FEM Stress Concepts

download FEM Stress Concepts

of 16

Transcript of FEM Stress Concepts

  • 7/29/2019 FEM Stress Concepts

    1/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 29

    3 ConceptsofStressAnalysis3.1 Introduction

    Heretheconceptsofstressanalysiswillbestatedinafiniteelementcontext.Thatmeansthattheprimary

    unknownwillbethe(generalized)displacements.Allotheritemsofinterestwillmainlydependonthe

    gradientofthedisplacementsandthereforewillbelessaccuratethanthedisplacements.Stressanalysis

    coversseveralcommonspecialcasestobementionedlater.Hereonlytwoformulationswillbeconsidered

    initially.Theyarethesolidcontinuumformandtheshellform.BothareofferedinSWSimulation.Theydiffer

    inthatthecontinuumformutilizesonlydisplacementvectors,whiletheshellformutilizesdisplacement

    vectorsandinfinitesimalrotationvectorsattheelementnodes.

    AsillustratedinFigure31,thesolidelementshavethreetranslationaldegreesoffreedom(DOF)asnodal

    unknowns,foratotalof12or30DOF.Theshellelementshavethreetranslationaldegreesoffreedomaswell

    asthreerotationaldegreesoffreedom,foratotalof18or36DOF.ThedifferenceinDOFtypesmeansthatmomentsorcouplescanonlybeapplieddirectlytoshellmodels.Solidelementsrequirethatcouplesbe

    indirectlyappliedbyspecifyingapairofequivalentpressuredistributions,oranequivalentpairofequaland

    oppositeforcesattwonodesonthebody.

    Shellnode Solidnode

    Figure31Nodaldegreesoffreedomforframesandshells;solidsandtrusses

    Stresstransfertakesplacewithin,andon,theboundariesofasolidbody.Thedisplacementvector,u,atany

    pointinthecontinuumbodyhastheunitsofmeters[m],anditscomponentsaretheprimaryunknowns.The

    componentsofdisplacementareusuallycalledu,v,andwinthex,y,andzdirections,respectively.Therefore,

    theyimplytheexistenceofeachother,u(u,v,w).Allthedisplacementcomponentsvaryoverspace.Asin

    theheattransfercase(coveredlater),thegradientsofthosecomponentsareneededbutonlyasan

    intermediatequantity.Thedisplacementgradientshavetheunitsof[m/m],orareconsidereddimensionless.

    Unliketheheattransfercasewherethegradientisuseddirectly,instressanalysisthemultiplecomponentsof

    thedisplacementgradientsarecombinedintoalternateformscalledstrains.ThestrainshavegeometricalinterpretationsthataresummarizedinFigure32for1Dand2Dgeometry.

    In1D,thenormalstrainisjusttheratioofthechangeinlengthovertheoriginallength,x=u/x.In2Dand

    3D,bothnormalstrainsandshearstrainsexist.Thenormalstrainsinvolveonlythepartofthegradientterms

    paralleltothedisplacementcomponent.In2Dtheyarex=u/xandy=v/y.AsseeninFigure32(b),

    theywouldcauseachangeinvolume,butnotachangeinshapeoftherectangulardifferentialelement.A

    shearstraincausesachangeinshape.Thetotalanglechange(from90degrees)isusedastheengineering

    definitionoftheshearstrain.Theshearstrainsinvolveacombinationofthecomponentsofthegradientthat

  • 7/29/2019 FEM Stress Concepts

    2/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 30

    areperpendiculartothedisplacementcomponent.In2D,theengineeringshearstrainis=(u/y+v/x),asseeninFigure32(c).Strainhasonecomponentin1D,threecomponentsin2D,andsixcomponentsin

    3D.The2Dstrainsarecommonlywrittenasacolumnvectorinfiniteelementanalysis,=(xy)T.

    Figure32Geometryofnormalstrain(a)1D,(b)2D,and(c)2Dshearstrain

    Stressisameasureoftheforceperunitareaactingonaplanepassingthroughthepointofinterestinabody.

    Theabovegeometricaldata(thestrains)willbemultipliedbymaterialpropertiestodefineanewphysical

    quantity,thestress,whichisdirectlyproportionaltothestrains.ThisisknownasHookesLaw:=E,(see

    Figure33)wherethesquarematerialmatrix,E,containstheelasticmodulus,andPoissonsratioofthe

    material.The2Dstressesarewrittenasacorrespondingcolumnvector,=(xy)T.Unlessstatedotherwise,theapplicationsillustratedhereareassumetobeinthelinearrangeofamaterialproperty.

    The2Dand3DstresscomponentsareshowninFigure34.Thenormalandshearstressesrepresentthe

    normalforceperunitareaandthetangentialforcesperunitarea,respectively.Theyhavetheunitsof

    [N/m^2],or[Pa],butareusuallygivenin[MPa].Thegeneralizationsoftheengineeringstraindefinitionsare

    seeninFigure35.Thestrainenergy(orpotentialenergy)storedinthedifferentialmaterialelementishalf

    thescalarproductofthestressesandthestrains.Errorestimatesfromstressstudiesarebasedonprimarily

    onthestrainenergy(orstrainenergydensity).

    Figure33Hooke'sLawforlinearstressstrain,=E

  • 7/29/2019 FEM Stress Concepts

    3/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 31

    Figure34Stresscomponentsin2D(left)and3D

    Figure35Graphicalrepresentationsof3Dnormalstrains(a)andshearstrains

    3.2 Axialbarexample

    Thesimplestavailablestressexampleisanaxialbar,showninFigure36,restrainedatoneendandsubjected

    toanaxialload,P,attheotherendandtheweightisneglected.Letthelengthandareaofthebarbedenoted

    byL,andA,respectively.ItsmaterialhasanelasticmodulusofE.Theaxialdisplacement,u(x),varieslinearly

  • 7/29/2019 FEM Stress Concepts

    4/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 32

    fromzeroatthesupporttoamaximumofattheloadpoint.Thatis,u(x)=x/L,sotheaxialstrainisx=u

    /x=/L,whichisaconstant.Likewise,theaxialstressiseverywhereconstant,=E=E/Lwhichinthe

    casesimplyreducesto=P/A.Likemanyothermorecomplicatedproblems,thestressheredoesnot

    dependonthematerialproperties,butthedisplacementalwaysdoes, .Youshouldalwayscarefullycheckboththedeflectionsandstresseswhenvalidatingafiniteelementsolution.

    Sincetheassumeddisplacementislinearhere,anyfiniteelementmodelwouldgiveexactdeflectionandthe

    constantstressresults.However,iftheloadhadbeenthedistributedbarweighttheexactdisplacement

    wouldbequadraticinxandthestresswouldbelinearinx.Then,aquadraticelementmeshwouldgiveexact

    stressesanddisplacementseverywhere,butalinearelementmeshwouldnot.

    Theelasticbarisoftenmodeledasalinearspring.Inintroductorymechanicsofmaterialstheaxialstiffnessof

    abarisdefinedask=EA/L,wherethebarhasalengthofL,anareaA,andisconstructedofamaterialelastic

    modulusofE.Thentheabovebardisplacementcanbewrittenas ,likealinearspring.

    =P/A,=PL/EA

    Figure36Alinearlyelasticbarwithanaxialload

    3.3 StructuralmechanicsModernstructuralanalysisreliesextensivelyonthefiniteelementmethod.Themostpopularintegral

    formulation,basedonthevariationalcalculusofEuler,isthePrincipleofMinimumTotalPotentialEnergy.

    Basically,itstatesthatthedisplacementfieldthatsatisfiestheessentialdisplacementboundaryconditionsand

    minimizesthetotalpotentialenergyistheonethatcorrespondstothestateofstaticequilibrium.Thisimplies

    thatdisplacementsareourprimaryunknowns.Theywillbeinterpolatedinspaceaswilltheirderivatives,and

    thestrains.Thetotalpotentialenergy,,isthestrainenergy,U,ofthestructureminusthemechanicalwork,

    W,donebytheexternalforces.Fromintroductorymechanics,themechanicalwork,W,donebyaforceisthe

    scalardotproductoftheforcevector,F,andthedisplacementvector,u,atitspointofapplication.

    Thewellknownlinearelasticspringwillbereviewedtoillustratetheconceptofobtainingequilibrium

    equationsfromanenergyformulation.Consideralinearspring,ofstiffnessk,thathasanappliedforce,F,at

    thefree(right)end,andisrestrainedfromdisplacementattheother(left)end.Thefreeendundergoesa

    displacementof.Theworkdonebythesingleforceis

    .Thespringstorespotentialenergyduetoitsdeformation(changeinlength).Herewecallthatstrainenergy.

    Thatstoredenergyisgivenby

  • 7/29/2019 FEM Stress Concepts

    5/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 33

    Therefore,thetotalpotentialenergyfortheloadedspringis

    Theequationofequilibriumisobtainedbyminimizingthistotalpotentialenergywithrespecttotheunknown

    displacement,.Thatis,

    Thissimplifiestothecommonsinglescalarequation

    k=F,whichisthewellknownequilibriumequationforalinearspring.Thisexamplewasslightlysimplified,sincewe

    startedwiththeconditionthattheleftendofthespringhadnodisplacement(anessentialorDirichlet

    boundarycondition).Nextwewillconsideraspringwhereeitherendcanbefixedorfreetomove.Thiswill

    requirethatyoubothminimizethetotalpotentialenergyandimposethegivendisplacementrestraint.

    Figure37Theclassicandgenerallinearspringelement

    Nowthespringmodelhastwoenddisplacements,1and2,andtwoassociatedaxialforces,F1andF2.The

    netdeformationofthebaris=21.Denotethetotalvectorofdisplacementcomponentsas

    andtheassociatedvectorofforcesas

    Thenthemechanicalworkdoneonthespringis

    1F1+2F2Thenthespring'sstrainenergyis

    ,

    wherethespringstiffnessmatrixisfoundtobe

    .Thetotalpotentialenergy,,becomes

    .

    Notethateachtermhastheunitsofenergy,i.e.forcetimeslength.Thematrixequationsofequilibriumcome

    fromsatisfyingthedisplacementrestraintandtheminimizationofthetotalpotentialenergywithrespectto

  • 7/29/2019 FEM Stress Concepts

    6/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 34

    eachandeverydisplacementcomponent.Theminimizationrequiresthatthepartialderivativeofallthe

    displacementsvanish:

    ,or

    .

    Thatrepresentsthefirststagesystemofalgebraicequationsofequilibriumfortheelasticsystem:

    .Thesetwosymmetricequationsdonotyetreflectthepresenceofanyessentialboundaryconditiononthe

    displacements.Therefore,nouniquesolutionexistsforthetwodisplacementsduetoappliedforces(theaxial

    RBMhasnotbeeneliminated).Mathematically,thisisclearbecausethesquarematrixhasazerodeterminate

    andcannotbeinverted.Ifallofthedisplacementsareknown,youcanfindtheappliedforces.Forexample,if

    youhadarigidbodytranslationof1=2=CwhereCisanarbitraryconstantyouclearlygetF1=F2=0.Ifyou

    stretchthespringbytwoequalandoppositedisplacements;1=C,2=Candthefirstrowofthematrix

    equationsgivesF1=2kC.ThesecondrowgivesF2=2kC,whichisequalandoppositetoF1,asexpected.

    Usually,youknowsomeofthedisplacementsandsomeoftheforces.Thenyouhavetomanipulatethematrix

    equilibriumsystemtoputitintheformofastandardlinearalgebraicsystemwhereaknownsquarematrix

    multipliedbyavectorofunknownsisequaltoaknownvector: .3.4 Equilibriumofrestrainedsystems

    Liketheoriginalspringproblem,nowassumetherightforce,F2,isknown,andtheleftdisplacement,,hasagiven(restrained)value,say.Then,theabovematrixequationrepresentstwouniqueequilibriumequationsfortwounknowns,thedisplacement2andthereactionforce.Thatmakesthislinearalgebraicsystemlookstrangebecausethereareunknownsonbothsidesoftheequals,=.Youcould(butusuallydo

    not)correctthatbyrearrangingtheequationsystem(notdoneinpractice).First,multiplythefirstcolumnof

    thestiffnessmatrixbytheknownvalueandmoveittotherightside:

    andthenmovetheunknownreaction,,totheleftside

    .

    Nowyouhavetheusualformofalinearsystemofequationswheretherightsideisaknownvectorandthe

    leftsideistheproductofaknownsquarematrixtimesavectorofunknowns.Sinceboththeenergy

    minimizationandthedisplacementrestraintshavebeencombinedyounowhaveauniquesetofequationsfor

    theunknowndisplacementsandtheunknownrestraintreactions.Invertingthe2by2matrixgivestheexact

    solution:

    sothatF1F2always,asexpected.If=0,asoriginallystated,thentheenddisplacementis .Thissortofrearrangementofthematrixtermsisnotdoneinpracticebecauseitdestroysthesymmetryofthe

    originalequations.Algorithmsfornumericallysolvingsuchsystemsrelyonsymmetrytoreduceboththe

    requiredstoragesizeandtheoperationscount.Theyareveryimportantwhensolvingthousandsofequations.

  • 7/29/2019 FEM Stress Concepts

    7/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 35

    3.5 Generalequilibriummatrixpartitions

    Theabovesmallexamplegivesinsighttothemostgeneralformofthealgebraicsystemresultingfromonly

    minimizingthetotalpotentialenergy:asingularmatrixsystemwithmoreunknownsthanequations.Thatis

    becausethereisnotauniqueequilibriumsolutiontotheproblemuntilyoualsoapplytheessential(Dirichlet)

    boundaryconditionsonthedisplacements.Thealgebraicsystemcanbewritteninageneralpartitionedmatrix

    formthat

    more

    clearly

    defines

    what

    must

    be

    done

    toreduce

    the

    system

    toasolvable

    form

    by

    utilizing

    essentialboundaryconditions.

    Foranelasticsystemofanysize,thefull,symmetricmatrixequationsobtainedbyminimizingtheenergycan

    alwaysberearrangedintothefollowingpartitionedmatrixform:

    whereurepresentstheunknownnodaldisplacements,andgrepresentsthegivenessentialboundaryvalues(restraints,orfixtures)oftheotherdisplacements.ThestiffnesssubmatricesKuuandKggaresquare,whereasKugandKguarerectangular.InafiniteelementformulationallofthecoefficientsintheKmatricesareknown.TheresultantappliednodalloadsareinsubvectorFgandtheFutermsrepresenttheunknowngeneralized

    reactionsforcesassociatedwithessentialboundaryconditions.ThismeansthataftertheenforcementoftheessentialboundaryconditionstheactualremainingunknownsareuandFu.Onlythendoesthenetnumberofunknownscorrespondtothenumberofequations.But,theymustberearrangedbeforealltheremaining

    unknownscanbecomputed.

    Here,forsimplicity,ithasbeenassumedthattheequationshavebeennumberedinamannerthatplacesrows

    associatedwiththegivendisplacements(essentialboundaryconditions)attheendofthesystemequations.

    Theabovematrixrelationscanberewrittenastwosetsofmatrixidentities:

    .

    Thefirstidentitycanbesolvedfortheunknowndisplacements,,byputtingitinthestandardlinearequationformbymovingtheknownproducttotherightside.Mostbooksonnumericalanalysisassumethatyouhavereducedthesystemtothissmaller,nonsingularform()beforetryingtosolvethesystem.Invertingthesmallernonsingularsquarematrixyieldstheuniqueequilibriumdisplacementfield:

    .Theremainingreactionforcescanthenberecovered,ifdesired,fromthesecondmatrixidentity:

    .Inmostapplications,thesereactiondatahavephysicalmeaningsthatareimportantintheirownright,or

    usefulinvalidatingthesolution.However,thispartofthecalculationisoptional.

    3.6 StructuralComponentFailure

    Structuralcomponentscanbedeterminedtofailbyvariousmodesdeterminedbybuckling,deflection,natural

    frequency,strain,orstress.Strainorstressfailurecriteriaaredifferentdependingonwhethertheyare

    consideredasbrittleorductilematerials.Thedifferencebetweenbrittleandductilematerialbehaviorsis

    determinedbytheirresponsetoauniaxialstressstraintest,asinFigure38.Youneedtoknowwhatclassof

    materialisbeingused.SWSimulation,andmostfiniteelementsystems,defaulttoassumingaductilematerial

  • 7/29/2019 FEM Stress Concepts

    8/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 36

    anddisplaythedistortionalenergyfailuretheorywhichisusuallycalledtheVonMisesstress,oreffective

    stress,eventhoughitisactuallyascalar.Abrittlematerialrequirestheuseofahigherfactorofsafety.

    Figure38Axialstressstrainexperimentalresults

    3.7 FactorofSafety

    Allaspectsofadesignhavesomedegreeofuncertainty,asdoeshowthedesignwillactuallybeutilized.For

    allthereasonscitedabove,youmustalwaysemployaFactorofSafety(FOS).Somedesignersrefertoitasthe

    factorofignorance.RememberthataFOSofunitymeansthatfailureiseminent;itdoesnotmeanthatapart

    orassemblyissafe.Inpracticeyoushouldtrytojustify1

  • 7/29/2019 FEM Stress Concepts

    9/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 37

    6 GeometryofMesh Defeaturingcanintroduceerrors.Elementsizesandlocation

    areimportant.Lookinglikethepartisnotenough.

    7 Loading Areloadspreciseordotheycomefromwaveaction,etc.

    8 Materialdata Isthematerialwellknown,orvalidatedbytests

    9 Reliability Mustthereliabilityofthedesignbehigh

    10 Restraints Designsaregreatlyinfluencedbyassumedsupports

    11 Stresses Wasstressconcentrationconsidered,orshockloads

    3.8 ElementTypeSelection

    Evenwithtodaysadvancesincomputingpoweryouseemnevertohaveenoughcomputationalresourcesto

    solvealltheproblemsthatpresentthemselves.Frequentlysolidelementsarenotthebestchoicefor

    computationalefficiency.Theanalystsshouldlearnwhenotherelementtypescanbevalidorwhentheycan

    beutilizedtovalidateastudycarriedoutwithadifferentelementtype.SWSimulationoffersasmallelement

    librarythatincludesbars,trusses,beams,frames,thinplatesandshells,thickplatesandshells,andsolid

    elements.Therearealsospecialconnectorelementscalledrigidlinksormultipointconstraints.

    Theshellsandsolidelementsareconsideredtobecontinuumelements.Theplateelementsareaspecialcase

    offlatshellswithnoinitialcurvature.Solidelementformulationsincludethestressesinalldirections.Shells

    areamathematicalsimplificationofsolidsofspecialshape.Thinshells(likethinbeams)donotconsiderthe

    stressinthedirectionperpendiculartotheshellsurface.Thickshells(likedeepbeams)doconsiderthe

    stressesthroughthethicknessontheshell,inthedirectionnormaltothemiddlesurface,andaccountfor

    transversesheardeformations.

    LethdenotethetypicalthicknessofacomponentwhileitstypicallengthisdenotedbyL.Thethicknessto

    lengthratio,h/L,givessomeguidanceastowhenaparticularelementtypeisvalidforananalysis.Whenh/Lis

    largesheardeformationisatitsmaximumimportanceandyoushouldbeusingsolidelements.Conversely,

    whenh/L

    isvery

    small

    transverse

    shear

    deformation

    isnot

    important

    and

    thin

    shell

    elements

    are

    probably

    the

    mostcosteffectiveelementchoice.Intheintermediaterangeofh/Lthethickshellelementswillbemostcost

    effective.Thethickshellsareextensionsofthinshellelementsthatcontainadditionalstrainenergyterms.

    Theoverlappingh/LrangesforthethreecontinuumelementtypesaresuggestedinFigure39.Thethickness

    ofthelinessuggeststhoseregionswhereaparticularelementtypeisgenerallyconsideredtobethepreferred

    elementofchoice.Theoverlappingrangessuggestwhereonetypeofelementcalculationcanbeusedto

    validateacalculatedresultobtainedwithadifferentelementtype.Validationcalculationsincludethe

    differentapproachestoboundaryconditionsandloadsrequiredbydifferentelementformulations.Theyalso

    canindirectlycheckthatauseractuallyunderstandshowtoutilizeafiniteelementcode.

  • 7/29/2019 FEM Stress Concepts

    10/16

    FEAConcept

    Draft

    3.9 SWSThesymbolsu

    Figure310.

    T

    elementsolut

    representsth

    areoftenrefe

    displacement

    enoughrestra

    Al

    Forsimplicit

    Thatis,they

    thetypeofr

    frequentlye

    understand

    s:SWSimul

    13.0.Copyri

    imulationsedinSWSim

    hesymbols

    fo

    ionsarebased

    mechanical

    rredtoasgen

    DOFsforthe

    intstopreven

    odeofsolid

    lthreedispla

    F

    manyfinite

    enforceanI

    straint,asw

    counterthe

    ymmetry

    pla

    Displacem

    Figu

    tionOvervie

    ght2009.All

    Figure3

    Fixtureaulationtorep

    rthe

    correspo

    onworkener

    orkdoneatt

    ralizeddispla

    solidnodes(to

    tanymodelfr

    ortrusselem

    cementsare

    igure310Fix

    elementexa

    movableco

    ellaswhere

    commonco

    ne

    restraints

    nt

    re311Singl

    rightsreser

    9Overlappin

    dLoadSesentasingle

    ndingforces

    a

    gyrelations,t

    epoint.Wh

    cements.The

    p)andshelln

    omundergoin

    ent:

    zero.

    edrestraints

    plesincorr

    nditionfors

    thepartisre

    ditionsofsy

    for

    solids

    an

    Force

    components

    ed.

    gvalidranges

    mbolstranslational

    ndmoment

    lo

    heabovewor

    namodelcan

    SWSimulatio

    desareseen

    garigidbody

    mbolsforsol

    ctlyapplyco

    lidsoraFix

    strainedisof

    mmetryora

    d

    shells.

    Ro

    ymbolsforre

    ofelementt

    androtational

    adingsare

    sh

    correspondi

    involveeithe

    nodalsymbo

    inFigure311.

    ranslationor

    Nodeof

    Allthreedi

    ro

    ids(top)and

    mpleterestr

    dcondition

    tenthemost

    tisymmetry

    tation

    straints(fixtu

    pes

    DOFatanod

    wnpink

    in

    th

    ngmeansth

    translations

    lsfortheunk

    .Youalmosta

    rigidbodyrota

    frameorshel

    splacements

    tationsarez

    hellnodes

    aintsatafac

    orshells.Ac

    difficultpart

    restraints.Y

    Coup

    es)andloads

    J

    3

    areshowngr

    tfigure.

    Sinc

    ttheirdotpr

    rrotationsas

    owngenerali

    lwaysmustsu

    tion.

    lelement:

    andallthree

    ro.

    ,edgeorno

    tuallydeter

    ofananalys

    oushouldu

    le

    .E.Akin

    8

    eenin

    finite

    duct

    DOFthey

    ed

    pply

    de.

    ining

    is.You

    der

  • 7/29/2019 FEM Stress Concepts

    11/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 39

    3.10SymmetryDOFonaPlane

    Aplaneofsymmetryisflatandhasmirrorimagegeometry,materialproperties,loading,andrestraints.

    Symmetryrestraints\iareverycommonforsolidsandforshells.Figure312showsthatforbothsolidsand

    shells,thedisplacementperpendiculartothesymmetryplaneiszero.Shellshavetheadditionalconditionthat

    theinplanecomponentofitsrotationvectoriszero.Ofcourse,theflatsymmetryplaneconditionscanbe

    statedinadifferent

    way.

    For

    asolid

    element

    translational

    displacements

    parallel

    tothe

    symmetry

    plane

    are

    allowed.Forashellelementrotationisallowedaboutanaxisperpendiculartothesymmetryplaneandits

    translationaldisplacementsparalleltothesymmetryplanearealsoallowed.

    Nodeofasolidortrusselement:

    Displacementnormaltothesymmetryplaneiszero.

    Nodeofaframeorshellelement:

    Displacementnormaltothesymmetryplaneandtwo

    rotationsparalleltoitarezero.

    Figure312Symmetryrequireszeronormaldisplacement,andzeroinplanerotation

    3.11AvailableLoading(Source)Options

    Mostfiniteelementsystemshaveawiderangeofmechanicalloads(orsources)thatcanbeappliedtopoints,

    curves,surfaces,andvolumes.ThemechanicalloadingterminologyusedinSWSimulationisinTable32.

    Mostofthoseloadingoptionsareutilizedinlaterexampleapplications.

    Table32Mechanicalloads(sources)thatapplytotheactivestructuralstudy

    LoadType Description

    BearingLoad Nonuniformbearingloadonacylindricalface

    CentrifugalForce Radialcentrifugalbodyforcesfortheangularvelocityand/ortangential

    bodyforcesfromtheangularaccelerationaboutanaxis

    Force Resultantforce,ormoment,atavertex,curve,orsurface

    Gravity Gravity,orlinearaccelerationvector,bodyforceloading

    Pressure Apressurehavingnormaland/ortangentialcomponentsactingona

    selectedsurface

    RemoteLoad/

    Mass

    Allowsloadsormassesremotefromtheparttobeappliedtothepart

    bytreatingtheomittedmaterialasrigid

    Temperature Temperaturechangeatselectedcurves,surfaces,orbodies(see

    thermalstudiesformorerealistictemperaturetransfers)

    3.12AvailableMaterialInputsforStressStudies

    Mostapplicationsinvolvetheuseofisotropic(directionindependent)materials.Theavailablemechanical

    propertiesfortheminSWSimulationarelistedinTable33.Itisbecomingmorecommontohavedesigns

    utilizinganisotropic(directiondependent)materials.Themostcommonspecialcaseofanisotropicmaterialsis

    theorthotropicmaterial.Anyanisotropicmaterialhasitspropertiesinputrelativetotheprincipaldirectionsof

    thematerial.Thatmeansyoumustconstructtheprincipalmaterialdirectionsreferenceplaneorcoordinate

    axesbeforeenteringorthotropicdata.Mechanicalorthotropicpropertiesaresubjecttosometheoretical

  • 7/29/2019 FEM Stress Concepts

    12/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 40

    relationshipsthatphysicallypossiblematerialsmustsatisfy(suchaspositivestrainenergy).Thus,

    experimentalmaterialpropertiesdatamayrequireadjustmentbeforebeingacceptedbySWSimulation.

    Table33Isotropicmechanicalproperties

    Symbol Label Item

    E

    EX

    Elastic

    modulus

    (Youngs

    modulus)

    NUXY PoissonsratioG GXY Shearmodulus

    DENS Massdensity SIGXT Tensilestrength(Ultimatestress) SIGXC Compressionstresslimit SIGYLD Yieldstress(yieldstrength) ALPX Coefficientofthermalexpansion

    Table34Orthotropicmechanicalpropertiesinprincipalmaterialdirection

    Symbol Label Item

    Ex EX ElasticmodulusinmaterialXdirection

    Ey EY ElasticmodulusinmaterialYdirection

    Ez EZ ElasticmodulusinmaterialZdirection

    xy NUXY PoissonsratioinmaterialXYdirectionsyz NUYZ PoissonsratioinmaterialYZdirectionsxz NUXZ PoissonsratioinmaterialXZdirectionsGxy GXY ShearmodulusinmaterialXYdirections

    Gyz GYZ ShearmodulusinmaterialYZdirections

    Gxz GXZ ShearmodulusinmaterialXZdirections

    DENS Massdensity SIGXT Tensilestrength(Ultimatestress) SIGXC Compressionstresslimit SIGYLD Yieldstress(Yieldstrength) ALPX ThermalexpansioncoefficientinmaterialX ALPY ThermalexpansioncoefficientinmaterialY ALPZ ThermalexpansioncoefficientinmaterialZNote:NUXY,NUYZ,andNUXZarenotindependent

    Partscanalsobemadefromorthotropicmaterials(asshownlater).However,theirutilizationismost

    commoninlaminatedmaterials(laminates)wheretheyeachplylayerhasacontrollableprincipalmaterial

    direction.TheconceptforconstructinglaminatesfromorthotropicmaterialplysisshowninFigure.

    Understandingthefailuremodesoflaminatesusuallyrequiresspecialstudy.

  • 7/29/2019 FEM Stress Concepts

    13/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 41

    Figure313Exampleofafourplylaminatematerial

    3.13StressStudyOutputs

    Asuccessfulrunofastudywillcreatealargeamountofadditionaloutputresultsthatcanbedisplayedand/or

    listedinthepostprocessingphase.DisplacementsaretheprimaryunknowninaSWSimulationstressstudy.

    Theavailabledisplacementvectorcomponentsarecited inTable35andTable36,alongwiththereactions

    theycreateifthedisplacementisusedasarestraint.Thedisplacementscanbeplottedasvectordisplays,or

    contourvalues.Theycanalsobetransformedtocylindricalorsphericalcomponents.

    Table35Outputresultsforsolids,shells,andtrusses

    Symbol Label Item Symbol Label Item

    Ux UX Displacement(Xdirection) Rx RFX Reactionforce(Xdirection)

    Uy UY Displacement(Ydirection) Ry RFY: Reactionforce(Ydirection)

    Uz UZ Displacement(Zdirection) Rz RFZ Reactionforce(Zdirection)

    Ur URES: Resultantdisplacement

    magnitude

    Rr RFRES Resultantreactionforce

    magnitude

    Table36Additionalprimaryresultsforbeams,plates,andshellsSymbol Label Item Symbol Label Item

    x RX Rotation(Xdirection) Mx RMX: Reactionmoment(Xdirection)y RY Rotation(Ydirection) My RMY Reactionmoment(Ydirection)z RZ Rotation(Zdirection) Mz RMZ: Reactionmoment(Zdirection) Mr MRESR Resultantreactionmoment

    magnitude

    The strains and stresses are computed from the displacements. The stress components available at an

    elementcentroidoraveragedatanodearegiven inTable37. Thesixcomponents listedonthe left inthat

    tablegivethegeneralstressatapoint(i.e.,anodeoranelementcentroid).Thosesixvaluesareillustratedon

    theleftofFigure314.TheycanbeusedtocomputethescalarvonMisesfailurecriterion.Theycanalsobe

    usedtosolveaneigenvalueproblemfortheprincipalnormalstressesandtheirdirections,whichareshownontherightofFigure314. Themaximumshearstressoccursonaplanewhosenormal is45degreesfromthe

    direction of P1. The principal normal stresses can also be used to compute the scalar vonMises failure

    criterion.

    ThevonMiseseffectivestressiscomparedtothematerialyieldstressforductilematerials.Failureispredicted

    tooccur(basedonthedistortionalenergystoredinthematerial)whenthevonMisesvaluereachestheyield

    stress.Themaximumshearstressispredictedtocausefailurewhenitreacheshalftheyieldstress.SW

    Simulationusestheshearstressintensitywhichisalsocomparedtotheyieldstresstodeterminefailure

  • 7/29/2019 FEM Stress Concepts

    14/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 42

    (becauseitistwicethemaximumshearstress).ThefirstfourvaluesontherightsideofTable37areoften

    representedgraphicallyinmechanicsasa3DMohrscircle(seeninFigure315).

    Table37:Nodalandelementstressresults

    Symbol Label Item Symbol Label Item

    x SX Normalstressparalleltoxaxis 1 P1 1stprincipalnormalstressy SY Normalstressparalleltoyaxis 2 P2 2ndprincipalnormalstressz SZ Normalstressparalleltozaxis 3 P3 3rdprincipalnormalstressxy TXY ShearinYdirectiononplanenormaltoxaxis

    INT Stressintensity(P1P3),twicethemaximumshearstress

    xz TXZ ShearinZdirectiononplanenormaltoxaxis

    yz TYZ ShearinZdirectiononplanenormaltozaxis

    vm VON vonMisesstress(distortionalenergyfailurecriterion)

    Figure314Thestresstensor(left)anditsprincipalnormalvalues

    Figure315ThethreedimensionalMohr'scircleofstressyieldtheprincipalstresses

  • 7/29/2019 FEM Stress Concepts

    15/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 43

    Ifdesired,youcanplotallthreeprincipalcomponentsatonce.Thethreeprincipalnormalstressesatanode

    orelementcentercanberepresentedbyanellipsoid.Thethreeradiioftheellipsoidrepresentthemagnitudes

    ofthethreeprincipalnormalstresscomponents,P1,P2,andP3.Thesignofthestresses(tensionor

    compression)arerepresentedbyarrows.ThecolorcodeofthesurfaceisbasedonthevonMisesvalueatthe

    point,ascalarquantity.Ifoneoftheprincipalstressesiszero,theellipsoidbecomesaplanarellipse.Ifthe

    threeprincipalstresseshavethesamemagnitude,theellipsoidbecomesasphere.Inthecaseofsimple

    uniaxialtensilestress,theellipsoidbecomesaline.

    Figure316AprincipalstressellipsoidcoloredbyvonMisesvalue

    TheavailablenodaloutputresultsinTable37areobtainedbyaveragingtheelementvaluesthatsurroundthe

    node.Youcanalsoviewthemasconstantvaluesattheelementcentroids.Thatcangiveyouinsighttothe

    smoothnessoftheapproximation.Forbrittlematerialsyoucanalsobeinterestedintheelementstrain

    results.TheyarelistedinTable38.Table39showsthatyoucanalsoviewtheelementerrorestimate,ERR

    whichisused

    todirect

    adaptive

    solutions,

    and

    the

    contact

    pressure

    from

    an

    iterative

    contact

    analysis.

    Additionaloutputsareavailableifyouconductanautomatedadaptiveanalysistoreducethe(mathematical)

    errortoaspecificvalue,ortorecoverresultsfromthedevelopedpressurebetweencontactingsurfaces.They

    arelistedinTable39.

    Table38Elementcentroidalstraincomponentresults

    Sym Label Item Sym Label Item

    x EPSX Normalstrainparalleltoxaxis

    1 E1 Normalprincipalstrain(1stprincipaldirection)

    y EPSY Normalstrainparalleltoyaxis

    2 E2 Normalprincipalstrain(2ndprincipaldirection)

    z EPSZ Normalstrainparalleltozaxis

    3 E3 Normalprincipalstrain(3rdprincipaldirection)

    xy GMXY ShearstraininYdirectiononplanenormaltoxaxis

    r ESTRN Equivalentstrainxz GMXZ ShearstraininZdirectionon

    planenormaltoxaxis

    SED SEDENS Strainenergydensity(per

    unitvolume)

    yz GMYZ ShearstraininZdirectiononplanenormaltoyaxis

    SE ENERGY Totalstrainenergy

  • 7/29/2019 FEM Stress Concepts

    16/16

    FEAConcepts:SWSimulationOverview J.E.Akin

    Draft13.0.Copyright2009.Allrightsreserved. 44

    Table39Additionalelementcentroidstressrelatedresults

    Label Item

    ERR Elementerrormeasuredinthestrainenergynorm

    CP Contractpressuredevelopedonacontactsurface