Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

50
The Effects of Substrate Composition on Intertidal Organism Diversity Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau

Transcript of Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Page 1: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

The Effects of Substrate Composition on Intertidal

Organism Diversity Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau

Page 2: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Diversity◦ Probability that two randomly selected organisms

from a community will belong to a different species

Background - Terms

Page 3: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Diversity◦ Probability that two randomly selected organisms

from a community will belong to a different species

Richness◦ Number of species in a community

Background - Terms

Page 4: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Diversity◦ Probability that two randomly selected organisms

from a community will belong to a different species

Richness◦ Number of species in a community

Evenness◦ The degree of similarity in the distribution of each

species within the community

Background - Terms

Page 5: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

What effects diversity?◦ Vertical & horizontal stress gradients◦ Wave exposure◦ Temperature◦ Desiccation◦ Shelter availability

Introduction

Page 6: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Limitation Stress◦ Lack of available resources

Types of Stress

Page 7: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Limitation Stress◦ Lack of available resources

Disruptive Stress◦ Causes cellular damage

Types of Stress

Page 8: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

3 categories:◦ Supralittoral◦ Midlittoral ◦ Infralittoral

Vertical Stress Gradients

Page 9: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

3 categories:◦ Supralittoral◦ Midlittoral ◦ Infralittoral

Depends on elevationand exposure

Vertical Stress Gradients

Page 10: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Depend on ice scour intensity and wave exposure

Horizontal Stress Gradients

Page 11: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Depend on ice scour intensity and wave exposure

Wave exposure determines what type of substrate is found along horizontal gradient

Horizontal Stress Gradients

Page 12: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

High wave exposure◦ Washes away small debris◦ Leaves large rocks & cobble◦ Low predation

Wave Exposure & Substrate

Page 13: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

High wave exposure◦ Washes away small debris◦ Leaves large rocks & cobble◦ Low predation

Moderate wave exposure◦ Bedrock & cobble◦ Stable habitat

Wave Exposure & Substrate

Page 14: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

High wave exposure◦ Washes away small debris◦ Leaves large rocks & cobble◦ Low predation

Moderate wave exposure◦ Bedrock & cobble◦ Stable habitat

Low wave exposure◦ Primarily muddy◦ Low drainage leading to anoxia

Wave Exposure & Substrate

Page 15: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Effect of substrate type on organism diversity and individual species preference

Aim of The Study

Page 16: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Effect of substrate type on organism diversity and individual species preference

Hypothesis◦ Diversity will change with respect to

substrate type

Aim of The Study

Page 17: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

3 sites were sampled◦ Green’s Point

High wave exposure, large rock & cobble

Methods

Page 18: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

3 sites were sampled◦ Green’s Point

High wave exposure, large rock & cobble

◦ Indian Point Moderate wave exposure, bedrock & cobble

Methods

Page 19: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

3 sites were sampled◦ Green’s Point

High wave exposure, large rock & cobble

◦ Indian Point Moderate wave exposure, bedrock & cobble

◦ Bar Road Low wave exposure, mud & sand

Methods

Page 20: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

10 samples along a 50 m transect line within midlittoral zone at each site

Methods

Page 21: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

10 samples along a 50 m transect line within midlittoral zone at each site

1x1 m quadrat placed every 5 m

Methods

Page 22: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

10 samples along a 50 m transect line within midlittoral zone at each site

1x1 m quadrat placed every 5 m

Estimation of the number of plant and animal species encountered

Methods

Page 23: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

10 samples along a 50 m transect line within midlittoral zone at each site

1x1 m quadrat placed every 5 m

Estimation of the number of plant and animal species encountered

Species identified

Methods

Page 24: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Results

Plant Species Animal Species

A. nodosum

C. crispus

Corraline sp.

Dictyosiphon sp.

Elachista flaccida

F. vesiculosus

Lithothamnion sp.

U. lactuca

Acmae testudinaris Asterias forbesii B. balanus L. littorea L. obtusata N. lapillus S. balanoides S. droebachiensis

Page 25: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Results

Figure 1: The diversity of the 3 substrates based on the Shannon-Wiener diversity index

Bedrock Rocky Muddy0

0.1

0.2

0.3

0.4

0.5

0.6

Substrate Type

Div

ers

ity I

ndex V

alu

e

Page 26: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Results

Figure 2: Species Richness and the 3 locations

Bedrock Rocky Muddy0

2

4

6

8

10

12

Substrate Type

Num

ber

of

Encounte

red S

pecie

s

Page 27: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Results

Plant Species Animal Species

A. nodosum

C. crispus

Corraline sp.

Dictyosiphon sp.

Elachista flaccida

F. vesiculosus

Lithothamnion sp.

U. lactuca

Acmae testudinaris Asterias forbesii B. balanus L. littorea L. obtusata N. lapillus S. balanoides S. droebachiensis

Page 28: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Results

Plant Species Animal Species

A. nodosum

C. crispus

Corraline sp.

Dictyosiphon sp.

Elachista flaccida

F. vesiculosus

Lithothamnion sp.

U. lactuca

Acmae testudinaris Asterias forbesii B. balanus L. littorea L. obtusata N. lapillus S. balanoides S. droebachiensis

Page 29: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Results

Figure 3: Percent coverage per m2 (mean ±SEM) for 3 different substrates

A. nodosum B. balanus E. flaccida Lithothamnion spp.

S. balanoides Corraline spp. 0%

10%

20%

30%

40%

50%

60%

70%

Bedrock Rocky

Muddy

Species Name

% C

overa

ge /

m2

Page 30: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Results

Figure 4: Number of Nucella lapillus found per m2 (mean±SEM)

N. lapillus0

0.5

1

1.5

2

2.5

3

3.5

BedrockRockyMuddy

Species Name

Num

ber

of

Org

anis

ms p

er

m2

Page 31: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Results

L. littorea0

10

20

30

40

50

60Bedrock

Rocky

Muddy

Species

Nu

mb

er

of

Org

an

ism

s p

er

m2

Figure 5: Number of Littorina littorea (mean ±SEM)

Page 32: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Results

F. vesiculosus 0

2

4

6

8

10

12

14

16

18

Bedrock Rocky

Muddy

Species

Nu

mb

er

of

Org

an

ism

s p

er

m2

Figure 6: Number of Fucus vesiculosus (mean±SEM)

Page 33: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Rocky substrate – Greens Point

◦ Ascophyllum nodosum (common brown algae) Found it in exposed areas Could be due to ability to attach to substrate

Discussion

Page 34: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Rocky substrate – Greens Point

◦ Ascophyllum nodosum (common brown algae) Found it in exposed areas Could be due to ability to attach to substrate

◦ Coralline spp. (red algae) and Elachista flaccide (brown algae) Sheltered due to canopy

Discussion

Page 35: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Rocky substrate – Greens Point

◦ Ascophyllum nodosum (common brown algae) Found it in exposed areas Could be due to ability to attach to substrate

◦ Coralline spp. (red algae) and Elachista flaccide (brown algae) Sheltered due to canopy

◦Nucella lapillus (whelk) Found due to coverage of plants

Discussion

Page 36: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Bedrock substrate – Indian Point

◦ Fucus vesiculosus (bladder wrack) Only grow if fucus spiralis is removed

Discussion

Page 37: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Bedrock substrate – Indian Point

◦ Fucus vesiculosus (bladder wrack) Only grow if fucus spiralis is removed

◦ Lithothamnion spp. (calcareous algae) Fucus could have provided shelter Rock provides suitable place to grow Larvae can settle due lower wave exposure

Discussion

Page 38: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Bedrock substrate – Indian Point

◦ Littorina littorea (periwinkle) Fucus provided shelter from wave exposure and

protection from desiccation Feed on green & brown algae

Discussion

Page 39: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Bedrock substrate – Indian Point

◦ Littorina littorea (periwinkle) Fucus provided shelter from wave exposure and

protection from desiccation Feed on green & brown algae

◦ Semibalanus balanoides (barnacle) Fucus provided shelter from wave exposure and

protection from desiccation Predators and competitors were absent from this

sampling site

Discussion

Page 40: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Muddy Substrate – Bar Road◦ Semibalanus balanoides (barnacle)

◦ Littorina littorea (periwinkle)

◦ Acmaea testudinalis (limpet)

Discussion

Page 41: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Muddy Substrate – Bar Road◦ Semibalanus balanoides (barnacle)

◦ Littorina littorea (periwinkle)

◦ Acmaea testudinalis (limpet)

◦ Possibility of burrowed organisms

Discussion

Page 42: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Species are not evenly distributed in environments ◦ Acorn barnacles are the dominant species◦ Plant species provide protection for animal species

Conclusions

Page 43: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Species are not evenly distributed in environments ◦ Acorn barnacles are the dominant species◦ Plant species provide protection for animal species

Bedrock substrates have the highest species richness

Conclusions

Page 44: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Species are not evenly distributed in environments ◦ Acorn barnacles are the dominant species◦ Plant species provide protection for animal species

Bedrock substrates have the highest species richness

Muddy substrates have the lowest species richness

Conclusions

Page 45: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Estimation of species numbers rather than an actual count of the species.

Limitations

Page 46: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Estimation of species numbers rather than an actual count of the species.

Sample Size

Limitations

Page 47: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Estimation of species numbers rather than an actual count of the species.

Sample Size

Some species not seen but present

Limitations

Page 48: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Greater variety of substrates

Future Direction

Page 49: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Greater variety of substrates

Monitoring physical and biological factors

Future Direction

Page 50: Hala Nader, Alyson Pickard, Sam Shaw, & Jenna Thebeau.

Thanks!

Questions?