gupea_2077_19299_1

55
An empirical evaluation of Value at Risk Master Thesis Industrial and financial management University of Gothenburg, School of Business, Economics & Law January 2009 Instructor: Zia Mansouri Authors: Martin Gustafsson 1982 Caroline Lundberg 1984

description

he

Transcript of gupea_2077_19299_1

  • AnempiricalevaluationofValueatRisk

    MasterThesisIndustrialandfinancialmanagementUniversityofGothenburg,SchoolofBusiness,Economics&LawJanuary2009Instructor: ZiaMansouriAuthors: MartinGustafsson1982 CarolineLundberg1984

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    2

    ABSTRACT

    In lightoftherecentfinancialcrisis,riskmanagementhasbecomeaverycurrent issue.Oneofthe

    most intuitiveandcomprehendibleriskmeasures isValueatRisk(VaR).VaRputsamonetaryvalue

    on the risk that arises from holding an asset and is defined as the theworst loss over a target

    horizonwithagiven levelofconfidence.Therearecurrentlynumerous techniques forcalculating

    VaRonthemarketandnostandardissetonhowitshouldbedone.ThiscanmakethefieldofVaR

    hardtooverlookforsomeonenotinitiatedintheworldofeconometrics.

    InthispaperweexaminethreebasicwidelyusedapproachesusedtocalculateVaR.Theapproaches

    examinedarethenonHistoricalSimulationapproach,theGARCHapproachandtheMovingAverage

    approach. This paper has twomain purposes, the first is to test the different approaches and

    comparethemtoeachotherintermsofaccuracy.Thesecondistoanalyzetheresultsandseeifany

    conclusions can be drawn from the accuracy of the approach with respect to the return

    characteristicsoftheunderlyingassets.TheaccuracyofaVaRapproach istestedbythenumberof

    VaRbreaks that itproduces i.e. thenumberof times that theobserved asset returnexceeds the

    predictedVaR.ThenumberofVaRbreaksisevaluatedwiththeKupiectestwhichdefinesaninterval

    of VaR breaks in which the approachmust perform to be accepted. By the term asset return

    characteristicswemean the statistical properties of the returns of the assets such as volatility,

    kurtosisandskewness.

    The study is conducted on three fundamentally different assets, Brent crude oil, OMXs30 and

    Swedish threemonths treasurybills.Daily returndatahasbeencollectedstarting from January1st

    1987 toSeptember30th2008 forall theassets.Observations spanning from1987 to1995willbe

    usedashistoricalinputfortheapproachesandobservationsspanningfrom1996toSeptember30th

    2008willbethecomparativeperiodinwhichtheapproachesperformancewillbemeasured.

    Theresultsofthestudyshowthatnoneofthethreeapproachesaresuperiortotheothersandthat

    more complex approaches do not guarantee more accurate results. Instead it seems that the

    characteristicsoftheassetreturnsincombinationwiththedesiredconfidenceleveldeterminehow

    well a certain approach performs on a certain asset.We show that the choice of VaR approach

    shouldbeevaluatedindividuallydependingontheassetstowhichitistobeapplied.

    Keywords: Value at Risk, return characteristics, historical simulation, moving average, GARCH,

    normaldistribution,Brentoil,OMXs30,Swedishtreasurybills.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    3

    GLOSSARYOFMAINTERMS

    Autocorrelation:Isthecorrelationbetweenthereturnsatdifferentpointsintime.

    Backtesting:Theprocessoftestingatradingstrategyonpriortimeperiods.

    Fattails:Tailsofprobabilitydistributionsthatarelargerthanthoseofnormaldistribution.

    GARCHapproach toVaR:Anapproach for forecastingvolatilities thatassumes thatvolatilitynext

    perioddependsonlaggedvolatilitiesandlaggedsquaredreturns.

    Historical simulation approach to VaR: An approach that estimates VaR from a profit and loss

    distributionsimulatedusinghistoricalreturnsdata.

    Kupiectest:IsavaluationmethodtoevaluateVaRresults.

    Kurtosis:Measuresthepeakednessofadatasample.Ahighvalueofkurtosismeansthatmoreofthe

    datasvariancecomesfromextremedeviations.

    MovingaverageapproachtoVaR:Aparametricapproachthatassumesnormaldistributedreturns

    anddisregardsthefactofvolatilityclustering.

    Normaldistribution:TheGaussianorbellcurveprobabilitydistribution.

    Outlier:Anextremerarereturnobservation.

    Risk:Theprospectofgainandloss.Riskisusuallyregardedasquantifiable.

    Skewness:Tellsuswhetherthedataissymmetricornot.

    ValueatRisk(VaR):Themaximumlikelylossoversomeparticularholdingperiodataparticularlevel

    ofconfidence.

    Volatility:Thevariabilityofaprice,usuallyinterpretedasitsstandarddeviation.

    Volatility clustering:High volatility observations seems to be clusteredwith other highvolatility

    observationsandthesameistrueforlowvolatilityobservationsthatclusterwithotherlowvolatility

    observations.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    4

    LISTOFFIGURES

    Figure1.5 Dispositionofthispaper.

    Table2.3.2 Relatingstandarddeviationtochosenconfidencelevel.

    Figure3.2.3a MLEestimationgraphforBrentOil.

    Figure3.2.3b MLEestimationgraphforOMXs30.

    Figure3.2.3c MLEestimationgraphforSTB3M.

    Figure3.3 Graphshowinganegativerespectivelyapositiveskew.

    Figure3.4 ProbabilitydensityfunctionforthePearsontypeVIIdistributionwithkurtosisofinfinity(red);2(blue);and0(black).

    Table3.5 Statisticalcharacteristicsoftheassetreturns.Figure3.6a DailyreturnsforBrentoil.

    Figure3.6b Histogramshowingthedailyreturnscombinedwithanormaldistributioncurve.

    Figure3.7a DailyreturnsforOMXs30.

    Figure3.7b Histogramshowingthedailyreturnscombinedwithanormaldistributioncurve.

    Figure3.8a DailyreturnsforSTB3M.

    Figure3.8b Histogramshowingthedailyreturnscombinedwithanormaldistributioncurve.

    Table3.9 Resultsfromautocorrelationtest.

    Table3.10 TargetnumberofVaRbreaksandKupiectestintervals.

    Table4.1.1a Backtestingresultswithhistoricalsimulationapproach.

    Figure4.1.1b VaRforBrentOil,HistoricalSimulation99.9%confidence19962008.

    Table4.1.2 Backtestingresultswithmovingaverageapproach.

    Table4.1.3 BacktestingresultswithGARCHapproach.

    Table5.1 Summaryofbacktestingresults.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    5

    TABLEOFCONTENTS

    1.INTRODUCTION...................................................................................................................................7

    1.1WHATISVALUEATRISK................................................................................................................7

    1.2BACKGROUNDOFVaR...................................................................................................................8

    1.3PROBLEMDISCUSSION..................................................................................................................8

    1.4PURPOSE......................................................................................................................................11

    1.5DISPOSITION................................................................................................................................11

    2.THEORY..............................................................................................................................................12

    2.1VALUEATRISKVaR....................................................................................................................12

    2.2THENEEDFORVaR......................................................................................................................13

    2.3VaRAPPROACHES........................................................................................................................14

    2.3.1HISTORICALSIMULATIONAPPROACH..................................................................................14

    2.3.2MOVINGAVERAGEAPPROACH............................................................................................15

    2.3.3GARCHAPPROACH...............................................................................................................17

    2.4THEUNDERLYINGASSETS............................................................................................................18

    2.4.1BRENTOIL.............................................................................................................................18

    2.4.2OMXs30................................................................................................................................18

    2.4.3THREEMONTHSWEDISHTREASURYBILLS..........................................................................18

    2.5BACKTESTINGWITHKUPIEC........................................................................................................19

    3.METHOD............................................................................................................................................20

    3.1ANALYTICALAPPROACH..............................................................................................................20

    3.1.1QUANTITATIVEAPPROACH..................................................................................................20

    3.1.2DEDUCTIVEAPPROACH........................................................................................................20

    3.1.3RELIABILITY...........................................................................................................................21

    3.1.4VALIDITY...............................................................................................................................21

    3.2CALCULATIONOFVaR.................................................................................................................21

    3.2.1HISTORICALSIMULATIONAPPROACH..................................................................................22

    3.2.2MOVINGAVERAGEAPPROACH............................................................................................23

    3.2.3GARCHAPPROACH...............................................................................................................23

    3.3SKEWNESS...................................................................................................................................25

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    6

    3.4KURTOSIS.....................................................................................................................................26

    3.5THESOURCEOFDATA.................................................................................................................26

    3.6BRENTOIL....................................................................................................................................27

    3.7OMXs30.......................................................................................................................................29

    3.8THREEMONTHSWEDISHTREASURYBILLS.................................................................................30

    3.9AUTOCORRELATION....................................................................................................................31

    3.10BACKTESTINGWITHKUPIEC......................................................................................................32

    4.RESULTS&ANALYSIS.........................................................................................................................33

    4.1BACKTESTINGRESULTS................................................................................................................33

    4.1.1HISTORICALSIMULATIONAPPROACH..................................................................................33

    4.1.2MOVINGAVERAGEAPPROACH............................................................................................36

    4.1.3GARCHAPPROACH...............................................................................................................37

    4.2EXACTNESS&SIMPLICITY............................................................................................................38

    4.3VALIDITY......................................................................................................................................39

    5.CONCLUSIONS...................................................................................................................................41

    5.1CONCLUSIONS.............................................................................................................................41

    5.2FURTHERRESEARCH....................................................................................................................43

    REFERENCES..........................................................................................................................................44

    LITERARYSOURCES............................................................................................................................44

    INTERNETSOURCES...........................................................................................................................45

    APPENDIX..............................................................................................................................................46

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    7

    1.INTRODUCTION

    Thischaptergivesabackgroundtothesubjecttreated inthisstudyValueatRisk. Itfurtherstates

    theproblems associatedwith the calculationofValue atRisk and thepurposeof thispaper.The

    chapterendswiththedispositionofthepaper.

    1.1WHATISVALUEATRISK

    Toanswerthisquestionwecanstartoffbyaskingourselvesthemorefundamentalquestionofwhat

    risk is. Ineconomicstherearemanydifferenttypesofrisksuchas legalrisk,marketrisk,company

    specificriskandsoon.Buthowdowedefinewhatrisk isandhowdowenumericallymeasure its

    size? Infinance,risk isoftenthoughtofasthevolatilityorstandarddeviationofanassetsreturns.

    Butallvolatilityreallytellsusishowmuchthereturnsofanassetvariesarounditsmean.Thislabels

    bothpositive andnegativepricemovements as risk, althoughmost investorswould consider risk

    somethingnegativeandupwardpricemovementsassomethingpositive(Jorion2001).

    It isnotavery intuitivemeasureand canbehard tograsp for thosenot initiated in theworldof

    finance.Whatthevalueatriskmeasurementdoesisthatitputsanumber,eitheramoneyvalueora

    percent value of the worst loss over a target horizon with a given level of confidence (Jorion

    2001:22).ValueatriskorVaRaswewilladdressitfromhereonthusconsistsofthreecomponents,a

    confidencelevel,atimehorizonandavalue.Thetimecomponenttellsushowfarintothefuturewe

    are looking,thefurtherwe lookthe largerthepotential loss.Theconfidence leveldetermineswith

    whichcertainty themeasurement ismade,higherconfidence levelsmeanshigherpotential losses.

    Finally,thevaluecomponentsimply is themonetaryvalue thatwerisk losingduringtheproposed

    timehorizongiventheproposedconfidencelevel.

    Forexamplea$1000,oneday,95percentconfidencelevelVaRvalueforastockmeansthatduring

    thenextdaywecanbe95percentcertainthatthevalueofourholdingsinthisparticularstockwill

    notdecreasebymorethan$1000.

    AneventwherethereturnofanassetexceedstheestimatedVaRmeasureiscalledaVaRbreak.The

    chosenconfidenceleveloftheVaRapproachdetermineshowmanyVaRbreaksanapproachshould

    produceifperformingwell.TheaimofaVaRapproachisthereforenottoproduceasfewVaRbreaks

    aspossible.AnaccurateVaRapproachproducesanumberofVaRbreaksascloseaspossibletothe

    number of VaR breaks specified by the confidence level. Therefore if a VaR approachwith 95%

    confidenceiscalculateditshouldproduceVaRmeasuresthatareexceededbythereturnoftheasset

    fivepercentofthetimesitisapplied.ThusifVaRpredictionsaremadefor1000individualdaysthe

    estimatedVaRshouldbeexceeded50times.AnydeviationfromtheexpectednumberofVaRbreaks

    regardlessifitisnegativeorpositiveisasignofinaccuracyormissspecification.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    8

    1.2BACKGROUNDOFVaR

    Riskmanagement isan importantpart forall financial institutionsandalso forcompanies thatare

    exposedtorisk.Duringthe lastdecadetherehasbeenarevolution inriskmanagementandVaR is

    oneofthemeasuresthathavegottena lotofattention.Holton(2003)writesthattherootsofVaR

    howeverdatebacktoasearlyas1922,atwhichtimeTheNewYorkStockExchangeimposedcapital

    requirementsonmemberfirms.

    ResearchonVaRdidhowevernot takeoffuntil1952when two researchers,MarkowitzandRoy,

    almostsimultaneouslybutindependentofeachotherpublishedquitesimilarmethodsofmeasuring

    VaR.According toHolton (2003), theywereworkingondevelopingameansofselectingportfolios

    thatwouldbeabletooptimizetherewardforagiven levelofrisk.Hefurtherpointsoutthatafter

    that ittookanother40yearsuntiltheVaRmeasurementbegantobewidelyusedamong financial

    institutionsandcompanies.

    AccordingtoFernandez (2003),past financialdisasterssuchastheone in1987andthecrisesthat

    followedledtoadecisionbytheBaselCommitteethatallbanksshouldkeepenoughcashtobeable

    tocoverpotential losses in their tradingportfoliosovera tendayhorizon,99percentof the time.

    TheamountofcashtobekeptwastobecalculatedusingVaR.Pastcriseshasshownthatenormous

    amounts of money can be lost over a day as a result of poor supervision and financial risk

    management.TheVaRmeasurethereforegotitsbreakthroughbecauseofhistoricalmistakesinrisk

    management.

    Today,theutilizationofVaRiswidelyspreadinfinancialinstitutions,howeveritisnotaswidespread

    in non financial firms. This can be explained by the fact that non financial firms do not usually

    forecastprofitsand lossesonadailybasis.NeverthelessMauro(1999)pointsoutthatVaRcanbe,

    andisused,innonfinancialfirmsthatareaffectedbyvolatilityinprices,particularlyinashorttime

    horizon.

    AnadvantageofVaRisthatitisameasurethatcanbeappliedtoalmostanyasset.Adisadvantage

    however,isthatthereisalmostaninfinitenumberofwaystocalculateVaR,eachoftheapproaches

    with its own advantages and disadvantages. This makes different VaR measurements hard to

    comparewitheachotheriftheyhavenotbeencalculatedusingthesameapproach.

    1.3PROBLEMDISCUSSION

    ValueatRisk isameasurethat iswidespreadwithin financial institutionswherethe importanceof

    strictriskmanagementhasbecomevital.AccordingtoJorion (2002)VaRhasbecomethestandard

    benchmarkformeasuringfinancialrisk.Bankswithlargetradingportfoliosandinstitutionsthatdeal

    withnumeroussourcesoffinancialriskhavebeenheadingtheuseofriskmanagement.Jorion(2001)

    writesthattoputanumberonthepossiblemaximumlossunderaspecifictimehorizonhasformany

    banksbecomeanobligation.Anexampleof this isLesleyDanielsWebster, formerheadofmarket

    riskatChaseManhattanBank,whosawitasanecessity.Everymorninghereceiveda30pagereport

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    9

    that summarized theVaRof thebank. Theneat little reportquantified the riskof all the trading

    positionsofthebank.VaRisanimportantmeasurewithinriskmanagementbecauseitisanintuitive

    riskmeasure as it puts amonetary number on the risk exposure a company faces.According to

    Linsmeier&Pearson (1996) thestrengthsofVaR is that itprovidesasimplerandaccurateoverall

    measure of themarket risk the company is taking. This is donewithout going into specific and

    complexdetailsaboutthecompanyspositions.Thisisagreatadvantagesinceriskassessmentsare

    mostoftenproducedforseniormanagementwithnoorlittleexperiencewitheconometrics.

    Theredoesnot,however,appeartobeanyconsensusonhowtocalculateVaR.Todaythereseems

    to be asmanyways to calculateVaR as there are practitioners using it. There are some general

    approaches tochoose from,suchasparametric,semiparametricornonparametricapproaches.A

    parametric approach means that you use a parameter or a model to describe reality, often

    generalizing andmaking assumptions.Anonparametricapproachhowevermay forexampleonly

    lookathistoricaldatatomakepredictionsaboutthefuture.Undereachofthesecategoriesthereare

    manydifferentapproachesthatcanbeusedtocalculateVaRandeachandeveryoneofthemcanin

    theirturnbeappliedindifferentwaysundervariousassumptionsorgeneralizations.Inthisstudythe

    historicalsimulationapproachwillberepresentingthegroupofnonparametricapproaches.Moving

    averageandGARCHwillberepresentingtheparametricapproaches.TheGARCHapproachconsiders

    volatility clustering i.e. the fact that days with high volatility are often clustered together. The

    approacheshavebeenchosenbecausetheyarethemostwidelyusedapproachesofcalculatingVaR.

    Thereareseveralearlierstudiesonthesubject,howevermostofthemaimtodevelopnewandmore

    advancedwaysofcalculatingVaR.LinsmeierandPearson (1996)concludes that there isnosimple

    answertowhichVaRapproachisthebest.Theyalldifferintheirabilityofcapturingriskandfurther

    theydifferintheireaseofimplementationandtheeaseofexplanationtoseniormanagement.They

    state that the historical simulation approach is easy to implement but it does require a lot of

    historical data. It is also an approach that is easy to explain to seniormanagementwhich is an

    essential part of the purpose of theVaRmeasure. In another studymade byGoorbergh&Vlaar

    (1999)themostimportantcharacteristicofstockreturnswhenusingVaRisvolatilityclustering.This

    isaphenomenomthatcanbeeffectivelymodeledbymeansofGARCH.

    Thestudiesmade in thepastarenotunanimous, theyproducecontradictory results.Forexample

    Cabedo&Moya (2003) finds thatVaRs fromanautoregressivemovingaverageapproach (ARMA)

    outperforms theGARCH.Costelloetal. (2008) finds that theopposite is true,GARCHoutperforms

    the ARMA and they suggest that the conclusion drawn by Cabedo & Moya is based on the

    assumptionofnormaldistribution.Thedifferentapproachesareappliedondifferentassetsandthe

    approachesareoftenadaptedtotheassetstowhichtheyareapplied.Thisindicatethattheresults

    fromdifferentstudiescanbehard to interpretandcompare.We therefore think that itwouldbe

    interesting to conduct a study by using the threemostwidely used approaches. Theywill all be

    appliedonthesamethreeassetstomaketheresultsmorecomparable.

    TheVaRwillbe estimatedon adailybasisusing threedifferent confidence levels,95%,99% and

    99.9%toseehowtheapproachesperformatdifferentconfidence levelsondifferentassets.Jorion

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    10

    (2001)andmanyotherswithhimusestheseconfidence levelswhencalculatingVaR.Thedifferent

    levels fitdifferentpurposesanddependson themanagements relation to risk.Choosingahigher

    levelofconfidencewill result inahigherVaR.Thedifferencebetweenaconfidence levelof99or

    99.9percentmightnotseembigbuthasalargeeffectontheVaRassessment.

    Differentcharacteristicsoftheassetsreturns,i.e.thestatisticalpropertiesoftheassetsreturnssuch

    asvolatility,kurtosisandskewness,mightaffectthecalculatedVaRmakingsomeapproachesmore

    preferablewithspecificassets.This isespecially truewith theparametricapproaches thatassume

    thereturnstobenormallydistributed.This leadstotheproblemthatthisstudy isfocusedon,the

    connection between an assets return characteristics and its effect on the calculated VaR. Three

    different assets have been chosen; Brent crude oil, Swedish stockmarket index (OMXs30) and

    Swedishthreemonthtreasurybills(STB3M).Themotivesforchoosingtheseassetsarethattheyare

    fundamentallydifferentassetswithfundamentallydifferentcharacteristics.Thereasonwhythisisso

    important in this study is that it provides a better prerequisite to examine how the return

    characteristicsaffectVaRapproaches.

    VaRcanbeappliedonanyassetthathasameasurablereturn.Theassetsusedinthisstudyallhave

    incommonthattheirreturnscaneasilybemeasured,theircharacteristicsdohoweverdiffer.Brent

    oilhasmanyusesonebeingpetrolproductionandanotherisheatingpurposes.Oilcompaniessitting

    on largereservesareverysensitivetochanges inoilpricesmakingVaRasuitableriskmeasurefor

    assessingpotentialfuturelosses.Thesamegoesforanyonetradingwithoilregardlessofthembeing

    buyersorsellers.Theoilmarketdiffersfromthestockmarketinthesenseofbuyers.Oilistradedin

    hugeamountsby largeoilcompanies incontrasttostocksthatcanbetraded insmallquantitiesby

    small investors. Stocks are perhaps themost common asset used in VaR calculations. The risks

    connected to stock returns are quite easy to understand. Financial institutions invest in huge

    portfoliosconsistingofvariousstockswithvaryingrisks.Themarketrisktheyfacemustbeevaluated

    and according to Jorion (2002) this isbestdonebyusingVaR.When it comes to treasurybills it

    should represent a stable and secure investment instrument. Fluctuating interest rates however

    affects themarketvalueof thebills.Thismeans that themarketvalueof thebillscanvaryduring

    theirholdingtimewhichmakesVaRausefulmeasureinordertoestimatepotentiallosses.

    HowdothedifferentcharacteristicsofthereturnsoftheunderlyingassetsaffectVaR?AnotherimportantaspectisthecomplexityoftheVaRapproachesthemselves.Wewilltakeacloser

    lookon theperformancedifferencebetweenmorecomplexandsimplerapproaches tocalculating

    VaR. Thiswill result in an evaluation ofwhether the extra effort put in to the use of themore

    complexapproachesisworththewhileintermsofaccuracy.Theaccuracyoftheapproacheswillbe

    measuredintermsofthenumberofVaRbreakstheyproduce

    WhichoftheapproachesgivesthemostaccurateVaRmeasure?

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    11

    1.4PURPOSE

    Thepurposeof this study is tocompare threedifferentapproaches tocalculatingVaRnamely the

    Historical Simulation approach, the Moving Average approach and the GARCH approach. The

    approacheswillbeappliedon the threedifferentassetswith theconfidence levels95%,99%and

    99.9%.Theperformanceandaccuracyoftheapproacheswillthenbeanalyzedwithrespecttoasset

    returncharacteristicsandcomplexityoftheapproach.

    1.5DISPOSITION

    Introduction. The first chapter presents the subject examined in this

    studyandgivesanintroductiontoVaRasameasureinriskmanagement

    andhowitcanbeused.

    Theory. In the upcoming chapter, the development and functions of

    ValueatRiskaredescribedalongwiththechosenmethodsofcalculating

    ValueatRisk. It isplacedbefore themethodchapter inorder togivea

    better understanding for the approaches usedmaking the calculations

    moreunderstandable.

    Method.Thethirdchapterdealswiththemethodusedinthestudy.First,

    the analytical approach is described and then we move on to the

    methodsusedtocalculatetheValueatRisk.Thedataoftheassets,which

    Value at Risk are calculated on, is also presented and their return

    characteristicsareillustratedanddescribed.

    Results&Analysis. In the fourth chapter, the results are presented in

    formof theproducedValueatRiskestimations.Back testing ismade in

    order to see how the methods have performed. It also contains the

    analysiswheretheresultsareanalyzedtoseehowthecharacteristicsof

    theassetreturnsaffectthecalculatedValueatRisk

    Conclusions. In the fifth chapter, we present the conclusions that we

    havedrawnfromthecalculationsanddiscussfurtherresearch.

    Figure 1.5 Disposition of thispaper.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    12

    2.THEORY

    InthischapterwewillpresenttheriskmeasureValueatriskandthedifferentVaRapproachesthat

    wewill be using in this thesis alongwith themathematicalmodels that they are based on. The

    underlyingassetswillalsobepresented.

    2.1VALUEATRISKVaR

    Asmentionedearlier thedefinitionofVaRby Jorion (2001:22) is:VaR summarizes theworst loss

    overatargethorizonwithagivenlevelofconfidence.Themostcommonapproachistheparametric

    underwhichthemathematicsofVaRcanbedescribedbythefunctionbelow.

    C $

    The daily standard deviation times the number of standard deviations that corresponds to the

    selectedconfidencelevel,C,timesthesquarerootofthetimehorizontimesthemonetarysizeofthe

    investmentresultsintheVaR.InthisthesiswewillbecalculatingonedayVaRestimatessothetime

    component can be excluded. Also, the monetary size of the investment is just there to put a

    monetaryfigureontheriskandcanalsobeexcluded.Whatwehaveleftisthestandarddeviationof

    historicalreturnsandtheconfidencelevel.

    Ifchoosinga lowerconfidence level,as95percentor90percent, theVaRwilldecrease.Different

    levelswillfitdifferentfirmsandpurposesandwillbechosenaccordingtothemanagementsrelation

    torisk.Themoreriskaversethefirmisthehigherconfidencelevelwillbeselected.HoweverDowd

    (1998) claims that VaR users and than in first hand banks will inmost cases prefer the lower

    confidencevalueinordertodecreasethecapitalneededtocoverthepotentialfuturelosses.

    InordertoprovideanoverviewofthemeasureVaR,asimpleillustrationisgiven.Supposethatthe

    oilpricetodayis100USDperbarrelandthatthedailystandarddeviation()is20USD.Companies

    thatbuylargeamountsofoilmightwanttoknowhowmuch,givenacertainconfidencelevel,they

    canpossiblylosewhenbuyingtheoiltodaycomparedtotomorrow.Ifthechosenconfidenceinterval

    is 99 percent, thatwouldmean that one day out of hundred the losswill be greater than the

    calculatedVaR.This is truewhen thepricechange isnormaldistributedaround theaverageprice

    change.

    Valueduetoanincreaseintheoilprice:100 2.33 146.6USD

    Valueduetoandecreaseintheoilprice:100 2.33 53.4USD

    Thismeansthatwith99percentchancethelosswillnotbegreaterthan10053.4=46.6USDwhich

    istheVaRforaconfidencelevelof99percent.

    Often some assumption aremade inorder to calculate theVaR and ifwe suppose that thedaily

    changesinoilpriceshasadensityfunctionthisfunctionismostoftenassumedtoberepresentedby

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    13

    the normal distribution. The assumption has the benefit of making the VaR estimations much

    simpler. However it has some disadvantages. The price changes do not always fit the normal

    distribution curve and when more observations are found in the tails, normalbased VaR will

    understate the losses that canoccur.A solution couldbe touseanotherdistribution that regards

    fatter tails.The fatter tails that forexamplecomeswith the tdistributionmakeshigh lossesmore

    commonaccordingtoDowd(1998)andthereforeitalsogiveshigherVaR.

    When usingVaR, the assets have to be valued at theirmarket value. Thiswill not be a problem

    accordingtoPenza&Bansal(2001)withassetstradedinaliquidmarket,wherepriceseasilycanbe

    derived.ThisiscalledmarkingtomarketandDowd(1998)definesthetermasthepracticeofvaluing

    andfrequentlyrevaluingpositionsinmarketablesecuritiesbymeansoftheircurrentmarketprices.

    Financialassetsareoften tradedonadailybasisand therefore, it iseasier toobtain theircurrent

    value.Forsomenonfinancialassets,thepricemayhavetobeestimated,whichmakethecalculations

    moreuncertain.Theassetsusedinthisstudycausesnoprobleminthisarea,howeveronecanclaim

    that the pricing does differ among them. Some claim to be able to predict the future price of a

    specificstockbecauseofavailable informationconcerningthestock,whilefuturepricesonoilmay

    beharder topredict.Reasons for thiscanbe the strong influenceOPEChason thepriceofoilby

    changingtherelationofdemandandsupply.Sadeghi&Shavvalpour(2006)callattentiontotheneed

    ofVaRasa tool forquantifyingmarketriskwithinoilmarkets.Futureassetpricesandreasons for

    themareacomplexareahoweverasstatedbeforealltheassetsusedinthisstudyaretradeddaily,

    makingitnoproblemtoderivetheneededmarketprices.

    2.2THENEEDFORVaR

    Holton(2002)putsthebreakthroughforVaRinthe1970sand1980s.Duringthistimemanychanges

    tookplaceanddiversefinancialcrisesbecameafact.TheBrettonWoodssystemcollapsed in1971

    makingtheexchangeratesflow.BecauseoftheoilcrisiscausedbyOPEC,oilpriceswentthroughthe

    roofbygoingfromUSD2toUSD35.Alongwiththecrisisalsocamefinancialinnovationssuchasthe

    proliferationofleverage.Beforethistime,theavenuesforcompoundingriskwerelimitedaccording

    toHolton(2002).Withnewinstrumentsandnewformsoftransactions,newleveragewaysopened

    up. Holton also brings up that when this happened, trading organizations sought new ways to

    managerisktaking.Duringthistime,banksstartedtocreateameasureasaresultofmorecomplex

    riskmanagement.Theriskshadtobeaggregatedsowhenfacingthisproblem,thewantedsolution

    wasameasurethatcouldprovidethecompanieswithabetterunderstandingfortheriskexposure.

    Itwas JPMorganwhobecame themost successful.Theycreated theRiskMetrics systemwhich is

    mentionedby Jorion (2001). It revealed riskmeasures for300 financial instruments and thedata

    characterizeavariancecovariancematrixofriskandcorrelationmeasuresthatprogress through

    time.Thedevelopmentofthemeasuretookalongtimeandwasfinishedin1990.Fouryearslaterit

    wasmadefreetothepublicsomethingthatcreatedbigattention.TheuseofVaRsystemincreased

    enormously and apositive effecton the companies riskmanagementwere found. The important

    contributionofRiskMetricswasthatitpublicizedVaRtoawideaudience.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    14

    AnimportantlandmarkinriskmanagementthatmadeVaRknowntothemasswastheBaselAccord.

    Itwasconcludedin1988andfullyimplementedintheG10countries1in1992.Thisismentionedby

    Saunders (1999) and itwas a regulation on commercial banks to provide amore secure system

    throughminimumcapitalrequirementsforbanksmarketsrisk.

    2.3VaRAPPROACHES

    Thethreedifferentapproachesused inthisstudywillbepresentedbelow.Theyallhavetheirown

    advantages and disadvantageswhich affects the VaR values that they produce. The assumptions

    madeby theapproachesdealswith the returncharacteristics indifferentways.Theeffectsof this

    willbefurtherdiscussedintheanalysis.

    2.3.1HISTORICALSIMULATIONAPPROACH

    Anonparametricmethoddoesnotassumethereturnsoftheassetstobedistributedaccordingtoa

    specificprobabilitydistribution. It isasimplewaytocalculatetheValueatRiskthat iswidelyused

    justbecausethefactthatitignoresmanyproblemsandstillproducesrelativelygoodresults(Dowd

    1998). The non parametric historical simulation approach used in the study is the historical

    simulationapproach.

    Theideaofthehistoricalsimulationapproachistousethehistoricaldistributionsofpricechangesin

    order to calculate theVaR.Historicaldata is collected fora chosenperiodand then thehistorical

    price changes are assumed to be a good assessment of future price changes. The function for

    historicalsimulationcanbedescribedasbelow(Goorbergh&Vlaar1999).

    |

    The|istheVaRvalueattimet+1where istheinitialvalueoftheassetandisthep:th

    percentile of each subsample, which means taking the asset return between time t and

    preceding returns and calculating thepercentileof these values that corresponds toour selected

    confidencelevel.

    Themeritsofthisapproach,accordingtoDowd(1998),areitssimplicitywhichmakesitagreathelp

    forriskmanagersandthedataneededshouldbeavailablefrompublicsources.Another important

    benefitisthatitdoesnotdependontheassumptionaboutthedistributionofreturns.Whetheritis

    thenormaldistributionornotthatgivesthebestestimatesisnotthequestionhere.Eventhoughthe

    approach is indifferent towhichdistribution the returnshave is it important to remember that it

    doesassumethedistributionofreturnstoremainthesameinthefutureasithasbeeninthepast.

    Dowd(1998)statesthatthismakestheapproachlessrestrictivebecauseweneitherhavetoassume

    1 Belgium, Canada, France, Germany, Italy, Japan, theNetherlands, Sweden, the United Kingdom and theUnitedStates.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    15

    thatthechangesare independentgivingtheapproachnoproblems inaccommodatingthefattails

    thattormentnormalapproachestoVaR.

    A possible disadvantage, argued by Jorion (2001), is that the approach requires a lot of data to

    performwellathigherconfidencelevels.WhenestimatingVaRata99%confidencelevel,intuitively

    at least100historicalvalueshave tobe inputted.Buteven then theapproachonlyproducesone

    observation in the tail. Perhaps not enough historical data is available to produce a good VaR

    estimate,aproblemthatontheotherhandcanoccurformostoftheVaRapproaches.Jorion(2001)

    furtherargues that there isa tradeoff in theapproachwhen includingmoreandmorehistorical

    values.Ononehand, theapproachbecomesmoreaccurateathigherconfidence levels,butat the

    sametime,theriskofincludingoldvaluesthatarenotrelevantforfuturereturnsishigher.

    The historical simulation approach also assumes that the past is identical to the future,making

    historicalrisksthesameasfuturerisks,whichmightnotbethecaseiftherehavebeenextraordinary

    eventsintherecentpast.Perhapsthisismostoftennotthecase,buttheimportanceofgettingdata

    thattrulyreflectsthepastbecomescritical.Ifthechosendataperiodistooshort,itmightreflecta

    moreor less volatileperiod thatdoesnot give a goodpictureof thehistorical volatility. Itmight

    includeperiodsofunusualkindthatisnotrepresentative.

    Goorbergh&Vlaar (1999)arguesthat it isnotgenerallypossibletomakehistoricalsimulationVaR

    predictionsonwindowsizessmallerthanthereciprocaloftheselectedconfidencelevel.Thismeans

    that forevaluating a99.9% confidence youwouldneed awindow sizeof at least

    . 1000

    observations.

    The conclusions that can be drawn is that the approach does have both advantages and

    disadvantages which might make it important to complement it with other tests that pick up

    plausiblerisknotrepresentedinthehistoricaldata.

    2.3.2MOVINGAVERAGEAPPROACH

    Aparametricapproachassumes that theassets return followaprobabilitydistribution.Themore

    naveapproach,herecalled themovingaverageapproach, isaparametricapproach thatassumes

    thatthereturnsofassetsarenormallydistributed.Theapproachmeasuresthestandarddeviationof

    pastreturnsandusesthistogetherwiththestandardnormaldistributiontodescribetheprobability

    ofdifferentoutcomesinthefuture.Howeverthisapproachasmentionedabovedisregardsthewell

    establishedphenomenonof volatility clustering.Dowd (1998) sees this as abigproblem because

    there is a tendency for high volatility observations to be clustered with other highvolatility

    observationsandthesameistrueforlowvolatilityobservationsthatclusterwithotherlowvolatility

    observations.Thisphenomenahasbeenconfirmedbymanystudiessincethefirstobservationmade

    byMandelbrot(1963).

    Under thisapproach, the sample standarddeviation is firstcalculated fromanumberofhistorical

    observationsusingthisfunction.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    16

    1

    1

    Thenumberofobservationsisrepresentedbyn,standsforthedailylogpricefordayiand isthe

    averagedailylogprice.

    Calculating theactualVaRvalue isthendonebyretrievingthenumberofstandarddeviationsthat

    corresponds to the selected confidence level from the normal cumulative distribution function

    presentedbelow,andmultiplyingitwiththestandarddeviationofthehistoricalobservations(Jorion

    2001).

    Thefunctionbelowisthecumulativedistributionfunction(cdf)ofthestandardnormaldistribution.

    This function calculates the probability that a random number drawn from the standard normal

    distribution is less than x.The inverseof this functiongives the valueof x that is the limitunder

    which a random value drawn from the standard normal distribution will fall with the inputted

    probability(Lee,Lee&Lee2000).Erfstandsfortheerrorfunction.

    12 1

    2

    Basedon this the confidence levels thatwehave chosen corresponds to the followingnumberof

    standarddeviations(Penza&Banzal2001).

    Confidencelevel Standarddeviations95,00% 1,64599,00% 2,32699,90% 3,090

    Table2.3.2Relatingstandarddeviationtochosenconfidencelevel.

    Animportantpartofthisapproachischoosingthenumberofdaystobasethevolatilityestimateon.

    Ifthevolatilityoftheunderlyingassetisestimatedfromtoomanyhistoricalobservations,thereisa

    riskof includingobservations thatare toooldand irrelevant.On theotherhand,ahistoricalvalue

    based on too few valesmeans a risk of getting values that are too heavily influenced by recent

    events. As a rule of thumb,Hull (2008)mentions that you should base your historical volatility

    estimateonequallymanydaysasyouaretryingtoforecast intothefuture,butno lessthan30.In

    thisstudy,thenumberofdayswouldthereforebe30.

    Thedistributionofthereturnscanbedifferentforvaryingassets.Themostwidelyuseddistribution

    isthenormaldistributionbecauseofitssimplicity,however,itdoesseldomexactlyfitthereturnsof

    an asset. Dowd (1998) states that normality gives us a simple and tractable expression for the

    confidenceintervalfortheVaRestimate,andwithanormalreturn,theVaRisjustthemultipleofthe

    standarddeviation.Itisonlyabouttwoparameters,theholdingtimeandtheconfidencelevel.These

    parameterscanvarydependingontheuser.Also,goingfromaVaRestimateforaspecificconfidence

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    17

    leveltoanotheronecaneasilybedone justbychangingthenumbersfromthenormaldistribution

    associatedwiththeconfidencelevel.

    2.3.3GARCHAPPROACH

    GARCHisnotreallyaVaRmethodinitselfbutratheramoreadvancedwaytocomputethestandard

    deviationofpast returns that in turn is intended togivemorepreciseVaRestimates.TheGARCH

    approach is considered to be semi parametric, meaning that it has both parametric and none

    parametricproperties. It isparametric in thesense that theestimatedvarianceof theapproach is

    usedwiththenormaldistribution,but it isatthesamenonparametricsincethe inputtedvariables

    arerealreturnsandnotestimatedvolatilities.

    TheGARCHapproachforvariance,h,lookslikethis(Jorion2001):

    Where , and areweights. is theweight forhowmuch of todays variance influencesour

    forecast, weights howmuch of yesterdays estimationweights into the forecast. Jorion (2001)

    pointsoutthatthesumofandmustbelessthanoneandisusuallycalledthepersistenceofthe

    approach. It iscalledpersistence, sinceduringamultiperiod forecast into the future, theweights

    woulddecayastheyareboth lessthanoneandthecalculatedvalueofvariancewouldrevertback

    towardstheestimatedlongtermvariance.

    Thoughtheuseof itsnonparametric input,theGARCHapproachcantakesvolatilityclustering into

    consideration.Thismeansthatittakesintoaccountthatlargechangesinpricesataspecifictimeare

    usually followed by more large changes and vice versa. This is done by weighting historical

    observationsandrecentobservationsunequally.

    There isnowayofsolvingforthecorrectvaluesof,andmathematicallyso ithastobedone

    numericallyusingmaximumlikelihoodestimation(MLE).Toestimatetheparameters,andthe

    logarithmofthelikelihoodfunctionofthenormaldistributionisused(Jorion2001).

    max 1

    2

    2

    ,andgives thevaluesofht,somaximizing this functionbyadjusting,andgivesus the

    optimal values of , and . This optimization is done for each and every one of the historical

    observationonwhichtheVaRmeasureistobebased.Theparameters,andarethenadjusted

    togiveamaximumvalueofallofthoseobservationscombinedforthechosenwindowintime.

    ItshouldbenotedthatastheMLEfunctionisderivedfromthenormaldistributionfunction,italso

    assumesthatthereturnsoftheassetsarenormallydistributed.TheMLEfunctionmaytherefore, if

    appliedtononenormallydistributedreturns,producequestionableresults(Jorion2001).

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    18

    2.4THEUNDERLYINGASSETS

    The underlying assets, on which our VaR calculations are based, are chosen because of their

    fundamentallydifferenceswhichwouldindicatefundamentallyvaryingreturndistributions.Allthree

    assetsshowdifferentpropertiesmakingtheminterestingforcomparisonaccordingtothepurposeof

    thestudy.

    Wheneverholdinganassetyou face the riskof theassetgainingor losing value in relation to its

    purchaseprice.Thefieldofriskmanagement isallaboutassessingandmitigatingrisk.Aneffective

    risk management is according to Saunders & Cornett (2007) central to a financial institutions

    performance. This is also true for any company exposed to risk. As discussed in the problem

    discussionVaRisausefulmeasureforallofourassets.

    2.4.1BRENTOIL

    Crudeoil isthemosttradedcommodityontheworldmarketandthemost importanthubsforthis

    trading are New York, London and Singapore. The prices of the Brent oil, which is the world

    benchmark for crudeoiland ispumped from theNorth Seaoilwells is theoilused in the study.

    AccordingtoEydeland&Wolyniec(2003),abouttwothirdsoftheworldsupplyofoil ispricedwith

    referencestothisbenchmark.

    Theoilprice isveryvolatile,andareasonforthis isthe influenceofOrganizationofthePetroleum

    ExportingCountries(OPEC).Thisisanoilcartelthatwascreatedin1960andnowconsistsoftwelve

    membercountries.Theiroilproductionstandsfornearlyhalfoftheworldproduction,andbyraising

    or lowering theirproduction, they can affect theprice. There aredifferentopinions aboutOPECs

    influenceonthebalanceofdemandandsupply.Somepeopleclaimthattheypreventtheforcesof

    themarkettosettherealpricewhileotherssaythattheycanonlyaffectthesupplyofoil,notthe

    demand,makingtheforcesofthemarketthroughthedemandcreateanequilibriumprice.

    2.4.2OMXs30

    OMXs30 isanabbreviationofOMXStockholm30and is thedenominationof the30most traded

    stocks on the Stockholm stock exchange. It is a capitalweighted index thatmeasures the price

    developmentof thestocks.Thevalueof thestock for theseparatecompanies is thebasisof their

    partofthe index. Theassemblyofthe index isconductedtwiceperyearandtherevenuesofthe

    companiesthenworkasagroundforthecompanieselected.(www.omxnordicexchange.com)

    2.4.3THREEMONTHSWEDISHTREASURYBILLS

    TheSwedishtreasurybillsareissuedthroughtheSwedishNationalDebtOfficeandthebidsarethen

    submittedtodealersauthorizedbythesame.Thebillsaretradedonthesecondarymarket,whichis

    consideredtobeahealthymarketwhen lookingatthe liquidity.Thematurityvarieswithinayear,

    however,thetreasurybillsusedinthisstudyarethethreemonthbills(STB3M).(www.riksbank.se)

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    19

    2.5BACKTESTINGWITHKUPIEC

    WhencalculatingtheVaR,one isonly interested inthe lefttailthatrepresentsthecaseswhenthe

    returnsareworse thanexpected.Toevaluate themeasuresused,aback test canbe conducted.

    Goorbergh&Vlaar(1999)explainsthetestascountingthenumberofdaysintheevaluationsample

    thathadaresultworsethanthecalculatedVaR.Anobservationwheretheactualreturnexceedsthe

    VaRiscalledaVaRbreak.Thebacktestisimportanttouse,andbyperformingitandcomparingthe

    differentapproaches,onecanensurethattheapproachesareproperlyformedaccordingtoCostello

    &Asem&Gardner(2008).

    Jorion(2001)statethatthenumberofVaRbreaksisexpectedtobethesameasoneminusthelevel

    ofconfidence.So forasampleof100observationswherea95%confidenceVaR iscalculated,we

    would expect five 100% 95% 100 5VaRbreaks tooccur. In the study this is called the

    targetnumberofVaRbreaks. If therearemoreor lessVaRbreaks thanexpected, it isbecauseof

    deficiencies intheVaRapproachortheuseofan inappropriateVaRapproach.Awidelyusedback

    test is theKupiec test.This testuses thebinominaldistribution tocalculate theprobability thata

    certainnumberofVaRbreakswilloccurgivenacertainconfidencelevelandsamplesize.TheKupiec

    testfunctionis(Veiga&McAleer,2008):

    |,

    1

    Thevariable is thenumberofVaRbreaks,N the sample sizeand corresponds to the levelof

    confidencechosenfortheVaRapproach(makinga95%confidence levela5%probability inputfor

    theapproach). Ifthesamplesize is inputtedand issettooneminusthe levelofconfidence,the

    binomialfunctionproducesthelikelihoodthataspecificnumberofVaRbreaksistooccur.Byusing

    thecumulativebinomialdistribution, it ispossibletocalculatean intervalwithinwhichthenumber

    ofVaRbreaksmust fall, inorder for theapproach tobeaccepted.This isdoneby calculating for

    whichvaluesof that thecumulativebinomialdistributionproducesprobabilities thatare in the

    interval 2.5% 97.5% (which corresponds to a 95% test confidence). VaR approaches that

    producevaluesofthatlieswithinthisrangecanthereforebeaccepted.Iftheapproachproduces

    valuesofoutsidethisspan,theapproachisrejected.Arejectionmeansthattheconfidencelevel

    thatweused intheVaRapproachdidnotmatchtheactualprobabilityofaVaRbreak.This inturn

    indicatesthattheapproachisnotperformingwellandthatitshouldberejected.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    20

    3.METHOD

    In this chapter, themethods used in the study are presented. First, the nature of this study is

    describedandthenthecalculationsofVaRareexplainedforthedifferentapproaches.

    3.1ANALYTICALAPPROACH

    This study takes an analytical approach and assumes an independent reality. This is a method

    approach that iswidelyusedand thehistoryof itgoeswayback in time.Themostdistinguishing

    characteristic concerning theprocedureof this approach is, in accordancewithArbnor&Bjerkne

    (1994),itscyclicnature.Itstartswithfacts,endswithfactsandthesefactscanbethestartofanew

    cycle.Themeaning istoextractgoodmodels inordertodescribetheobjectivereality.Themodels

    withinthisapproacharemostoftenofquantitativecharacterandthisisalsotrueforthisstudy.Itis

    naturalthatlogicandmathematicshasaparttoplayinthesearchforthebestmodeltoapply.

    3.1.1QUANTITATIVEAPPROACH

    In this study, the testsarebasedupona lotofhistoricaldata.Dailypricechangesare studied for

    three different assets that are widely traded, this form of studymakes us apply a quantitative

    approach.ThisapproachcomparedtoaqualitativeapproachisaccordingtoArbnor&Bjerkne(1994)

    oftenmore about clear variables and can cover a larger number of observations,which fits our

    compositionbetter.Itfurtherassumesthatwecanmakethetheoreticalconceptsmeasurable.Inthe

    past, the quantitative approach has inmany caseswrongly been seen as the only real scientific

    method, or as Holsti said in 1969, If you cant count it, it doesnt count. There are however

    limitations connected to theapproachandHolme&Solvang (1991)pointsout that ifyouarenot

    awareof them, the resultcaneasilybemisjudged.Numbersareoften seenas the truth,and this

    trustcancreateproblemsmakingtheanalysisofthenumbersveryimportant.

    Historicaldatahavebeencollectedinthisstudy,andbasedonthese,anumberofcalculationshave

    beenmade in order to extract the VaR. The purpose is to be able to seewhich approach that

    performsbest,andtheresultisbasedonthefiguresfromthecalculations.Howevertheresultisnot

    justanumberitisalsoputintocontexttobettergetanunderstandingofitsmeaning.

    3.1.2DEDUCTIVEAPPROACH

    When taking a deductive approach one starts from an already existing theory and then either

    strengthenorweakentheconfidenceofthetheory,meaningthatonestartsfromagenerallawand

    thenmovestoaseparatecase.Inourstudy,weusethreewellknownapproachesforcalculatingVaR

    and test their performance on assetswith different return characteristics. The purpose is to test

    models,nottocreatenewones.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    21

    Asaresultofthisstudy,thefunctionoftheapproacheswillperhapsbestrengthenedbecauseofa

    specific character, however, the same approach applied on the same asset can turn out to be

    unreliable for a certain confidence level. The approachs can from the start be rather simple,

    however, by adding a dimension like the GARCH approach, one can make the approach more

    complex andmaybebetter fitted to a certain asset.The testof the approacheswillbebasedon

    backtesting, we will count the numbers of VaR breaks,meaning the number of times the loss

    exceededthecalculatedVaR.ReasonsfortheactualnumberofVaRbreakswillbeanalyzed.

    3.1.3RELIABILITY

    Inordertodecidethereliabilityoftheresults,oneshouldbeabletodothetestanumberoftimesto

    seeifthesameresultsareachieved.Arbnor&Bjerkne(1994)callsthisatestretest,anditishelpful

    intellingwhetherthestudyanditsresultsarereliable.Allthedatausedinthestudytocalculatethe

    VaRispublicinformation,makingthetestreproducible.

    3.1.4VALIDITY

    Themostimportantfactorwhenjudgingwhethertheresultsarejustifiableintheanalyticalapproach

    isthroughthevalidity.Ifyoucannotanswerthequestionwhethertheresultsgivesatruepictureof

    thereality,theresultscaneasilybecomemeaningless.Thecloserwegettothetruesituation,givena

    specifieddefinition,thehigherthevalidity.Therelationbetweentheoryanddataisvital,andHolme

    &Solvang(1991)pointsoutthatthevaliditycanbeenhancedbyacontinuouslyadaptionbetween

    thetheoriesandthemethodsused intheexamination.This isdonebychoosingmethodsthathas

    the ability to handle or show the impacts that different assets characteristics can have on the

    measuredVaR.Arbnor&Bjerkne (1994)stresses the importanceof threekindsofvalidityand the

    needforcombiningthem.Thesearethesurfacevaliditythatdealswiththereasonabilityassessment

    in relation toearlier results, the internalvaliditydealingwith thequestion ifwehadexpected the

    resultwehaveconcludedandfinallytheexternalvalidityandtherebytheusefulnessoftheresultin

    otherareas.Thesequestionswillbefurtherdealtwithintheanalysis.

    Itisfurtherimportanttohaveinmindthatanapproachofthekindusedinthestudycangiveyoua

    numberoftheVaRbutitisalwaysanestimationofapossiblefutureloss.Givenacertainconfidence

    leveltheVaRcanbecalculated,however,thenumberreceivedisnottheabsolutetruth,itcannotbe

    guaranteedthatthefuturelosseswontbelargerthanexpected.

    3.2CALCULATIONOFVaR

    Withmanydifferentapproachesandmodels,thechoicethatVaRusersfaceisthechoiceofpicking

    the rightone thatmatches theirpurposebest.Theapproachesshouldmakeestimates that fit the

    futuredistributionofreturns. IfanoverestimationofVaR ismade,thenoperatorsendsupwithan

    overestimateoftherisk.Thiscouldresultintheholdingofexcessiveamountsofcashtocoverlosses,

    asinthecasewithbanksundertheBaselIIaccord.Thesamegoesfortheoppositeevent,whenVaR

    hasbeenunderestimatedresultinginfailuretocoverincurredlosses.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    22

    Inthisessay,wewillbecalculatingVaRforthreedifferentunderlyingassetsandcomparetheresults.

    TheassetsthatwillbeusedforourcalculationsareBrentOil,OMXs30stockindex,andthreemonth

    Swedish treasurybills.TheVaRapproaches thatwewillcalculateare thehistoricalsimulation, the

    movingaverageapproach,assumingnormaldistribution,andtheGARCHapproach,assumingnormal

    distribution.Whenusing theparametricapproaches,wedosuspect that the returns thatwehave

    basedthecalculationsonaremost likelynotperfectlynormallydistributed. Infact,economictime

    seriesrarelyare(Jorion2001).Theperformanceoftheseparametricapproacheswillthereforepartly

    bedeterminedbyhowwell thenormaldistribution assumption fits the actualdistributionof the

    returns.

    The tool thatwehaveused toperformourcalculations isMicrosoftExcel.Excel isaveryversatile

    toolthatcanbehelpfulifoneknowhowtouseitright.However,thedownsideofExcelisthatitis

    muchslowerthansoftwarethat isspecificallydesignedforfinancialcalculations.Therearealsono

    automated functions forcalculatinga lotof themoreadvancedoperations,oftenused in financial

    timeseriesanalysis,suchasautocorrelationsetc.Thesemoreadvancedcalculationshavetobedone

    manually, which can be very time consuming and also limits us somewhat when it comes to

    computingmoreadvancedapproaches.

    3.2.1HISTORICALSIMULATIONAPPROACH

    CalculatingaVaRmeasureusing thehistorical simulationapproach isnotmathematicallycomplex

    but can be trying since the calculations require a lotofhistoricaldata. The first task is topick a

    historical time frame on which to base the simulation. Themore historical values we base our

    calculationson themoreobservationswewillget in the tailsand thus themoreaccurate theVaR

    measurewillbeathigherconfidencelevels.

    Thedownsideisthataddingmorehistoricaldatameansaddingolderhistoricaldatawhichcouldbe

    irrelevant to the future development of the underlying asset.Our simulationwill be based on a

    slidingwindowoftheprevious2000observationswhichcorrespondsto8calendaryears.Wehave

    selectedthisratherlargewindowforthehistoricalsimulationapproachaswewanttheapproachto

    performwellatthe99%and99.9%confidence levels.Asargued inthetheorychapter itmakesno

    sensetosetthewindowsizetoanylessthan1000observationsforthe99.9%confidencelevel,but

    evenatthislevelwetheoreticallyonlyhaveoneobservationinthetail.Wethereforedecidedtoset

    the window size to 2000 observations to enhance the performance of the approach at higher

    confidenceintervals.

    Extracting the VaR measure from the historical data simply requires us to choose the desired

    confidence level andpickout then:thobservation in thehistoricaldata that corresponds to that

    confidencelevel.Forexample,a95%confidencelevelmeansthatweareinterestedintheworst5%

    oftheobservations. Ifweforexampleareusing1000observations,thiswouldmeanthatthe95%

    VaRwouldbethe50thworstobservation(1000 5% 50.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    23

    ThePERCENTILEfunctionweused inExcelcalculatesthen:thpercentileofthevalues inachosen

    dataset.Ifthedesiredpercentileisnotamultipleofthenumberofvaluesinthedataset,Excelwill

    doalinearinterpolationbetweenthetwoclosestvaluestofindthedesiredvalue.

    3.2.2MOVINGAVERAGEAPPROACH

    Underthisapproach,wecontinuouslymeasuredthestandarddeviationofreturnsoverawindowof

    thelast30days.Thisstandarddeviationwasthenmultipliedwiththenumberofstandarddeviations

    extractedfromthestandardnormaldistributionthatcorrespondstotheselectedconfidence level.

    Inotherwords,thestandarddeviationchangesasthewindowmovesalongbutthemeanisassumed

    tobezero.

    3.2.3GARCHAPPROACH

    ThechallengewiththeGARCHapproach istoestimatetheparameters,and.Asdescribed in

    the theory chapter, theseparametershas tobe solved fornumerically,usingmaximum likelihood

    estimation. The literature that we have studied describes the MLE function but provides little

    practicalinformationonhowtoimplementit.Themathbehindmaximumlikelihoodestimationcan

    becomplicatedtounderstandforthosenotfamiliarwithbusinessstatistics.Manyanalyststhatdo

    these types of calculations use preconfigured software and seldom have to engage in the

    mathematicsthatliesbehindthecalculations.

    TheMLEformula itself isnotcomplicatedandwas implementedforeachandeveryobservation in

    ourstudy.MaximizingthefunctionwasdoneusingtheSOLVERfunction inExcel.Thefirstproblem

    thatweencounteredwashowtodecidehowmanyhistoricalobservationsthatweshouldbaseour

    MLEon.At first,wehadplanned tobase theMLEonamovingwindowof250values,matchinga

    year in tradingdays,but thisapproachproducedvery inconsistent resultsoftensettingoneof the

    parameters,or,closetozeroandtheotherclosetoone.Theconclusionwedrewwasthatthe

    MLEwasbasedon too fewvalues tobeconsistent.Asmentioned in the theorychapter, theMLE

    functionalsoassumes that the returnsarenormallydistributed.Thus, thesmaller thesample that

    theMLEestimation isbasedon, the larger the risk that thosevaluesmightbe significantlyparted

    fromthenormaldistribution.

    Welookedthroughagreatdealofarticlesandbooksinhopeoffindingsomekindofdocumentation

    onhowmanyobservationstoincludeinourMLEbutwewereunabletofindanyrecommendations

    togoby.Wethereforemadeourownestimationofanappropriatetimeframeonatrialanderror

    basis.Thiswasdonebyconstructingamacro inExcel thatwouldmaximize theMLE function, first

    basedonthe250firstobservationsandthenadd100observationsatatimeeachtimereestimating

    theparameters,anduntilwehad testedallof theobservations.Themacro isshown in the

    appendix1.Theresultingvaluesof,andareshowninthegraphs3.2.3a,bandc.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    24

    Figure3.2.3aMLEestimationgraphforBrentOil

    Figure3.2.3bMLEestimationgraphforOMXs30.

    Figure3.2.3cMLEestimationgraphforSTB3M.

    Thegraphsshowthevaluesofandinblueandredontheleftverticalaxisandthevaluesofin

    greenontherightverticalaxis.Thehorizontalaxisshowsthenumberofobservationsincludedinthe

    estimate.Sincethesumofandmustbelessthanoneandthereforemustgodownfortogo

    up.Thisiswhythevaluesdivergeduringthefirstestimationstolaterleveloutorbecomestable.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    25

    Onecanclearlyseehowvaluesof,andstabilizeasweaddmoreandmorevaluestotheMLE.

    We also interpret these results as an indication of to what degree the returns are normally

    distributedornot.

    By lookingatthegraphs,weseethatataround2000observationstheMLEhasstabilizedforallof

    our three assets, which lead us to conclude that 2000 observations is a suitable number of

    observationstobaseourMLEon.

    Afterdeciding theappropriatenumberofobservations tobaseourMLEon,we then recalculated

    theMLEfunction forourdatasets,nowwitha lagof2000observationsfrom19960101onwards.

    Newgraphshavebeenplottedforthevaluesof,and,andtheycanbefoundinappendix3.

    After thevaluesof,andhadbeenestimated, theywere inputted into theapproachand the

    resultswillbeshownintheresultsandanalysischapter.

    3.3SKEWNESS

    Theskewnesstellsuswhetherthedataissymmetricornot.Normallydistributeddataisassumedto

    besymmetricallydistributedarounditsmean,i.e.ithasaskewof0.Adatasetwitheitherapositive

    or negative skew therefore deviates from the normal distribution assumptions. This can cause

    parametricapproaches, inourcase themovingaverageapproachand theGARCHapproach, tobe

    lesseffectiveifassetreturnsareheavilyskewed,sincetheseapproachesassumethatthereturnsare

    normally distributed. The result can be an overestimation or underestimation of the VaR value

    dependingontheskewoftheunderlyingassetsreturn(Lee,Lee&Lee2000).

    Figure3.3Graphshowinganegativerespectivelyapositiveskew.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    26

    3.4KURTOSIS

    Thekurtosismeasuresthepeakednessofadatasampleanddescribeshowconcentratedthereturns

    arearoundtheirmean.Ahighvalueofkurtosismeansthatmoreofthedatasvariancecomesfrom

    extremedeviations.ThekurtosisofthenormaldistributionsalsomentionedbyLee,Lee&Lee(2000)

    asmesokurtic is three soaswith the skewnessanydeviations from thenormaldistributioncause

    problems for theparametricapproaches.Ahighkurtosismeans that theassets returns consistof

    more extreme values than modeled by the normal distribution. This positive excess kurtosis is

    accordingtoLee&Lee&Lee(2000)calledleptokurticandlowerkurtosismeaninganegativeexcess

    iscalledplatykurtic.LowkurtosisproducesVaRvaluesthataretoosmall.

    3.5THESOURCEOFDATA

    Thedataused in thestudyare timeseries thatreflects thehistoricalpricechanges for thechosen

    assets.Theperiod,whichthecalculationsarebasedon,stretchesfrom19870101to20080930for

    allthethreeassets.However,thedatafrom1987to19951231hasbeencollectedtoenableusto

    baseourcalculationsthatrequirehistoricaldataon.

    Different sources have been used to collect the data.Daily oil prices are taken from the Energy

    InformationAdministration (www.eia.doe.gov),whoprovidesofficialenergy statistics from theUS

    government.TheOMXs30datacomesfromOMXNordicExchange(www.omxnordicexchange.com),

    and the Treasury bill data can be found on the homepage of the Swedish central bank

    (www.riksbank.se).Thecharacteristicsofthedifferentassetsaredescribedbelow.

    Wehavecalculatedsomecharacteristickeyfiguresaboutthedatasetsinordertobetterbeableus

    to compare them. The key figures thatwe have calculated are skewness, kurtosis, volatility, and

    Figure3.4ProbabilitydensityfunctionforthePearsontypeVIIdistributionwithkurtosisofinfinity(red);2(blue);and0(black).

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    27

    average price change. Table 3.5 shows some of the statistical characteristics of each dataset,

    measuredduringtheentireperiodof19872008.

    BrentOil OMXs30 3MSTB

    Skewness: 0.83 0.02 3.77

    Kurtosis: 19.14 7.28 182.51

    Dailyvolatility: 2.32% 1.47% 1.49%

    Annualvolatility: 36.78% 23.37% 23.66%

    Averagelogpricechange: 1.63% 1.03% 0.58%

    Table3.5Statisticalcharacteristicsoftheassetreturns.

    3.6BRENTOIL

    Figure3.6aDailyreturnsforBrentoil.

    The oil prices are themost volatile prices in this study,with a 2.32% daily volatility and 36.78%

    annualvolatility.Thekurtosis is19.14,whichmake it farnarrowerwithmuch fatter tails than the

    normaldistribution.

    TheskewnessoftheBrentoilreturnshaveanegativeskewof0.83,whichindicatesthatthereturns

    areskewedtotheright.Thismeansyetanotherdeparturefromtheassumptionsofnormalityinthe

    parametricapproachescausingthesetoperformlesseffective.Thedailyaveragelogpricechangeis

    1.63%,whichbasicallymeansthatoverthemeasuredtimeperiodtheaveragereturnwas1.63%.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    28

    Ingraph3.6b,wehavefittedanormaldistributionprobabilitydistributioncurveagainstahistogram

    ofthereturns.Themostvisuallyprominentdeviationfromthenormaldistributionassumptionisthe

    kurtosis, which can be seen from the middle bars of the histogram rising above the normal

    distribution.Therearealsoseveraloutlierstorightand leftofthehistogram(whichcanbehardto

    seebecauseofthescaleofthepicture)which layoutsidetheboundsoftheboundsofthenormal

    distributioncurve.

    Figure3.6bHistogramshowingthedailyreturnscombinedwithanormaldistributioncurve.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    29

    3.7OMXs30

    Figure3.7aDailyreturnsforOMXs30.

    Sincethereturnsofthe indexcorrespondstoawelldiversifiedportfolio,theyarenotveryvolatile.

    Theaveragevolatilityis1.47%dailyand23.37%annually.Thekurtosisis7.28,whichsuggestthatthe

    distributionofthevaluesisnarrowerthanthenormaldistributionandwithsomewhatfattertails.It

    ishowevernotashighasitwasfortheBrentoil,whichmightindicateabettercompatibilitywiththe

    parametricapproaches,atleastatlowerlevelsofconfidence.

    Theskewness isonly 0.02,whichandtheaveragedaily logpricechange is1.03%.Apartfromthe

    kurtosisthenormaldistributioncurveisaprettynicefitonthesereturns.

    Therearehowever largeoutliers in thatarenot clearlyvisible in thegraphwhich layoutside the

    confinementsofthenormaldistributioncurve.Thereisalsonosignificantsignofautocorrelationas

    shownbythetableinthepreviouschapter.

    Figure3.7bHistogramshowingthedailyreturnscombinedwithanormaldistributioncurve.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    30

    3.8THREEMONTHSWEDISHTREASURYBILLS

    Figure3.8aDailyreturnsforSTB3M.

    The returnsof the treasurybillshave themostextremecharacteristicsofall thedatasets. Ithasa

    strongpositive skewnessof3.77, and a very large kurtosisof182.51 suggesting apoor fit to the

    normaldistributionwhichalsocanbeobservedfromthehistogram infigure3.8b.Theaverage log

    pricechangeis0.58%butfromfigure3.8awecanseethatvolatilityvariesfromlowtoextreme.The

    mostextremereturnsarefromtheearly1990swhenthebankingcrisisoccurredinSweden.

    Figure3.8bHistogramshowingthedailyreturnscombinedwithanormaldistributioncurve.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    31

    3.9AUTOCORRELATION

    Intimeseriesanalysis,autocorrelation,orserialcorrelationas it isalsocalled, isameasurementof

    whether the data correlateswith itself over time.Autocorrelation in financial time series data is

    measuredbyregressionoftheobservedreturnswithalaggedversionofthemselves.Regressingthe

    returnswith themselves like thiscanbedescribedas testing if it ispossible todescribe returnsof

    todayasalinearfunctionofthereturnsfromyesterday.Theresultingresidualsfromtheregression

    are then tested for autocorrelation. The presence of autocorrelation means that the applied

    approachwillhaveapoorfittotheactualdatawhichleadstheanalysttoconcludethatthereturns

    oftodaycannotbeaccuratelydescribedasa linearfunctionofthereturnsofyesterday.Thusthere

    must be other factors besides the historical returns that effect todays returns and thereby

    approachesthattrytopredictfuturereturnsbylookingatthepastwillbelesseffective(Tsay,2002).

    Wehavechosentoperformaone laggedDurbinWatson(DW)testonourdatatosee ifthereare

    anyfirstorderautocorrelation.TheDWtestusesthefollowingformulatocalculateitsstatistic:

    Theparameterdenotes the residuals from the regression.TheDW statistic canassumeavalue

    between0and4.ValuesoftheDWstatisticlargerthan2indicatenegativeautocorrelationwhereas

    valueslessthantwoindicatepositiveautocorrelation.Avaluecloseto2indicatesthattheresiduals

    areprobablynotautocorrelated(Tsay2002).

    Whentestingforautocorrelation,aconfidence interval iscalculatedaround2withinwhichtheDW

    statisticmustfallinorderfortheresidualstobeconsiderednottobenotcorrelatedwiththegiven

    degree of significance. Harvey (1990) has shown that for large sample sizes, this interval is

    approximatelynormallydistributedwithameanoftwoandavarianceof

    .

    We have used the statistical softwareprogramR to test our time series for autocorrelation. The

    autocorrelation tests results have been compiled in table 3.9 and some additional regression

    statisticscanbefoundinappendix2.

    RESULTSFROMAUTOCORRELATIONTESTAsset No. Lag Autocorrelation dL DW dU PBRENTOIL 5454 1 0,000660287 1,955455 1,998650 2,044545 96,40%OMXs30 5475 1 0,000758127 1,955540 1,997565 2,044460 94,80%STB3M 5468 1 0,009438294 1,955512 1,980684 2,044488 36,80%

    Table3.9Resultsfromautocorrelationtest.

    ThepvalueisaprobabilityratiothatRcalculateswhichdonatestheprobabilitythattheDWstatistic

    wouldoccurrandomly.AlowpvaluethusindicatesthattheDWstatisticinquestionisveryunlikelyif

    theapproachiscorrect.Thenullhypothesisis:

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    32

    Thenullhypothesiswillbe rejected if thep value is less thanoneminus the selected confidence

    intervalwhichinourcaseis95%.Thusifpwouldhavebeenlessthan5%,thenullhypothesiswould

    havebeenrejected,whichwouldhavemeantthatthereturnswereautocorrelated.Asstatedbythe

    pvaluesandtheDWstatisticsinthetable,thereisnosignofautocorrelationintheresiduals.

    3.10BACKTESTINGWITHKUPIEC

    InordertomeasurewhichoftheVaRapproachesthathasbeenmostsuccessful,wewillbacktest

    theVaRvaluesagainsttheactualreturnsofeachday.Intheeventthattheactuallossonaparticular

    dayislessthantheprojectedVaRvalue,wesaythataVaRbreakhasoccurred.

    TheexpectednumberofVaRbreaksisoneminustheselectedlevelofconfidencetimesthenumber

    ofobservations.Thenumbershavebeen roundedoff to thenearest integer.Wehavecompileda

    tableofthedesirednumberofVaRbreaksintable3.10.

    DESIREDNO.OFVaRBREAKSANDKUPIECTESTINTERVALS

    95% 99% 99.9%

    Asset No. MINTARGET MAX MIN TARGET MAX MIN TARGET MAX

    BrentOil 3259 139 163 187 22 33 43 0 3 6

    OMXs30 3215 137 161 184 22 32 43 0 3 6

    STB3M 3225 137 161 185 22 32 43 0 3 6

    Table3.10TargetnumberofVaRbreaksandKupiectestintervals.

    ThenearerthedesirednoofVaRbreaksanapproachproducesthebettertheapproachisconsidered

    toperform.WhethertheproducednumberofVaRbreaksisgreaterorsmallerthatthetargetvalue

    makesnodifference, it istheabsolutenumberofVaRbreaksthattheapproachdeviateswiththat

    determineshoweffectiveitis.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    33

    4.RESULTS&ANALYSIS

    Inthischapter,wewillconcludeourresultsandthereafteranalyzetheminrelationtothepurposeof

    thestudy.Theanalysiswillbedivided,treatingtheapproachesseparately, inordertogetabetter

    overviewoftheapproachesandtheirresults.

    4.1BACKTESTINGRESULTS

    Thebacktestingresultsarepresentedforthethreedifferentassetsunderthethreeapproaches.The

    outcomes depend on the characteristics of the asset, and by examining them, the result can be

    explained.

    4.1.1HISTORICALSIMULATIONAPPROACH

    Thebacktestingresultsforthethreeassets,calculatedusingthehistoricalsimulationapproach,are

    shown in table4.1.1a.The table shows theminimumandmaximumvaluesallowedby theKupiec

    test,thetargetnumberofVaRbreaksandtheresultingnumberofVaRbreaksfromthesimulation.

    VaRbreaksthatarewithintherangeallowedbytheKupiectestaremarkedgreenandthosethatare

    notaremarkedred.

    KUPIECTESTHISTORICALSIMULATION,2000DAYLAG 95% 99% 99.9%

    Asset No. MIN TARGET RESULT MAX MIN TARGET RESULT MAX MIN TARGET RESULT MAXBrentOil 3259 139 163 209 187 22 33 37 43 0 3 7 6OMXs30 3215 137 161 216 184 22 32 54 43 0 3 5 6STB3M 3225 137 161 109 185 22 32 24 43 0 3 7 6

    Table4.1.1aBacktestingresultswithhistoricalsimulationapproach.

    Theresultsshowthattheapproachperformspoorlyonthe95%confidence levelwhile itproduces

    betterresultsonthehigherconfidence levels.Onthe95%confidencelevel,theapproachproduces

    toomanyVaRbreaks,whichindicatethattheapproachoverestimatestheVaROnthe99%levelthis

    approachperformsequallycomparedtotheGARCHapproachandoutperformsthemovingaverage

    approach.Whenitcomestothehighestlevelthisapproachistheonlyonethatcomesevencloseto

    beingacceptedbytheKupiectest.

    This approach looks at the latest2000daily returnswhen calculating the volatility,which in turn

    makes theapproach react slowly tonew informationand changes in thedaily returns.There isa

    tradeoff between new information and old historical information that we presented in earlier

    chapters.Ifashorterintervalwouldhavebeenchosen,thiswouldhaveincreasedtheimpactofnew

    observations,puttinghigherfocusonrecentmarketconditions.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    34

    Table4.1.1ashowstheVaRestimatedbyhistoricalsimulationatthe99.9%confidencelevelforBrent

    Oil.Outofall theassets,thehistoricalsimulationapproachperformsbestresultswithBrentoil. It

    doeshoweverseem that theapproachgenerallyunderestimates theValueatRisk, thusproducing

    toomany VaR breaks. The characteristics of Brent oil showed that the normal distribution, and

    thereforetheparametricapproaches,wouldmakeapoorfitandthatthehistoricalsimulationwould

    suittheassetbetter.Brentoilisthemostvolatileoftheassetsbutthevolatilityisratherpredictable,

    ormore correctly, highbut stabile. The reason towhyhistorical simulation performsbetterwith

    Brentoil isbecauseof itsstability.Asdiscussedearlierthehistoricalsimulationapproachdoesnot

    assume the returns to followaspecificprobabilitydistribution,but itdoesassume that the return

    distributionisthesameinthepast,inourcase2000days,asitwillbetomorrow.Thestabilityofthe

    Brentoilreturnsisthereforethereasonforthegoodresults.

    Whentestingtheaccuracyofanapproachitisequallyimportantwithunderestimationsasitiswith

    overestimations.Theresultsforthetwootherassetsareaboutthesamewiththedifferencelyingin

    overestimationsoftheValueatRiskfortheSTB3MandunderestimationsofthevalueforOMXs30.

    Thevolatility for theseassets isnotashighas forBrentoilbut itchangesmoredramaticallyover

    time. If a shorter time period had been chosen, the results for STB3Mwould have looked very

    different ignoringthegreatvolatilitychangesthatappearedaround1993.Thehistoricalsimulation

    would in thatcasehaveproducedbetterresultssince the fluctuations inreturnswouldhavebeen

    less.

    Figure4.1.1bVaRforBrentOil,HistoricalSimulation99.9%confidence19962008.

    The look of the graph 4.1.1b is characteristic for historical simulationVaR estimates. The sudden

    jumpsupanddownandtheplateausinbetweensignaltheentranceandexitofanextremehistoric

    return that affects theVaR as long as it remains in thewindow. The longwindow thatwe have

    chosen seems to be the cause to why the approach overestimates the VaR for STB3M and

    underestimatesitforBrentOilandOMXs30.Atthe95%,confidencelevelthelargewindowchosen

    seemstoberesultingintoofewVaRbreaksforSTB3M.Itwouldseemthatthelargewindowistoo

    large for the95%confidence level,adding toomanyextremeobservations in the tails.Thiscauses

    theapproachtooverestimatetheVaR,andproducetoofewVaRbreaks.ForBrentoilandOMXs30,

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    35

    the opposite seams to apply. The large window puts toomuch weight on themore frequently

    occurringsmallerreturnsanddrawsthecenterofgravityintheapproachawayfromtheinteresting

    outliers,causingtheapproachtoproducetolowVaRandthustomanyVaRbreaks.Thesameseems

    toapplyatthe99%confidencelevel,buttheeffectsseemmilder,perhapsbecausethewindowsize

    ismoreappropriatehere.

    As canbe seen in table4.4.1a theapproach is rejectedby theKupiec testat the95% confidence

    level.Webelievethisisduetothewindowsizeof2000observationsbeingtoolargeforthehistorical

    simulation approach at the 95% confidence level. The approach could probably have performed

    betterhadwechosenamoreappropriatewindowsize.

    Theapproachdoes,however,performbetteratthetwohigherconfidencelevels,wheretheselected

    windowsizeisbettersuited.Sincethehistoricalsimulationapproachisnonparametric,ittakesallof

    theoutliersof the returns intoaccount thatare ignoredby theparametricapproaches,using the

    normaldistribution.This isalsooneof the reasons towhy theapproachperformsbetterat these

    higherconfidencelevelscomparedtotheothertwoapproachesaswewilldiscoverlater.

    Byweighing all the returns equally, it takes time for the approach to react to fluctuations in the

    returns.ThismeansthatoldextremeoutliersinthereturnsaffectthecalculatedVaRforalongtime.

    WhendealingwithreturnsthatsufferfromextremeleptokurtosisasisthecasewiththeSTB3M,one

    endsupwithanaverageVaRthatisconsiderablyhigherthantheaveragereturn,inotherwordsthe

    fewextremeoutliershaveatoobigimpactontheVaRvaluegivenacertainwindowsizeandlevelof

    confidence.Thehistoric simulationapproach isgenerally considered toperformwellwith returns

    thatareleptokurtic,i.e.hasfattails,butthereseemstobealimitwhentheleptokurtosisbecomes

    toomuchalsoforthehistoricalsimulationapproachtohandle.Wethereforethinkthatthesizeof

    thehistoricalwindowhastobechosenwithrespectnotonlytotheconfidencelevelbutalsotothe

    kurtosis.

    Thehistorical simulation approach assumes that thedistributionof returnsdoesnot changeover

    time.Withoutthisassumption,therewouldbenoreasonatalltolookatthepastreturnsinhopeof

    predictingthefuture.Inotherwords,onecontributingcauseoferrorintheapproachcouldbethat

    thedistributionofreturnsisnotstationary.

    Over all this approach performs best on high confidence levels, and this is because the chosen

    historicalwindow size is better suited for these confidence levels. The reason that the approach

    performs relativelybetterathighconfidence intervalscompared to theother threeapproaches is

    thatitconsiderstheextremevaluesthatfallsoutofthenormaldistribution.Thiscanclearlybeseen

    inthehistogramsinchapterthreeshovingthedailyreturnsandthenormaldistribution.ForBrentoil

    andtheOMXs30,asignificantnumberofobservationscanbefoundinthetails.FortheSTB3M,most

    observationsfallinthemiddleofthenormaldistribution,causingtheapproachtooverestimatethe

    VaR.HistoricalsimulationcanberecommendedwhenestimatingVaRathighlevelsofconfidencefor

    returnsthatarestationaryandnottooleptokurtic.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    36

    4.1.2MOVINGAVERAGEAPPROACH

    ThemovingaverageapproachisthemostbasicapproachforcalculatingVaRandithasbeenaround

    thelongest.Eventhoughitiselementary,itperformsquitewellatlowerconfidencelevelsandunder

    therightconditions.Thebacktestresultsareshownintable4.1.2.

    KUPIECTESTMOVINGAVERAGEAPPROACH,30DAYLAG 95,00% 99,00% 99,90%Asset No. MIN TARGET RESULT MAX MIN TARGET RESULT MAX MIN TARGET RESULT MAXBrentOil 3259 139 163 178 187 22 33 48 43 0 3 13 6OMXs30 3215 137 161 181 184 22 32 65 43 0 3 21 6STB3M 3225 137 161 170 185 22 32 96 43 0 3 47 6

    Table4.1.2Backtestingresultswithmovingaverageapproach.

    ThemovingaverageapproachunderestimatestheVaRathigherconfidencelevelsduetothefatter

    tailofthereturnsthanassumedbythenormaldistribution.Theapproachseamstoperformwellon

    lowerconfidencelevelswherethenormalityassumptionismorevalid.Consequently,theKupiectest

    rejectsthemovingaverageapproachatthehigherconfidencelevelsandacceptstheapproachatthe

    95%level.

    Asdiscussedinthemethodchapter,thecharacteristicsoftheOMXs30returnsgiveanindicationthat

    theassumptionofnormalityisnotthatunreasonable.TheOMXs30returnsarenotthatskewedand

    thekurtosis isnot thatgreat.Despite this, theapproachperformsbetteron theBrentoil returns

    eventhoughthecharacteristicsofthosereturns looktobefurtherfromthenormalityassumption.

    This canperhapsbeexplainedby lookingat theplotof the returnsof theassets.The returns for

    BrentoilismoreskewedandleptokurticthanthoseoftheOMXs30,butthereturnsoftheBrentoil

    aremorestablewhereastheOMXs30returnsshowclearsignsofvolatilityclustering.

    The extreme volatilitypeaksof the STB3M returnsmakes forpoor compatibilitywith themoving

    average approach at higher confidence levels, which can be seen in table 4.1.2. The approach

    producesapproximately thedoubleamountofVaRbreaks, compared to theother twodata sets.

    Thisisaresultoftheoutliersoftenappearalonewithoutapriorriseinvolatilitythedaysbeforethe

    VaRbreak,as isusualwhenvolatility is clustered.This isalso the reason for the returnsbeing so

    leptokurtic.Thismeansthattheapproachhasnowayofforecastingthesesuddenrises involatility

    and thus a VaR break occurs. The day after the VaR break when the outlier passes in to the

    measurement window the VaR measure rises significantly. Since the VaR break was a single

    occurrenceitisnotfollowedbyadditionalextremeoutcomes.

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    37

    4.1.3GARCHAPPROACH

    Table4.1.3showsthebacktestingresultsoftheGARCHapproach.

    KUPIECTESTGARCH 95,00% 99,00% 99,90%Asset No. MIN TARGET RESULT MAX MIN TARGET RESULT MAX MIN TARGET RESULT MAXBrentOil 3259 139 163 156 187 22 33 43 43 0 3 16 6OMXs30 3215 137 161 161 184 22 32 47 43 0 3 17 6STB3M 3225 137 161 95 185 22 32 38 43 0 3 19 6

    Table4.1.3BacktestingresultswithGARCHapproach.

    TheGARCHapproachproducesgood results for the95percentconfidence levelwithexceptionof

    theSTB3M.Theresultsforthe99%confidence levelarealsoreasonable.Theapproachproducesa

    bittoomanyVaRbreaksasexpectedfromaapproachbasedonthenormaldistribution.Thebetter

    performanceoftheGARCHapproachonthe99%confidencelevel,comparedtothemovingaverage

    approach, is as we interpret it solely due to the GARCH approaches more advanced way of

    estimating the daily variance. The GARCH approach does however also suffer from the same

    deficiency as themoving average approachwhich is that it assumes the returns to be normally

    distributed. This becomes apparent at the 99.9% confidence level, where the GARCH approach

    constantlyproducedtomanyVaRbreakstobeacceptedbytheKupiectest.

    TheKupiectestrejectstheapproachforalloftheassetsatthe99.9%level.Atthe99%level,theonly

    asset forwhich theapproachwas rejectedwas theOMXs30.Thiswassurprisingat first,since the

    GARCHapproachperformedsowellontheOMXs30atthe95%confidencelevel.Thereasontowhy

    the approach produced too many VaR breaks is probably that the assumption of normality is

    acceptable at lower confidence levels but not at higher ones. The further out in the tail of the

    distributionof returnswecome, the lessacceptable theassumptionofnormalitybecomes.This is

    howeverconflictedby the fact that theKupiec testaccepted theapproachat the99%confidence

    level for the Brent Oil and STB3M returns. This can be explained by the observation that the

    approach produces fewerVaR breaks than the target for these returns at the 95% level, i.e. the

    approach produces to high VaR values. At the 99% level itwould seem that the assumption of

    normality that generally causes the approach to produce toomany VaR breaks is countered by

    another error in the approach, which cancels both errors out, resulting in the approach being

    acceptedbytheKupiectest.

    Thenextquestion is to figureoutwhat the error in the approach is that results in the approach

    producingtoofewVaRbreaksatthe95%confidencelevelforBrentOilandSTB3M.Wereasonthatit

    is yet again the assumption of normality that is throwing our calculations off. The maximum

    likelihoodestimationformulathatweusedtoestimatethevaluesof,andalsoassumedthat

    the returns that itwasevaluatingwerenormal.As argued in themethod chapter, the returnsof

    BrentoilandSTB3Mexhibitedthecharacteristicsleastcompatiblewiththenormaldistribution.We

  • AnempiricalevaluationofValueatRiskGustafsson&Lundberg

    38

    thereforesuspectthattheassumptionofnormalityhascausedtheMLEfunctiontoproducevalues

    of,and thatare slightlyoff theiroptimum,which in turncouldbe thecauseof theGARCH

    functionproducingtoofewVaRbreaks.Thisargumentissupportedbylookingatthegraphsofthe

    valuesof,andinappendix3forallofourthreeassets.Thegraphsshowhowthevaluesof,

    and changeasweestimate themwitha rollingwindowof theprevious2000observations.The

    values for theOMXs30 returns are stablewhereas the values for the two other assets fluctuate

    somewhat,indicatingthattheMLEfunctionmightnotfunctionproperlywiththereturnsasaresult

    oftheassumptionsofnormality.

    Thesetwoerrorsbothspringfromthenormalityassumption,butseemtobychanceaffecttheVaR

    inoppositedirection,causingtheapproachtoperformbetterthanexpectedatthe99%confidence

    level.SoeventhoughtheapproachisacceptedbytheKupiectestforBrentoilandSTB30atthe99%

    confidencelevelwehaveourreservationsofwhethertheoutcomereallyisaresultoftheapproach

    performingwellorifitisjustarandomoccurrence.

    Altogether,we feel that theGARCHapproachdoesagood jobofhandlingvolatilityclusteringand

    estimatingavarianceforecasts.Wedo,however,feelthattheMLEfunctionthatwehaveuseddoes

    notworkproficientlyandthatitwouldhavetobeadjustedtobetterfittheassetsreturnsinorderto

    furtherincreasetheperformanceoftheGARCHapproach.

    According to Goorbergh & Vlaar the most important return characteristic to account for when

    calculatingVaRisvolatilityclustering.Wefindthatvolatilityclusteringindeedisimportantbutdonot

    agree that it is themost important characteristic.Aswe have shown in this chapter themoving

    averageapproachperformswellatthe95%confidence leveleventhough itdoesnottakevolatility

    clustering into consideration. In our opinion the most important return characteristic is the

    distribution of the returns and howwell theymatch the distribution assumed by the approach.

    Volatilityclusteringisaccordingtoourresultsthesecondmostimportantcharacteristic.

    4.2EXACTNESS&SIMPLICITYThe tradeoff between exactness and simplicity is an interesting but hard dilemma to solve or to

    decide about. People will argue that if amodel do not provide exact and accurate answers or

    estimations,theyarenotuseful.Somemodelshavetoprovideresultsornumbersthat istoa100

    percentcorrect,otherwise itcan result in severeoutcomes.A straight forwardexample ismodels

    usedintheconstructionofairplanes