FaXToR beamline proposal sin referencias cruzadas · 4.4.1. In‐situ tomography of the fluid...

97

Transcript of FaXToR beamline proposal sin referencias cruzadas · 4.4.1. In‐situ tomography of the fluid...

  • AFastXrayTomographyandRadioscopyforAlbaWorkingteam:

    FedericoSketEusebioSolrzanoJuanGomezBarreiroJoseAntonioYagFabraBartBijnensVicenteGomezRuizdeArgandonaFranciscoGarcaMoreno

    Albaworkingteam:

    EvapereiroSalvadorFerrerJosepNicolasXabierMikelTurrillasJordiJuanhuixJosepCampmanyGuillotMiguelA.G.Aranda

    Peregrine falcon is one of the FASTEST animals in the planet with capacity of diving at 300km/h We have decided to use this animal as a representative icon for the future FAST TOMOGRAPHY beamline

  • TABLE OF CONTENTS 1. ABSTRACT........................................................................................................................11

    2. INTRODUCTION...............................................................................................................12

    2.1. ImportanceofXrayimagingandtomography.......................................................12

    2.2. VirtuesofXraytomography...................................................................................13

    2.3. DevelopmentofSXCTinthelastdecades...............................................................14

    2.3.1. 4Dtomography................................................................................................16

    2.3.2. Insitutomography..........................................................................................17

    2.4. Scopeofthisproposal.............................................................................................18

    3. THESPANISH(ANDEUROPEAN)USERCOMMUNITY......................................................19

    3.1. CurrentpanoramaofSXCTinEurope......................................................................19

    3.2. PotentialusersinSpain...........................................................................................20

    4. RELEVANTSCIENTIFICCASES...........................................................................................23

    4.1. MultidisciplinaryFasttomographyandradiography:insitustudies......................23

    4.1.1. Bubblenucleationandgrowthcharacterizedbyultrafasttomography.........23

    4.1.2. InsitusolidificationofAlalloys.......................................................................26

    4.1.3. Understandingexplosivevolcanoes:riskevaluationthroughmorphometricanalysisofbubblesandcrystalsinlava...........................................................................30

    4.1.4. Foodscience:tastingthetexture....................................................................33

    4.1.5. Ultrafast2DRadioscopyoncellwallrupturestostudymetalfoamstabilitymechanisms.....................................................................................................................35

    4.1.6. Insitutomographyofcreepprocessofbrass.................................................38

    4.1.7. Insitutomographyofdamagedevelopmentofcarbonfiberreinforcedcomposites......................................................................................................................40

    4.2. Materialscience......................................................................................................42

    4.2.1. ResinmicroflowbyXraycomputedtomography...........................................42

    4.2.2. 3DmultiphasenetworksprovidinghightemperaturestrengthtoAlSipistonalloys 44

    4.2.3. Submicrometerholotomographyofmultiphasemetals................................47

    4.3. Lifesciencesandbiomedicine.................................................................................50

    4.3.1. HighresolutionStructuralImagingofstatictissue:........................................51

    4.3.2. HighthroughputVirtualPathology.................................................................52

    4.3.3. Highspeeddynamicimagingoffunctionalorgans.........................................53

    4.4. Historicalbuilding....................................................................................................54

  • 4.4.1. Insitutomographyofthefluidmovementinsiderocks:applicationtohistoricalbuildingconservation......................................................................................54

    4.5. Biology.....................................................................................................................57

    4.5.1. Investigatingthecontinuousdentalreplacementofmammalsthroughanewrodentmodel...................................................................................................................57

    4.6. Paleontology(foraminiferatomcat).......................................................................60

    4.6.1. Morphologicalcharacterizationoffossils.......................................................60

    5. BEAMLINECONCEPT,LAYOUTANDREQUIREMENTS.....................................................62

    5.1. Technicalrequirements...........................................................................................62

    5.2. Source......................................................................................................................63

    5.2.1. Sourceproperties............................................................................................63

    5.3. MultilayerandSi(111)monochromators................................................................65

    5.4. Beamlinelayout.......................................................................................................68

    5.5. Experimentalendstationanddetectionsystems...................................................69

    5.5.1. Samplepositioningsystem:.............................................................................69

    5.5.2. Imagingsystems..............................................................................................72

    5.6. Sampleenvironment...............................................................................................75

    5.6.1. Tensile,compression,fatiguetestrigs............................................................75

    5.6.2. Hightemperaturefurnace...............................................................................77

    5.6.3. Cryogeniccell...................................................................................................79

    5.6.4. Highpressurecell............................................................................................80

    5.7. Computationanddatastorage...............................................................................80

    5.8. Estimatedbudget....................................................................................................82

    5.9. Futuredevelopment................................................................................................83

    6. REFERENCES....................................................................................................................84

    ANNEX1.LettersofsupportfromSpanishcompaniesandrelevantinstitutions..................89

  • TABLE OF FIGURES

    Figure1.Tomographicmethodsspanningover9ordersofmagnitude[11]........................................13

    Figure2.Scientificproductionconsideringsynchrotrontomographyoverthelast20years(a)Numberof indexed publications (b) Cites per year, total number of cites and hindex for synchrotrontomography. (c)Scientificproduction considering synchrotron tomographyanddiffractionover thelast20years.Thenumberofpapers isnormalized to themaximumnumberofpaperperyear. (d)Relativenumberofpaperfordifferentspecifictomographictechniques(normalizedtothemaximumnumberofpaperperyear).(e)Publicationbysubjectforsynchrotronmicrotomography.Source:WebofScienceandScopus............................................................................................................................15

    Figure 3.Map of Europe including the list of European Synchrotronswith available tomographictechniques..............................................................................................................................................19

    Figure4.GeographicdistributionofthesupportingclusterintheIberianterritory.............................22

    Figure5.Detailof the stirringheadover the kaptonmould containing the isocyanate and polyolblendsbeforethemixingprocess..........................................................................................................24

    Figure 6. Volume rendering at different instants for the two examinedmaterials (TOP: pure PU;BOTTOM:PUwith3%wt.nanosilica)at(a)9.8s,(b)21.7s,(c)26.3sand(d)32.6s).............................25

    Figure7.Left: Insitucelldensityevolutioncomparedmodels.Right: Insitucelldiametercomparedwiththetheoreticalmodels...................................................................................................................26

    Figure8.ReconstructedtomographicslicesobtainedduringinsitusolidificationofAlMg4.7Si8atthetemperaturesatwhichconsecutivesolidificationofthedifferentphasesisobserved,[38]................28

    Figure9.a) tod): rendered3D imagesof theAldendriticsolidificationatdifferent temperaturesduringcoolingofanAlMg4.8Si7alloyobtainedinsitubySXCT.e)toh):distributionofthemeanandGauss curvatures of the surface of the Al dendritic structure at the different stages of thesolidificationprocess.[38]......................................................................................................................29

    Figure10:Bubblesize,wallthicknessandinterconnectionfrombasalticfoams[53]...........................30

    Figure11:Differentpyroclasticmicrotexturesfromsilicicmelts.Bubblesappearsegmented[56].....31

    Figure12.(a)3Ddesignand(b)topphotographofthelasersystemmountedonTOMCATbeamlineatSLS.Trangeis4001700C[58,59].........................................................................................................32

    Figure 13. ac 3D rendering of acid melt at different temperatures (bubbles); d) bubble sizedistributionsatdifferenttemperatures;e)bubbleanisotropyandfractionversustemperature[59].33

    Figure14.Evolutionbubblesinbreadduringproofing:(a)2Dimagesofhorizontalsections(diameter9mm)extractedfromreconstructedvolumes(628x628x256voxels)(b)and(c)Voidvolumefractionandaveragecellwallthicknessforthreedifferentdoughs[68]............................................................34

    Figure15.(upperleft)Synchrotronradiationtomography:phasecontrastslicesofthefruitcortexofapple (left) and pear (right); cell walls are indicated by arrows. (lower left)Modeled (a) againstmeasured(b)3Dgeometryofapplecortexcells.(Right)Theoxygenconcentrationprofileinsidecellsusingfiniteelementsimulations.Drivenforcewaspartialpressureacrosstheboundariesofthetissue.Thepartialpressureandconcentrationinsidethetissuewasrelatedbytheuniversalidealgaslaw[65].................................................................................................................................................................35

    Figure16.Evolutionof time resolution for insitu synchrotronXray radioscopyapplied tovisualizemetalfoaming........................................................................................................................................36

  • Figure17.SeriesofradiographsofanAlSi10+0.5wt.%TiH2foamat640Cextractedfromaninsitufast synchrotron Xray radioscopic analysis. The coalescence of two bubblesmeasuredwith 9.5sframe interval (105kfps) can be observed.Dashed lines indicate the contours of the bubbles andarrowsindicatethecorrespondingrupturedcellwall...........................................................................37

    Figure18.Tomographicvolumes revealing thecavitiesatdifferent timesduring thecreep test. (a)initialcondition,(b)middleofthetest,(c)closetofracture.................................................................38

    Figure19.Shapeevolutionofthethree largestcavitiesexhibitingcoalescence. Thedifferentstagescorrespondtothelargestporebeforecoalescence...............................................................................39

    Figure20.Evolutionofthespatialorientationofcavities......................................................................40

    Figure 21. Damage propagation in 45 plies. Different crack colours indicate their connectivity(adaptedfrom[17])................................................................................................................................42

    Figure22.Experimentalsetuptostudy insituthe infiltration processattheP05beamlineofDESYSynchrotron............................................................................................................................................43

    Figure23.(a)Crosssectionofthescannedfibertowspecimeninthevacuumbag.Wetglassfibersaresurroundedbythelightergreycolor.(a)3Dreconstructionoftheinfiltratedtow...............................44

    Figure24.3DstructuresofaluminidesandSiafter4hofsolutiontreatment:a)SiinAlSi12,b)Siandaluminides in AlSi12Ni, c) aluminides in AlSi10Cu5Ni1, d) aluminides in AlSi12Cu5Ni2, e) Si inAlSi10Cu5Ni1andf)SiinAlSi10Cu5Ni2..................................................................................................46

    Figure25.Proofstress0.2at300Cfortheinvestigatedalloysasafunctionofthesolutiontreatmenttime........................................................................................................................................................47

    Figure26.Top:scanningelectronmicrographsoftheinvestigatedmaterialsBottom:portionsofslicesofholotomographyreconstructionsofthe investigatedmaterials.From lefttoright:AlMg7Si4alloy,Ti1023alloyandTi64/TiB/5w.................................................................................................................49

    Figure 27. Rendered volumes of the investigatedmaterials: a) interconnected SiMg2Si structure(green)inAlMg7Si4;b)largerparticlesremainingfrompreforging(blue)andindividualsecondarygrains (semitransparentgreen) inTi1023; c)TiBneedles (green)and irregularly shaped grains inTi64/TiB/5w(othercolours)...................................................................................................................50

    Figure28.Phasecontrast imagingofwhole (rodent)hearts.Beside the anatomicaldetail atorganlevel,thedetailedfibrestructureinwhichmyocytesareorganisedcaneasilybeassessed.Additionally,vesselscanbeobservedandextractedusingcomputationaltools[89]................................................51

    Figure29.Imageofapretermrabbitpupthorax,focusingontheair/lungtissueinterface[90].........51

    Figure 30. Spatial resolution of histology, Xray phase tomography, and MRI microscopydemonstratingthatresolutiondecreasesfromhistologyviaPCmCTtomMRI[91].............................52

    Figure31.AfalsepositiveMRIpostmortem,suggestinglungchangeswhilehistologywasnormal....52

    Figure 32. Breathing activity and the increase in endexpiratory lung gas volumes from birth in aspontaneouslybreathingnewbornrabbitpup.PhasecontrastXrayimageswereacquiredatthetimesindicatedbythearrowsdemonstratetheincreaseinlungaeration[94]..............................................53

    Figure33.a)Uniformdistributionofthemineralsexcept in ironoxides layers(atthebottom).b)(1)voidspaces;(2)finegrainedcarbonates;(3)largegrainedcarbonatesand(4)claysandironminerals.................................................................................................................................................................54

  • Figure34.a)CTimagesshowingthevariationinwaterpenetration.b)3Dimagesoftheopenporosity.................................................................................................................................................................55

    Figure35.CTimagesatdifferenttimesduringtheabsorptiontest.ThepositionsofnineROIsusedtoquantifythewaterpenetrationrateareindicated................................................................................56

    Figure36.EvolutionofthemeanCTnumberoftheinternalROIs......................................................57

    Figure37.a)Foresideofacaptivesilverymolerat,b)3Dreconstructionandc)Virtualcrosssectionoftheupperdentitionofanadultsilverymolerat....................................................................................58

    Figure 38. a) 3D reconstruction in lateral view of a lower tooth row and b) model of dentalreplacementofthesilverymolerat.c)3Dreconstructioninlateralviewofalowertoothrowandd)modelofdentalreplacementofthepygmyrockwallaby(greenarrows:molarprogression;redarrow:toothloss)...............................................................................................................................................59

    Figure39.RightchelalfingersofaPseudogarypussynchrotron[103]fossiltrappedinamber............61

    Figure40.HorizontalphasespacedistributionoftheWS400source....................................................64

    Figure41.Horizontalspatialfluxdistributionofthesourcefor4photonenergies,forlowenergiesaparasiticsidelobeappears.....................................................................................................................64

    Figure42.Photonsourcedistributionfor(verticalandhorizontal)forthreephotonenergies............65

    Figure43.Fluxemittedwithinahorizontalacceptanceof1mrad,fortheproposedsourcecomparedtoabendingmagnet..............................................................................................................................65

    Figure44.Bragganglefora4nmmultilayermonochromator,andforaSi(111)crystalpair...............66

    Figure45.Verticalsizeoftheilluminatedarea(DoubleMultilayerMonochromator=DMLM)...........67

    Figure46.Sampleilluminationareafortwodifferentvaluesoftheenergy.Thestripesarecausedbytheslopeerrorofthemultilayer(ML)mirrors.......................................................................................67

    Figure47.Schematicopticallayoutoftheimagingbeamline................................................................68

    Figure48.LayoutoftheImagingbeamlineattheALBAExperimentalHall...........................................69

    Figure49.ZoomedphotographyofasystemsimilartotheoneintendedtoinstallatAlba(CourtesyofPIMicosIberia)........................................................................................................................................71

    Figure 50. Schematic description of the twomicroscopes considered to bemounted at FaXToRbeamline.................................................................................................................................................72

    Figure51.Left:3DrenderingofthewhitebeammicroscopemountingaPCO.Dimaxcameraontop.Right:photographyofaPCO.DimaxHScamera....................................................................................73

    Figure52. Left:3D renderingof themonochromaticbeammicroscopemounting aPCO.Edge4.2cameraontop.Right:photographyofaPCO.Edge4.2.........................................................................75

    Figure 53. 3D CAD rendering of a tensile/compressive test rig compatiblewithmicrotomographyexperiments............................................................................................................................................77

    Figure 54. Cross section of the radiation furnace (right) and 3D rendering of the system (left).Differentpartssuchasrotaryfeedtrough,parabolicreflectorsandportscanbeobserved.................79

  • Figure55.Conceptualdesignof thehighpressure setup including themain componentsand thesupport...................................................................................................................................................80

  • Page11of97

    1. ABSTRACTTheFaXToRinitiativehasbeeninitiatedfromtheinterestandsupportofaclusterof

    Spanishscientistscoveringawiderangeofdisciplinesfromfundamentaltoapplied

    research.Oneofthekey issuesthatmotivatetheseresearchers isaccessingtothe

    internal microstructure of their problemsubstances and investigating about the

    dynamicprocessesoccurringinthem.SynchrotronXrayimagingis,nowadaysoneof

    themostusedtechniquesforthispurpose.Ontheonehand,fastXrayradioscopy

    allow understanding dynamic processes taking place in short times (mili and

    submilisecond range) combining the fast imaging acquisitionwith the penetrating

    powerofXrays,althoughwiththelimitationofa2Dimagesequence.Ontheother

    hand, synchrotron tomography provides a way for visualising and analyzing the

    threedimensionalinteriorstructureofrealobjectsnondestructivelyandwithahigh

    spatialresolution. Inrecentyearsdifferentbeamlines inEuropehavefocusedtheir

    developments towards3D+tor4D techniques (combinedwith in situapproaches)

    with the objective of achieving a new technique, real time tomography,which

    combines3Dspatialresolutionsoffewmicronsandtemporalresolutionsbellowthe

    second.

    This proposal is oriented to the creation of future fast imaging beamline at Alba

    synchrotron which may cover the demands, not only of the Spanish scientific

    community but also the European ones. The instrument is conceived as amulti

    purpose system thatmay allow the realizationofdiverse imaging techniques that

    willbeexplainedanddeveloped in thisproposal. In theproposalwealsoconsider

    the future development of the instrument aiming at extending the number of

    availabletechniquesintheincomingyears.

    Webelievethatthecreationofanimagingbeamlinewithpossibilitiesofdeveloping

    3D, insitu, and real time studies constitutes a strong opportunity for Alba

    synchrotron for offering an alternative to a highlydemanded technique for

    europeanusers.

  • Page12of97

    2. INTRODUCTION

    2.1. ImportanceofXrayimagingandtomography

    Several fieldshaveexperienced importantprogressover the lastdecadeswith the

    development of threedimensional (3D) characterization techniques. The

    understanding ofmaterials, animals, fossils, objects, etc. has gradually increased

    aided by the development of methods that provide as complete and unbiased

    descriptionofmicrostructureaspossible.Fromthe3Dmicrostructure,quantitative

    information in three dimensions can be retrieved usingmethodologies based on

    image analysis techniques. 3D data provides access to some very important

    geometricandtopologicalquantitiessuchussize,shape,orientationdistributionof

    individual features and that of their local neighbourhoods, connectivity between

    features and network, composition, etc. Some of these quantities cannot be

    determinedapriorifromclassicalstereologicalmethodsthatuseonly2Dimagesor

    atthebestonlysemiquantitativelyestimationsarereached.Besides,thepossibility

    toconductinsitu3Dcharacterizationofdynamicexperimentsisexpandingourview

    on fluid flow inporoussystems,metalmicromechanicsor thearchitectureof food

    texture,tonameafew.

    Experimentalmethods that enable 3D characterization have undergone dramatic

    improvementsinthepastdecadedue,inlargepart,toadvancesinbothcomputing

    powerand visualizationandanalysis software thathavebeenenabling factors for

    both the acquisition and interpretation of these massive data sets. Several 3D

    characterization techniquesareavailable forscientists that span from theatom to

    the macroscopic engineering or natural components. Some examples are Atom

    ProbeTomography(APT)[1],electrontomography[2,3],neutrontomography[4,8],

    3DXraydiffraction(3DXRD)[5,8],serialsectioning(OM,FIBSEM,3DEBSD)[6,7],X

    ray tomography (XCT) [812],amongothers.Thevarietyof3D imagingmethods is

    large, and theydifferby theprobing rays theyuse,by thephysicalquantity they

    measure and by themathematical reconstruction technique they are based on.

    Figure1showssomeofthecommonlyusedcharacterizationmethodswhichcovera

    range of different resolutions and sample sizes (beginning and end of the bar

    respectively)overnineordersofmagnitude[11].

  • Page13of97

    Figure1.Tomographicmethodsspanningover9ordersofmagnitude[11].

    2.2. VirtuesofXraytomography

    Absorption contrastXray computed tomography (XCT) isprobably themostwell

    known 3D xray imagingmethod. In thismode it ispossible todetectdifferences

    between xray absorption coefficients of different phases, provided they are

    different enough. This technique can be carried out with lower energy beams

    available on desktop instruments (for relative low density specimens). Indeed,

    commercial XCT instruments with resolution in the order of micrometers, have

    proliferated rapidly in recent years. Synchrotron radiation, on the other hand,

    provides the largest number of experimental options for tomography based on

    imaging (absorption tomography, phasecontrast tomography, holotomography,

    laminography, nanotomography, aborption edge tomography) as well as using

    diffraction (3D Xray diffraction microscopy 3DXRD, diffraction contrast

    tomography DCT), among others. One reason is the extraordinary brilliance of

    thirdgeneration synchrotrons, many orders of magnitude higher than that of

    conventional Xray tubes. This characteristic allows the possibility of selecting a

    narrowenergyband(usingmonochromators)andstillhavingasignificantfluxoruse

    pinkorwhitebeamsifhigherfluxesarerequired,dependingontheapplication.Also,

    the high coherence of synchrotron Xray beam allows us to exploit the phase

  • Page14of97

    interactionwithobjectsof this radiation.SXCTalsoprovidesa rangeof resolution

    (Figure1) thatcanbeused tostudy the3Dmicrostructureand featuresofawide

    varietyofmaterialsandhavebeenasubjectofstudyindifferentpublications[9,13

    22]. Other virtues are deep penetration, nondestructiveness (which provides

    temporal evaluation possibility), simple sample preparation and the possibility to

    providechemicalinformation.

    2.3. DevelopmentofSXCTinthelastdecades

    Synchrotron Xray computed tomography (SXCT) has experienced a rapid

    developmentoverthe last15yearsachievingconsiderable improvements inspatial

    andtemporalresolution,volumereconstructionspeedand3Dmethodsofanalysis

    thatallowsquantitativeanalysisofthetomographicdata.AsaconsequenceXCTand

    SXCT areprogressivelybecoming an accepted tool for scientists and industry as a

    reliableandprecise3Dcharacterizationtechnique.Thisstatementcanbeconfirmed

    if we observe the scientific production directly related to synchrotron

    microtomography during the last decades (Figure 2). The consolidation of the

    techniqueisbothintermsofindexedpublicationperyearandvisibility(Figure2ab),

    contributing directly to high impact scientific results (Figure 2b). In parallel, the

    particular interestof thescientificcommunity inusingSXCT fordifferentpurposes

    has leadtoabeamtimeoverwhelmingdemand inmostSXCTbeamlinesacrossthe

    world reachinganoverload factorofnearly3 (higher inparticularbeamlines) ina

    short time. Interestingly the comparisonwith theuseofdiffraction techniques at

    synchrotron facilities reveals that relative productivity has become similar, as

    scientificinterestontomographyhasgrownwithyears(Figure2c).

    Regarding the scientific production of specific techniques, nanotomography (or

    zoomtomography) and insitu 4D tomography are probably themost interesting

    developmentsand,asaconsequence,twoofthemostusedtomographictechniques

    for the scientific community,highly increasing thedemandof these techniquesat

    thesynchrotrons(Figure2d).

    AnotherimportantstrengthofSXCTistheversatilityofthetechniquedepictedinthe

    multidisciplinary origin of the scientific production (Fig. 2e). This feature strongly

  • Page15of97

    contributes to the expansion of instrumental development and experimental

    environmentsavailableatSXCTbeamlines.

    Figure2.Scientificproductionconsideringsynchrotrontomographyoverthelast20years(a)Number

    ofindexedpublications(b)Citesperyear,totalnumberofcitesandhindexforsynchrotron

    tomography.(c)Scientificproductionconsideringsynchrotrontomographyanddiffractionoverthe

    last20years.Thenumberofpapersisnormalizedtothemaximumnumberofpaperperyear.(d)

    Relativenumberofpaperfordifferentspecifictomographictechniques(normalizedtothemaximum

    numberofpaperperyear).(e)Publicationbysubjectforsynchrotronmicrotomography.Source:Web

    ofScienceandScopus.

    (e)

    (d)

    (c)

    (b) (a)

  • Page16of97

    2.3.1. 4Dtomography

    4D tomography refers to the possibility to perform a repeated series of 3D

    topographies at sequential time lapses, providing information about the

    microstructureevolution.This isoneofthemostattractivefeaturesofSXCT.Asan

    exampleinmaterialscienceandexperimentalmechanics,theevolutionofstructure

    canbe very importantduringmanufacturing [9], service lifeand inunderstanding

    failuremechanisms[17],aswellasinunderstandingtheprocessofbreadmaking[28],

    and is proven to be a valuablemethod in other areas, too. One very important

    characteristicof4Dtomography isthetemporalresolutionthatcanbeachieved in

    the measurement of one tomogram. In many cases, fast acquisition time are

    necessary, normally at expenses of spatial resolution;while in others,when the

    microstructure is quasistatic, longer measurement times with better spatial

    resolutionareaffordable.

    4Dtomogramscanbecarriedout inseveralwaysdependingon itsapplication.Ex

    situapproachescanbeused for longtermtreatmentappliedtothesamesamples

    providedtheydontneedtobecutfortomographicmeasurements.Someexamples

    ofthatarecorrosionstudies,exposuretomoistureandcertainheattreatmentsthat

    cannotbecarriedout insitu. Insomecaseswhen thesamplesare larger than the

    field of view (FOV) of the detector the evolution of features are evaluated on

    differentsamplesatdifferentconditions (becausespecimenshavebecut)and the

    extracteddataaretreatedinastatisticalwayasfunctionoftime.Anexampleofthat

    is longterm creep studies,manufacturingdefectsormicrostructural changes,etc.

    Perse,4Dtomographyprovidestheevolutionofaspecificfeatureasafunctionof

    time,which insomespecificcasescanbe linkedtoanothervariable (temperature,

    pressure,strain,etc.).Thecombinationof4Dtomographywithinsitudevicesopens

    upothernewpossibilitiesandfieldsofresearch(seesection2.3.2).

    Surfaceobservationcanbeausefulapproach,butinmanycasesstructuralchanges

    occur in the bulkmaterial at hidden view. 4D tomography allows following the

    structure evolution nondestructively in 3D manner. A significant amount of

    informationcanbeobtainedonly fromvisualizationoftheeventsthatoccur in3D

    over a time lapse, but in most of these cases quantitative information is also

  • Page17of97

    required. Increasingly,thenewtrend istoobtainquantitative informationfrom3D

    and 4D tomography. This allows to understand the heterogeneities of the

    microstructurein3Dand4D,andtoevaluatethepredictivecapabilityofanalyticalor

    numerical models to describe behaviour and predict the kinetics of a certain

    mechanism. To that end, several approaches for quantitative analysis are been

    developed, suchasdigital volume correlation (DVC) [9,23,24],3Dparticle tracking

    (3DPT)[9,25,26],howevertheirapplication isstillscarce.Itseemsnaturalthatwith

    the increase inapplicationsthesemethodsornewoneswillbecomemoreefficient

    and with improved accuracy. Recently commercial codes have become available

    whichwillsurelyacceleratethedisseminationofthetechniqueeventotheindustry.

    2.3.2. Insitutomography

    Another approach is to carry out insitu studies in devices that are specially

    developedforthatpurpose.Initially,theyweredevelopedbytheusersandbrought

    tothebeamlinefortheexperiment,butthisalsocreatescompatibilityproblemsand

    leadtoimportanttimelossesduringthebeamtimesonowadaysitiscommontofind

    someofthesedevices(miniaturizedfurnaces,heatingorcoolingstages,tensileand

    compression rigs, etc.) at the synchrotron beamlines available for the users.We

    believe that an important asset for any tomographybeamline is thepossibility to

    carryoutinsituexperimentsofdifferentkindusingspecialdevicesthat,atthesame

    time, must be flexible in their configuration according to the high variance of

    applications. Inouropinion,theproposedbeamlineshouldprovidetheuserssome

    ofthesedevicesfor insitutesting,namelytensileandcompressiontestingrigwith

    temperatureregulation,ovensand/orheatingstages.Someotherlesscommonbut

    emergingdevicesarepressureanvils,hightemperaturedilatometers, infusion rigs,

    fatigue testing rigs, corrosion cells, etc. Of course some of them could even be

    combinedtoprovideanevenbroaderspectrumoftesting.

    TomographictemporalresolutionisanissuestilladdressedbyonlyafewEuropean

    synchrotrons,while inotherstheacquisitiontime isstill intheorderofhours.The

    increase in temporalresolution isopeningupasetofpossibilities for tomographic

    imaging applications that cannot be studied easily by othermeans. Considerable

  • Page18of97

    improvementshavebeenmadeinrecentyearsbycombiningtheveryintensewhite

    (or pink) beams at synchrotron sources with a new generation of highspeed

    camerasandnewtypesofscintillators.Timescalesforonetomographyisnowadays

    intheorderoftensofmilisecons[27],allowingstudiesinmanydifferentfieldssuch

    as food (breadmakingorbeer foam) [28,29]or inmaterialscience forcoarsening,

    melting,solidificationofsemisolidmetals,aswellasdamageassessment.

    2.4. Scopeofthisproposal

    Thisproposalmobilizestheexpertisefromspecialistsfromdifferentfields(material

    science and engineering from polymers to nickel superalloys, bioscience, food

    science,earthscience,palaeontology,volcanology,metrology,etc.) topropose the

    design of an Xray imaging beamline that provides a high resolution tomography

    instruments that will permit to carry out different modalities (absorption,

    absorptionedge, phase contrast and holo tomography) with optimum temporal

    resolution with expected times per tomography below 1 second. Except for

    absorption mode (without considering the exceptional expected speed at the

    beamline) theother3 lastmentioned tomographic techniquesarenotavailable in

    conventionallaboratorysources.Ofcourse,itcouldbealsopossibletocarryoutfast

    radiography experiments, over 500 images per second, in those caseswhere 3D

    resolvingpower isnot required.Thebeamline concept is completedbyproposing

    different insitudevices thatwillbeavailable forusers. In this field, it isbecoming

    clearthat,allowingtheobservationofthe interiorofasamplewithoutrequiringa

    specific (andpossiblybiasing)preparationprocedure,Xraytomography isthebest

    way to obtain reliable information on themicrostructure and its evolution, also

    underdifferentloadings(e.g.mechanicalorthermal).

    Considering the versatility of the instrument, the combination of different

    tomographic techniques and the availability of insitu devices make this future

    beamlineattractiveforalargenumberofpotentialusersfrommanydifferentfields,

    which makes SXCT an essential technique in a synchrotron. Such tomographic

    beamlinewillprovideavaluableasset to thescientificcommunity thatwillattract

    researchers frommany different areas not only from Spain but from the rest of

    Europe.

  • Page19of97

    3. THESPANISH(ANDEUROPEAN)USERCOMMUNITY

    3.1. CurrentpanoramaofSXCTinEurope

    In Europewe can find 8 different synchrotronswith beamlines oriented to Xray

    tomography(softXraymicroscopy,nanotomographyandnonimagingtomography

    difraction, fluorencence,etc.havenotbeen included in this selection).Figure3

    show their location in Europe (3 in Germany, 2 in France, 1 in UK, Italy and

    Switzerland). According to this list, other synchrotrons in Europe have not been

    considered (e.g. Alba) since they do not have any beamline dedicated to Xray

    tomographyinthetermspreviouslymentioned.

    Figure3.MapofEuropeincludingthelistofEuropeanSynchrotronswithavailabletomographic

    techniques.

    Complementarily, Table 1 lists the name of these beamlines, together with the

    availabletomographictechniquesandtheenergyrange.Fromtheseresultswecan

    state that a total of 12 beamlines in Europe are currently dedicated to Xray

    tomography and have developed different tomographic techniques.Nevertheless,

    theyarenotmany ifwecompare themwithdiffraction,XANES,orXASbeamlines

    presentinEuropeinthedifferentsynchrotrons.Actuallytheoverloadfactorofthese

    beamlines is,byfar,higherthanotherstypesoftechniquesandtherefore itwould

    be interesting to complete the current European offer of SXCT with a new

    tomographic beamline at Alba. It is also important to mention that only two

    beamlines have oriented their developments to fast tomography. In this sense

  • Page20of97

    TOMCAT (SLS) [27] and ID19 (ESRF) [30] are currently the leaders in this aspect

    reachingupto20tomogramspersecond.TheFaXToRproposalaimsatofferinga

    new beamline for the realization of Fast Xray Tomography and Radioscopywith

    specialemphasisforinsitustudiesand,thus,completingthecurrentofferforSXCT

    inEurope.

    Table1.XraytomographyimagingbeamlinesavailableinEurope

    Beamline Synchrotron Tomographytechniques ENERGY(keV)

    IMAGE ANKA

    2D:microscopy,radiography,topography,andmicrodiffractionimaging

    3D:tomographyandlaminographywithmonochromatic,pinkorwhitebeam(highcontrasttoultrafast)Notavailableforusersyet

    765

    TOPOTOMO ANKA WhitebeamXraytomography(submicrometer)Phasecontrastimagingwithgratinginterferometer. 640

    BAMline BESSYII MonochromaticTomography(Si111andmultilayer),WhitebeamTomography. 590

    I12JEEP DIAMOND WhitebeamXrayTomographyPhasecontrastimaging. 50150

    DiamondManchesterImagingBranchline DIAMOND PinkTomographyandMonochromaticTomography. 830

    SYRMEP ELETTRA MonochromaticTomography(Si111)WhitebeamTomography. 835

    ID16ANanoImagingBeamline ESRF NanoTomography 17.033.6

    ID19Microtomographybeamline ESRF

    MicroTomography,phasecontrast,holotomography(res.:0.330m).Fasttomography(fewsec.).

    DiffractionTopography6.0100.0

    IBL(PE05) PETRAIIINanoTomographyMicroTomography

    (Absorption&PhaseContrastTomography)550

    HEMS(P07) PETRAIII XRD,SAXS,3DXRD,Tomography with1mfocus(basedonabsorptionandphasecontrast) 30200

    TOMCAT SLS

    AbsorptionbasedTomographicMicroscopy;PropagationphaseContrastTomographicMicroscopy

    DifferentialPhaseContrast(DPC)Tomographicmicroscopy

    AbsorptionandphasecontrastnanotomographyUltrafasttomographicmicroscopy.

    845

    PSICH SOLEIL MonochromatichighenergyresolutionTomographyMonochromatichighfluxTomography.

    15100keVwhitebeam(lowenergyfiltered)

    1550keVmonochromatic

    3.2. PotentialusersinSpain

    InthepreparationofthisproposalwescannedtheinterestoftheSpanishscientific

    communityinthistechniquebycarryingoutamailingsurvey.Asaresultofthispoll,

    morethan25Spanishresearchgroupswereinterestedinthistechniqueanddecided

    to support thisproposal.Table2 lists thegroups, the institutionand the research

    interestobtainedfromthementionedsurvey.Oneofthemaincharacteristicsofthis

  • Page21of97

    supportingclusteristheirmultidisciplinarityconsideringthehighvarietyofresearch

    interests they represent,which actually provide an addedvalue to this proposal.

    Figure4 shows thedistributionwithin the Iberian territoryof the groups listed in

    Table2.

    Oneof themainconclusionsof the survey is thatwebelieve there isa significant

    criticalmass of groups thatwill be demanding this technique at Albawhen the

    beamline isready.Additionallyweareprettysurethatmanyotherresearchgroups

    andcompanieswillbecomeuserswhentheycouldseetheresultsobtainedbyother

    groups/colleagues.Finallywehavetoconsiderthatitisexpectedthatthisbeamline

    willbealsorequestedbyEuropeanusersasitwillbeanalyzedinnextsection.

    Table2.SpanishresearchgroupssupportingtheFaXToRproposal

    Leader Group/Institution Interest

    J.GmezBarreiro U.Salamanca HighpressureandtemperatureofgeologicalmaterialsR.CamposEgea CIEMAT GeologicalmaterialsJ.CostaBalanzat U.Girona CompositeMaterials

    J.C.Glvez UPolitcnicadeMadrid FractureofSteelsandCementbasedmaterialL.E.Hernndez U.AutnomadeMadrid Vegetalmaterials

    J.Snchez (IETccCSIC) Structures,concreteM.Lanzn U.PolytechnicalCartagena Buildingmaterials,stone,patrimonialbuildings

    D.A.CendnFranco U.PolytechnicalMadrid MetallicmaterialsF.SanJoseMartinez U.PolytechnicalMadrid Soilstructure

    F.A.Lasagni CATEC CompositematerialsandmetalalloysV.GomezRuiz U.Oviedo GeomaterialsG.GarcsPlaza CENIM MultiphasemetallicmaterialsJ.A.Yage U.Zaragoza Metrology,Imagetreatment

    L.FrancoFerreira Aimen NDT,dimensionalmetrology,materialcharacterizationA.Mendikute IDEKO Imagetreatment,nondestructivetestingJ.vanDuijn U.CastillaLaMancha SolidOxidesbateriesV.Amig U.PolitcnicadeValencia Titaniumalloyscharacterization

    C.Capdevila CENIMCSIC Febasedalloys,steelsL.Galdos U.Mondragon SuperPlasticFormingofAluminiumSheets.P.Bravo U.Burgos HPDCofMgalloys,polymers

    J.C.SurezBermejo U.PolytechnicalMadrid Structuralhybridmaterials,adhesivos,damagingM.A.RodriguezPrez U.Valladolid Cellularmaterials,Xraytechniquedevelopment

    D.Val GRUPOANTOLINIRAUSA,S.A. MagnesiumandaluminiumalloysR.ArenasMartn U.ComplutensedeMadrid HighpressuremetamorphicrocksF.J.SierroSnchez UniversityofSalamanca Micropaleontology

    SrenJensen UniversityofExtremadura PaleontologyGroup

    I.Rosales SpanishNationalGeologicalSurvey Geology

    G.GarcsPlaza CENIM MultiphasemetallicmaterialsA.lvarezValero UniversityofSalamanca Volcanology

  • Page22of97

    J.R.MartnezCataln UniversityofSalamanca TectonicsygeophysicsA.RodrguezBarbero UniversityofSalamanca Renalandcardiovascularphysiopathology

    P.Ayarza UniversityofSalamanca Geophysics:SeismicyMagnetismsJ.MBentezPrez UniversityofSalamanca microstructurecharacterization

    E.GonzlezClavijo SpanishInstituteofGeologicyandMines Tectonicsandnaturalresources

    M.SurezBrrios UniversityofSalamanca CrystallographyandMineralogyC.Gonzlez IMDEAMaterials Fibrereinforcedpolymers

    T.PerezPrado IMDEAMaterials LightmetalalloysJ.Molina IMDEAMaterials MicroandNanomechanicsmetallicF.Sket IMDEAMaterials FRP;lightmetalalloys;steels

    Figure4.GeographicdistributionofthesupportingclusterintheIberianterritory.

  • Page23of97

    4. RELEVANTSCIENTIFICCASES

    Xrayradiographyandtomographycanbeappliedtoseveralscientificandindustrial

    fields, therefore it isnoeasy toorganize the researchareas inwhich tomography

    wasor couldbe applied.Wehave subjectively selected some research categories

    whichinsomecasesthescientificcaseswilloverlapothercategories.

    4.1. MultidisciplinaryFasttomographyandradiography:insitustudies

    Inmanyresearchareas,evolutionofthestructureisofprimeimportance.Asanon

    destructivetechnique,XrayCTcanprovideaverydetailedpictureoftheevolution

    of the structure/damage through a certain processes applied to a material.

    Furthermore the opportunity to host environmental stages means that

    structure/damage canbe followed in situunder a rangeofdemanding conditions

    representative of those experienced in reality. Consequently SXCT enables the

    quantificationofaverywiderangeofstructuralchangesanddamagemechanisms.

    Someexamplesarepresentedbelow.

    4.1.1. Bubblenucleationandgrowthcharacterizedbyultrafasttomography

    The use of Xray tomography brings the possibility of performing detailed

    characterizations of the cellular structure of foam specimens in three dimensions

    (3D)although ingeneraltomographiesareacquired instaticconditions. Inevolving

    systemsitwouldbeexpectedthatthehighnumberofprojectionsandtherelatively

    long exposure time neededmay output blurred tomographies. Thanks to the last

    developmentsatsynchrotronbeamlinesnowadays it ispossibletocarryouttime

    resolved Xray tomography studies reaching time resolutions unimaginable a few

    yearsago[29].

    This study uses synchrotron timeresolved Xray tomography to understand the

    effectofnanoparticlesonthebubblegenerationnucleationanditslaterevolution

    growthofa reactivepolyurethane foam formulation.The time resolutionof the

    performed experimentswas 156ms per tomographic scan (near to 10Hzmicro

  • Page24of97

    tomography) and a total number of 90 tomographies during the foaming process

    whereacquired.

    Acommercialbicomponentpolyurethane(PU)formulationfromBASFwasselected

    for this investigation. The turbulentmixing of two liquids (polyol and isocyanate)

    promotesasimultaneousblowingandgellingreactionthatresultsintoasolidfoam.

    The density of the foam in a free foaming process is 52 kg/m3. The nucleating

    nanoparticleselectedforthisinvestigationwashydrophobicfumedsilicaandtothis

    end3%wt.ofsilicananoparticleswereinitiallydispersedfor120sintheisocyanate

    compound.

    Aspecificsetup(Figure5)wasdevelopedtomixtheisocyanate(neatformulationor

    the blend containing the particles)with the polyol in the same rotating table in

    whichthesequencesoftomographiesweretaken.Thisallowsobtaininginformation

    fromthe initialstagesoftheprocess.Thepolyoland isocyanatecomponentswere

    placed inadedicatedminiaturecylindricalmold (h=40mm,=12mm, thickness=75

    mKaptonwalls),attachedtothetomographyrotatingtable.Amotorizedminiature

    stirreratthetopwasautomatically immersed inthe liquidsandstirredthemixture

    for15 seconds at1500 rpmpromoting theblowing andpolymerization reactions.

    Thetomographyscansstarted10secondsaftertheendofthemixingprocess.

    Figure5.Detailofthestirringheadoverthekaptonmouldcontainingtheisocyanateandpolyol

    blendsbeforethemixingprocess.

    Xray tomographic experimentswere performed at the TOMCAT beamline of the

    SwissLightSourceatthePaulScherrerInstitute(Villigen,Switzerland).Theultrafast

    endstation incorporates a PCO.Dimax camera,which acquires and transfers data

    ordersofmagnitudefasterthanCCDcameras.TheopticswerecoupledtoaLuAG:Ce

    Foaming mould

    Stirrer to mix the components

    Rotary stage for the tomographic

    experiments

  • Page25of97

    100mthickscintillatorscreen.Magnificationofx4intheopticalmicroscopelenses

    wasselectedforthisexperiment.Thiscorrespondstoapixelsizeof3.23.2m2and

    a field of view of 6.446.44mm2.Monochromatic Xrays (20KeV, no filter)were

    used; generating300projections capturedover180of rotationwith a total scan

    timeof156ms.Spantimeof2.5swasusedinbetweenscans.Reconstructionswere

    performedbyusingtheGRIDRECalgorithm[31,32]coupledwithParzenfilteringof

    thesinograms.

    Reconstruction of the tomographic scans allows visualizing, in 3D, the cells

    nucleation and growth processes from the early stages in both studiedmaterials.

    Figure 6 shows the corresponding 3D renderings for four selected instants (9.8s,

    21.7s,26.3sand32.6s.)duringthefoamingprocess. It ispossibletoappreciatethe

    highercellsizeintheneatPUformulationandthesmallersizetogetherwithamuch

    higherdensityofcellsinthefoamednanocompositecontaininghydrophobicsilica.

    Figure6.Volumerenderingatdifferentinstantsforthetwoexaminedmaterials

    (TOP:purePU;BOTTOM:PUwith3%wt.nanosilica)at(a)9.8s,(b)21.7s,(c)26.3sand(d)32.6s).

    Theanalysisofthetomographicsequencesallowsdeterminingthenumberofcells

    percubiccentimetreandtheaveragecellsizeevolution.Figure7,left,showsthecell

    density evolution during the foaming process. The results show that the cell

    density increases linearly during the first 1015 seconds and subsequently slows

    downwithtime. It isalsoclearlyobservedthatthenucleationdensity ishigherfor

    thecompositionwith3%wt.ofsilicananoparticlessincethesefillerscouldfacilitate

    bubbles formationat solid/liquid interfacesdue toa freeenergybarrier reduction

    [33].Ontheotherhand,theexperimentalresultsforthecellsizeevolutionwithtime

    (a) (b) (c) (d)

  • Page26of97

    by several authors for the initial bubble radius evolution [34,35]. Bubble growth

    stabilizationisnotobservedandthemodellingdoneisthenvalidinourstudysince

    the resultspresented here only focus on the first 50s of the expansion. It is also

    possible to observe that average cell diameter keeps constant in the very early

    instants (t

  • Page27of97

    allowing acquisition times of a complete tomogram in less than one secondwith

    voxelsizesdownto~1m[42].

    c) The applicability of phase contrast tomography to determine the internal

    architectureoflightalloysformedbyphaseswithverysimilarattenuationsuchas

    Tialloys,AlSiandAlMgSialloys[4345].

    d) The exploitation of Kedge subtraction technique to identify concentration

    variationsofdifferentaluminidesinAlcastalloysduringthermaltreatments[46,47].

    e) The achievability of subm resolution to reconstruct the architecture of

    multiphaseAlandTialloys[44,47,48].

    Cast AlMgSi alloys are potential candidates to be used in the automotive and

    aerospace industries [49]. The investigation of the kinetics of solidification is

    necessary to understand how casting parameters, such as cooling rate and

    temperature gradient in the melt, affect the development of the internal

    architecture of alloys and consequently determine their resulting mechanical

    properties.TheformationandtheevolutionofthemicrostructureofanAlMg4.7Si8

    alloy were investigated by in situ synchrotron tomography (SXCT) during

    solidification[38].TheexperimentwascarriedoutattheID15AbeamlineoftheESRF

    usingapinkbeamandatotalscanningtimeofabout15sforeachtomogram.SXCT

    wasperformedeveryminute,whileamoltensamplewassolidifyingatacoolingrate

    of5K/min.

    Figure 8 shows reconstructed tomographic slices extracted from the in situ

    solidification experiment of the AlMg4.7Si8 alloy. The experiment allowed

    determiningthesequenceandtemperatureofformationofthedifferentphases,as

    wellastheirlocationanddistributionduringsolidification.

  • Page28of97

    Figure8.ReconstructedtomographicslicesobtainedduringinsitusolidificationofAlMg4.7Si8atthe

    temperaturesatwhichconsecutivesolidificationofthedifferentphasesisobserved,[38].

    Rendered3DimagesoftheAldendritessolidifiedatdifferenttemperaturesduring

    cooling are shown in Figure 9a) to d). The colours represent theGauss curvature

    between0.005m2and0.005m2,whilethegreypartsareoutofthisrange.Figure

    9e)toh)showthedistributionofthemeanandGausscurvaturesofthesurfaceof

    the Al dendritic structure at the different stages (temperatures) of the

    solidification process. The characteristicmorphologies for the axes and for each

    quadrant are indicated schematically Figure 6e). It can be seen that twomaxima

    emergeduringsolidification:oneclosertotheoriginrepresentingslightlysaddlelike

    shapes,whichare related to thebasesand sidesof the secondarydendriticarms,

    and another in the positivepositive quadrant representing spheroidlike regions

    owing to the secondary dendrite tips. This indicates that themorphology of the

    dendrites during cooling is characterised by coarsening,which is a simultaneous

    processofgrowthandcoalescenceofthesecondarydendritearms,similarlytothe

  • Page29of97

    caseofisothermalcoarsening[50].Asthesolidificationadvances,thegrowthofthe

    secondarydendriticarmsbecomesasymmetric,thetipsgrowwithahigherratethan

    thebases,resultinginadropletlikeshape,wherethetipsofneighbouringarmscan

    coalesce[50,51].

    Figure9.a)tod):rendered3DimagesoftheAldendriticsolidificationatdifferenttemperatures

    duringcoolingofanAlMg4.8Si7alloyobtainedinsitubySXCT.e)toh):distributionofthemeanand

    GausscurvaturesofthesurfaceoftheAldendriticstructureatthedifferentstagesofthe

    solidificationprocess.[38]

  • Page30of97

    4.1.3. Understanding explosive volcanoes: risk evaluation through

    morphometricanalysisofbubblesandcrystalsinlava

    About500millionpeopleare livingnearactivevolcanoesand thereforea reliable

    evaluationofthenaturalriskinthoseareasisofprimaryimportance.Thepotential

    ofexplosiveeruptionhastobedeterminedonthebasisofquantitativeevaluationof

    thephysicalprocessesoccurringatcertaindepth in thevolcanicsystem.Access to

    those levels is restricted to erupted fragments and indirect measurement from

    outside.Inthisline,quantitativemicrotextureanalysisofbotheruptedclastsandin

    situmeltingexperimentshasrecentlybecomingthe focusofattentionofgeologist

    andgeophysicist sinceexplosivepotentialofavolcanic systemappears tobevery

    related to the degassing path ofmelt all through the ascending conduit [53,54].

    Throughthedetailedanalysisofbubbleshapesandinterconnection,parameterslike

    bubblecoalescenceandtexturalrelaxationareconnectedwiththephysicalresponse

    ofmelts [55]. The socalled vesiculationprocesses inmagmasdeterminewhether

    theeruptionbecomeeffusiveofexplosive,soboth insituexperimentsandanalysis

    of selected natural samples are needed to advance in our knowledge on vesicle

    nucleation, growth and coalescence, and their connection with permeability

    evolutionofmelts[54].Adependenceofthemicrotexturewithmagmacomposition

    has been known atmacroscopic level, but not completely understanding at the

    microscopic detail. While basaltic composition seems to evolve towards non

    explosiveeruptionasporosityincreases(Figure10,[53]),siliciccounterpartsareless

    known,andhencemoreunpredictable[56].

    Figure10:Bubblesize,wallthicknessandinterconnectionfrombasalticfoams[53]

  • Page31of97

    Particularlystrikingisthecaseofsiliciceruptionswhichseemstoalternatebetween

    violenteruptionsandgentleones. Ithasbeendemonstratedthattheway inwhich

    volatiles escape from the shallow part of the volcano conduit, determine such a

    behavior[54].Onecriticalissueistounderstandhowbubblesnucleateandgrowin

    response to decreasing pressure asmagma rises toward the surface. Synchrotron

    microtomography analysis on Kilaueas pyroclast has showed the complexity of

    bubblegenerationatdifferentpressuresduring2008eruption[56].Pyroclastswere

    imagingatALSsynchrotronfacilityat20keV,200msexposuretimeand1400rotation

    steps between angles of 0 and 180. Threemain pyroclastic typeswere found,

    which depicted large bubbles (mm) surrounded bymicrometricthick haloes that

    containsanelevatednumberofsmallisolatedroundbubbles(radius=2.5m35m,

    Figure11A)D)[56]).

    Figure11:Differentpyroclasticmicrotexturesfromsilicicmelts.Bubblesappearsegmented[56].

    Themicrotexture found in thosepyroclastsrevealsahighdensityofsmallbubbles

    withinthehaloes,pointingtonucleationratesrelativelyhigh,butwithlittletimefor

    coalescence. This important fact support the ideas thatwater concentrations are

    onlyhighenoughinthecloserangeoflargevaporbubblespriortoeruption[56,57].

    The existence of a thin region around bubbleswheremeltwith dissolvedwater

    occurs. It is an intimate result of preeruption and it is interpreted as a water

  • Page32of97

    reabsorptionback intomagmapriortoeruption.Thosetexturescouldalsobeused

    totrackconvectivebehavioratamacroscalewithinthevolcano.

    Recent developments include in situ investigation ofmagma vesiculation at high

    temperature. Heating systems combined with ultrafast acquisition, like those

    implemented inTOMCATbeamline(Figure12ab;[27,58])areofthemost interest

    formelt foams research [59]but also in similarmaterialsone.g.managementof

    nuclearwaste[60].

    Figure12.(a)3Ddesignand(b)topphotographofthelasersystemmountedonTOMCATbeamlineat

    SLS.Trangeis4001700C[58,59]

    The application of this experimental system to the investigation of vesicles

    development inacidmeltsatdifferent temperatures is showed inFigure13, [59].

    Interestingly, shape and volume analysis reveals a connection of rigid and soft

    behavior of bubbleswithmagma rheology [61], providing crucial parameters for

    understanding how the viscosity ofmelts and gas overpressure during degassing

    processes controlmagma ascent along volcanic conduits. This is crucial topredict

    explosiveeruptionsinthosesystems[59].

  • Page33of97

    Figure13.ac3Drenderingofacidmeltatdifferenttemperatures(bubbles);d)bubblesize

    distributionsatdifferenttemperatures;e)bubbleanisotropyandfractionversustemperature[59].

    4.1.4. Foodscience:tastingthetexture

    Thephysiochemical,functionaland insomecasesnutritionalpropertiesoffoodare

    intimately controlled by its microstructure. The quantitative analysis of food

    microstructure has become critical in order to understand the physical and

    rheologicalbehavioraswellassensoryattributesoffoods.Foodprocessingarenow

    changing toward to the microstructure level design and testing, and xray

    microtomography is the technique of choice for visualizing those systems.

    Microstructural elements such as air bubbles or cells, starch granules, protein

    assemblies and food biopolymermatrices contribute greatly to the identity and

    qualityoffoods[62,63].

    Themicrostructureoffoodhasastronginfluenceovertheattributesofaproductas

    evaluated by consumers. Many of those macroscopic properties are poorly

    understoodbecauseoftheircomplexnature,derivingfrommultiple interactionsof

    processesandfoodmicrocomponents[63].

  • Page34of97

    Example of that interconnection between microstructure and complex

    physicochemical processes, and the profound impact of texture on the taste and

    flavorquality isfoundmanyproducts likefruit[64,65],bread[28,66,67]andcoffee

    [68] to name a fewwith a very high social and economic impact. Both fruit and

    bakedproductsshare thestrongdependenceon theircellularstructure thatcould

    beoptimized through appropriateddesignduring growth andproduction andwill

    determine transport/distribution strategies and midlong term durability of the

    product.Inthecaseofbread,3Dimagingthroughxraymicrotomographycombined

    withfastacquisitionhasproventobeveryefficientwaytounderstandcellstructure

    evolution during proofing time (Figure 14, [67,68]). These results can be used to

    improvethedesignandproductionofnotonlybreadbutotherbiopolymericfoams.

    Figure14.Evolutionbubblesinbreadduringproofing:(a)2Dimagesofhorizontalsections(diameter

    9mm)extractedfromreconstructedvolumes(628x628x256voxels)(b)and(c)Voidvolumefraction

    andaveragecellwallthicknessforthreedifferentdoughs[68].

  • Page35of97

    In the case of fruits, the microstructure determines mechanical and transport

    properties of tissues. Therefore, a quantitative description of fruit tissue

    components in 3D are critical, both to understand the properties and to develop

    structure reliablenumericalmodelson them.Figure15 showsananalysisofSXCT

    dataonfruittissuefromwhereimportantparameterswereobtained:cellwall,pore

    network and cell size. These componentswere then used to design a numerical

    model to run multiscale mechanics and mass transfer, thus providing a solid

    frameworkforvirtualtissuegeneration,includingcellgrowthmodeling.Thisstrategy

    provideaunique tool formoving fromgeometricdescription tophysicalmodelof

    fruittissue[65].

    Figure15.(upperleft)Synchrotronradiationtomography:phasecontrastslicesofthefruitcortexof

    apple(left)andpear(right);cellwallsareindicatedbyarrows.(lowerleft)Modeled(a)against

    measured(b)3Dgeometryofapplecortexcells.(Right)Theoxygenconcentrationprofileinsidecells

    usingfiniteelementsimulations.Drivenforcewaspartialpressureacrosstheboundariesofthetissue.

    Thepartialpressureandconcentrationinsidethetissuewasrelatedbytheuniversalidealgaslaw[65].

    4.1.5. Ultrafast2DRadioscopyon cellwall ruptures to studymetal foam

    stabilitymechanisms

    ThirdgenerationsynchrotronlightsourcesdeliverapolychromaticXrayphotonflux

    densityhighenoughtoperformradiographywithmicroresolutioninbothspaceand

    time[6972].Therapiddevelopmentof imaginghardware,especially inthefieldof

    CMOS sensors, and their continuously improving sensitivity now allows for

    extraordinarily high recording speeds, with exposition times down to 1s for a

  • Page36of97

    considerable(atleast1020mm2)fieldofview.TheoptimizeduseofsocalledXray

    inline phase contrast (due to the coherence properties of an Xray synchrotron

    beam) allows for thebestpossible contrast forour cellularmaterial.Additionally,

    radiation hard but highly sensitive and efficient single crystal scintillators such as

    LuAG:Ce or YAG:Ce crystals are employed. This permits us to follow the overall

    processand resolve insitunotonly slowprocesses (>1msexposure time) suchas

    pore nucleation and growth, foam expansion or drainage, or simply observe the

    overallfoamingprocess,butalsoveryfastones(1msexpositiontime)suchascell

    wall rupture, bubble coalescence, rapid bubblemotions or oscillations. Figure 16

    shows the improvement of time resolution for Xray synchrotron radioscopy on

    metallicfoamsachievedinthepastyearsasreportedintheliterature[7176].

    2000 2002 2004 2006 2008 2010 2012

    100

    101

    102

    103

    104

    105

    1

    0.1

    0.01

    1E-3

    1E-4

    1E-5

    0.5 s

    Stanzick, Foams & Emulsions, [16] Banhart, AEM, [17] Stanzick, AEM, [18] Garcia-Moreno, APL, [14] Rack, JSR, [15] Garcia-Moreno, ESRF MA 1134

    Acq

    uisi

    tion

    rate

    [fra

    mes

    /s]

    Year

    1 ms

    Cell wall rupture,Bubbles coalescence

    Foaming behaviour,Process control

    9.5 s

    Fram

    e in

    terv

    al [

    s]

    Figure16.EvolutionoftimeresolutionforinsitusynchrotronXrayradioscopyappliedtovisualize

    metalfoaming.

    Thestabilizationofmetalfilmsorcellwallsinliquidfoamsisakeyissueinmetal

    foam science but still not fully understood. To investigate the nature of rupture,

    experimentshavebeenperformed inwhich therewasasimultaneousdemand for

    both high spatial and high time resolution. It was possible to observe the

    coalescenceof twoadjacentbubbleswitha recording speedof105,000fpswitha

    frame intervalof9.5s andeffectivepixel sizeof20m.Although the contrastof

  • Page37of97

    suchimagesislowduetotheshortexposuretimeandconsequentlimiteddynamics

    oftheimages,itisclearlyvisibleinFigure17thatthecoalescenceoftwobubblesis

    completed in~475sandthattheruptureofafilm lastsfor~380s, ifweconsider

    theendoftheruptureasthepointwherethecontourofthenewbubblebecomes

    straightbeforeitendsasconvex.

    Figure17.SeriesofradiographsofanAlSi10+0.5wt.%TiH2foamat640Cextractedfromaninsitu

    fastsynchrotronXrayradioscopicanalysis.Thecoalescenceoftwobubblesmeasuredwith9.5s

    frameinterval(105kfps)canbeobserved.Dashedlinesindicatethecontoursofthebubblesand

    arrowsindicatethecorrespondingrupturedcellwall.

    Inthisexperimentsitwaspossibletodemonstratethattherupturetimeofafilmis

    dominatedbytheinertiaofthefluidandnotbyitsviscosityasruptureoccurredso

    fast [71]. Therefore, it could be demonstrated that stabilization by an effective

    viscosityonly,whichwouldbeashighas=0.4Pas (ascalculatedbyGergelyetal.

    [77])doesnotapplytometalfoamsofthetypeinvestigatedhere.Otherfactorssuch

    as bubble size and alloy compositionmay influence the rupture time andwill be

    studiedinfuture.

  • Page38of97

    4.1.6. Insitutomographyofcreepprocessofbrass

    The efficiency of electricitygenerating plants in general and gas turbines in

    particular increases with increasing service temperature, therefore requiring

    components with sufficient hightemperature strength. The lifetime of such

    components is usually restricted by creepinduced cavity growth leading to

    unacceptablestrainsandfinallytofracture[52].

    Synchrotron radiation microtomography provides new possibilities for a non

    destructive determination of creep damage evolution in the bulk of samples,

    comprising statistical analysis of cavity volume, shape, and orientation evolution

    during insitu creep experiments. The results of the experiments enable a

    quantitative description of the time dependence of cavity morphology and size

    distributions.

    FasttomographymeasurementsduringcreepwereperformedatID15Abeamlineof

    theESRFusingahighenergybeam (~80keV)witha largebandwidth (~50%).The

    acquisition time of a complete tomographic scanwas 3min [78]. The absorption

    radiographswererecordedwithafastchargecoupleddevice(CCD)withaneffective

    pixel sizeof1.6m. The tensile creep testwasperformed in aminiaturized creep

    machineatconstantloaddevelopedforinsitutesting[78].

    The cavities developed during the creep testwere quantified in 3D by fitting an

    equivalentellipsoid toeach cavity. Figure18 shows the3D reconstructionsof the

    sectionedvolumerevealingcreepdamageevolutioninthesample.

    Figure18.Tomographicvolumesrevealingthecavitiesatdifferenttimesduringthecreeptest.

    (a)initialcondition,(b)middleofthetest,(c)closetofracture.

  • Page39of97

    Figure 19 shows the shape evolution of the three largest cavities between the

    reference state and the final state shortly before fracture. The evolutions are

    representativeforthelargestvoids,whichusuallycontrolthefinalspecimenfracture.

    Void evolutions indicate that creep cavities are relatively small and have nearly

    ellipsoidalshape inearlierstagesofcreep.Asthematerialdeformstheygrowand

    interactions among neighbors lead to coalescence. These interactionswere quite

    significant for the studied brass alloy. A void can experience several coalescence

    eventsduringthecreeptest.Thefirstcoalescencewassurprisinglydetectedalready

    inthesecondarysteadystateregime.Notonlypairwisecoalescencesweredetected,

    butalsothejunctionsoftripletsandquadruplets.

    Figure19.Shapeevolutionofthethreelargestcavitiesexhibitingcoalescence.

    Thedifferentstagescorrespondtothelargestporebeforecoalescence.

    Thespatialorientationofacavity inthepresentwork ischaracterizedbytheangle

    between themajorsemiaxisof theequivalentellipsoidand thezaxis (i.e. loading

    direction). Figure 20displays a 3D graphof thepolar angleof cavitiesduring the

    creep test for all cavities, revealing a smooth change of the cavity orientation

    distribution.Suchachangeingeneralcavityorientationwouldindicatetheonsetof

    enhanced cavity growth and linkupperpendicular to the stressdirectionwhich is

    essentialfordamagingduringtertiarycreep.

  • Page40of97

    Figure20.Evolutionofthespatialorientationofcavities.

    Thequantitativeanalysesperformedrevealedthatthedistributionofcreepcavities

    with respect to size, shape, andorientationdependson the time the samplehas

    been exposed to high temperature creep. The largest cavities were formed by

    coalescence of two or more voids resulting in a complex shape. The cavity

    population tended to be elongated perpendicularly to the loading direction. The

    quantitativedataobtainedcanprovideabasisforavalidationofthedescriptionof

    creepdamagebynumericalmethods.

    4.1.7. Insitu tomography of damage development of carbonfiber

    reinforcedcomposites

    Therearemanyvariantsof fiber reinforcedpolymerssuchascarbonorglass fiber

    reinforced;straight,wovenor3Dbraidedfiberreinforced;withfibersandparticles

    as reinforce;withhollow fibersormicrocapsules for selfhealingmaterials;hybrid

    carbon and glass, and the list goes on. The amount of variables thatmight be

    changed in onematerial is huge. An example is the ply stacking sequencewhich

    determinesthefailuremechanismsthatwillbeactivateduponloading.Inparticular,

    carbonfiberreinforcedpolymers(CFRPs)arewidelyused instructuralcomponents

    owingtotheirhighspecificmechanicalproperties.However,CFRPspresentseveral

    failuremechanisms that coexist in the same laminate and, therefore, improved

    understandingofdamageevolutionandeventualfailureisstillneeded.

    InsituSXCTwasperformedon[+45/45/+45]sCFRPsubjectedtotensileloading.The

    experimentswereperformedat the ID15Abeamlineof theEuropeanSynchrotron

    RadiationFacility.A14bitFReLoN(fastreadoutlownoise)CCDcamerawithafield

  • Page41of97

    ofviewof1.2x1.1mmandaneffectivepixelsizeof(1.4mm)2wasused.Thespatial

    resolutionwas about 2mm (the fullwidth at halfmaximum of the point spread

    function).Apinkbeamwithmaximum intensityat~30keVwasused.Sixhundred

    radiographieswererecordedbetween0and180resulting inatotalscantimeof

    2min per tomogram. Ten scans were recorded at increasingly applied load. A

    combinationofabsorptionandphasecontrastwasobtainedbyplacingthesampleat

    ~40mmfromthedetector.

    The evolution ofmatrix cracking is shown qualitatively in Figure 21 for different

    deformation steps. Each individual crack is shown in a different color. The initial

    cracks grewwith the applied load, extending over thewhole section of the plies

    beforefracture.Almostallthecracksbecame interconnectedathigh loads,sothat

    themajorityof thedamagedisplaysasinglecolor.Noneof thepreexistingcracks

    interactedduringdeformationwith theporesobserved in Figure21d).The crack

    frontsandtheshapeofindividualcracksweregenerallyuneven.

    The interlaminar crack growth shows a combination of cusp formation and

    matrix/fibredebondinginfrontofthecracktip.Thecracksaresubjectedtoamode

    IIshear loadingandcuspsdevelopperpendiculartotheprincipalstress,coincident

    withtheloadingdirection.Asdeformationprogresses,cuspscoalesceandcontribute

    tothepropagationofthecrack.

    Themajor damagemechanisms and the sequence of occurrenceswere identified

    and quantified. The extracted information can be used to validate and enhance

    damagepredictionmodels.

  • Page42of97

    Figure21.Damagepropagationin45plies.

    Differentcrackcoloursindicatetheirconnectivity(adaptedfrom[17]).

    4.2. Materialscience

    4.2.1. ResinmicroflowbyXraycomputedtomography

    Highperformancecompositeshavetobemanufacturedinautoclavetoensurethat

    theyareporefreebutthisleadstohighprocessingcostsandthereisalargeinterest

    in the optimization of outofautoclave processing techniques. Vacuum Assisted

    ResinTransferMolding (VARTM) isaveryappealingprocessdueto itsrelative low

    cost and thepossibility toprocess largepanels. In thisprocess, the liquid resin is

    infiltrated intoaplasticbagcontainingthe fiberpreformthat layonarigidmould.

    The infiltration is assisted by the application of vacuum.However, the resin flow

    through the fiber fabric is very complex and the key parameters that control the

    nucleation,growthandcoalescenceofporesduringinfusionarenotwellunderstood.

    Inaddition, the resin flow in the fabric takesplaceat twodifferent length scales:

    macroscopic resin flowbetween the fiber towsprogresses rapidlywhilemicroflow

    withinthefibertowsoccursatlowerspeed.Theinteractionbetweenmacroflowand

    microflowisknowntobeacriticalfactorcontrollingthedevelopmentofporositybut

    itisverydifficulttoanalyzeexperimentally.

  • Page43of97

    To provide the experimental evidence necessary to understand resin flow during

    VARTM,aminiaturizeddevicethatreproducestheconditionsofVARTMprocesswas

    developedand,at thesame time,allows tostudy the infiltrationatbothscalesby

    meansofSXCT.Tothisend,highresolutionSXCTwasperformedatthefiberscaleto

    analyzeinsituthemacroandmicroflowbehaviorandthedefectformationduring

    the infusionprocess.TheexperimentswereperformedattheP05beamlineofthe

    DESYSynchrotron.A14bitCCDcamerawitha fieldofviewof3.8x1.9mmandan

    effectivepixelsizeof(1.25mm)2wasused.Thespatialresolutionwasabout2mm.A

    monochromatic beam with 25 keV was used. Nine hundred radiographies were

    recordedbetween0and180resultinginatotalscantimeof~2hspertomogram.

    Due to the largemeasurement time the liquid flowhas tobe stoppedduring the

    measurement. This could be avoided with a fast tomography setup and would

    providerealtimeinformationaboutinfiltrationmechanisms.

    Figure22showstheexperimentalsetupattheP05beamlineatDESYSynchrotron.

    Theliquidisinfiltratedfromthetop(inlet)andthevacuumisappliedatthebottom

    (outlet).Thefibertowspecimen,placedinavacuumbaginsidethePMMAtubewas

    scannedbyXraysduringinfiltration.

    Figure22.Experimentalsetuptostudyinsitutheinfiltration

    processattheP05beamlineofDESYSynchrotron.

    Figure 23 shows a reconstructed volume and a crosssection obtained by SXCT

    showing the flow front (macroflow) around the tow and themicroflow inside the

    tow.Thisuniqueexperimentalsetupprovidesthe informationtoanalyzetheresin

  • Page44of97

    flow in3dimensionsduring infiltrationatboththemicroscaleandthemacroscale,

    aswellastoassessthedifferencesinpermeabilitybetweenbothregimes,beingthe

    former several orders of magnitude lower than the latter. Moreover, the

    experiments shows the conditions that give rise to regions that might remain

    partially infiltratedduetotrappedairbubblesortodifferencesbetweencapillarity

    andresinpressure,leadingtolowqualitypanels.Basedonthesedata,itispossible

    to design optimized VARTM strategies to improve the quality and reduce the

    processingcostofadvancedstructuralcomposites.

    Figure23.(a)Crosssectionofthescannedfibertowspecimeninthevacuumbag.Wetglassfibersare

    surroundedbythelightergreycolor.(a)3Dreconstructionoftheinfiltratedtow.

    4.2.2. 3DmultiphasenetworksprovidinghightemperaturestrengthtoAlSi

    pistonalloys

    CastAlSialloysarewidelyused inautomotivecomponentssuchascylinderheads

    andpistons.Thetemperatureriseinthecombustionchamberofadieselenginecan

    reachup to~300400Cand, therefore,high temperaturestrength isan important

    requirement forpistonalloys.Thehigh temperature strengthofcastAlSialloys is

    providedbyatransferofloadfromtheductileAlmatrixtorigidandusuallyhighly

    interconnected3DnetworksofeutecticSi.However, ifcastAlSialloysaresolution

    treatedabove500C,theeutecticSirapidlydisintegratesandspheroidizesreducing

    thestrengthofthealloy[79].Thelossinstrengthcanbereducedbytheadditionof

    transitionelements such asNi andCu that form thermally stable rigid aluminides

    [80,81].ThereasonsfortheimprovementofmechanicalpropertiesofAlSialloysby

  • Page45of97

    additions of Ni and Cu are stillmatter of scientific investigationswith important

    technological implications.TheeffectofdifferentadditionsofNi,CuandFeonthe

    hightemperaturestrengthofcastAlSipistonalloys is investigatedwithrespectto

    the microstructural architecture formed by the aluminides and the eutectic Si.

    Therefore, absorption and phase contrast synchrotron microtomography was

    appliedtosamplesofthealloysAlSi12,ASi12Ni,AlSi12Cu5Ni1andAlSi12Cu5Ni2 in

    ascastconditionandaftersolutiontreatmentusingtheID19beamline.

    Figure24showsthelargestparticlesoftheeutecticSiandofthealuminideswithin

    theconsideredvolumesforthestudiedalloysafter4hsolutiontreatmentat490C.

    Thetomographicresultsshowthatthe interconnectivityoftheeutecticSi ishighly

    conserved after the solution treatment for the aluminidecontaining alloys (Figure

    24b,eandf).

    Figure25showstheevolutionoftheproofstress,0.2,at300Casafunctionofthe

    solutiontreatmenttimeat490C.Thesolutiontreatmentcausesadecrease inthe

    hightemperaturestrengthoftheinvestigatedalloyswithinthefirst4h.

    ThealuminidecontainingalloysexhibithigherstrengthsthantheAlSi12alloydueto

    the larger volume fraction of rigid phases, amounting to 1824%, the high

    interconnectivityofthealuminidesandtheirhighcontiguitywiththeeutecticSi.The

    alloys AlSi12Ni1 and AlSi10Cu5Ni1 contain ~8vol.% of aluminides. However, the

    aluminides in theAlSi10Cu5Ni1 alloy present a higher degree of interconnectivity

    (~94% in ascast condition and ~75% after stabilization) than the AlSi12Ni1 alloy

    (~60% in ascast condition and ~50% after stabilization). Xray diffraction analysis

    revealed that the addition of Cu produces various aluminides increasing the

    contiguity: Al7Cu4Ni, Al2Cu, Al4Cu2Mg8Si7 and AlSiFeNiCu. ~90% of all the

    aluminides and all the eutectic Si are forming a highly interconnected rigid 3D

    structure inAlSi10Cu5Ni1which increasesthehightemperaturestrengthby~100%

    withrespecttotheCufreealloyAlSi12Ni(Figure25).

    ThepistonalloysAlSi10Cu5Ni1andAlSi10Cu5Ni2showsimilarstrengthintheascast

    condition.AlSi10Cu5Ni2containsmorealuminides(~13vol.%)and itretainsa~15%

    higherstrength levelthanAlSi10Cu5Ni1afterthesolutiontreatment.Furthermore,

    the3Dnetworkoftherigidphasesispracticallyfullpreserved(~97%)duringsolution

    treatment of the AlSi10Cu5Ni2 (Figure 24d, f), owing to the larger degree of

  • Page46of97

    contiguitybetweenthealuminidesandeutecticSi.Thisresultsinanextraincreaseof

    loadtransferfromtheAlmatrixtothereinforcing3DnetworkofaluminidesandSi

    whichismoreimportantathightemperatureswherethematrixbecomesrelatively

    softer.

    The results indicate that the design of cast AlSi alloys for high temperature

    applications requires a deep understanding of their 3D architecture and the

    mechanisms governing its evolution with temperature and time. Synchrotron

    microtomography is a powerful tool to achieve these tasksmainly due its non

    destructivenature,suitablesamplesizetoresolutionratioandthepossibilitytouse

    phasecontrasttorevealtheeutecticSiembeddedintheAlmatrix.

    Figure24.3DstructuresofaluminidesandSiafter4hofsolutiontreatment:a)SiinAlSi12,b)Siand

    aluminidesinAlSi12Ni,c)aluminidesinAlSi10Cu5Ni1,d)aluminidesinAlSi12Cu5Ni2,e)Siin

    AlSi10Cu5Ni1andf)SiinAlSi10Cu5Ni2.

  • Page47of97

    Figure25.Proofstress0.2at300Cfortheinvestigatedalloys

    asafunctionofthesolutiontreatmenttime.

    4.2.3. Submicrometerholotomographyofmultiphasemetals

    Themicrostructural characterization ofmultiphasematerials by conventional 2D

    metallographycanbeinsufficientif,forinstance,connectivitybetweenphasesexists,

    or the orientation of constituents varies throughout the volume. For this, 3D

    characterisationtoolsareneeded.Synchrotronmicrotomographyhasshowntobea

    powerful technique to reveal the architecture of materials. Furthermore, the

    coherence of the beam can be exploited applying quantitative phase contrast

    tomographyorholotomography[82]toimagecomponentswithsimilarattenuation.

    Thespatialresolutionachievablebyparallelbeamsynchrotronmicrotomography is

    about1m.Thiscanbeimprovedusingmagnifyingoptics[83].Thishassofarbeen

    achieved for samples with diameters

  • Page48of97

    sizesof60nmand51nmwereusedfortheAlalloyandTialloys,respectively.Phase

    retrieval forholotomographywasachieved from recordings at four focalpointto

    sampledistances.

    Examplesofthreelightalloysarepresented.Theirmicrostructuresareshowninthe

    scanningelectronmicrographs(SEM)atthetopofFigure26:

    AlMg7Si4alloy:themicrostructureexhibitsafineternaryeutecticformedbyAl,Si

    andMg2Siwithlamellarstructures>150nm.Ferichintermetallics(IM)appearwithin

    theprimaryAl.

    Ti10V2Fe3Alalloy (Ti1023): thealloycontains~30%ofhcpphasedistributed

    withinbccgrainsnotobservablebyabsorptioncontrast.

    Ti6Al4V (Ti64) alloy reinforcedwith 5vol% TiB needles (Ti64/TiB/5w): the Ti64

    alloymatrixconsistsofgrainsseparatedbynarrowzonesandTiBneedles.

    Holotomography is well adapted to these materials as there is low absorption

    contrastbetweenthepresentphases.

    Portions of the reconstructed holotomography slices are shown at the bottom of

    Figure26.Thegreylevelscaleslinearlywiththeelectrondensityoftheconstituents

    revealing all the phases observed in the SEMmicrographs. Volume views of the

    minorityphasesareshowninFigure27.

    AlMg7Si4:theternaryeutecticwith interconnectedSiMg2Sistructuresasthinas

    ~180nm (green)are identified.The IMparticlesandAlaremade transparent in

    Figure27a).

    Ti1023:grains>200nmareidentified.InFigure27b),aninterconnectedstructure

    ofparticlesremainedfromanincompletebreakupofthelamellarstructureduring

    preforging(blue),whilesecondarygrains(green)areembeddedinthephase.

    Ti64/TiB/5w:theandphasesintheTi64matrixareidentifieddownto200nm.

    In Figure 27c), TiB needles (green) are connected to irregularly shaped grains

    (othercolours),forminganinterpenetratingstructurewithinthephase.

    MagnifiedsynchrotronholotomographyusingKBopticswasusedtocharacterizethe

    3Darchitecture of Al and Tialloy samples of ~0.4mm diameterwith energies of

    17.5 and 29keV, respectively.Using the nanofocusing KBsystem for such a high

    energy (29keV) is reported for the first time. This experimental setup combining

  • Page49of97

    synchrotron radiation, KB optics and holotomography opens a new level of

    resolution (180nm) for nondestructive 3D imaging of representative samples of

    multiphasemetals.

    Althoughmagnified synchrotron holotomography is not planned in the proposed

    beamline,theholotomographymethodologycanbeusedtocharacterizemultiphase

    materialsaslongasthesizeofthephaseareabovetheresolutionofthetechnique.

    However,themagnifyingopticssetupcouldbe included inafurtherupdateofthe

    beamline.

    Figure26.Top:scanningelectronmicrographsoftheinvestigatedmaterialsBottom:portionsofslices

    ofholotomographyreconstructionsoftheinvestigatedmaterials.Fromlefttoright:AlMg7Si4alloy,

    Ti1023alloyandTi64/TiB/5w.

  • Page50of97

    Figure27.Renderedvolumesoftheinvestigatedmaterials:a)interconnectedSiMg2Sistructure

    (green)inAlMg7Si4;b)largerparticlesremainingfrompreforging(blue)andindividualsecondary

    grains(semitransparentgreen)inTi1023;c)TiBneedles(green)andirregularlyshapedgrainsin

    Ti64/TiB/5w(othercolours).

    4.3. Lifesciencesandbiomedicine

    In contemporary biomedical, aswell as clinical research, structural imaging has a

    central role. Current approaches are focused in a multiscale methodology.

    SynchrotronXraybased imagingprovide thepossibility to integrateseveralof the

    required length scale, providing highresolution (submicrometre) detail in large

    samples (tens of centimetres) [85]. SXCT with phasecontrast offers exciting

    possibilitiestosupportSystemsMedicineresearch.Substructuresoforgans,oreven

    whole (small) organisms, can be investigated, segmented and quantified from a

    single3Ddataset.Thisalsoenablestoobtainthestructuraldatathatisrequiredfor

    e.g.performingcomputationalmodellingoffunctionalorgan[86],suchasitisdone

    inthecontextoftheVirtualPhysiologicalHuman[87].

    PotentialapplicationsforahardXraytomographybeamlineatALBA:

  • Page51of97

    4.3.1. HighresolutionStructuralImagingofstatictissue:

    Multiresolution imaging at the (sub)micrometre scale is essential in evaluating

    structuralpropertiesandinducedchangesinalotofbiomedicaldomains.Theability

    toimagelargevolumesoftissueatthisscaleoffersnovelinsightstowardsassessing

    pathological remodeling aswell as towards providing data for e.g. computational

    modeling.ExamplesofthisareprovidedinFigure28,Figure29,Figure30.

    Elastine bres in the aortic wall

    Fibre orientationchange

    Falsetendon

    Intramuralvessel

    Coronory arteryostium

    Aorticvalve

    Tricuspidvalve

    LV wall

    Long.

    Circ.

    Long.

    Figure28.Phasecontrastimagingofwhole(rodent)hearts.Besidetheanatomicaldetailatorgan

    level,thedetailedfibrestructureinwhichmyocytesareorganisedcaneasilybeassessed.Additionally,

    vesselscanbeobservedandextractedusingcomputationaltools[89].

    Figure29.Imageofapretermrabbitpupthorax,focusingontheair/lungtissueinterface[90].

  • Page52of97

    Figure 30. Spatial resolution of histology, Xray phase tomography, and MRI microscopy

    demonstratingthatresolutiondecreasesfromhistologyviaPCmCTtomMRI[91].

    4.3.2. HighthroughputVirtualPathology

    Whole organism assessment, as e.g. in

    human autopsies or phenotyping of

    geneticallymodifiedmodelorganisms,isstill

    an essential source of information, both in

    basic research as well as in clinical

    understanding of diseases. Traditional

    autopsieswoulddescribeand,insomecases

    image, the whole organism and additional

    detailed information would be provided

    from destructive (microscopy) investigation

    of specific organs or tissue samples.

    However, this leads to different (sparse)

    information at the different spatial

    resolutions and an integration of organ and cellaggregate level is extremely

    challenging,verytimeconsumingandexpensive.Thismeansthatwholeorganisms

    areonly investigated in rarecases, suchas for specific researchprojectsore.g. in

    human fetuseswhen thecauseofperinataldeath isunknown.Othermethods like

    MRIareverytimeconsumingandwith limitedresolution,Figure31.SXCT inphase

    Figure 31. A false positive MRI post

    mortem, suggesting lung changes while

    histologywasnormal.

  • Page53of97

    contrastmode,togetherwithahighthroughputforsamplehandling,couldprovidea

    way for fast (

  • Page54of97

    4.4. Historicalbuilding

    4.4.1. Insitutomographyofthefluidmovementinsiderocks:applicationto

    historicalbuildingconservation

    Waterplaysa fundamental role in rockweatheringprocesses. Itspenetrationand

    movementinsiderocksgreatlyinfluencesthenatureandintensityofthedamage.X

    rayComputedTomography (XrayCT)beingaNonDestructiveTechnique (NDT), is

    very useful in mapping water penetration. A General Electric HiVelocity QX/i

    helicoidal scannerwas used for the studies in the following parameters: voltage

    140kV;current150mA;exposuretime2s;resolution0.203mmx0.203mm,andslice

    width0.625mm. Seriesof80virtualsectionswere imaged inparallelatspecified

    time intervals. The obtained imageswere 512 x 512pixels in size. Image length:

    50mm.

    Xray CT provides good images of the internal structure of the samples: the

    sedimentary layeringduetodifferences incompositionandporosity isclearlyseen

    aswellasothermineralogical/texturalcharacteristics(Figure33).

    Figure33.a)Uniformdistributionofthemineralsexcept in ironoxides layers(atthebottom).b)(1)

    voidspaces;(2)finegrainedcarbonates;(3)largegrainedcarbonatesand(4)claysandironminerals.

    ThemovementandpenetrationrateofwaterhasbeenmonitoredbyXrayCTduring

    freewaterabsorptiontests(UNEEN13755(2002).Figure34a)showsthedifference

    betweendryandwetzones intheinteriorofthesamplewhileFigure34b)showsa

    3Drenderingofthevolumeillustratinghowthedryopenspacedecreasesduringthe

    absorptiontest.

  • Page55of97

    Thecomparisonof80CTscansperiodicallytakenduringthewaterabsorptiontest

    allowstheobservationofthewaterfrontmovementin3D.Thewatermovementis

    related to thepetrographic characteristicsof the rock,mainly to the sedimentary

    layeringthatcontrolsthedirectionofwaterpenetration.Waterabsorptiondepends

    on the rock textureandporosity. Largeporesaregenerallynot connected.Water

    penetratesthroughthelayerswithsmallerbutinterconnectedpores.

    HounsfieldUnitnumbersprovide aquantitative approach for the identificationof

    differentcompositionsandporosities,and thepenetrationrateofwater.MeanCT

    values in Hounsfield units (HU), in ROIs (Region Of Interest) are measured at

    different intervals of time during the water absorpt