FACTORN

13
 1 THE SELF-DEMAGNETIZATION FACTOR OF BONDED MAGNETS  N.V. KHANH Quy nhon Pedagogical University,  N.V. VUONG, M.M. TAN   Institute of Materials Sc ience, NCST of Vietnam. The self-demagnetization effect in bonded magnets (BM), which are compacted  from ferromagnetic particles embedded in a binder medium, was investigated by means of the numerical computation. It is shown that the self-demagnetization factor is dependent not only on the shape but also the granular structure of magnets. The calcu- lated factors N as functions of the magnet shape, mass density and particle orientation have been presented. The influence of the self-demagnetization effect on the characteri-  zation of BMs is also discussed. I. INTRODUCTION Permanent magnets have become indispensa  ble components in the modern tech- nology . They  play an important role in many electromechanical and electronic devices  used in domest ic and  professional appliance [1]. The  magnetization of  a  piece of  ferromagnet ic mater ial has its or igin in the  spin and or  bi tal magnetic moment  of  the atomic electrons. Magnetized in a magnetizing f ield H ex , the ferromagnetic sample can be  prepared in a metasta  ble state where it retains some net  magnet ization M and becomes  a  permanent magnet [2]. The magnetic f ield H of  a magnet is more lik e a di  pole f ield and may be est i- mated if  the magnet is replaced by an equivalent surface distr ibution of  magnet ic charges which act as sources or  sink s of  H. An induction B in a given mater ial is the secondary f ield which is induced in it by H. Outside the magnet volume the di  pole f iel d is k nown as the stray f ield. In free space around the magnet, the magnetic induction B o  and strengt h H o  are  parallel and  proportional, B o = Q o H o . Within the magnet  volume, the di  pole f ield, H i, is k nown as the demagnet izing f ield since to reduce its M and the rela- tion between B i , H i  and M is: B i = Q o (H i +M). (1) In a uniformly magnetized elli  psoidal magnet , H i  is uniform throughout the magnet vo- lume  and H i  and M are related by the equation [3]: H i  = -N M, (2) when M lies along the  pr inci  pal axis of  the magnet , so B i = Q o M(1-N). (3) Here N is the self -demagnet ization factor  and has a value between 0 and 1 that depends on the magnet shape. In all magnets other  than elli  psoids the concept of  a self - demagnet izing f ield is only an approximation since H i is non-uniform. Nevert heless the self -demagnet izing inf luences encountered by a magnet can be esta  blished by either  analytically or by numer ical computation and expressed by the  factor N as a f unction of  a magnet shape.

Transcript of FACTORN

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 1/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 2/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 3/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 4/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 5/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 6/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 7/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 8/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 9/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 10/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 11/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 12/13

8/8/2019 FACTORN

http://slidepdf.com/reader/full/factorn 13/13