin

ElmerTM, CT-USA), then cryofocused in a cold trap at -30ºC and transferred onto the

capillary column by heating the cold trap to 250ºC (at a rate of 99ºC/s).

GC-MS analysis

A GC-MS (Finnigan TRACETM MS, TermoQuest, Austin, USA) with a DB-WAX capillary

column (SGE, Australia) (60 m length, 0.32 mm i.d., 1.0 µm film thickness) was used to

separate the volatile compounds. The carrier gas was Helium at a flow rate of 1 mL min-

1. The temperature programme was: from 40ºC (2-minute hold time) to 190ºC at 4ºC

min-1 (11-minute hold time) and finally to 220ºC at 8 ºC min-1 (8-minute hold time).

Electron impact mass spectra were recorded in impact ionization mode at 70 eV, with a

mass range of m/z 33-433. A total of 3 extracts were obtained for each sample.

2-pentanol was used as an internal standard. The identification of isolated volatile

compounds was performed by comparing their mass spectra, retention times and linear

retention indices against those obtained from authentic standards: acetic acid (ethanoic

acid);nonanal; decanal; benzaldehyde; 6-methyl-5-hepten-2-one (6-methyl-hept-5-en-2-

one); 2-methyl-3-buten-2-ol (Sigma-Aldrich, San Louis, Missouri and Acros Organics, Geel,

Belgium); 2-methyl-1-propanol (2-methylpropan-1-ol); 3-methyl-3-buten-1-ol; octane; 3-

hydroxy-2-butanone (3-hydroxybutan-2-one); 2-furanmethanol (furan-2-ylmethanol);

furfural (furan-2-carbaldehyde); dimethyl sulphide; β-linalool (3,7-dimethylocta-1,6-

dien-3-ol) (Fluka Buchs, Schwiez, Switzerland). The compounds, for which it was not

possible to find authentic standards, were tentatively identified by comparing their mass

spectra (m/z values of the most important ions) with spectral data from the National

Institute of Standards and Technology 2002 library, as well as retention indices and

spectral data published in the literature(Kondjoyan & Berdagué, 1996; Radovic et al.,

2001; Soria et al., 2004; De la Fuente et al., 2005; Bianchi et al., 2005; Alissandrakis et al.,

2005). A mixture of a homogenous series of alkanes (C8-C20 by Fluka Buchs, Schwiez,

Switzerland) was injection into the Tenax in the same temperature-programmed run, as

described above in order to determine the Kovàts retention indices of all the compounds.

Due to fact that was not possible to obtain authentic commercial standards for all the

identified compounds, the variables used in the statistical analysis for differentiation

between honeys corresponded to semiquantified compounds. These data were

calculated g/100 g of honey) using the amount of internal standard, the relative area

Page 140: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

110

between the peak areas of each compound and the peak area of the internal standard,

assuming a response factor equal to one (Castro-Vazquez et al., 2009).

2.3.-Statistical analysis

A multifactor analysis of variance (ANOVA) (using Statgraphics Centurion for Windows)

was carried out to study the influence of the type of honey and the country of harvesting

on the physicochemical parameters, colour, sugars and volatile compounds. The method

used for multiple comparisons was the LSD test (least significant difference) with a

significance level α= 0.05. In addition, data were analyzed using a Principal Component

Analysis (PCA) applying the software Unscrambler X.10 and a Stepwise Linear

Discriminant Analyses (SLDA) using “forward” procedure (SPSS 16.0). This analysis selects

the variables that allow differentiation between honeys. The classification functions

corresponding to each group of honeys were calculated. The statistical F function was

used as a criterion for variable selection.

3. Results and Discussion

3.1.-Physicochemical, colour and sugar analyses

Table 1 shows the results of the analysis of the three types of honey harvested in the

different countries: the average values and standard deviation of the physicochemical

parameters (HMF, diastase activity, moisture content, electrical conductivity); colour

(Pfund and CIEL*a*b*); the percentage content of the principal sugars (glucose, fructose

and sucrose) and the fructose/glucose ratio. In addition, this table shows the ANOVA

results (F-ratio and significant differences) obtained for the factors “type of honey” and

“country”. For the country factor, each type of honey was considered separately.

Although raw honey was used, hydroximethylfurfural (HMF) was evaluated to

corroborate the freshness. All the analyzed honeys complied with the international

maximum limit of 40 mg/kg (Council Directive 2001/110 relating to honey, 2002). Acacia

honey had the lowest average values (from 3.3 to 7.2mg/kg), and sunflower honey,

Page 141: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

111

especially from Romania, and the Czech Republic, had surprisingly high average values

(23.4 and 21.9mg/kg, respectively), taking into account that they were fresh, non-

thermally treated samples. These values are in accordance with Kádár et al. (2010) and

Oroian (2012).

Diastase is one of the most important enzymes in honey. Its concentration varies not only

according to its botanical origin, but also due to aging and extreme temperatures (Fallico

et al., 2006). In this study samples ranged from 8.7 ºGoethe in acacia honey from the

Czech Republic to 19.1 ºGoethe for Spanish sunflower honey. All the samples complied

with the Council Directive 2001/110 relating to honey (2002), which stipulates that these

types of honeys should have a value higher than 8ºGoethe. The only exception is acacia

honey for which a minimum of 3.1ºGoethe is admitted, as it is considered to have low

enzyme content. However, in this paper such low values were not found in any of the

analyzed acacia honeys.

Honey moisture content, which can vary from year to year, depends not only on

environmental conditions, but also on beekeeping practices (Acquarone et al., 2007).

Taking into account the fact that the moisture content of honey has to be lower than 20

g/100g (Council Directive 2001/110 relating to honey, 2002), the values obtained in this

work were satisfactory as they ranged from 15.3g/100g in sunflower honey from Spain

to 17.5g/100g in tilia honey from Romania. Spanish acacia and sunflower honeys showed

the best moisture values, lower than 16g/100g.

As expected, tilia honey had the highest levels of conductivity, with average values of 0.80

and 0.50 mS/cm from the Czech Republic and Romania, respectively. Values higher than

0.80mS/cm are not acceptable for floral honeys in general; however there are some

specific honeys that can exceed this value. This is the case of tilia honey and others such

as Calluna, Erica or Arbustus, because of the mineral content of these honeys. On the

contrary, the low level of minerals in acacia honey is reflected by its low electrical

conductivity (0.17-0.19 mS/cm) (Feás et al., 2010a). No significant differences were

observed between countries.

Page 142: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

11

2

Table.1 Physicochemical parameters, colour and principal sugars (average values and standard deviation) in acacia, sunflower and tilia honeys harvested in different countries: Spain (Sp), Romania (Ro), and Czech Republic (Cz). ANOVA results (F-ratio and significant differences) obtained for two factors: country and type of honey. For the country factor, each type of honey was considered separately.

ns: Non significant; * p<0.05; ** p<0.01; ***p<0.001

Physico-chemical

Parameters

COUNTRY FACTOR TYPE OF HONEY FACTOR

Acacia Sunflower Tilia

Acacia

Sunflower

Tilia

F-ratio Sp Ro Cz F-ratio Sp Ro Cz F-ratio Ro Cz F-ratio

HMF

(mg kg-1) 3.3(1.8) 7.2(11.9) 3.3(2.2) 0.79ns 16.4(3.5) 23.4(0.4) 21.9(7.9) 0.57ns 7.1(6.5) 18.8(14.9) 2.22ns 4.8(7.6) 21.3(7.0) 15.5(13.9) 15.17***

Diastase activity

(ºGoethe) 17.3(4.8) 10.4(4.6) 8.7(1.7) 9.93*** 19.1(1.2) 10.1(0.8) 11.9(3.7) 4.33* 8.8(0.9) 14.6(5.2) 4.66ns 11.3(4.9) 12.7(4.2) 12.9(5.1) 0.66ns

Moisture (g/100g) 15.9 (0.2) 16.9(1.5) 17.0(1.0) 1.91ns 15.3(0) 17.3(0.14) 16.6(1.04) 2.33ns 17.5(0.12) 16.4(1.05) 3.92ns 16.7(1.16) 16.5(1.0) 16.7(1.1) 0.24ns

Conductivity (μS cm-1) 0.19(0.04) 0.17(0.03) 0.17(0.08) 0.32ns 0.44(0.0) 0.35(0.0) 0.43(0.12) 0.52ns 0.50(0.08) 0.80(0.12) 18.29** 0.17(0.05) 0.42(0.10) 0.71(0.17) 106.37***

Colour

Pfund 9.1(2.5) 10.6 (2.2) 4.3 (1.3) 1.7ns 66.7 (0.5) 51.0 (3) 53.2 (14.6) 0.86ns 37.3(3.9) 42.2(17) 0.15ns 6.9(4.3) 56.3(12.6) 40.8(13.7) 24.8***

L* 50.5(4.3) 56.6(5.8) 54.6(1.8) 2.22ns 43.6(3.4) 48.1(0.1) 44.9(3.5) 0.53ns 49.6(1.2) 48.3(7.6) 0.05ns 54.1(4.7) 44.9(3.3) 48.6(6.2) 9.86***

Chroma (C*ab) 19.6(3.1) 17.8(5.9) 17.8(2.6) 1.60ns 22.9(4.6) 27.4(2.5) 23.8(5.2) 0.27ns 27.2(1.3) 24.5(4.3) 0.68ns 17.3(4.4) 24.1(4.5) 25.4(3.7) 10.36***

Hue (h*ab) 84.4(9.1) 93.2(7.2) 94.9(3.6) 2.96ns 70.4(2.8) 78.5(3.4) 74.6(8.3) 1.56ns 82.7(2.,2) 81.2(7.9) 0.06ns 91.3(7.7) 74.0(6.9) 81.6(6.2) 14.98***

Sugars (g/100g)

Glucose 26.8(2.7) 26.9(2.8) 31.0(4.5) 7.86** 37.1(0.8) 33.9(1.62) 38.3(7.2) 1.33ns 29.7(0.8) 33.1(1.4) 18.8*** 28.5(4.4) 36.3(6.6) 32.2(2.02) 24.49***

Fructose 40.2(3.6) 45.7(2.8) 49.2(6.6) 8.16** 39.3(0.6) 39.5(0.98) 43.0(6.9) 0.68ns 41.3(1.6) 41.9(1.4) 0.38ns 45.2(6.) 40.3(6.1) 41.7(1.5) 3.16ns

Sucrose 2.2(0.8) 1.7(0.6) 1.6 (0.3) 1.63ns 1.04(0.54) 0.60(0.37) 0.7(0.9) 4.92* 0.9(0.4) 1.5(0.1) 0.15ns 1.7(0.5) 0.8(0.5) 0.3(0.2) 7.80**

Fructose/Glucose ratio 1.5(0.1) 1.7(0.2) 1.5 (0.1) 4.49* 1.0(0.1) 1.16(0.02) 1.1(0.1) 3.48ns 1.3(0.1) 1.2(0.03) 38.68*** 1.6(0.17) 1.06(0.07) 1.3(0.06) 68.28***

Page 143: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

113

With regard to colour, semi-qualitative Pfund scale and colour coordinates CIEL* a* b*

were measured (Table 1). CIEL* a* b*colour coordinates, and chromatic parameters (hue

and chroma), are not commonly regulated. However, they are often used in research

studies to supplement the information provided by the Pfund scale. In this work Pfund

values ranged from 4.3 mm for the acacia honey from the Czech Republic to 66.7 mm for

sunflower honey from Spain. Acacia honey is characterized by a very light colour together

with low conductivity. This is logical as honey colour is mainly related to mineral content.

Light coloured honeys usually have low mineral levels, while dark coloured honeys

normally have high mineral content (Al et al., 2009).

In relation to CIEL* a* b* values, acacia honey had the highest lightness (especially from

Romania: L*= 56.6), a yellowish hue (average value of 91.3) and the lowest chroma

(average value of 17.3) which is associated with the lowest colour purity. On the contrary,

sunflower honey was the darkest (lowest L*, with an average value of 44.9), with the

same chroma as tilia honey and the lowest hue of the three types of analyzed honeys:

74.0, 81.6 and 91.3 for sunflower, tilia and acacia, respectively. In general, the tilia honey

had intermediate L* values (average= 48.6), lower than those found by Kropf, et. al., 2010

(between 60.3 and 62.3), who analyzed this type of honey from three different

geographical regions of Slovenia.

In general, the colour values obtained with the Pfund scale as well as CIEL*a*b, were as

expected for these varieties of honey (Persano-Oddo et al., 1995; Piazza& Persano-Oddo,

2004).

The sugar composition of honey depends of the type of flowers used by the bees, and

therefore varies according to the type of honey and geographical and climatic conditions

(Mateo & Bosch-Reig, 1998; Al et al., 2009; Kaskonienè et al., 2010). For this reason, the

level of some sugars and even the ratios between them are used to ascertain honey

authenticity (Nozal et al., 2005). As expected, fructose was the most dominant sugar

followed by glucose in all cases (Persano-Oddo & Piro, 2004). Acacia had high fructose

(49.2g/100g for acacia from the Czech Republic) and low glucose content (26.8g/100g for

the acacia honey from Spain). Acacia honeys showed the highest sucrose content, as

reported by Persano-Oddo et al. in 1995. In this study the Spanish acacia had the highest

sucrose level: 2.2 g/100g. Sunflower had a very high glucose level (average=36.3 g/100g)

compared to both the other honeys and therefore a very low F/G ratio (average=1.06).

In respect to the fructose-glucose ratio F/G ratio, acacia and tilia honeys are characterized

by high F/G values in contrast to sunflower honeys, as reported in previous works

(Persano-Oddo et al., 1995) and as established by European legislation (Council Directive

2001/110 relating to honey, 2002). The values obtained in the present work

(averages=1.6, 1.3 and 1.06 for acacia, tilia and sunflower) are in accordance with these.

Besides that, it is important to point out that the fructose-glucose ratio (F/G) indicates

whether a honey will granulate; the lower the ratio, the quicker the crystallization.

Page 144: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

114

Accordingly, the order of crystallization of the three types of honey analyzed in this study

is: sunflower honey (F/G= 1.06), tilia honey (F/G= 1.3), and acacia honey (F/G= 1.6).

Almost all the physicochemical, colour and sugar parameters differed significantly

between the three botanical types of honey studied. However, considering each type of

honey separately, significant differences between countries were only found for diastase

activity (for acacia and sunflower honeys), conductivity (for tilia honey) as well as for

some sugars (glucose for acacia and tilia, fructose for acacia, and sucrose for sunflower).

In the same way, the F/G ratio differed significantly between countries for acacia and tilia.

In order to evaluate the global effect of the type of honey on the physicochemical

parameters, colour, and F/G ratio from a descriptive point of view, a principal component

analysis (PCA) was performed. Figure 1 shows the PCA bi-plot of scores and loading

obtained considering the eight analysed honeys and the different parameters. The values

of HMF and moisture were not taken into account, as both are mainly related to the

quality of honey and not to the botanical origin, and therefore are not useful for

differentiation between honeys. This analysis was carried out considering the average

values of each parameter obtained from each type of honey and country (the code for

each point in the figure corresponds to: kind of honey-country). In the score plot,

proximity between samples reflects similarity in relation to the analysed parameters.

Two principal components explained 74% of the variations in the data set: PC1 (55%) and

PC2 (19%). The first principal component differentiates the three kinds of honeys to a

certain extent. Acacia located on the left was differentiated clearly from the others, while

sunflower and tilia on the right, are not so obviously separated from each other. This

indicates that although the botanical origin of honey has an influence on the parameters

studied, these are not sufficient for differentiation between the three varieties studied

here. On the other hand, the country seems to imply a minor effect on the analysed

parameters as the samples were principally grouped according to type of honey.

3.2.-Volatile compounds

The average values and standard deviation of the volatile compounds analyzed in the

three types of honey harvested in the different countries are showed in Table 2. Of the

51 identified compounds, only 17 compounds in acacia honey, 9 in sunflower and 8 in

tilia honeys, showed significant differences between countries. However, considering the

type of honey as a factor, significant differences were found for 45 volatile compounds.

Another PCA (Figure 2) was conducted to evaluate the global effect of the type of honey

and country, but in this case for the volatile compounds. The distribution of the samples

was similar but clearer than the previous bi-plot obtained from the FQ parameters. In this

case, the first principal component clearly differentiates acacia honey (bottom left

Page 145: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

115

quadrant) from tilia (bottom right quadrant) and the second principal component

differentiates quite well between sunflower (upper quadrants) and acacia and tilia

honeys (lower quadrants).

The loading plot shows that certain compounds are to some extent responsible for this

differentiation. This is the case of compounds such as carvacrol (Lusic et al., 2007;

Plutowska et al., 2011) and -terpinene (Radovic et al, 2001) which were attributed as

markers for tilia honey, and were only found in this kind of honey in this work. Plutowska

et al. (2011), also only identified -terpinene in tilia honeys, when analyzing 7 varieties

of honeys. The same occurs for other compounds, such as-pinene and 3-methyl-2-

butanol in the case of sunflower, and cis-linalool oxide in the case of acacia which were

essential in this work to differentiate these honeys. This is in line with (Radovic et al.,

2001) for these two varieties of honey.

The aforementioned authors reported phenylacetaldehyde as a typical volatile

compound for acacia honeys and phenylethyl alcohol for tilia honey, though this is not

consistent with this study, nor with others (Plutowska et al., 2011).

As observed before for physicochemical parameters, volatile compounds seem to

contribute more to the differentiation of honey according to botanical origin, than

country of origin.

However, it is logical that honeys with the same botanical origin (Robinia pseudoacacia

in the case of acacia honeys, Helianthus annuus in the case of sunflower honeys and Tilia

sp in the case of tilia honeys), but from different countries are relatively similar.

Nevertheless, there are obvious differences between the geographic sources which could

be attributed to climatic conditions, but above all to the surrounding flora. The nectar of

other plants may contribute to the variability of the analysed parameters:

physicochemical, sugar and volatile compounds. This should not be considered a negative

aspect; instead it confers a certain singularity to the same type of honey with different

geographical origins.

Page 146: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

11

6

Figure 1. Biplot for the two principal components of the PCA model for the physicochemical parameters, sugars (fructose “F”, glucose “G” sucrose “S” and F/G ratio) and colour (Pfund and CIEL*a*b) in acacia, sunflower and tilia honeys harvested in the different countries: Spain (Sp), Romania (Ro), and Czech Republic (Cz).

Page 147: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

11

7

Table.2. Volatile compounds (average values and standard deviation) in acacia, sunflower and tilia honeys harvested in different countries: Spain (Sp), Romania (Ro), and Czech Republic (Cz). ANOVA results (F-ratio and significant differences) obtained for two factors: country and type of honey. For the country factor, each type of honey was considered separately.

COMPOUNDS

COUNTRY FACTOR TYPE OF HONEY FACTOR

RI ACACIA SUNFLOWER TILIA AC SUN TIL

ANOVA F ratio

Sp Ro Cz ANOVA F ratio

Sp Ro Cz ANOVA F ratio

Ro Cz ANOVA F ratio

ACIDS

Ethanoic acid 1584 0.01(0.02) <0.001 0.03(0.04) 3.80* 0.12(0.06) 0.19(0.13) 0.22(0.18) 0.5ns 0.02(0.02) 0.13(0.12) 3.17ns 0.01c 0.20a 0.10b 15.11***

Propanoic acid 2-methyl- 1697 0.06(0.02) 0.04(0.04) 0.01(0.01) 5.93*** <0.001 <0.001 <0.001 - <0.001 <0.001 - 0.03a 0.00b 0.00b 15.53***

ALDEHYDES

3-Methyl-butenal 935 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 - 0.21(0.12) 0.19(0.08) 0.20ns 0.00b 0.00b 0.19a 84.27*** 2-Pentanal 937 0.03(0.01) 0.04(0.02) 0.02(0.00) 2.60ns <0.001 <0.001 <0.001 - <0.001 <0.001 - 0.03a 0.00b 0.00b 61.41***

2-Methyl-2-butenal 1129 0.06(0.03) 0.01(0.00) 0.02(0.01) 10.70*** 0.13(0.01) 0.09(0.0) 0.14(0.18) 0.09ns 0.02(0.04) 0.13(0.06) 9.80** 0.02b 0.13a 0.02b 9.70***

3-Methyl-2-butenal 1236 0.07(0.02) 0.08(0.12) 0.06(0.01) 0.18ns 0.13(0.01) 0.05(0.00) 0.07(0.06) 1.23ns 0.02(0.00) 0.02(0.01) 0.24ns 0.07a 0.08a 0.09a 0.67ns

Octanal 1417 0.01(0.00) 0.01(0.00) <0.001 2.69ns <0.001 <0.001 <0.001 - <0.001 <0.001 - 0.01a 0.00b 0.00b 52.91***

Nonanal 1523 0.07(0.01) 0.06(0.04) 0.04(0.01) 2.27ns 0.02(0.01) 0.03(0.0) 0.03(0.02) 0.19ns 0.09(0.02) 0.18(0.13) 1.50ns 0.05b 0.03b 0.15a 14.73***

Decanal 1630 0.01(0.00) 0.03(0.01) 0.02(0.00) 8.11** 0.04(0.0) 0.04(0.0) 0.03(0.02) 0.03ns 0.04(0.00) 0.04(0.02) 0.48ns 0.02b 0.03a 0.04a 7.34**

Benzaldehyde 1675 0.13(0.06) 0.25(0.15) 0.20(0.05) 2.15ns 0.12(0.02) 0.14(0.01) 0.13(0.09) 0.02ns 0.14(0.05) 0.37(0.43) 1.04ns 0.2ab 0.13b 0.31a 2.42ns

ALCOHOLS

2-Methyl-2-propanol 920 0.03(0.02) 0.04(0.04) 0.10(0.02) 8.07** <0.001 <0.001 <0.001 - <0.001 <0.001 - 0.06a 0.00b 0.00b 25.74***

2-Propanol 947 0.03(0.01) 0.10(0.12) 0.02(0.01) 2.91ns 0.25(0.14) 0.19(0.01) 0.21(0.12) 0.11ns <0.001 <0.001 - 0.05b 0.21a 0.00c 26.23***

Ethanol 956 0.40(0.20) 0.56(0.75) 0.38(0.33) 0.32ns 0.51(0.35) 0.38(0.06) 0.79(0.98) 0.23ns 1.25(0.24) 0.73(0.56) 3.01ns 0.45b 0.69ab 0.88a 2.25ns

2-Butanol 1047 0.20(0.14) 0.03(0.02) 0.05(0.13) 5.19* 0.73(0.90) 0.01(0.0) 0.12(0.21) 3.11ns 0.25(0.08) 0.06(0.02) 50.84*** 0.08a 0.19a 0.11a 1.2ns

2-Methyl-3-buten-2-ol 1063 0.11(0.05) 0.11(0.12) 0.16(0.06) 0.89ns <0.001 <0.001 <0.001 - 0.62(0.48) 0.14(0.06) 10.29** 0.13b 0.00c 0.28a 8.84***

2-Methyl-3-buten-1-ol 1062 <0.001 <0.001 <0.001 - 0.26(0.00) 0.20(0.06) 0.21(0.21) 0.08ns 0.31(0.07) 0.30(0.12) 0.01ns 0.00b 0.21a 0.00b 30.8***

2-Methyl-1-propanol 1119 0.05(0.02) 0.07(0.07) 0.05(0.02) 0.47ns 0.05(0.0) 0.01(0.0) 0.01(0.01) 5.60* 0.27(0.08) 0.16(0.10) 3.52ns 0.06b 0.01a 0.19a 28.99***

3-Methyl-2-butanol 1137 <0.001 <0.001 <0.001 - 0.42(0.04) 0.25(0.01) 0.36(0.04) 6.2* 0.01(0.00) 0.00(0.00) 1.16ns 0.00b 0.36a 0.00b 61.12***

1-Butanol 1175 0.10(0.03) 0.10(0.10) 0.08(0.02) 0.34ns 0.33(0.27) 0.15(0.01) 0.39(0.37) 0.41ns 0.11(0.02) 0.06(0.05) 2.55ns 0.09b 0.35a 0.08b 11.56***

3-Methyl-1-butanol 1233 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 - 0.61(0.04) 0.30(0.10) 32.03*** 0.00b 0.00b 0.39a 114.95***

2-Penten-1-ol 1268 0.00(0.00) 0.14(0.10) 0.05(0.04) 8.18** <0.001 <0.001 <0.001 - <0.001 <0.001 - 0.07a 0.00b 0.00b 10.72***

3-Methyl-3-buten-1-ol 1277 0.19(0.04) 0.11(0.08) 0.16(0.04) 1.59ns 0.44(0.02) 0.21(0.01) 0.50(0.21) 1.93ns 0.31(0.02) 0.30(0.11) 0.01ns 0.15c 0.45a 0.31b 27.38***

2-Heptanol 1449 <0.001 <0.001 <0.001 - 0.03(0.03) 0.01(0.0) 0.04(0.05) 0.37ns <0.001 <0.001 - 0.00b 0.04a 0.00b 16.78***

2-Methyl-2-buten-1-ol 1449 0.14(0.03) 0.06(0.05) 0.13(0.05) 7.15** 0.09(0.00) 0.16(0.0) 0.15(0.09) 0.42ns 0.16(0.01) 0.19(0.13) 0.09ns 0.11b 0.14ab 0.19a 3.96*

1-Hexanol 1476 <0.001 <0.001 <0.001 - 0.10(0.0) 0.01(0.0) 0.01(0.01) 36.67*** 0.02(0.00) 0.04(0.04) 0.52ns 0.00b 0.03a 0.03a 12.69***

3-Hexen-1-ol 1511 0.01(0.00) 0.03(0.04) 0.00(0.00) 2.97ns <0.001 0.02(0.0) 0.01(0.0) 13.07** <0.001 <0.001 - 0.018a 0.012ab 0.00b 3.54*

Page 148: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

11

8

Table 2 (cont.)

ns: Non significant; * p<0.05; ** p<0.01; ***p<0.001

COMPOUNDS

COUNTRY FACTOR TYPE OF HONEY FACTOR

RI ACACIA SUNFLOWER TILIA AC SUN TIL

ANOVA F ratio

Sp Ro Cz ANOVA F ratio

Sp Ro Cz ANOVA F ratio

Ro Cz ANOVA F ratio

KETONES

Acetone 836 0.45(0.27) 0.28(0.16) 0.09(0.01) 9.35** 0.33(0.05) 0.45(0.12) 0.23(0.08) 5.32* 0.85(0.27) 1.05(0.51) 0.54ns 0.24b 0.27b 0.99a 35.41***

2-Butanone 921 <0.001 <0.001 <0.001 - 0.66(0.56) 0.17(0.03) 1.19(1.72) 0.40ns 0.10(0.03) 0.42(0.18) 10.73** 0.00b 0.97a 0.33b 7.38**

2-Pentanone 1003 <0.001 <0.001 <0.001 - 0.13(0.11) 0.00(0) 0.26(0.32) 0.74ns 0.37(0.05) 0.57(0.31) 1.65ns 0.00c 0.21b 0.51a 30.11***

3-Hepten-2-one 1020 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 - 0.03(0.00) 0.08(0.04) 4.65ns 0.00b 0.00b 0.07a 46.32***

2-Heptanone 1212 <0.001 <0.001 <0.001 - 0.02(0.00) 0.01(0.00) 0.00(0.0) 1.48ns <0.001 <0.001 - 0.00b 0.01a 0.00b 20.64***

3-Hydroxy-2-butanone 1425 0.06(0.03) 0.10(0.18) 0.01(0.00) 1.69ns 0.25(0.02) 0.10(0.02) 0.05(0.05) 13.43** 0.19(0.05) 0.31(0.16) 2.26ns 0.05b 0.08b 0.28a 16.42***

6-Methyl-5-hepten-2-one 1469 0.00(0.00) 0.01(0.01) 0.00(0.01) 0.80ns 0.02(0.0) 0.0(0.0) 0.19(0.0) 24.88*** 0.01(0.00) 0.01(0.00) 0.67ns 0.01b 0.018a 0.01b 3.96*

Ethanone-1-4-methyl phenyl

1869 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 - 0.06(0.02) 0.32(0.25) 4.07ns 0.001b 0.001b 0.25a 21.65***

HYDROCARBONS

Octane 802 0.07(0.04) 0.03(0.01) 0.03(0.0) 7.14** 0.12(0.01) 0.06(0.01) 0.04(0.06) 1.51ns <0.001 <0.001 - 0.04a 0.05a 0.00b 10.2***

Nonane 902 0.01(0.00) 0.01(0.00) 0.01(0.00) 0.38ns <0.001 <0.001 <0.001 - <0.001 <0.001 - 0.01a 0.00b 0.00b 125.97***

n-Decane 1004 0.17(0.05) 0.16(0.05) 0.10(0.03) 5.16* 1.88(0.85) 1.00(0.0) 1.69(1.62) 0.22ns <0.001 <0.001 - 0.14b 1.62a 0.00b 24.58***

Toluene 1069 0.07(0.02) 0.06(0.05) 0.08(0.02) 0.63ns <0.001 <0.001 <0.001 - 0.06(0.02) 0.12(0.13) 0.75ns 0.07a 0.00b 0.11a 10.86***

p-Xylene 1164 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 0.00 0.22(0.10) 0.25(0.34) 0.50ns 0.01a 0.00a 0.18a 2.11ns

ESTERS

Ethyl acetate 909 0.01(0.00) 1.42(1.36) 0.01(0.00) 8.32* <0.001 <0.001 <0.001 - 1.17(0.91) 1.63(0.92) 0.71ns 0.55b 0.00b 1.50a 10.51***

Acetic acid butyl-ester 1098 0.05(0.02) 0.02(0.03) 0.11(0.05) 11.91*** <0.001 <0.001 <0.001 - <0.001 <0.001 - 0.06a 0.001b 0.001b 21.53*** SULFUR COMPOUNDS

Dimethyl sulphide <800 0.09(0.06) 0.08(0.08) 0.16(0.06) 3.20ns 0.62(0.16) 0.54(0.17) 0.40(0.20) 1.25ns 0.35(0.08) 0.27(0.23) 0.43ns 0.11c 0.30b 0.45a 21.92***

Dimethyl disulfide 1104 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 - 0.08(0.03) 0.32(0.37) 1.54sn 0.00b 0.00b 0.25a 11.63***

FURANES

Furanmethanol 1576 0.06(0.05) 0.43(0.52) 0.08(0.04) 3.57* <0.001 <0.001 <0.001 - <0.001 <0.001 - 0.21a 0.00b 0.00b 4.84*

Furfural 1606 0.32(0.06) 0.56(0.47) 0.18(0.06) 4.04* 1.13(0.17) 1.38(0.18) 0.71(0.29) 5.93* 1.15(0.11) 1.33(0.94) 0.14ns 0.36c 0.86b 1.28a 16.07***

TERPENES

Carvacrol 1803 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 - 0.45(0.16) 1.32(0.18) 5.2* 0.00b 0.00b 1.07a 20.68***

α-Terpinene 1267 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 - 0.45(0.34) 0.10(0.05) 10.94** 0.00b 0.00b 0.20a 14.8***

α-Pinene 1024 <0.001 <0.001 <0.001 - 0.05(0.02) 0.08(0.02) 0.33(0.12) 5.80* <0.001 <0.001 - 0.00b 0.25a 0.00b 4.58*

Borneol 1822 <0.001 <0.001 <0.001 - <0.001 <0.001 <0.001 - 0.11(0.07) 0.22(0.18) 1.41ns 0.00b 0.00b 0.19a 29.72***

β-Linalool 1670 0.06(0.03) 0.09(0.04) 0.04(0.01) 5.09* <0.001 <0.001 <0.001 - <0.001 <0.001 - 0.07a 0.00b 0.00b 51.32***

Hotrienol 1737 0.71(0.27) 0.39(0.49) 0.07(0.02) 2.66** 0.15(0.04) 0.24(0.03) 0.39(0.40) 0.41ns 0.24(0.02) 0.91(0.48) 7.33* 0.34b 0.33ab 0.72a 2.84ns

Page 149: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

11

9

Figure 2. Biplot for the two principal components of the PCA model for the volatiles compounds identified in acacia, sunflower and tilia honeys

harvested in the different countries: Spain (Sp), Romania (Ro), and Czech Republic (Cz).

Page 150: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

120

3.3.-Identification of the variables with the highest

discriminant power

The information provided by both ANOVA and PCA analyses carried out for

physicochemical parameters and volatile compounds, shows that certain variables are to

some extent more important in the differentiation of honeys. To discern which variables

contribute the most to the differentiation of honeys from different countries but from

the same botanical origin a discriminant analysis was applied separately for every

botanical type of honey (acacia, sunflower and tilia).

Only the variables with significant differences between countries (in ANOVA results) were

included in the models. These models, obtained using the physicochemical and volatile

compound variables jointly and applying a stepwise method, permitted the classification

of 100% of acacia and tilia honeys and 93.8% of sunflower for the cross-validated cases.

Kadar et al. in 2011 reported that a discriminant model obtained with volatile compounds

and physicochemical parameters used jointly and applying a cross-validated procedure

was effective for the differentiation of two types of honeys (between lemon blossom

honey and orange blossom honey).

Table 3 shows the standardized canonical discriminant function coefficients obtained in

the selected models for every type of honey. In the construction of the two discriminant

functions, different variables were used in each case. Specifically, 7, 6 and 3 volatile

compounds and 1 physicochemical parameter (diastase activity, sucrose and

conductivity) for acacia, sunflower and tilia honeys, respectively.

The higher the absolute value of a standardized canonical coefficient, the more significant

a variable is. The first canonical function was the one that discriminated best between

honey groups, given that it represented the highest variability. Accordingly, the variables

that most contributed to the discrimination of honeys according to their country of origin

were: for acacia honeys (which function 1 explained 88.2% of the total variance), 2-

methyl-2-butenal, 2-methyl-2-propanol and acetic acid butyl ester; for sunflower honeys

(function 1 explained 94.3%), 1-hexanol, sucrose andpinene; and for tilia honey

(function 1 explained 100%), 3-methyl-1-butanol, hotrienol y 2-butanone. It should be

highlighted that despite the appearance of a physicochemical variable in each model, this

was not the one which contributed the most in any case.

Page 151: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

121

Table 3. Standardized canonical discriminant function coefficients

Acacia honey Variables

Function 1 88.8%

Function 2 11.2%

Diastase activity 1.588 1.304

Octane 2.592 0.575

2-Methyl-2-propanol -2.815 0.533

2-Butanol 0.693 0.443

Acetic acid butyl ester 2.380 -0.905

2-Methyl-2-butenal 4.148 2.179

2-Penten-1-ol 1.699 0.876

2-Methyl-2-buten-1-ol -1.402 -2.546

Sunflower honey Variables

Function 1 94.3%

Function 2 5.7%

Sucrose 17.416 9.760

-Pinene -16.045 -4.218

2-Methyl-1-propanol -5.927 7.059

3-Hydroxy-2-butanone 4,744 -4.320

6-Methyl-5-hepten-2-one 11.603 4.685

1-Hexanol 22.218 0.474

3-Hexen-1-ol 5.139 14.851

Tilia honey Variables

Function 1 100%

Function 2

Conductivity 0.758

2-Butanone 1.036

3-Methyl-1-butanol -2.120

Hotrienol 1.827

The classification results (expressed as percentages) of the discriminant analysis carried

out by cross validated procedure demonstrated a very good classification of the acacia

and tilia honeys according to their country (Table 4). This was also true of sunflower

honey from Spain and Romania. However, 10% of sunflower honey from the Czech

Republic was incorrectly classified as sunflower honey from Romania.

Page 152: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

122

Table 4. Classification results of the discriminant analysis carried out by cross validated procedure. Percentage of samples well classified by the model. Spain (Sp), Romania (Ro), and Czech Republic (Cz).

4. Conclusion

The information obtained about physicochemical parameters and volatile compounds is

a useful complement to that provided by the percentage of pollen to distinguish acacia,

sunflower and tilia monofloral honeys, with subsequent benefits for beekeepers and the

industry. Although it was found that the country (Spain, Romania, and the Czech Republic)

may lead to significant variations in the levels of certain parameters and compounds, it is

the type of honey that has by far the greatest influence on the differentiation of honeys,

above all due to the presence of certain volatile compounds such as carvacrol and -

terpinene in the case of tilia honey, -pinene and 3-methyl-2-butanol in sunflower honey,

and cis-linalool oxide in acacia honey. Discriminant models obtained for each kind of

botanical honey confirmed that the differentiation of honeys according to their country

of origin was principally based on volatile compounds (2-methyl-2-butenal, 2-methyl-2-

propanol, acetic acid butyl ester, etc., for acacia honeys; 1-hexanol, -pinene, etc., for

sunflower honeys and 3-methyl-1-butanol, hotrienol, 2-butanone, etc., for tilia honey)

and to a lesser extent on certain physicochemical parameters such as, diastase, sucrose

and conductivity, respectively.

A correct classification of all the samples was achieved with the exception of 10% of the

sunflower honeys from the Czech Republic. The main advantage of the model presented

Predicted Group Membership

Floral and Country origin

Acacia Sp

Acacia Ro

Acacia Cz

Sunflower Sp

Sunflower Ro

Sunflower Cz

Tilia Ro

Tilia Cz

Acacia Sp 100 0 0 - - - - -

Acacia Ro 0 100 0 - - - - -

Acacia Cz 0 0 100 - - - - -

Sunflower Sp - - - 100 0 0 - -

Sunflower Ro - - - 0 100 0 - -

Sunflower Cz - - - 0 10 90 - -

Tilia Ro - - - - - - 100 0

Tilia Cz - - - - - - 0 100

Page 153: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

123

is to support the classification of the acacia, sunflower and tilia honeys according to the

country of origin. In order to be totally conclusive, it would be advisable to check the

predictive capacity of the proposed classification model with additional batches with the

same botanical and country origin but from different years.

5. References

Acquarone C., Buer, P. & Elizalde B. (2007). Pattern of pH and electrical conductivity upon

honey dilution as a complementary tool for discriminating geographical origin of

honeys. Food Chemistry, 101, 695-703.

Al M.L., Daniel D., Moise A., Bobis O., Laslo L., & Bogdanov S. (2009). Physico-chemical

and bioactive properties of different floral origin honeys from Romania. Food

Chemistry. 112 (4), 863–867.

Aliferis K.A., Ttarantilis P.A., Harizanis P.C., & Alissandrakis E. (2010). Botanical

discrimination and classification of honey samples applying gas

chromatography/mass spectrometry fingerprinting of headspace volatile

compounds. Food Chemistry, 121, 856-862.

Alissandrakis E., Tarantilis P.A, Harizanis P.C. & Polissiou M. (2005). Evaluation of four

isolation techniques for honey aroma compounds. Journal of the Science of Food

and Agriculture, 85, 91-97.

Anklam E., (1998). A review of the analytical methods to determine the geographical and

botanical origin of honey. Food Chemistry, 63, 549-562.

Bianchi F., Careri M. & Musci M. (2005). Volatile norisoprenoids as markers of botanical

origin of Sardinian strawberry-tree (Arbutus unedo L.) honey: characterisation of

aroma compounds by dynamic headspace extraction and gas chromatography–

mass spectrometry. Food Chemistry, 89, 527–535.

Bogdanov S., Martin P. & Lüllman C. (1997). Harmonised methods of the European Honey

Commission. Apidologie, Extra Issue, 1–59.

Bogdanov S. (2002). Harmonized methods of the International Honey Commission. Swiss

Bee Research Centre, FAM, Liebefeld, CH 3003 Bern, Switzerland.

Page 154: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

124

Castro-Vázquez L., Diaz-Maroto M. C., González-Viñas M. A. & Pérez-Coello M. S. (2009).

Differentiation on monofloral citrus, rosemary, eucalyptus, lavender, thyme and

heather honeys based on volatile composition and sensory descriptive analysis.

Food Chemistry, 112(4), 1022-1030.

Council Directive 2001/110 relating to honey (2002). Official Journal of the European

Communities, 12.1.2002.

Cuevas-Glory L.F., Pino J.A., Santiago L. S., & Sauri-Duch E. (2007). A review of volatile

analytical methods for determining the botanical origin of honey.Food Chemistry,

103, 1032–1043.

De la Fuente E., Martinez-Castro I. & Sanz J. (2005). Characterization of Spanish unifloral

honeys by solid phase microextraction and gas chromatography-mass

spectrometry. Journal of Separation Science 28, 1093-1100.

Escriche I., Kadar M., Juan-Borrás M. & Domenech E. (2011). Using flavonoids, phenolic

compounds and headspace volatile profile for botanical authentication of lemon

and orange honeys. Food Research International, 44 (5), 1504-1513.

Fallico B., Arena E., Verzera A. & Zappalà M. (2006). The European Food Legislation and

its impact on honey sector. Accreditation and Quality Assurance11, 49-54.

Feás X., Pires J., Iglesias A. & Estevinho M.L. (2010a). Characterization of artisanal honey

produce don the Nirthwest of Portugal by melissopalynological and physic-chemical

data. Food and Chemical Toxicology, 48, 3462-3470.

Feás X., Pires J., Estevinho M.L., Iglesias A., & Pinto de Araujo J.P. (2010b). Palynological

and physicochemical data characterisation of honeys produced in the Entre-Douro

e Minho region of Portugal. International Journal of Food Science & Technology,

45, 1255-1262.

Gómez-Pajuelo A. (2004). Origen botánico de la miel. In Montagud S.A (Eds), Mieles de

España y Portugal (pp. 50-56). Barcelona, Spain.

Hutchings J.B. (1999). Food colour and appearance. Gaithersburg, Maryland (USA).

Kádár M., Juan-Borrás M., Hellebrandova E., Doménech& I. Escriche. (2010).

Differentiation of acacia, sunflower and tilia honeys from different countries based

on sugar composition, physicochemical and color parameters. Bulletin of University

of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 67(2), 252-258.

Kaskonienè V., Venskutonis P.R. & Ceksterytè V. (2010). Carbohydrate composition and

electrical conductivity of different origin honeys from Lithuania. LWT-Food Science

and Technology, 43, 801-807.

Kondjoyan N. & Berdagué J.L. (1996). A compilation of relative retention indices for the

analysis of aromatic compounds. Laboratoire Flaveur (INRA), Theix, France.

Page 155: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

125

Kropf U., Korosec M., Bertoncelj J., Ogrinc N., Necemer M. & Kump P. (2010).

Determination of the geographical origin of Slovenian black locust, lime and

chestnut honey. Food Chemistry, 121, 839–846.

Lusic D., Koprivnjak O., Curic D., Sabatini A. G. & Conte L. S. (2007). Volatile profile of

Croatian lime tree (Tilia sp.), fir honeydew (Abies alba) and sage (Salvia officinalis)

honey. Food Technology and Biotechnology, 45(2), 156–165.

Mateo R. & Bosch-Reig F. (1998). Classification of Spanish unifloral honeys by discriminant

analysis of electrical conductivity, color, water content, sugars and pH. Journal of

Agricultural and Food Chemistry, 46, 393-400.

Oroian M. (2012). Physicochemical and Rheological Properties of Romanian Honeys. Food

Biophysics. 7, 296-307.

Oroian M., Amariei S., Escriche I. & Gutt G. (2013). Rheological Aspects of Spanish Honeys.

Food Bioprocess Technology, 6, 228–241.

Nozal M. J., Bernal J. L., Toribio L., Alamo M., Diego J. C. & Tapia J. (2005). The use of

carbohydrate profiles and chemometrics in the characterization of natural honeys

of identical geographical origin. Journal of Agricultural and Food Chemistry, 53,

3095-3100.

Piazza M.G. & Persano-Oddo L. (2004). Bibliographical review of the main European

unifloral honeys. Apidologie,35 (1), 94-111.

Persano-Oddo L., Piazza M. G., Sabatini A. G. & Accorti M. (1995). Characterization of

unifloral honeys. Apidologie, 26, 453–465.

Persano-Oddo L. & Bogdanov S. (2004). Determination of honey botanical origin:

problems and issues. Apidologie, 35, 2–3.

Persano-Oddo L. & Piro R. (2004). Main European unifloral honeys: descriptive sheets.

Apidologie35, 38–81.

Plutowska B., Chmiel T., Dymerski T. & Wardencki W. (2011). A headspace solid-phase

microextraction method development and its application in the determination of

volatiles in honeys by gas chromatography. Food Chemistry, 126, 1288-1298.

Radovic B. S., Careri M., Manglia A., Musci M., Gerboles M. & Anklam E. (2001).

Contribution of dynamic headspace GC–MS analysis of aroma compounds to

authenticity testing of honey. Food Chemistry, 72(4), 511–520.

Ruoff K., Luginbuehl W., Bogdanov S., Bosset J.O., Esterman B. & Ziorko T. (2007).

Quantitative determination of physical and chemical measurands in honey by near-

infrared spectrometry. European Food Research and Technology, 225, 415–423.

Saenz-Laín C. & Gómez-Ferreras C. (2000). Mieles españolas: Características e

identificación mediante el análisis del polen. España: Mundi-Prensa.

Page 156: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys

126

Serra Bonvehí J. & Ventura-Coll F. (2003). Flavour index aroma profiles of fresh and

processed honeys. Journal of the Science of Food and Agriculture, 83, 275–282.

Soria A. C., Gonzalez M., de Lorenzo C., Martinez-Castro I. & Sanz J. (2004).

Characterisation of artisanal honeys from Madrid (Central Spain) on the basis of

their melissopalynological, physicochemical and volatile composition data. Food

Chemistry, 85, 121-130.

Terrab A., Gustavo-González A., Díez M. J. & Heredia F.J. (2003). Characterization of

Moroccan unifloral honeys using multivariate analysis. European Food Research

and Technology, 218, 88-95.

Visquert M., Vargas M. & Escriche I. (2013). Effect of postharvest storage conditions on

the colour and freshness parameters of raw honey. International Journal of Food

Science and Technology, 49(1), 181-187.

Von Der Ohe W., Persano-Oddo L., Piana M. L., Morlot M. & Martin P. (2004). Harmonized

methods of melissopalynology. Apidologie, 35, 18-25.

Page 157: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Marisol Juan-Borrás, Angela Periche, Eva Domenech, Isabel Escriche

Food Control, 50, 243-249 (2015)

3.5. Routine quality control in honey packaging companies as a key to

guarantee consumer safety. The case of the presence of sulfonamides

analyzed with LC-MS-MS.

Page 158: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 159: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

129

Abstract

One of the main challenges in the Horizon 2020 framework is to ensure sufficient food

and feed, while monitoring safety throughout the food chain. In this context, the

objective of this paper was to evaluate the efficacy of the routine quality control that

honey companies carry out on raw batches (before entering the industrial packaging

process) considering the presence of sulfonamides. A total of 279 honey samples were

analyzed in this study: 178 raw honey samples were taken on reception in different

companies, and 101 samples (from the same industries) were purchased locally. The

validation of the methodology applied (LC–MS/MS) before analyzing the samples,

confirm the reliability of the results obtained. All the purchased samples were found to

be negative for sulfonamides, however, in 9 raw samples sulfathiazole (6 samples) and

sulfadiazine (3 samples) were found, which represents 3.4% and 1.7 % of the 178 raw

samples analysed, respectively. Therefore, if monitoring is carried out routinely at

reception, risk can be decreased to a negligible level. The results confirm that using a

suitable analytical methodology and implementing an appropriate routine quality control

on reception is totally effective to avoid the presence of sulfonamides in the

commercialized product, thereby ensuring consumer safety.

Keywords: sulfonamides; honey; LC-MS-MS; consumer safety

1. Introduction

Honey is a very healthy, nutritious food, however, in recent years it has been the focus of

food alerts due to the presence of chemical hazards such as antibiotics or pesticides. The

origin of these residues in honey is mainly veterinary treatments (acaricides,

sulfonamides, antibiotics, etc.) required to treat bee parasites and bacterial diseases such

as European foulbrood (Streptococcus pluton) or American foulbrood (Bacillus larvae)

which can destroy an apiary, and propagate to other bee-hives very easily; although these

compounds are often used in bee-keeping as preventive or therapeutic treatments to

protect an apiary (Staub-Spörri et al., 2014).

Page 160: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

130

Chemical hazards has become a major concern for the administration and the honey

sector due to both the important consequences for public health (allergic reactions,

bacterial resistance, changes in intestinal flora, etc.), and the impact on bees. In fact, the

European Commission states that if a food-producing animal has to be treated with

medicines to prevent or cure disease, the veterinary residues in these food products

should not harm the consumer (European Commission, 2007). In the new societal

challenges proposed by The EU Framework Programme for Research and Innovation,

Horizon 2020 (Commission Decision, 2014), meeting consumer needs and preferences,

but minimising the related impact on health and the environment is included as one of

the main goals. The point “Food security, sustainable agriculture and forestry, marine,

maritime and inland water research, and the bioeconomy” highlights that research

should address food and feed safety, covering the whole food chain and related services

from primary production to consumption. In truth, the control of all stages of the food

chain «from farm to fork» is a shared responsibility, including primary production

(agricultural and livestock), and industrial processing. It is essential to ensure consumer

protection, the last link of the chain.

In order to minimize consumer exposure to residues, the Commission requires EU

countries to implement residue monitoring plans through official control to monitor the

illegal use of substances and misuse of authorized veterinary medicines (Commission

Decision C 4995, 2014). Thus, Council Directive 96/23/EC (1996) and Commission

Decision 97/747/EC (1997)establish the frequency of sampling and the levels of the

groups of substances to be monitored, considering veterinary medicines, pesticides and

contaminants in food of animal origin. This situation calls for the development of a

quantitative framework based on risk assessment (the tool for science-based decision-

making) to estimate the impact on health, and to increase the efficiency and effectiveness

of safety evaluations.

Bearing all of this in mind, the objective of the current study was to evaluate the

effectiveness of the routine quality control sampling which companies carry out on raw

batches of honey (before entering the industrial packaging process) considering the

presence of sulfonamides. To this end, both raw samples (unprocessed honey collected

randomly from the initial stage of the different industries) and commercialized samples

(from the same industries but bought locally) were evaluated. Before analyzing the

samples, the methodology applied (LC–MS/MS) was developed and validated to

guarantee the reliability of the results. As a first step in the validation process, the matrix

effect of the proposed method was studied.

Page 161: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

131

2. Materials and Methods

2.1.-Chemicals and Reagents

Sulfanilamide, sulfathiazole, sulfamerazine, sulfadiazine, sulfapyridine, sulfamethazine,

sulfamethizole, sulfachloropyridazine, sulfamethoxazole, sulfadimethoxine, and

sulfaquinoxaline; where purchased from Sigma (Steinheim, Germany), with a purity ≥95%

in all cases. Hydrochloric acid (37%), formic acid (FA, 99%), acetonitrile (ACN) and

methanol (MeOH) were obtained from Prolabo (VWR, Fontenay-sous-Bois, France);

ammonia solution was purchased from Sharlau (Barcelona, Spain) and citric acid

monohydrate was acquired from Merck (Darmstadt, Germany). The solid phase

extraction (SPE) columns Strata X-CW (33µm, 100 mg, 3mL) were obtained from

Phenomenex (Torrance, CA). Ultrapure water was generated in-house from a Milli-Q

system (Millipore Corp., Billerica, MA).All reagents were MS, HPLC or analytical grade.

Individual stock solutions of all standards were prepared in methanol at a concentration

of 1mg/mL and stored in a freezer at -20ºC, the concentrations were corrected for purity

and salt form. The stock solutions were stable for at least 6 months (Kaufmann et al.,

2002). A working standard mix solution of the 11 sulfonamides, in a concentration of

1g/mL, was prepared in water. This solution was used to construct the calibration curves

and to prepare the spiking experiments. Before each use it was left to reach room

temperature. The stability of the 11 sulfonamides in the mixed working standard solution

was checked to ensure that the standard could be stored at +4ºC for at least 3 months,

with no decrease in response or degradation.

2.2.-Honey samples

A total of 279 multifloral honey samples from the Valencian Region (Spain) were used in

this study. 178 of them were taken from the routine quality control sampling which

companies carry out on every batch of raw honey before entering the industrial

packaging process. The other 101 samples (from the same industries), were purchased

locally. All the samples were stored in a dark, dry place at room temperature until

analysis.

Page 162: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

132

A mixture of 10 multifloral honeys without the compounds analyzed in this study was

selected as a “blank honey” in order to perform the validation procedure of the

methodology. Multifloral honeys with very different physicochemical characteristics

(colour and texture) were specifically selected in order to cover the widest range of

variability, using both light and dark honeys. This is a common procedure used by

different authors to obtain a blank honey (Hammel et al., 2008; Martinez Vidal, et al.,

2009; Dubreil-Chéneau et al., 2014). It is important to point out that our experience on

honey analysis, as well as the results observed by other authors, showed that, in general,

the types of honey don’t affect the accuracy of the method (Dubreil-Chéneau et al.,

2014). Although in specific cases some modifications could occur to certain analyte

signals (ion suppression or enhancement) for particular types of honey, these differences

are less important than those due to the intrinsic inter-day variation of the method

(Dubreil-Chéneau et al., 2014). Notwithstanding this, in the case of very dark honeys, like

chestnut honeys, a matrix effect for some analytes could be observed (Galarini et al.,

2014). This may lead to the conclusion that for the specific case of very dark honeys it

would be advisable to use this same type of honey as a “blank honey”.

2.3.-Analytical determinations

2.3.1. Sulfonamide extraction method in honey

Samples of honey (1.0g) were placed in beaker flasks. The fortified samples were

prepared by adding the mixed working standard solution (1g/mL) to the blank honey to

obtain the appropriate levels for validation of the method. Then, they were shaken well

and allowed to stand for at least 1 hour to permit sufficient absorption of the different

standards. After addition of 1mL 0.1M HCl, the samples were dissolved using a magnetic

stirrer and left to stand at room temperature for at least 20 minutes to allow hydrolization

of the sulfonamides (80-90% of sulfonamides are bound to sugars). Then, 5 mL of 3M

citric acid were added and stirred for 30 s. Next, 5mL of the honey solution was passed

through the SPE column, previously conditioned with 3mL of MeOH and 3mL of ultrapure

water. The cartridges were then washed by adding 3 mL MeOH/ACN (1/1) twice. The

cartridges were vacuum drained, by passing air through them, for 2 min at a pressure of

10 mmHg. The elution was accomplished with 3 mL of 2% ammonium hydroxide in

MeOH, and the analytes were collected in 6mL glass tubes. The SPE procedure was

performed in a Lichrolut vacuum manifold coupled to a vacuum pump (Merck,

Darmstadt, Germany). Finally, the eluates were evaporated to dryness under a stream of

nitrogen while being maintained at 40 ºC in a thermostatic bath (Grant GR, Cambridge,

England). After evaporation, 100 µL of mobile phase was added to each tube, and

thoroughly mixed to ensure the complete dissolution of the extract. Finally, the re-

dissolved extracts were injected into the LC-MS/MS system.

Page 163: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

133

2.3.2. LC/MS/MS Analysis

The chromatography system consisted of a HPLC Agilent 1200 Infinity Series coupled to

an Agilent 6420 Triple Quadrupole detector, equipped with a source set in positive

electrospray ionization mode. The column used was a Zorbax Eclipse XDB-98 (4.6 x 50

mm, 1.8 microns) supplied from Agilent. Chromatographic separation was carried out

with a mobile phase consisting of 0.5% formic acid in water (mobile phase A) and ACN

(mobile phase B) with a flow rate of 0.4 mL/min. The gradient used started with mobile

phase A at 20%, then at minute 4 was 30%, reaching 40% at minute 7. These conditions

were maintained until minute 9. After that, the system was left for 4 min to re-equilibrate

before the next injection. The oven column was set at 30 ºC, and the injection volume

was 5 L.

The system was equilibrated at the beginning of each day for 1h, and three injections of

the standard solution were made to check its stability and the response of the equipment,

a solvent blank was then injected to assess the cross-talk. The operating parameters for

the mass spectrometer were as follows: capillary voltage 4 kV; source temperature 350

ºC; nebulization gas (nitrogen) at a flow rate of 12 L/min and collision gas (nitrogen) at a

flow rate of 3 L/min and 40 psi. The optimization of the MS/MS operating parameters

were performed by the automatic optimization function of the MS software (Optimizer,

Agilent), using direct infusion, without column, of the mixed working standard solution of

the 11 sulfonamides, at a concentration of 40g/L. The most important LC-ESI-MS

parameters for the acquisition and identification of the 11 target compounds are

summarized in Table 1.

Table 1.- MS/MS operating parameters used in Sulfonamide analysis.

Analyte Quantification

Transition Confirmation

Transition Fragmentor CEa(V)

RTb (min)

Sulfanilamide 173.0>93.1 173.0>156.1 100 5/15 1.78 Sulfathiazole 256.0>156.1 256.0>92.1 91 8/24 2.36 Sulfadiazine 251.5>156.0 251.5>92.1 91 12/24 2.45 Sulfapyridine 250.1>156.1 250.1>92.1 121 12/28 2.55 Sulfamerazine 265.1>172.1 265.1>92.1 121 12/28 2.95 Sulfamethazine 279.1>186.1 279.1>124.1 121 12/24 3.40 Sulfamethizole 271.0>156.1 271.0>92.1 120 8/24 3.59 Sulfachloropyridazine 285.0>156.0 285.0>92.1 91 8/24 5.60 Sulfamethoxazole 254.0>156.1 254.0>108.1 91 12/24 6.50 Sulfadimethoxine 311.1>156.1 311.1>124.1 121 16/32 8.60 Sulfaquinoxaline 301.1>156.0 301.1>108.1 121 12/24 8.70

a =collision energy; b = retention time

Page 164: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

134

2.3.3. Matrix effect evaluation and quantification

Food matrices can vary in terms of complexity and content, and it is well established that

co-eluting matrix constituents may interfere with the ionization process of the analytes

(Sterner et al., 2000; Lopez et al., 2008). In order to evaluate the matrix effect, the

calibration curve in solvent should be compared with the calibration curve in matrix, and

a quantitative measure of the ion suppression or enhancement can be obtained

comparing the peak areas of the analyte standards in solvent and the peak areas of the

analyte standards spiked in honey before extraction.

The calibration method of standard addition was used to quantify the sulfonamides.

Therefore, a 7-point standard curve (including zero) was constructed for each

sulfonamide by plotting the peak area of the SRM transitions showing the most intense

signal of each analyte versus its nominal concentration. As honey has no MRLs (maximum

residue levels) for these compounds, the European Commission (Regulation (EC) No

470/2009) states that if sulfonamides are present, they must be below the limit of

quantitation according to the analytical method used. Due to the fact that this limit differs

between laboratories and that there is no legislation or official recommendation, in this

study the target limit considered was 10 g/kg, as this is the most demanding action limit

or tolerated level found in the literature in Europe (Muñoz de la Peña et al., 2007; Sajid

et al., 2013). In addition to this, a further lower level of 5g/kg was considered in order

to evaluate values lower than the target limit.

Therefore, to construct the curves, the blank honey was fortified with 0, 5, 10, 20, 40, 60

and 100 g/kg of each compound, injected in duplicate into the LC-MS/MS system. This

process was carried out in triplicate.

To identify a sample as positive, three criteria were considered: first, the signal-to-noise

ratio (S/N) of the product ions selected must be greater than or equal to three; second,

the allowable deviation of the retention time of the target matter and that of its

corresponding standard should be within ±2.5%; third, the allowable deviation of the

relative abundance of the characteristic ions of the target matter and those of the

characteristic ions corresponding standard should be within ±20%.

2.3.4. Validation of the sulfonamide analytical method in honey

The analytical methodology applied in this work was validated as a first step in order to

ensure the reliability of the results for every compound in the quantification range

considered. The present validation study was performed in accordance with Commission

Decision 2002/657/EC (2002). To this end several parameters were studied: selectivity,

linearity, recovery, precision (repeatability or intraday precision “RSDr” and

Page 165: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

135

reproducibility or interday precision “RSDR”), accuracy, decision limit (CCα) and detection

capability (CCβ).

The selectivity, or ability of the method to differentiate and quantify each analyte in the

presence of potentially interfering substances in honey samples, was evaluated by

analyzing the blank honey 20 times. To this end, the absence of any interference in the

segment of the retention window of each product ion was verified for each analyte.

Linearity (R2) was tested in the 0-100 g/kg range drawing seven-point calibration curves

for fortified honey blanks. The accuracy of this method was evaluated through recovery

experiments, carried out by spiking a honey blank with aliquots of the mixed working

standard solution before the extraction procedure to obtain the seven concentration

levels (0, 5, 10, 20, 40, 60 and 100 g/kg). Six replicates were performed at each level.

Recoveries for each analyte were determined by comparing the concentrations obtained

from the calibration curves for the fortified blanks with their nominal concentrations.

Recovery was measured as a percentage and RSD. The precision of the developed method

was evaluated in two stages: intra-day precision (RSDr) and inter-day precision (RSDR). To

determine intraday precision six samples per level were spiked just before analysis and

extracted on the same day, at the same levels as for recovery. The experiment was

repeated on two further days to determine inter-day precision. Intra-day precision was

expressed as the RSD of samples extracted the same day, at the same concentration,

inter-day was expressed as the RSD of samples extracted on different days, at the same

concentration.

CCα (decision limit) was carried out by analyzing the blank honey 20 times and calculating

the signal to noise ratio at the time window in which each analyte was expected. Three

times the signal to noise ratio was used as the decision limit. CC(detection capability)

was determined by analyzing the blank honey fortified with the analytes at the decision

limit at least 20 times. Detection capability is equal to the value of the decision limit plus

1.64 times the corresponding standard deviation of the within-laboratory reproducibility.

With the strategy described above, linearity, recovery, and precision were determined

through 42 measurements.

Page 166: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

136

3. Results and Discussion

3.1.-Matrix effect

LC-MS/MS detection is considered to be the best tool for good selectivity and speed of

analysis (Cirić et al., 2012). However, it should be taken into account that the results may

be adversely affected by lack of selectivity (Rogatsky & Stein, 2005) due to ion

suppressions or ion enhancement caused by the sample matrix, interferences from

metabolites, and “cross-talk” effects (Matuszewski et al., 2003). Because the matrix effect

may compromise the quantitative results as well as the reproducibility of the method, as

a first step in the validation process, the matrix effect (ME) of the proposed method was

carefully studied and calculated as described in Eq.1. If ME(%)=100, no matrix effect is

present; if ME(%)>100 there is a signal enhancement and if ME(%)<100 there is a signal

suppression.

𝑀𝐸 % = 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑖𝑛 𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑝𝑖𝑘𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 × 100 (1)

Three nominal concentration levels were considered to calculate the matrix effect: low-

level=5 g/kg, medium level= 20 g/kg and high level= 40 g/kg (Table 2) (Sajid et al.,

2013). All the analytes showed a signal enhancement for the 3 concentration levels to a

greater or lesser extent. Sulfanilamide was the least affected by the matrix effect because

ME was 100% at the highest concentration level, and very close to it at the lowest and

medium concentration levels (113 and 114, respectively). On the contrary,

sulfamethoxazole with values of 463, 354 and 316, showed the most marked signal

enhancement effect.

To estimate the matrix effect it is also possible to compare the slopes of calibration plots

built both for the standards in methanol solution and for the standards additions in blank

honey samples, which is more visual (Taylor, 2005; Gosetti et al., 2010). As an example,

Figure 1 shows these calibration curves obtained for sulfanilamide and sulfamethoxazole.

Page 167: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

137

Table 2. Matrix effect of the 11 sulfonamides studied.

Nominal Concentration

Low-level:

5g/kg

Medium-level:

20 g/kg

High-level:

40 g/kg

Sulfanilamide 113 114 100 Sulfathiazole 179 206 185 Sulfadiazine 183 173 181 Sulfapyridine 212 168 152 Sulfamerazine 294 262 242 Sulfamethazine 340 278 270 Sulfamethizole 329 313 340 Sulfachloropyridazine 335 322 323 Sulfamethoxazole 463 354 316 Sulfadimethoxine 398 349 241 Sulfaquinoxaline 209 149 135

Due to the fact that an enhancement phenomenon was observed in this study for the

eleven sulfonamides studied, it was decided to carry out the quantification step using the

standard addition method (that is to say, quantification based on matrix-spiked

calibration solution). In this way, the matrix effect was efficiently minimized (Economoui

et al., 2012).

Figure 1. Calibration curves obtained for sulfanilamide (A) and sulfamethoxazole (B) in methanol

solution (white circles) and in standard additions in blank honey sample (asterisks).

Page 168: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

138

3.2.-In-house validation method

The analytical methodology used to perform the sulfonamide analyses of the honey

samples was subjected to an in-house validation method. The selectivity, as mentioned

before, was evaluated by comparing 20 chromatograms obtained from the analysis of the

corresponding blank honey sample and those obtained from blank honey fortified with

11 sulfonamides. Figure 2 shows as an example the selected reaction monitoring (SRM)

chromatogram of a blank honey and the same honey fortified at 20 g/kg with all the

sulfonamides studied. The absence of interference, which could compromise the

identification and quantitation of the analytes, was verified near the retention time of

each sulfonamide. Regarding the linearity, the results demonstrated that in the range

studied 5-100 g/kg, the method showed a good linearity for all the sulfonamides, with

a linear coefficient between 0.993 and 0.999. This is considered adequate according to

the recommendations of regulatory agencies such as the Commission Decision

2002/657/EC.

Figure 2. Selected reaction monitoring (SRM) chromatogram of a blank honey extract (A) and the

same honey fortified at 20 g/kg (B) with all the sulfonamides studied.(1)Sulfanilamide; (2) Sulfathiazole; (3) Sulfadiazine; (4) Sulfapyridine; (5) Sulfamerazine; (6) Sulfamethazine; (7) Sulfamethizole; (8) Sulfachloropyridazine; (9) Sulfamethoxazole; (10) Sulfadimethoxine; (11) Sulfaquinoxaline; (M) Matrix.

The data about the other validation parameters are shown in Table 3. These parameters

provide information regarding the recovery, precision (repeatability or intra-day

precision RSDr and reproducibility or inter-day precision RSDR), decision limit (CCα) and

detection capability (CCβ)The recoveries of all sulfonamides were in a range of 89-114%,

complying with the requirements of the Commission Decision 2002/657/EC, which

concludes that the proposed method shows good accuracy for all the studied analytes.

Page 169: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

139

The repeatability (RSDr) for all the sulfonamides studied ranged from 3.0 to 19.5%, in

agreement with this Commission Decision. In the case of reproducibility (RSDR), for 6 of

the 11 compounds this parameter was below the required value: lower than 20%. In a

few cases for the other four compounds, this parameter was exceeded slightly but its

value was very close to 20% (always lower than 24%): Sulfanilamide at the 10 μg/kg level

showed 22.8 %; sulfamerazine at the 20 μg/kg level showed 22.3%; sulfachloropiridazine

20.8% at the 10 μg/kg level, sulfamethazine at the 10 and the 20 μg/kg levels showed

23.7 and 22.1% and sulfaquinoxaline 22.7 and 22.9% at the 20 and the 40μg/kg level

respectively. Therefore it can be concluded that the method used has good precision

(repeatability and reproducibility) (Bohm et al., 2013).

The limit of decision (CC) values ranged from 0.7 g/kg (sulfamethoxazole) to 4.5 g/kg

(sulfamethazine) and the detection capability (CC) limit from 2.3g/kg

(sulfamethoxazole) to 4.3 g/kg (sulfadiazine). It is noticeable that in all the cases the 2

limits are below 5μg/kg, which is the target minimum level in this paper, as mentioned

before. The results of the validation demonstrate that the applied analytical procedure

guarantees the quantitative values of sulfonamides in the samples analyzed.

Table 3. Validation parameters for the analytical method.

Analytes Nivel (μg/kg)

Recovery % RSDra % RSDR

b % CCα (μg/kg)

CCβ (μg/kg)

Sulfanilamide 5 10 20 40 60

100

98 105 95 89

104 104

15.3 16.9 10.5 3.5

10.9 7.3

12.4 22.8 17.8 16.5 14.8 9.0

1.5 3.1

Sulfathiazole 5 10 20 40 60

100

114 108 96 95 93 98

4.6 4.5 7.2 8.6 7.3 8.5

14.2 11.6 14.0 16.6 14.6 10.3

2.4 4.0

Sulfadiazine 5 10 20 40 60

100

104 106 97 94 98

104

9.9 13.8 10.8 3.5 5.1 6.0

8.9 14.8 18.4 11.9 7.2 8.1

2.8 4.3

Sulfapyridine 5 10 20 40 60

100

101 104 98 99 95

102

6.2 6.1 7.0 3.9 5.6 4.6

9.6 18.9 18.1 15.4 7.3

13.3

2.2 3.0

Page 170: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

140

Table 3 (Cont)

Analytes Nivel (μg/kg)

Recovery % RSDra % RSDR

b % CCα (μg/kg)

CCβ (μg/kg)

Sulfamerazine 5 10 20 40 60

100

109 101 96 89 97

101

7.4 4.5 9.7 8.8 6.3 6.6

6.8 19.5 22.3 15.0 10.1 14.1

1.4 3.0

Sulfamethazine 5 10 20 40 60

100

93 110 96 99 95

101

7.5 6.3

10.5 9.2 6.6 6.3

16.3 23.7 22.1 17.8 8.1

17.7

4.5 4.1

Sulfamethizole 5 10 20 40 60

100

99 101 96 97 98

102

5.7 6.8 6.5 9.6

16.9 4.5

12.5 8.1

13.5 15.2 17.1 7.4

2.0 3.0

Sulfachloropyridazine 5 10 20 40 60

100

109 101 95 97 98

101

10.3 6.3 7.3 8.8 8.8 4.9

11.5 20.8 18.7 17.0 11.9 16.3

2.0 3.5

Sulfamethoxazole 5 10 20 40 60

100

101 101 95 93 99

101

11.3 8.6

10.2 6.5 6.6 5.4

11.5 16.3 19.3 10.5 10.3 10.0

0.7 2.3

Sulfadimethoxine 5 10 20 40 60

100

94 98 97 99

100 101

8.6 9.4

11.0 3.0 6.9 3.2

11.6 17.2 19.9 13.9 9.9

15.7

2.0 3.5

Sulfaquinoxaline 5 10 20 40 60

100

89 93 96

100 98 99

6.4 8.5 8.8

12.6 19.5 7.7

12.2 19.4 22.7 22.9 16.4 17.9

2.4 3.9

aRSDr= repeteatability; bRSDR = reproducibility

Page 171: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

141

3.3.-Samples analyses

Of the 279 honey samples analysed for the presence of 11 sulfonamides, 64% of them

were from the routine sampling of every batch of raw honey which companies realize

before the industrial packaging process and the other 36% samples (from the same

industries), were purchased in local shops. The values of the percentage of positive

samples and quantitative results of the sulfonamides found are shown inTable 4. The

sulfonamide levels reported are the mean of three replicates obtained by subjecting the

sample to the extraction and the analysis process. This was done to confirm that the

results were not derived from incidental sample contamination. All the purchased

samples had a “negative result” for all the sulfonamides, which means that the values

obtained were under the CC. On the contrary, in 9 raw samples sulfathiazole (6 samples)

and sulfadiazine (3 samples) were found, which represents 3.4 % and 1.7 % of the 178

raw samples analysed, respectively. For sulfathiazole the levels ranged between 5 and 9

g/kg, whereas for sulfadiazine a minimum of 13 µg/kg was found and a maximum that

exceeded the maximum limit of quantification (100 µg/kg).

Table 4. Samples analyzed, percentage of positives for sulfonamides and concentration range.

Honey samples purchased locally

Raw honey samples from the routine quality control

in companies

Concentration range (µg/kg) of the positive

compounds

Nº of analysed samples 101 178

Nº of positive samples 0 9

% of samples positive for sulfathiazole

0 3.4 5-9

% of samples positive for sulfadiazine

0 1.7 13-(100≤)

The “positive” samples found in the present work on raw honey are clearly in violation of

current European directives. Although in the Commission regulation (Commission

Decision 2010/37/EC) for the establishment of maximum residue limits of veterinary

medicinal products in foodstuffs of animal origin MRLs are not included for honey, some

EU countries have established internal MRLs for some substances. In the case of

sulfonamides (based on the sum of sulfonamide family), the permitted level ranges from

20 g/kg in Belgium to 50g/kg in the UK (Maudens et al., 2004). There is an obvious

discrepancy between countries which affects commercial transactions. At present the

limit for sulfonamides and other antibiotics in honey is established taking into account

the limit of quantification of the methodology used. For instance, 10 g/kg for

sulfonamide in honey, a value which is only attained by techniques such as LC-MS/MS

(Sheridan et al., 2008; Martinez Vidal et al., 2009). In fact, the afore mentioned Council

regulation (Commission Decision 2010/37/EC) recognizes that it is becoming easier to

detect the presence of residues of veterinary medicines in foodstuffs (meat, fish, milk,

Page 172: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

142

eggs and honey) at ever lower levels as a consequence of scientific and technical

progress.

In other studies carried out with a similar detection technique to that used in the present

work, sulfathiazole is also one of the most present sulfonamides in honey. For instance,

in 116 honey samples analyzed from Eastern Europe sulfathiazole was present in 47% of

the cases (Sheridan et. al, 2008). In a set of honey samples from the USA, Asia and Europe,

the presence of sulfadiazine, among other sulfonamides, and the presence of

sulfathiazole in 2 samples (Hammel et al., 2008). In the report “Monitoring of veterinary

medicinal product residues and other substances in live animals and animal products”

published by European Food Safety Authority about the results obtained in 2011 it is

noteworthy that the highest frequency of non-compliant samples for antibacterials

(including sulfonamides) was observed in honey (European Food Safety Authority (2013).

In relation to the specific case of sulfonamides the study mentions positive cases in 4 out

of 129 samples from Poland. Sulfadimethoxine was found in 2 out of 67 samples from

Hungary and sulfathiazole in 1 out of 5 from Lithuania. However, it is important to

mention that in some countries there are specific control programs, applied to different

live animals and animal products, which use microbiological tests (inhibitor tests), and

sometimes the positive results are not confirmed by the most appropriate technique and

thus there is no conclusive quantification of the substance concerned (European Food

Safety Authority, 2013).

More recent results were reported by Galarini et al. (2014) based on 74 honey samples

acquired in the Italian market. The samples had both different botanical and geographical

origins (such as Italy, Hungary, Argentina, Bulgaria, Romania, Spain, and other EU and non

EU countries). 12% of the samples analyzed by LC-MS/MS had traces of sulfonamides.

More specifically, in 5 samples concentrations between 0.3 to 1.7g/kg of sulfathiazole,

and in 4 samples concentrations between 0.2 to 1.7 g/kg of sulfadimethoxine were

confirmed. These authors pointed out that their results were in agreement with those

reported by the Italian National Reference Laboratory for Beekeeping. This laboratory

analyzed over 1500 honeys during a time period of six years, observing that 11% of the

samples contained sulfonamide residues.

In Spain the most recent data from the official monitoring of antibiotics in honey are

published by the Spanish Agency for Food Safety in the 2012 and 2013 reports (AESAN,

2012; AESAN 2013). In both years no antimicrobials were detected in more than 700

honey samples analyzed every year.

The above mentioned information shows that although the use of sulfonamides in

beekeeping is banned in the European Union, the occurrence of residues of these

compounds in honey samples is significant when sensitive analytical methods are used.

However, when these compounds are present in honey they occur at very low levels,

Page 173: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

143

even lower than in the tissues of farm animals. Therefore, they are not important from a

toxicological point of view (Baran et al., 2011) given that honey is consumed in very small

quantities. In this context, it is possible to estimate the risk to the consumer associated

with the presence to this chemical hazard in honey.

This risk to the consumer is defined as a combination of the probability of occurrence of

a hazard and the severity of this hazard in terms of human health:

Risk=Probability*Severity (FAO/WHO 1995; Doménech et al., 2007). Asselt et al. (2013)

considered that this probability must be established as the probability of consumption

and the probability of exposure. They estimated the severity of a hazard associated with

an antibiotic residue as both the intrinsic toxicity of the antibiotic and the consequences

for human health related to the development of antimicrobial resistance. Taking this into

account, these authors attributed scores to the above mentioned factors for antibiotics

in different foods, including sulfonamides in honey, assigning a value in the range 0-3

(where 0 is low and 3 is high) for every factor. In the case of sulfonamides in honey, they

established a value of 1 for the severity. Considering this value and the results obtained

in the present paper, the risk to the consumer associated with eating commercial honey

samples is 0 because no positive samples were found. However, this value would be 1 if

the companies did not monitor the raw honey samples before the industrial packaging

process as 3.4% and 1.7% of the analyzed raw honey samples were positive for

sulfathiazole and sulfadiazine, respectively. This value concurs with the European Food

Safety Authority report (2013), which remarked that a real risk of exposure to different

sulfonamides in honey exists. Therefore, if adequate monitoring is carried out routinely

at reception, the risk can decrease from 1 to 0 in a range of 0 to 3. This highlights the

importance of the routine quality control that each company is expected to carry out.

Page 174: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

144

4. Conclusion

A quantitative LC-MS/MS method for the determination of 11 sulfonamides in honey was

validated with good results in agreement with the Commission Decision 2002/657/EC,

which confirm the results of sulfonamides obtained in the honey samples analyzed.

Monitoring the raw honey samples, before the industrial packaging process, showed that

a real risk to the consumer exists due to the presence of sulfonamides. However, the

results from honey sampled at retail confirmed that correct monitoring by the company

is able to reduce the risk to an acceptable level. To sum up, the results indicate that using

a suitable analytical methodology and implementing the routine quality control that each

company is expected to carry out, it is possible to avoid the presence of sulfonamides,

and therefore to ensure consumer safety. This can be extrapolated to other chemical

hazards that could be present in any kind of honey.

Acknowledgment

This study forms part of a project funded by the Ministerio de Educación y Ciencia of

Spain (Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los retos

de la sociedad; project number AGL2013-48646-R), for which the authors are grateful.

Page 175: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

145

5. References

AESAN (Agencia Española de Seguridad Alimentaria) (2012). Memoria 2012. Available:

http://aesan.msssi.gob.es/AESAN/docs/docs/publicaciones_estudios/memoria/memori

a_2012.pdf

AESAN (Agencia Española de Seguridad Alimentaria) (2013). Memoria 2013. Available at:

http://aesan.msssi.gob.es/AESAN/docs/docs/publicaciones_estudios/memoria/m

emoria_2013.pdf

Asselt E.D. van, Spiegel M. van der, Noordam M.Y., Pikkemaat M.G. & Fels-Klerx H.J. van

der. (2013). Risk ranking of chemical hazards in food. A case study on antibiotics in

the Netherlands. Food Research International, 54, 1636-1642.

Cirić A., Prosen H., Jelikić-Stankov M. & Durdevic P. (2012). Evaluation of matrix effect in

determination of some bioflavonoids in food samples by LC–MS/MS method.

Talanta, 99, 780-790.

Baran W., Adamek E., Ziemian J. & Sobczak A. (2011). Effects of the presence of

sulfonamides in the environment and their influence on human health. Journal of

Hazardous Materials, 196, 1-15.

Bohm D.A, Stachel C.S. & Gowick P. (2013). Development and validation of a confirmatory

method for the determination of tranquilisers and a β-blocker in porcine and

bovine kidney by LC-MS/MS. Food Additives & Contaminants,30 (6), 919-920.

Commission Decision 97/747/EC. (1997). Fixing the levels and frequencies of sampling

provided for by Council Directive 96/23/EC for the monitoring of certain substances

and residues thereof in certain animal products. Official Journal of European

Commission,L303/12 Available

at:http://ec.europa.eu/food/food/chemicalsafety/residues/comm_dec1997_747e

c.pdf

Commission Decision 2002/657/EC. (2002). Implementing Council Directive 96/23/EC

concerning the performance of analytical methods and the interpretation of

results. Official Journal of European Commission, L221, 8–36. Available at:

http://crl.fougeres.anses.fr/publicdoc/decision2002-657-EC

crit%C3%A8resvalidation.pdf

Commission Decision 2010/37/EC. (2010). On pharmacologically active substances and

their classification regarding maximum residue limits in foodstuffs of animal origin.

Page 176: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

146

Official Journal of European Commission, L15/1. Available

at:http://ec.europa.eu/health/files/eudralex/vol/reg_2010_37/reg_2010_37_en.

pdf

Commission Decision C 4995. (2014). Horizon 2020 Work Programme 2014-2015. 9. Food

security, sustainable agriculture and forestry, marine and maritime and inland

water research and the bioeconomy. Available at:

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/

h2020-wp1415-intro_en.pdf

Council Directive 96/23/EC (1996). On measures to monitor certain substances and

residues thereof in live animals and animal products and repealing Directives

85/358/EEC and 86/469/EEC and Decisions 89/187/EEC and 91/664/EEC. L 125/10-

31. Available at:

http://ec.europa.eu/food/food/chemicalsafety/residues/council_directive_96_23

ec.pdf.

Domenech E., Escriche I. & Martorell S. (2007). Quantification of risks to consumers’

health and to company’s incomes due to failures in food safety. Food Control, 18,

1419-1427.

Dubreil-Chéneau E., Pirotais Y., Verdon E. & Hurtaud-Pessel D. (2014). Confirmation of 13

sulfonamides in honey by liquid chromatography-tandem mass spectrometry for

monitoring plans: Validation according to European Union Decision 2002/657/EC.

Journal of Chromatography A, 1339, 128–136.

Economou A., Petraki O., Tsipi D. & Botitsi E. (2012). Determination of a liquid

chromatography–tandem mass spectrometry method for the determination of

sulfonamides, trimethoprim and dapsone in honey and validation according to

Commission Decision 2002/657/EC for banned compounds. Talanta, 97, 32-41.

European Commission (2007). A new Animal Health Strategy for the European Union

(2007-2013) where “Prevention is better than cure”. Available at:

http://ec.europa.eu/food/animal/animalproducts/index_en.htm.Assessed April

2014.

European Food Safety Authority (2013). Report for 2011 on the results from the

monitoring of veterinary medicinal product residues and other substances in live

animals and animal products1. EFSA supporting publication 2013, EN-363. Available

at: www.efsa.europa.eu/publications. Assessed April 2014.

FAO/WHO (1995). Application of risk analysis to food standards issues. Report Joint

FAO/WHO Expert Consultation. WHO Document WHO/FNU/FOS 195.3. Geneva.

Available at:

http://www.who.int/foodsafety/publications/micro/en/march1995.pdf?ua=1.

Assessed April 2014.

Page 177: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

147

Galarini R., Saluti G., Giusepponi D., Rossi R. & Moretti S. (2014). Multiclass determination

of 27 antibiotics in honey. Food Control. Available online April 2014.

Gosetti F., Mazzucco E., Zampieri D., & Gennaro M. (2010). Signal

suppression/enhancement in high-performance liquid chromatography tandem

mass spectrometry. Journal of Chromatography A, 1217, 3929-3937

Hammel Y.A., Mohamed R., Gremaud E., LeBreton M.H. & Guy P. (2008). Multi-screening

approach to monitor and quantify 42 antibiotic residues inhoneyby liquid

chromatography–tandem mass spectrometry. Journal of Chromatography A,

1177(1), 58-76.

Kaufmann A., Roth S., Ryser B. & Widmer M. (2002). Quantitative LC/MS-MS

determination of sulfonamides and some other antibiotics in honey. Journal of

AOAC International, 85 (4), 853-860.

Lopez M.I., Pettis J.S., Smith I.B. & Chu P. (2008). Multiclass Determination and

confirmation of antibiotics residues in honey using LC-MS/MS. Journal of

Agriculture and Food Chemistry, 56, 1553-1559.

Martinez Vidal J.L., Aguilera-Luiz M.M., Romero-Gónzalez R., & Garrido A.

(2009).Multiclass analysis of antibiotics residues in honey by ultraperformance

liquid chromatography-tandem mass spectrometry. Journal of Agriculture and

Food Chemistry, 57, 1760-1767.

Matuszewski B. K., Constanzer M. L. & Chavez-Eng C. M. (2003). Strategies for the

Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-

MS/MS. Journal of Analytical Chemistry, 75, 3019-3030.

Maudens K., Zhang G-F. & Lambert W. (2004). Quantitative analysis of twelve

sulfonamides in honey after acidic hydrolysis by high-performance liquid

chromatography with post-column derivatization and fluorescence detection.

Journal of Chromatography A, 1047, 85-92.

Muñoz de la Peña A., Mora Diez N., Mahedero García M.C., Bohoyo Gil D. & Cañada-

Cañada F. (2007). A chemometric sensor for determining sulphaguanidine residues

in honey samples. Talanta 73, 304-313.

Sajid M., Na N., Safdarb M., Lu X., Ma L., Hec L. & Ouyanga J. (2013). Rapid trace level

determination of sulfonamide residues in honey with online extraction using short

C-18 column by high-performance liquid chromatography with fluorescence

detection. Journal of Chromatography A, 1314, 173-179.

Regulation (EC) No 470/2009 of the European Parliament and of the Council of 6 May

2009 laying down Community procedures for the establishment of residue limits of

pharmacologically active substances in foodstuffs of animal origin. Official Journal

L 152, 16 June 2009, pp. 11-22. Available at: http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:152:0011:0022:en:PDF

Page 178: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Routine quality control in honey packaging companies

as a key to guarantee consumer safety. The case of the presence of sulfonamides analyzed with LC-MS-MS

148

Rogatsky E., & Stein D. (2005). Evaluation of matrix effect and chromatography efficiency:

new parameters for validation of method development. Journal of the American

Society for Mass Spectrometry, 6, 1757-1759.

Sheridan R., Policastro B., Thomas S. & Rice D. (2008). Analysis and occurrence of 14

sulfonamide antibacterials and chloramphenicol in honey by solid-phase extraction

followed by LC/MS/MS analysis. Journal of Agriculture and Food Chemistry, 56,

3509-3516.

Staub-Spörri A., Jan P., Cognard E., Ortelli D. & Edder P. (Published online 07 Apr 2014).

Comprehensive screening of veterinary drugs in honey by ultra-high-performance

liquid chromatography coupled to mass spectrometry. Food Additives &

Contaminants.

Sterner J.L., Johnston M.V., Nicol G.R. & Ridge D.P. (2000). Signal suppression in

electrospray ionization Fourier transform mass spectrometry of multi-component

samples. Journal of Mass Spectrometry, 35, 385–391.

Taylor P. (2005). Matrix effects: The Achilles heel of quantitative high-performance liquid

chromatography–electrospray–tandem mass spectrometry. Clinical Biochemistry

38, 328-334.

Page 179: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Marisol Juan-Borrás, Eva Domenech, Isabel Escriche

Food Control (En Revisión)

3.6. Mixture-risk-assessment of pesticide residues in retail

polyfloral honey

Page 180: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 181: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

151

Abstract

The presence of even tiny quantities of pesticide residues in honey, a traditional healthy

product, is a matter of concern for producers, packers and consumers. The aim of this

paper was to quantify the different pesticides in retail brands of polyfloral honey, and to

calculate the mixture risk assessment of honey for consumers (due to exposure to

pesticides), according to the results obtained from the analyzed samples. A LC-MS/MS

multi-residue method based on QuEChERS extraction was developed and validated for

13 compounds: 11 pesticides (chlorfenvinphos, coumaphos, tau-fluvalinate, amitraz, very

common in veterinary treatments and imidacloprid, acetamiprid, simazine,

cyproconazole, tebuconazole, chlorpiryphos-methyl, chlorpiryphos, widely used in

agricultural practices), and 2 metabolites of amitraz (2,4-DMA and 2,4-DMF). Results

showed that the samples contained pesticide residues at different concentration levels;

however, the MRL in honey for each of the 11 pesticides was not exceeded in any of the

cases. All the pesticides studied were found in at least one of the samples analysed; the

most common were amitraz (from 1 to 50 g/kg) present in 100% of the samples and

coumaphos (up to 14g/kg) in 63%. The hazard index (HI) for adults was less than 0.002

in all cases, a long way from 1, the value established as the limit of acceptability.

Therefore, commercial honey does not represent any significant risk to health. However,

taking into account that the residue levels should be present “as low as reasonably

achievable” it is deemed necessary to make an effort to reduce the presence of these

residues by appropriate agricultural and, above all, beekeeping practices, since acaridae

treatments are the main source of pesticides in honey.

Keywords

Honey; pesticides; Mixture-risk-assessment; MRL; hazard index

1. Introduction

Honey is a highly valued natural product due to its nutritional properties and appreciated

therapeutic applications. However, recently, food alerts caused by the detection of

antibiotics, pesticides or heavy metals in honey have jeopardized its healthy image (Juan-

Borrás et al., 2015). Pesticide residues in honey come from environmental pollution and

veterinary practices.

Page 182: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

152

Honeybees come into contact with pesticides because veterinary practices expose them

to pesticides such as acaricides required to control bee parasites like Varroa destructor

and Varroa jacobsonie (Li et al., 2015)) and fungicides to control Ascosphera apis, as well

as other chemical agents such as antibiotics, and sulphonamides used to control bacterial

diseases like European foulbrood (Streptococcus pluton) or American foulbrood (Bacillus

larvae).

On the other hand, another source of contamination is a wide range of pathways such as

contaminated water, pollen and nectar from treated plants and crops, or even by direct

contact during flight (García-Chao et al., 2010; Rodriguez-Lopez et al., 2014). Currently in

Europe, the majority of insecticides used in agricultural practices are organophosphates,

carbamates and neonicotinoids, although in some countries the use of a number of them

is forbidden. These compounds affect the central nervous system of beneficial insects

such as honeybees, by inhibiting the activity of the enzyme acetylcholinesterase (Blasco

et al., 2011); Tanner & Czerwenka, 2011).

Combinations of sub-lethal doses of modern pesticides, of any origin, often produce

additive or even synergistic effects on the mortality and behaviour of animals, which

contributes to Colony Collapse Disorder (CCD) (Laetz et al., 2009; Van Engelsdorp et al.,

2009).These pesticides not only affect the insects, but also contaminate bee products like

honey. The determination of contaminants and residues in honey and other bee products

has become a growing concern in recent years, especially as these compounds may

diminish the beneficial properties of honey and, if present in significant amounts, may

pose a serious threat to human health (Kujawski & Namiesnik, 2011).

In order to protect human health, chemical hazards must be controlled to stop pesticides

reaching the food chain (Blasco et al., 2011; Barganska et al., 2013). With this aim in mind,

Regulation (EC) Nº 396/2005 and Regulation (EC) Nº 37/2010 established MRLs for

residues of certain specific pharmacologically active substances in foodstuffs of animal

origin (for instance, coumaphos and amitraz in honey). This lowering of the limits of

detection in a matrix as complex as honey is only possible thanks to modern analytical

techniques (GC-MS-MS and LC-MS/MS) and adequate extraction and cleaning of analytes

using QuEChERs (Blasco et al., 2011; Barganska et al., 2013; Hou et al., 2013).

Currently, chemicals are routinely assessed on a chemical-by-chemical basis, however,

consumers could be exposed to multiple chemicals via different food types, and

consequently, this approach may not be sufficiently protective. Hence, a new metric

known as Mixture Risk Assessment (MRA) has been introduced to assess the cumulative

risk to human health (Zheng et al., 2007; Boobis et al., 2008; Kortenkamp et al., 2009);

Evans et al., 2015; Yu et al., 2016). The existence of a mixture is not always an indication

of a risk to human or environmental health, but indicates the necessity of examining

whether more accurate estimations of risk will be produced by considering all of the

chemicals that are present.

Page 183: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

153

Therefore, the objective of this paper was to quantify the presence of different pesticides

in polyfloral labeled brands, and to estimate the mixture risk assessment of the honey for

consumers (due to exposure to pesticides) based on the results obtained from the

analyzed samples. As a first step, the analytical procedure was validated in order to

guarantee the quality of the results obtained.

2. Materials and Methods

2.1.-Honey samples

This study was carried out with supermarket own-brands and well-known brands, which

represent almost all of the retail sales in the Spanish market. A total of 22 honey samples,

labelled as polyfloral were purchased across Spain from different retail outlets.

A mixture of 5 polyfloral honeys without the compounds analyzed in this study was

selected as a “blank honey” in order to perform the validation procedure of the

methodology.These samples were provided directly by Spanish beekeepers.

In all the samples the percentage of pollen of the different botanical species was

evaluated in order to estimate their geographical origin. There was only one sample for

which it was not possible to perform this characterization due to the insufficient presence

of pollen.

2.2.-Analytical determinations

2.2.1. Pesticide analysis

Standards and reagents

Table 1 shows the 11 pesticides analysed in the present work. All of them [including the

two metabolites of amitraz: 2,4-DMA (2,4-dimethylaniline) and 2,4-DMF (N-2,4-

dimethylphenyl formamide)], were purchased from Sigma-Aldrich, (Steinheim,

Germany), with a purity of ≥99%.Individual stock standard solutions (200 μg/mL) were

prepared in methanol (MeOH) or acetonitrile (MeCN), depending on the solubility of each

pesticide, and stored at -20º C. These solutions are stable for at least 1 year. From them,

Page 184: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

154

a stock standard mixture of 13 pesticides was made in MeCN (each analyte at a

concentration of 40μg/mL) and stored in amber glass vials at -20º C.

The spiking solutions (10μg/mL and 1μg/mL) were prepared in ultrapure water from the

stock standard mixture solution and stored in amber glass vials at -4º C.

The MeOH used for the mobile phase was MS-Grade (Scharlab, Barcelona). The MeOH

and MeCN used for sample extraction (Quechers methodology) and for the standards

preparation was HPLC grade and was obtained from Prolabo (VWR, France).

Table 1. Pesticides studied in the present work.

Common

name

Biocide

action

Pesticide

family

MRLa ADI b WHOc

Veterinary practices

Amitraz Acaricide Formamidine 200(1) 10 III

Chlorfenvinphos Acaricide Organophosphorus 10 0.5 IB

Coumaphos Acaricide Organophosphorus 100 0.25 IB

Tau-fluvalinate Acaricide Pyrethroid 50 5 U

Agricultural practices

Acetamiprid Insecticide Neonicotinoid 50 70 II

Chlorpyrifos Insecticide Organophosphorus 10 10 II

Chlorpyriphos-methyl Insecticide Organophosphorus 10 10 III

Cyproconazole Fungicide Azole 50 10 III

Imidacloprid Insecticide Neonicotinoid 50 60 II

Simazine Herbicide Triazine 10 5 U

Tebuconazole Fungicide Azole 50 30 III aMRL (Maximun Residues Level); mg kg-1 (EU Pesticides database, 2015; Regulation EU 37/2010) bADI (Acceptable Daily Intake); mg kg-1 d-1 (WHO, 2012) c (WHO, 2010); IB = Highly hazardous; II = Moderately hazardous; III = slightly hazardous; U =

Unlikely to present acute hazard in normal use (1)The metabolites of amitraz (2,4-DMA and 2,4-DMF) are included

The formic acid (purity 99%) for LC-MS analysis, analytical grade sodium chloride (NaCl),

anhydrous magnesium sulphate (MgSO4), disodium hydrogen citrate sesquihydrate (di-

Na), trisodium citrate dihydrate (tri-Na) and Bondesil Primary-Secondary Amine (PSA)

were provided by Sigma Aldrich (Saint Quentin Fallavier, France). Ultrapure water was

obtained from a Milli-Q® water purification system connected to a LC-PAK cartridge to

remove the remaining organic contaminants at trace levels (Millipore, Molsheim, France).

Page 185: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

155

Extraction procedure

Extracts were prepared using QuEChERS as it is one of the most commonly applied

procedures for pesticide residue extraction. 5g of sample were weighed into a

polypropylene tube. After addition of 10 mL of MeCN, the sample was extracted by

shaking by hand for at least 1 min, and by vortex 1 more minute. Then a salt mixture

(NaCl, MgSO4, di-Na, tri-Na) was added and the tube was shaken vigorously for a few

seconds to prevent agglomeration. After shaking for 1 min the tubes were centrifuged at

1500g to obtain a clarified MeCN extract. The supernatant was transferred into another

tube (PSA) shaken for 1 min and centrifuged at 1500g for 4 min. A 1 mL aliquot was taken

and filtered through a nylon 0.45 m membrane filter. This final extract was injected in

the LC-MS/MS system.

LC-MS/MS analysis

The analyses were performed using an Agilent 1200 Series Rapid Resolution Liquid

Chromatograph (Agilent, Palo Alto, CA) equipped with a Cortecs column (100 mm × 2.1

mm I.D., 2.7 μm particle size, Waters; Milford, MA, USA) maintained at 30 ºC. The mobile

phase consisted of MeOH and water acidified with 0.1% of formic acid. The gradient was

applied at a flow rate of 0.4 mL/min as follows: initial conditions of 5% MeCN increased

linearly to 20% for 30s, then increased linearly to 100% at min 6, held at 100% for 2 min

and returned to initial conditions for 5 min. The inject volume was 5 L.

The MS–MS detection was performed using an Agilent 6410 Series Triple Quadruple

(Agilent, Palo Alto, CA). The mass spectrometer was operated using electrospray

ionization in the positive ion mode (ESI+). The capillary voltage was set to 4.0 kV. The

source temperature was 350 ºC and the desolvation temperature was 350 °C. Nitrogen

was used as the desolvation gas (flow 12 L/min) and collision gas at a pressure of 40 psi.

Detection was performed in the multiple reaction monitoring (MRM) mode, this function

automatically optimized the dwell times according to the number of simultaneously

detected MRM transitions. The transition with the highest intensity was used as a

quantifier and the second transition as a qualifier. Fragment voltage and collision energy

were optimized for each pesticide, masses of precursor ions and product ions are

summarized in Table 2.

2.2.2. Validation of the analytical method

The pesticide analytical methodology applied in this work was validated for every

compound to ensure the reliability of the results in the quantification range considered.

To this end, following the SANCO 12571/2013 guidance, the parameters: linearity,

recovery, precision (repeatability or intraday precision “RSDr” and reproducibility or

Page 186: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

156

interday precision “RSDR”), limit of detection (LOD) and limit of quantification (LOQ) were

calculated.

Table 2. Settings for the ion transitions of the thirteen selected pesticides studied in MRM mode

Compound

Precursor Ion

Product Ion 1 (m/z)

Product Ion 2 (m/z)

Collision energy

(V)

Retention Time (min)

Amitraz 294.2 163.0 122.0 10;35 10.20

2,4-DMA 122.1 77.0 107.0 30 6.20

2,4-DMF 150.0 107.0 123.2 18;13 8.40

Chlorfenvinphos 359.0 154.7 126.8 10;15 9.49

Coumaphos 363.0 306.6 226.4 10;40 9.52

Tau-fluvalinate 503.1 180.9 207.7 37;5 10.30

Acetamiprid 223.0 126.0 56.0 15 7.72

Chlorpiryphos 351.6 200.0 97.0 15 9.99

Chlorpiryphos-methyl 324.0 125.0 292.0 15 9.66

Cyproconazole 292.1 69.9 124.7 17;37 9.28

Imidacloprid 256.1 209.3 175.4 15;20 7.30

Simazine 202.1 132.0 123.9 20 8.63

Tebuconazole 308.2 69.9 124.7 21;5 9.48

2.2.3. Risk Evaluation

Estimated daily intake (EDI)

This parameter, expressed as g kg-1 d-1, is obtained as follows Eq 1:

𝐸𝐷𝐼 =C∗Con

Bw 1

Where C (µg kg-1) is the average concentration of a given pesticide in the collected

honeys; Con (kg person-1 d-1) is the daily average consumption of honey in Spain; Bw (kg

person-1) represents body weight. Based on the report by the Instituto Nacional de

Estadística (Spanish National Institute of Statistics), the average honey consumption for

adults is 0.7 kg per person per year, and the average body weight is 70 kg for adults (INE,

2012).

Hazard quotient (HQ)

This parameter is calculated for each pesticide by dividing the estimated daily intake (EDI)

by the acceptable daily intake (ADI) (g kg-1 d-1) for each pesticide (Table 1), (USEPA,

2007; Evans et al., 2015), Eq 2.

𝐻𝑄 =EDI

ADI 2

Page 187: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

157

Evaluation of hazard index (HI)

The HI is a measurement of the potential risk of adverse health effects from a mixture of

chemical constituents (Zheng et al., 2007; Evans et al., 2015).The Hazard Index (HI) is used

in most MRA (Mixture risk Assessment) approaches. The HI due to daily average

consumption of honey for a human being is obtained as the sum of the hazard quotient

(HQ) calculated for each chemical, Eq 3:

𝐻𝐼 = ∑ 𝐻𝑄𝑛𝑖𝑛=1 3

Conventionally, a HI less than 1 indicates that the total exposure does not exceed the

level considered to be “acceptable”, and people are unlikely to be exposed at a toxic level

with possible consequences for health. On the contrary, if it exceeds one, there is a

possibility of suffering adverse effects, (Evans et al., 2015; Yu et al., 2016).

3. Results and Discussion

3.1.-Matrix effect and in-house validation method

Since co-extracted matrix constituents may cause ion suppressions or ion enhancement,

therefore interfering with the quantitative result, the first step in the validation process

was the evaluation of the matrix effect. To this end, for every studied compound, matrix

effects were tested by comparing the slopes of the calibration curves obtained for the

standard solutions prepared in solvent (MeCN) with those prepared in blank matrix

extracts (mix of 5 honeys). In general, medium or low matrix effects were observed, and

therefore the calibration curves were constructed using the blank matrix extracts to avoid

these effects. The levels of concentrations considered were: 3, 10, 20, 50, 100 and, 200

g/kg. In addition, the level of 400 μg/kg was included in the calibration curve for amitraz;

this is because this value corresponds to twice the MRL of this compound, as specified by

SANCO guidelines.

Table 3 shows the data for the validation parameters. Linearity (expressed as R2), was in

all cases higher than 0.9977 throughout the concentration range considered.

Page 188: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

158

The recoveries of most of the studied compounds were in a range between 70 and 120%,

complying with the requirements of SANCO 12571/2013. On very few occasions the

recoveries were less than 70% (60% and 66% for coumaphos at levels 3 g/kg and 10

g/kg, respectively, and 66% for 2,4-DMA at the level 50 g/kg). Amitraz was the most

problematic compound because the recoveries ranged between 60 and 76% for 4 of the

concentration levels used.

With respect to repeatability (RSDr) and reproducibility (RSDR), all the pesticides studied

were in agreement with SANCO 12571/2013, since the values were less than 20%. The

only exception was coumaphos with 22.2% at the level of 10 µg/kg for repeatability, and

coumaphos and amitraz, at the level of 20 µg/kg, with 21.0% and 24.5% in the case of

reproducibility.

In the present study 3 g/kgwas considered to be the LOQ (limit of quantification)

because it was the lowest validated point of the calibration curve for all the compounds,

with acceptable trueness and precision results (SANCO 12571/2013). As ten times LOD is

equal to three times LOQ, the LOD of the method was set at 1g/kg, in all cases.

Being a multi-residue analysis, in general, the values obtained for all the validation

parameters can be considered acceptable. It is usual to reach a compromise in order to

analyze all the compounds considered together (Kujawski & Namiesnik, 2011).

Page 189: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

Table 3. Validation parameters for the chemical compounds studied.

ll

Analyte 3 μg/kg 10 μg/kg 20 μg/kg 50 μg/kg 100 μg/kg 200 μg/kg 400 μg/kg

R2 Recovery RSDr Recovery RSDr Recovery RSDr RSDR Recovery RSDr Recovery RSDr Recovery RSDr Recovery RSDr

Amitraz 0.9988 60 (10) 12.8 66 (6) 16.8 67 (13) 12.6 24.5 76 (5) 15.4 70 (8) 10.7 63 (5) 10.0 69 (8) 8.4

2,4-DMA 0.9990 76 (3) 5.0 70 (4) 5.1 74 (3) 4.1 7.2 66 (4) 5.4 70 (2) 2.2 79 (1) 0.8

2,4-DMF 0.9996 98 (3) 3.5 101 (7) 4.8 92 (4) 4.8 0.9 86 (2) 2.4 86 (2) 2.5 91 (4) 4.9

Chlorfenvinphos 0.9989 93 (4) 9.0 96 (13) 13.9 97 (6) 5.8 7.6 89 (6) 7.3 98 (4) 4.2 102 (2) 1.7

Coumaphos 0.9993 60 (14) 20.0 66 (34) 22.2 90 (10) 11.2 21.0 94 (10) 10.8 95 (8) 8.0 101 (2) 1.8

Tau-fluvalinate 0.9977 80 (5) 8.2 87 (6) 7.4 84 (3) 4.0 8.9 82 (2) 2.8 81 (2) 2.0 87 (3) 3.4

Acetamiprid 0.9997 98 (6) 4.6 101 (7) 7.2 97 (2) 2.6 3.8 91 (3) 3.1 95 (2) 2.1 99 (1) 0.8

Chlorpiryphos 0.9990 85 (2) 10.2 89 (17) 18.5 86 (7) 6.5 17.1 78 (6) 8.1 86 (3) 3.4 92 (3) 2.9

Chlorpiryphos-methyl 0.9988 82 (12) 5.0 80 (14) 5.2 87 (2) 2.5 16.8 79 (4) 5.3 87 (2) 2.7 91 (2) 2.0

Cyproconazole 0.9998 90 (4) 6.6 91 (7) 7.4 93 (5) 4.9 5.1 85 (4) 4.5 90 (2) 2.1 95 (1) 0.9

Imidacloprid 0.9998 102 (4) 5.2 113 (9) 8.1 102 (3) 2.8 5.0 98 (3) 3.6 96 (2) 1.9 98 (1) 0.7

Simazine 0.9997 95 (2) 6.0 101 (7) 7.0 92 (3) 3.0 5.6 89 (3) 3.1 94 (1) 1.1 96 (1) 0.9

Tebuconazole, 0.9996 101 (8) 9.0 104 (2) 11.7 100 (4) 4.4 4.3 96 (5) 4.7 97 (3) 2.7 102 (2) 1.7

15

9

Page 190: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

160

3.2.-Analysis of the honey samples

Few studies regarding the monitoring of pesticide residue levels in honey produced in

Spain have been published previously (Blasco et al., 2003; Blasco et al., 2011); what is

more, own-brands which contain mixtures from EU and non-EU countries honey have not

been studied at all. Blasco et al. 2003 analyzed 42 pesticide residues (organochlorine,

carbamate, and organophosphorus) in 50 samples of honey collected from local markets

in Spain and Portugal during 2002; they found that of the 26 honey samples from Spain

16 (61%) samples were contaminated with at least one pesticide, and of the 24

Portuguese samples, pesticide residues were detected in 23 (95%) samples.

Table 4 shows the concentration levels of pesticide residues obtained in the present

work. All the pesticides studied were found in at least one of the samples investigated. In

all cases the MRL established by the EU was satisfied. The pesticide which was present in

all of the samples was amitraz (100%), the next most frequently occurring was

coumaphos (63.6%), followed by pesticides such as acetamiprid (45.4%) and simazine

(40.9%) used in agricultural practices.

Amitraz and coumaphos are widely used in veterinary practices, in several European

countries and the United States, due to their effectiveness against the varroa acarus. This

results in the habitual presence of these compounds in honey (Lambert et al., 2013). In

the present work amitraz was found at an average value of 12.4 µg/kg (n=22), followed

by coumaphos 4 µg/kg (n=14). Similar results were reported by Gómez-Pérez et al.in

2012, who detected 5.1 µg/kg of coumaphos in one Spanish sample. Barganska et al.

(2013) quantified coumaphos in 6 out of 45 (13%) Polish samples, where the

concentration ranged from less than the limit of quantification (4.95 µg/kg) to 16.7 µg/kg.

A higher percentage of coumaphos in honey (n=186) was found by the USDA 32.3%

(USDA, 2015).

Lambert et al., 2013 studied the presence of 80 pesticides in honey, pollen and honey

bees, obtained directly from apiaries in France. These authors found that the frequency

of detection of these compounds was higher in the honey samples (28/141) than in pollen

(23/128) or honey bee (20/141) samples. These authors observed that the acaricides,

coumaphos (78.0%) and amitraz (68.8%) were the most frequently detected residues in

honey.

In relation to chlorfenvinphos and tau-fluvalinate, in the present work the results showed

that the first one was detected in 36.4% (n=8) of the samples with a mean concentration

of 1.8 µg/kg and tau-fluvalinate 13.6% (n= 3) with an average value of 1.3 µg/kg. Similar

values were found (12.3%) for tau-fluvalinate by the USDA pesticide data program (USDA,

2015).

Acetamiprid and simazine, which are related to agricultural practices, were found in the

present study at mean values of 2.9 and 2.6 µg/kg, respectively. Similar values were found

Page 191: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

161

by other authors who detected compounds that come from crop treatment which were

also below the limits (Rissato et al., 2007; Barganska et al., 2013). In the present work

chlorpyriphos was present in 10 samples (18.2%) and imidacloprid in 9 (13.6%) samples;

with mean concentrations of 1.3 µg/kg and 2 µg/kg, respectively. Comparing these results

with published data, Rodriguez-Lopez et al. in 2014, detected chlorpyriphos in 50.1% (31

out of 61 samples), however only two samples were higher than the limit of quantification

(LOQ=5 µg/kg), with mean values of 6 and 21 µg/kg, respectively. Panseri et al., 2014

detected chlorpyriphos in 33% of the samples with a mean concentration of 5.6 µg/kg.

The results obtained by Rissato et al. in 2007, indicated a low level of contamination by

pesticide residues, nevertheless, honey sampled in 2003 and 2004 had a concentration

of 10 and 15 µg/kg of chlorpyrifos, respectively, while tau-fluvalinate was not detected.

In summary, 100% of honey samples contained at least one of the pesticides studied.

Particularly, around 40% of the honey samples presented less than three pesticides and

18% only one pesticide. However, it is highlighted that in any case, the MRL was

exceeded.

3.3.-Mix risk assessment

Nowadays, there is concern that the chemical by chemical approach may not be

sufficiently protective, especially when it is well known that humans are exposed to more

than one chemical at a time (Evans et al., 2015). The measure of the potential risk of

adverse health to consumers due to the presence of a mixture of pesticides in honey is

evaluated in the present work through the estimation of the hazard index (HI). This is

shown in Figure 1 for the mixture of pesticides in the 22 honey samples (own-brands and

well-known brands labelled as polyfloral), calculated as the sum of the hazard quotient

(HQ) for each pesticide. The different colours in the bars refer to the contribution of each

pesticide (HQ) to the HI value of each brand. On the x axis, next to the code for each

sample (from B1 to B22) appears the information about the countries of origin. It is well

known that honey companies mix raw material from different sources to make up a

production batch.

The HI values ranged between 5.5 10-6 in B9, and 1.8 10-3in B8. This means that in the

worst case, the HI value was 500 times lower than 1, the limit of acceptability. Few studies

have been reported about the HI values for pesticides in other types of food. Among

them, the study carried out by Yu et al. in 2016 should be highlighted. These authors

conclude that the HI for adults for fresh vegetables (n= 214) due to 11 pesticides in

Changchun (China) was 0.44. This value is less than half of the limit of acceptability;

however it is much higher than that estimated for honey here. This is mainly due to the

large quantitative difference in the consumption of both types of food. Therefore citizens

Page 192: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

162

are not exposed to a toxic level of pesticides via honey in sufficiently large quantities to

cause possible health consequences (Evans et al., 2015; Yu et al., 2016).

Table 4. Average concentration (µg/kg) of pesticides present in the 22 own-brand and well-known

brand samples of honey (n=3).

Honey branch

Am

itra

z*

Ch

lorf

envi

np

ho

s

Co

um

aph

os

Tau

-flu

valin

ate

Ace

tam

ipri

d

Ch

lorp

yrip

ho

s

Ch

lorp

yrip

ho

s-

met

hyl

Cyp

roco

naz

ole

Imid

aclo

pri

d

Sim

azin

e

Teb

uco

naz

ole

B1 8 2 8 1 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

B2 21 n.d. 2 n.d. 3 n.d. n.d. n.d. n.d 2 n.d.

B3 5 1 5 1 3 n.d. n.d. 5 3 3 4

B4 3 n.d. 1 n.d. 6 n.d. n.d. n.d. n.d. n.d. n.d.

B5 7 1 7 n.d. 2 n.d. n.d. n.d. n.d. n.d. n.d.

B6 43 2 2 n.d. n.d. 1 n.d. n.d. n.d. 1 n.d.

B7 12 n.d. 1 n.d. n.d. n.d. n.d. n.d. n.d. 1 n.d.

B8 50 4 13 2 2 2 2 2 2 3 2

B9 2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

B10 2 n.d. n.d. n.d. 4 n.d. n.d. n.d. n.d. n.d. n.d.

B11 5 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

B12 13 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 2 n.d.

B13 3 1 n.d. n.d. 2 n.d. n.d. n.d. n.d. 4 n.d.

B14 4 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

B15 5 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

B16 8 n.d. n.d. n.d. 3 1 n.d. n.d. n.d. 2 n.d.

B17 3 n.d. 6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

B18 6 n.d. 2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

B19 7 1 2 n.d. 1 n.d. n.d. n.d. 1 n.d. n.d.

B20 4 n.d. 1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

B21 30 n.d. 3 n.d. 3 n.d. n.d. n.d. n.d. n.d. n.d.

B22 31 2 4 n.d. n.d. 1 n.d. n.d. n.d. 5 n.d.

N 22

(100%)

8

(36.4%)

14

(63.6%)

3

(13.6%)

10

(45.4%)

4

(18.1%)

1

(4.5%)

2

(9.1%)

3

(13.6%)

9

(40.9%)

2

(9.1%)

n.d.= non detected

N= Number of samples with presence of pesticides

*= amitraz and its metabolites

In general, coumaphos followed by chlorfenvinphos had the highest contribution to the

HI values, 71% and 15%, respectively. It should be noted that both pesticides are classified

as “highly hazardous” by the WHO and “highly toxic” by the WHO (2010). Third was

amitraz HQ (8%), which despite being classified as “moderately hazardous” by OMS, in

the present paper had the highest exposure (100% of the honey brands sampled).

Page 193: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

163

Simazine represented 2%, followed by chorpyrifos-methyl, chlorpyrifos, cyproconazole

and tau-fluvalinate, all of them with 1%. Therefore, 94% are due to veterinary practices.

Figure 1. Hazard Index of the mixture of 11 pesticides in the 22 samples (own-brands and well-known brands labelled as polyfloral). Different colours in the bars refer to the contribution of each pesticide (HQ) in the HI of each brand. Country origin: SE (Southern Europe); Ch (China); CA (Central America); SA (South America); Th (Thailand); Ce (Chile); ? (unknown origin).

Considering the country of origin of honey, it is observed that the presence of pesticide

residues does not conform to a geographic pattern. In this regard, it is noted that a

country can be associated with both high HI values and very low HI values. Therefore, the

presence of pesticides may be associated with specific beekeeping practices carried out

against the varroa acarus. This can vary from year to year because the propagation of this

parasite is greatly influenced by weather conditions (Garrido-Bailón et al., 2012).

Page 194: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

164

4. Conclusion

The analytical procedure developed to determine eleven pesticide residues in honey

permits a level of quantification of 3 g/kg and detection of 1g/kg. All the pesticides

studied were found in at least one of the retail polyfloral brands analysed. The highest

percentages correspond to those that come from veterinary treatments, especially

amitraz and coumaphos, followed by pesticides such as acetamiprid and simazine used

in agricultural practices. The samples contained pesticide residues at different

concentration levels, however, the MRL in honey for each of the 11 pesticides was not

exceeded, in any of the cases.

In relation to the individual hazard quotient, coumaphos followed by chlorfenvinphos and

amitraz had the highest contribution to the HI values, which means that, veterinary

treatments are the main source of pesticides in honey. However, the hazard index (HI)

for adults was always less than 0.002, infinitesimal compared to the value of 1 recognized

as the level considered to be “acceptable”. Therefore, it is concluded that the daily intake

of pesticides through brands labelled as polyfloral honey is not an important pathway for

the dietary exposure of citizens and consequently does not entail a significant health risk.

However, we should not be satisfied with this, but strive to attain the ALARA principle (As

Low As Reasonably Achievable), by which residues have to be eliminated or minimized as

much as possible. This requires an effort by the primary sector: farmers and beekeepers,

as their practices have the greatest influence on this problem.

Acknowledgment

This study forms part of a project funded by the Ministerio de Educación y Ciencia of

Spain (Programa Estatal de Investigación Desarrollo e Innovación Orientada a los retos de

la sociedad; Project number AGL2013-48646-R), for which the authors are grateful.

Page 195: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

165

5. References

Barganska Z., Slebioda M. & Namiesnik J. (2013).Pesticide residues levels in honey from

apiaries located of Northern Poland. Food Control, 31, 196-201.

Blasco C., Fernandez M., Pena A., Lino C., Silveira I., Font G. & Pico Y. (2003). Assessment

of Pesticide Residues in Honey Samples from Portugal and Spain. Journal of

Agricultural and Food Chemistry, 51, 8132-8138.

Blasco C., Vázquez-Roig P., Onghena M., Masia A. & Picó Y. (2011). Analysis of insecticides

in honey by liquid chromatography-ion trap-mass spectrometry: Comparison of

different extraction procedures. Journal of Chromatography A, 1218, 4892-4901.

Boobis A. R., Ossendorp B. C., Banasiak U., Hamey P. Y., Sebestyen I., & Moretto A. (2008).

Cumulative risk assessment of pesticide residues in food. Toxicology letters 180 (2),

137-150.

EU Pesticides database European Commission. Available at:

http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database.

Evans R. M., Scholze M. & Kortenkamp A. (2015). Examining the feasibility of mixture risk

assessment: A case study using a tiered approach with data of 67 pesticides from

the Joint FAO/WHO Meeting on Pesticide Residues (JMPR). Food and Chemical

Toxicology, 84, 260-269.

García-Chao M., Agruña M. J., Flores Calvete G., Sakkas V., Llompart M. & Dagnac T.

(2010). Validation of an off line solid phase extraction liquid chromatography-

tandem mass spectrometry method for the determination of systemic insecticide

residues in honey and pollen samples collected in apiaries from NW Spain. Analytica

Chimica Acta. 672, 107-113.

Garrido-Bailón E., Botías C., Martin-Hernandez R., Meartinez-Salvador A., Meana A. &

Higes M. (2012). Prevalencia de los principales Agentes Patógenos de Apis mellifera

iberiensis en la cabaña apícola Española. Anales Real Academia de Ciencias

Veterinarias de Andalucía Oriental. 25 (1), 109-130.

Gómez-Pérez M. L., Plaza-Bolaños P., Romero-González R. Martínez-Vidal, J.L. & Garrido-

Frenich A. (2012). Comprehensive qualitative and quantitative determination of

pesticides and veterinary drugs in honey using liquid chromatography-Orbitrap high

resolution mass spectrometry. Journal of ChromatographyA, 1248, 130-138

Page 196: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

166

Hou X., Han M., Dai X., Yang X. & Yi S. (2013). A multi-residue method for the

determination of 124 pesticides in rice by modified QuEChERS extraction and gas

chromatography–tandem mass spectrometry. Food Chemistry, 138, 1198–1205.

Juan-Borrás M., Periche A., Domenech E. & Escriche I. (2015). Routine quality control in

honey packaging companies as a key to guarantee consumer safety. The case of the

presence of sulfonamides analyzed with LC-MS-MS. Food Control, 50, 243-249.

Kortenkamp A., Backhaus T. & Faust M. (2009). State of the Art on Mixture

Toxicity.Report. Available at:

http://ec.europa.eu/environment/chemicals/pdf/report_Mixture%20toxicity.pdf.

Kujawski M. W. & Namiesnik J. (2011). Levels of 13 multi-class pesticide residues in Polish

honeys determined by LC-ESI-MS/MS. Food Control. 22, 914-919.

Lambert O, Piroux M, Puyo S, Thorin C, L’Hostis M, Wiest L., Bulete A., Delbac F. &

Pouliquen H. (2013) Widespread Occurrence of Chemical Residues in Beehive

Matrices from Apiaries Located in Different Landscapes of Western France.

Available at:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067007

Li Y., Kelley R. A., Anderson T. D. & Lydy M. J. (2015). Development and comparison of

two multi-residue methods for the analysis of select pesticides in honey bees,

pollen, and wax by gas chromatography-quadrupole mass spectrometry. Talanta.

140; 81-87.

Panseri S., Catalano A., Giorgi A., Arioli F., Procopio A., Britti D. & Chiesa L.M. (2014).

Occurrence of pesticide residues in Italian honey from different areas in relation to

its potential contamination sources. Food Control, 38, 150-156.

Regulation (EU) Nº 37/2010 of 22 December 2009 on pharmacologically active

substances and their classification regarding maximum residue limits in foodstuffs

of animal origin. Available at:http://ec.europa.eu/health/files/eudralex/vol-

5/reg_2010_37/reg_2010_37_en.pdf.

Regulation (EC) Nº 396/2005 of the European Parliament and of the Council of 23

February 2005 on maximum residue levels of pesticides in or on food and feed of

plant and animal origin and amending Council Directive 91/414/EEC, European

Community, Brussels, 16-3-2005.Available at: http://eur-

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:070:0001:0016:en:PDF.

Rissato S. R., Galhiane M. S., de Almeida M. V., Gerenutti M. & Apon B. M. (2007).

Multiresidue determination of pesticides in honey samples by gas

chromatography–mass spectrometry and application in environmental

contamination. Food Chemistry, 101(4), 1719-1726.

Page 197: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Mixture-risk-assessment of pesticide residues in retail polyfloral honey

167

Rodriguez-López D., Ahumada D. A., Díaz A. C. & Guerrero J. A. (2014). Evaluation of

pesticide residues in honey from different geographic regions of Colombia. Food

Control, 37, 33-40.

SANCO 12571/2013. (2013). Method Validation and Quality Control Procedures for

Pesticide Residue Analysis in Food and Feed. Available at:

http://ec.europa.eu/food/plant/pesticides/guidance_documents/docs/qualcontro

l_en.pdf.

Tanner G. & Czerwenka C. (2011). LC-MS/MS analysis of neonicotinoid insecticides in

honey: methodology and residue findings in Austrian honeys. Journal of Agricultural

and Food Chemistry, 59 (23), 12271-12277.

USEPA U.S. (Enviromental Protection Agency). (2007). Integrated risk information

system-database (Philadelphia PA; Washington, DC).

USDA 2015. Pesticides data program. Available at:

http://www.ams.usda.gov/datasets/pdp.

Van Engelsdorp D., Evans J., Saegerman C., Mullin C., Haubruge E, Nguyen B.K., Frazier

M., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R.& Pettis J.S. (2009).

Colony Collapse Disorder: A Descriptive Study. Available at:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006481.

WHO (World Health Organization) (2010). The WHO recommended classification of

pesticides by hazard. Available at:

http://www.who.int/ipcs/publications/pesticides_hazard/en/

WHO (World Health Organization) (2012). Inventory of evaluations performed by the

Joint Meeting on Pesticide Residues (JMPR). Available at:

http://apps.who.int/pesticide-residues-jmpr-database/Home/Search

Yu R., Liu Q., Liu J., Wang Q. & Wang Y. (2016). Concentrations of organophosphorus

pesticides in fresh vegetables and related human health risk assessment in

Changchun, Northeast China. Food Control, 60, 353-360.

Zheng N., Wang Q., Zhang X., Zheng D., Zhang Z. & Zhang S. (2007). Population health risk

due to dietary intake of heavy metals in the industrial area of Huludao city, China.

Science of the Total Environment, 387(1), 96-104.

Page 198: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 199: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

4. CONCLUSIONES

Page 200: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad
Page 201: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Conclusiones

171

4. Conclusiones

4.1.-Conclusiones del objetivo general 1

Aportaciones:

Journal of Chemistry (2015), http://dx.doi.org/10.1155/2015/929658.

International Journal of Food Science and Technology (2015), 50(7), 1690-1696.

Food Research International (2014), 60, 86-94.

Food Control (En revisión).

4.1.1. El control de determinados parámetros físico-químicos en la etapa de recepción de

la industria de envasado de miel, es fundamental para garantizar la calidad del producto

final y el cumplimiento de los requisitos legales. Llegar a conocer el origen de la

variabilidad de estos parámetros es esencial para tomar medidas en la mejora de la

calidad de la miel. En este sentido, en la etapa de recepción se evaluó la influencia de la

variedad de miel, año de cosecha, así como el papel del apicultor sobre la variabilidad del

HMF, la humedad y el color. Se analizaron 1593 muestras de 11 variedades de miel

(botánicamente clasificadas), de 98 apicultores, cosechadas entre 2009 y 2013. Las

mieles más claras presentaron mayor humedad, mientras que las mieles más oscuras

mostraron valores de humedad más bajos. El color fue el parámetro más afectado tanto

por la variedad de la miel como por el año de la cosecha, mientras que el HMF fue el

menos influenciado por ambos atributos. Para el HMF y la humedad, se observaron

muestras que presentaban algunos valores extremos, legalmente inaceptables,

provenientes en todos los casos de ciertos apicultores. Esto demuestra el importante

papel que el apicultor tiene sobre ciertos parámetros que afectan a la calidad de la miel,

e incluso sobre el color varietal característico que el mercado requiere. Por lo tanto, unas

buenas prácticas apícolas son vitales para obtener el producto que el consumidor espera

y la legislación exige.

4.1.2. Se ha evaluado el nivel de antranilato de metilo (MA) que comúnmente tienen las

mieles de cítricos españolas y la posible correlación con el porcentaje de polen de Citrus

spp. El análisis melisopalinológico por sí solo no es suficiente para la clasificación de

algunas variedades de miel, como es el caso de la miel de cítrico, ya que el porcentaje de

polen en este tipo de miel puede ser menor de lo esperado (variedades híbridas estériles

Page 202: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Conclusiones

172

o producción de polen y néctar no simultánea). Por ello, se analizaron muestras de mieles

vendidas como cítrico y procedentes de apicultor, ambas de las campañas de 2011 y

2012. El polen osciló entre 1 y 88% y el MA entre 0.5 y 5.9 mg/kg, no habiendo correlación

cuantitativa entre ambos. Sin embargo, se observaron correlaciones significativas con

coeficientes de Pearson moderados entre algunos de los parámetros fisicoquímicos

evaluados en las muestras [MA/conductividad eléctrica (-0.678); MA/de color (-0.559);

polen /conductividad eléctrica (-0.553) y polen color (-0.556)]. Un análisis de tabla de

contingencia (tabulaciones cruzadas) llevado a cabo para evaluar la interrelación entre el

polen y MA (teniendo en cuenta estas variables como categóricas: al menos un 10% de

polen de Citrus spp.; mínimo contenido de MA: 2 mg/kg) mostró que el 53.5% de las

muestras en 2011 y el 56.8% en 2012 cumplieron tanto con el porcentaje de polen como

con la concentración de MA requeridos. Por otro lado, el 35.7% en 2011 y el 38.6% de las

muestras en 2012, aun cumpliendo con el porcentaje de polen no cumplían con el MA.

Además el 4.6% de las muestras que cumplían con MA, no lo hacían con el polen. Este

hecho también ha sido observado por otros autores en mieles de cítrico italianas. En este

trabajo se propone reconsiderar el nivel de MA requerido para la miel de cítricos

españoles, aplicando un valor más realista. Pero, sobre todo, sólo tener en cuenta este

parámetro en el caso de las mieles con un sorprendente bajo porcentaje de polen de

cítricos, y después de la evaluación de sus propiedades organolépticas y fisicoquímicas.

4.1.3. Un sistema de lengua electrónica construido con 5 metales: 4 metales no nobles

(cobre, plata, níquel y cobalto) y únicamente oro como metal noble, es capaz de

diferenciar no sólo entre tipos de miel (azahar, romero, tomillo, girasol, ajedrea y

mielada), sino también predecir su capacidad antioxidante total.

Aunque el origen botánico de las mieles tiene un claro impacto en algunos de los

parámetros químicos y fisicoquímicos estudiados (especialmente el color, la

conductividad eléctrica y la actividad antioxidante), en términos generales con estos

parámetros no se ha logrado una buena diferenciación entre todos los tipos de mieles

estudiadas.

La combinación de la información generada por la lengua electrónica junto con la

aplicación de adecuadas técnicas estadísticas multivariantes, como el PCA y las redes

neuronales (Neural Network Analysis fuzzy artmap type), ha demostrado que este

sistema permite la diferenciación de mieles según su origen botánico con un porcentaje

de éxito del 100%.

Un modelo de predicción MLR demostró una buena correlación entre la lengua

electrónica y la capacidad antioxidante de las mieles (0.9666). Esta correlación fue peor

para otros parámetros evaluados como la conductividad eléctrica (0.8959) e incluso

menor para aw, humedad y color.

Page 203: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Conclusiones

173

En definitiva, el sistema de medición de lengua electrónica propuesto podría ser una

opción rápida y fácil para el sector de envasado de la miel, ya que puede proporcionar

información rápida sobre el origen botánico de una miel e incluso sobre una característica

tan importante como es su capacidad antioxidante.

4.1.4. Se ha estudiado la influencia que tienen determinados parámetros físico-químicos

(HMF, actividad diastásica, humedad, conductividad eléctrica), color (escala Pfund y CIEL

a* b*), azúcares mayoritarios (glucosa, fructosa y sacarosa) y fracción volátil, sobre el

origen geográfico (España, Rumania y República Checa) así como el origen botánico de

mieles de acacia, girasol y tilo. Un análisis de componentes principales (PCA) mostró que

la variedad tiene mayor influencia en la diferenciación de las mieles que el origen

geográfico, debido especialmente a ciertos compuestos volátiles tales como carvacrol y

-terpineno para la miel de tilo; -pineno y 3-methyl-2 butanol para la miel de girasol, y

óxido de cis-linalool para la miel de acacia.

Un análisis discriminante obtenido para cada variedad permitió diferenciar las mieles de

acuerdo a su país de origen, en base principalmente a los compuestos volátiles (2-metil-

2-butenal, 2-metil-2-propanol, éster butílico del ácido acético, etc., para mieles de acacia;

1-hexanol, -pineno, etc., para mieles de girasol y 3-metil-1-butanol, hotrienol, 2-

butanona, etc., para la miel tilo) y, en menor medida a ciertos parámetros fisicoquímicos

tales como, diastasa, sacarosa y conductividad, respectivamente. Los resultados sugieren

que los modelos multivariantes presentados son herramientas potencialmente útiles

para la clasificación de mieles ya que pueden complementar la información obtenida con

el análisis polínico.

4.2.-Conclusiones del objetivo general 2

Aportaciones:

-Food Control (2015), 50, 243-249.

-Food Control (En revisión).

4.2.1. Un análisis multi-residuos de sulfamidas (por LC-MS/MS) fue desarrollado, como

ejemplo, para evaluar la eficacia del control que de forma rutinaria, llevan a cabo las

empresas envasadoras sobre la materia prima, en relación a la presencia de residuos

químicos. Siguiendo los requisitos del correspondiente Reglamento Europeo, se validaron

11 sufamidas (sulfanilamide, sulfathiazole, sulfamerazine, sulfadiazine, sulfapyridine,

sulfamethazine, sulfamethizole, sulfachloropyridazine, sulfamethoxazole,

sulfadimethoxine y sulfaquinoxaline). Se analizaron muestras comercializadas (101)

Page 204: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Conclusiones

174

procedentes de diferentes empresas, así como lotes de materia prima (178 muestras

crudas) de las mismas empresas después de la recepción y antes de su aceptación para

la entrada en el proceso industrial. Todas las muestras comerciales dieron negativo a la

presencia de sulfamidas, sin embargo, de los 178 lotes crudos analizados, en 9 de ellos

se encontró sulfathiazole (3.4% de los casos) y en 3 de ellos sulfadiazine (1.7 % de los

casos). Los resultados confirman que la aplicación en la recepción de un control de

calidad apropiado aplicando una metodología analítica adecuada y validada, resulta

eficaz para reducir en la miel comercializada el riesgo de exposición por la presencia de

sulfonamidas. Este estudio concluye que está garantizada la seguridad del consumidor de

miel en lo que respecta no solo a la presencia de sulfamidas, sino también de otras

sustancias químicas como antibióticos y pesticidas, ya que el control que las empresas

llevan a cabo de forma rutinaria los engloba a todos.

4.2.2. Un análisis de multi-residuos de pesticidas (por LC-MS/MS) fue desarrollado para

evaluar el riesgo de exposición a pesticidas a través del consumo de miel. Siguiendo los

requisitos de la guía SANCO, se validaron (en un rango comprendido entre 1 y 400 g/kg)

11 pesticidas (chlorfenvinphos, coumaphos, tau-fluvalinate, amitraz, muy comunes en

tratamientos veterinarios y imidacloprid, acetamiprid, simazine, cyproconazole,

tebuconazole, chlorpiryphos-methyl, chlorpiryphos, ampliamente utilizados en las

prácticas agrícolas), y 2 metabolitos del amitraz (2,4-DMA and 2,4-DMF). Se evaluaron 22

marcas blancas y primeras marcas del mercado, por representar la casi totalidad de la

miel que se comercializa en España. De este trabajo se concluye que:

-No se superó el LMR para ninguno de los pesticidas analizados, sin embargo, todas

las muestras contenían residuos de alguno de ellos en diferentes concentraciones.

Los pesticidas más abundantes fueron los correspondientes a los tratamientos

veterinarios contra la varroa: amitraz y coumaphos; el primero presente en el 100%

de las muestras y el segundo en el 63% de las mismas. Los pesticidas procedentes

de los tratamientos agrícolas, como acetamiprid y simazine, solo se encontraron en

pocos casos y en concentraciones muy bajas.

-La medida del riesgo potencial para la salud de los consumidores, debido a la

presencia de cantidades de residuos de pesticidas inferiores al LMR, se estimó en

las diferentes muestras comerciales mediante el cálculo del “hazar index” (HI),

como sumatorio de "hazard quotient (HQ)”individual para cada pesticida presente

en ellas. Los valores de HI obtenidos para todas las mieles analizadas fueron en el

peor de los casos 500 veces inferior al valor de 1, considerado como límite de

aceptabilidad.

Page 205: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Conclusiones

175

-La presencia de residuos de pesticidas no sigue un comportamiento geográfico, ya que

un mismo país puede asociarse con muestras con altos valores de HI o con muestras con

bajos valores de HI. Esto hace pensar que la presencia de pesticidas puede estar asociada,

más bien, a las prácticas apícolas, especialmente aquellas que se llevan a cabo contra el

ácaro varroa.

-Aunque los consumidores no están expuestos a niveles tóxicos de pesticidas a través del

consumo de miel, sin embargo, siguiendo el principio de que una exposición tiene que

ser “tan baja como sea razonablemente posible”, el sector primario, apicultores y

agricultores, deben hacer un mayor esfuerzo ya que sus prácticas pueden influir

directamente en el problema de la presencia de residuos en la miel.

Page 206: Herramientas Analíticas en la Clasificación de Mieles en ......La memoria titulada ^Herramientas analíticas en la clasificación de mieles en base a criterios de calidad e inocuidad

Conclusiones

176

Conclusión General de la Tesis

La presente tesis doctoral pone en evidencia que, las técnicas alternativas ensayadas en

el presente estudio para la clasificación industrial de mieles (compuestos volátiles,

lenguas electrónicas) son esperanzadoras, ya que han demostrado ser útiles para

complementar los resultados obtenidos mediante métodos convencionales:

melisopalinológico, fisicoquímicos y sensorial.

Este trabajo demuestra el papel fundamental que juegan los diferentes eslabones de la

cadena de producción de miel (apicultor e industria de envasado), en la obtención del

producto que el consumidor espera y la legislación exige, atendiendo a criterios de

calidad e inocuidad. Para poder garantizar la inocuidad del producto, la industria debe

llevar a cabo de forma rutinaria controles eficaces de la materia prima, especialmente en

lo que respecta a los residuos químicos que pudieran afectar la salud del consumidor. Por

su parte el sector primario, tanto apicultores como agricultores, deben hacer un mayor

esfuerzo, ya que sus prácticas influyen directamente en el problema de la presencia de

residuos en la miel.