Estimation of the Meridional Ekman Transport in the Tropical … · 2015. 8. 4. · Estimation of...

1
Geostrophic velocity was calculated from the density field measured by the CTD/ uCTD, ageostrophic velocity is the difference between ADCP and geostrophic velocity. Assuming that in the upper layer, the ageostrophic flow is mainly due to the wind, Ekman transport can be calculated by integraEng the ageostrophic velocity verEcally and zonally. Estimation of the Meridional Ekman Transport in the Tropical Atlantic by Yao Fu, Johannes Karstensen, Peter Brandt Helmholtz Centre for Ocean Research Kiel Contact: [email protected] Reference Chereskin, T., and D. Roemmich (1991), A Comparison of Measured and Windderived Ekman Transport at 11°N in the AtlanEc Ocean, Journal of Physical Oceanography, 21, 869 878. Chereskin, T., W. Wilson, L. Beal (2002), The Ekman temperature and salt fluxes at 8°30N in the Arabian Sea during the 1995 southwest monsoon, Deep Sea Research, 49, 1211 1230. Wijffels, S., E. Firing, and H. Bryden (1994), Direct observaEons of the Ekman balance at 10°N in the Pacific, Journal of Physical Oceanography, 24, 1666 1679. Stewart, R. H. (2008), IntroducEon To Physical Oceanography. IntroducEon Steady wind over a steady homogeneous ocean, the wind stress forcing is balanced by the effect of Earth’s rotaEon. The verEcal integraEon result in a transport perpendicular to the wind blowing direcEon. To the right in the northern hemisphere. To the lee in the southern hemisphere. Ekman transport can be calculated separately in two approaches: Indirect: using wind stress Direct: using ageostrophic velocity In the tropical AtlanEc Ocean, Ekman transport is an important upper layer component of the meridional overturning circulaEon. Wind induced Ekman divergence drives upwelling and poleward surface flow, forming the upper limb of the subtropical cell. Generally, in the absence of direct current measurement, Ekman transport and the associated heat and salt flux is derived from wind stress, SST and SSS based on the satellite observaEon. In this study, Ekman transport is calculated using direct velocity observaEon along two hydrographic secEons and compared with the indirect approach. 60 o W 50 o W 40 o W 30 o W 20 o W 10 o W 0 o 10 o E 20 o S 15 o S 10 o S 5 o S 0 o 5 o N 10 o N 15 o N 20 o N Longitude Latitude CTD stations Data: Hydrographic SecEons along 14.5 N and 11 S 14.5N : Meteor 96 in May 2013 64 CTD staEons, 336 underway CTD profiles, Vessel mounted ADCP, Shipboard wind measurement. 11 S : Meteor 98 in July 2013 47 CTD staEons near the coasts 243 underway CTD profiles, Vessel mounted ADCP, Shipboard wind measurement. Underway CTD (uCTD) data are applied to calculate the Ekman transport at both laEtudes. Satellite based wind, SST, SSS products are used as a comparison. Direct Method: Ageostrophic Velocity Mixed Layer Depth and Top of the Thermocline 5 4 3 2 1 0 1 2 3 0 50 100 150 200 Velocity [cm/s] Depth [dbar] V adcp V geo V ageo 3 2 1 0 1 2 3 4 5 0 50 100 150 200 Velocity [cm/s] Depth [dbar] V adcp V geo V ageo 14.5 N 11 S 35 W 30 W 25 W 20 W 15 W 10 W 5 W 0 5 E 10 E 0 50 100 150 Longitude 60W 55 W 50 W 45 W 40 W 35 W 30 W 25 W 20 W 0 50 100 150 Longitude Depth [m] MLD depth TTC depth mean MLD = 32 m Mean TTC = 57 m range = [17, 57] range = [17, 90] mean MLD = 47 m range = [15, 95] range = [15, 95] Mean TTC = 45 m 14.5 N 11 S MLD is defined by a density threshold of 0.03 kg/m 3 . TTC is defined by a density gradient threshold of 0.01 kg/m 4 . Summary and Outlook The meridional Ekman transport along two transatlanEc secEons is esEmated using direct and indirect method, respecEvely. The underway CTD data provide consistent results compared with the regular CTD data in esEmaEng the Ekman transport. At both laEtudes, the Ekman transport extended beyond the mixed layer. In the direct method, the Ekman flux is sensiEve to the choice of integral depth, the top of the thermocline appears to be a reasonable choice for the integraEon of the ageostrophic velocity. Though in these two cases, the Ekman fluxes using the SST and SSS are not significantly different from using a layer of temperature and salinity. In the next step, the observed Ekman transport and fluxes will be compared with GECCO/ GECCO2 assimilaEon products. Eventually the study will be extended to the full water depth and different components related to the meridional overturning circulaEon will be esEmated using observaEonal data, and the variability of the MOC at 14.5 N will be analyzed with model data. Ekman Heat and Salinity Flux M E : Ekman volume transport [Sv] H e : Ekman heat flux [PW] S E : Ekman salinity transport [10 9 kg/s] θ Ε : Transport weighted temperature [C] s E : Transport weighted salinity [psu] θ Ε s E M E H E S E θ Ε s E M E H E S E TTC 25,777 36,203 5,731 0,606 0,213 25,671 36,694 -11,959 -1,259 -0,449 Const 25,618 36,171 6,342 0,666 0,235 26,051 36,836 -11,499 -1,228 -0,434 Surface 25,907 36,207 5,731 0,609 0,213 25,672 36,668 -11,959 -1,259 -0,449 Sat 25,893 36,266 5,731 0,608 0,213 25,768 36,390 -11,959 -1,263 0,446 Surface 25,731 36,160 6,264 0,661 0,232 25,419 36,694 -12,971 -1,352 -0,488 Sat 25,571 36,158 6,264 0,657 0,232 25,278 36,370 -12,996 -1,347 -0,484 14,5 N Direct 11 S Indirect Ekman Theory At 14.5 N, The calculaEon based on the uCTD data shows good consistency with the calculaEon based on the CTD data. The top of the thermocline appears to be a bener choice for integraEng the ageostrophic velocity than either the MLD or a constant depth. 60 W 55 W 50 W 45 W 40 W 35 W 30 W 25 W 20 W 1 0 1 2 3 4 5 6 7 8 Longitude ship wind satellite wind ageo 50 m ageo MLD ageo TTC ageo uCTD TTC 35 W 30 W 25 W 20 W 15 W 10 W 5 W 0 5 E 10 E 14 12 10 8 6 4 2 0 2 Longitude ship wind ageo 70m ageo MLD ageo TTC 14.5 N 11 S CumulaEve Transport [Sv] 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 25 20 15 10 5 0 Time [yr] Transport [Sv] Time series of Ekman Transport at 11S 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 5 0 5 10 15 20 25 Time Transport Longterm Variability of the Northward Ekman Transport 14.5 N 11 S The wind stress data from NCEP CFSr. The seasonal cycle dominates the variability. At 14.5 N, the mean Ekman Transport is 7.9 Sv with 3.5 Sv STD. At 11 S, the mean is 10.4 Sv with 3.3 Sv STD.

Transcript of Estimation of the Meridional Ekman Transport in the Tropical … · 2015. 8. 4. · Estimation of...

  • Geostrophic  velocity  was  calculated  from  the  density  field  measured  by  the  CTD/uCTD,  ageostrophic  velocity  is  the  difference  between  ADCP  and  geostrophic  velocity.  Assuming  that  in  the  upper  layer,  the  ageostrophic  flow  is  mainly  due  to  the  wind,  Ekman  transport  can  be  calculated  by  integraEng  the  ageostrophic  velocity  verEcally  and  zonally.  

    Estimation of the Meridional Ekman Transport in the Tropical Atlantic

    by Yao Fu, Johannes Karstensen, Peter Brandt Helmholtz Centre for Ocean Research Kiel Contact: [email protected]

    Reference  

    Chereskin,  T.,  and  D.  Roemmich  (1991),  A  Comparison  of  Measured  and  Wind-‐derived  Ekman  Transport  at  11°N  in  the  AtlanEc  Ocean,  Journal  of  Physical  Oceanography,  21,  869  -‐  878.  Chereskin,  T.,  W.  Wilson,  L.  Beal  (2002),  The  Ekman  temperature  and  salt  fluxes  at  8°30ʹ′N  in  the  Arabian  Sea  during  the  1995  southwest  monsoon,  Deep  Sea  Research,  49,  1211  -‐  1230.  Wijffels,  S.,  E.  Firing,  and  H.  Bryden  (1994),  Direct  observaEons  of  the  Ekman  balance  at  10°N  in  the  Pacific,  Journal  of  Physical  Oceanography,  24,  1666  -‐  1679.  Stewart,  R.  H.  (2008),  IntroducEon  To  Physical  Oceanography.  

    IntroducEon  

    Steady  wind  over  a  steady  homogeneous  ocean,  the  wind  stress  forcing  is  balanced  by  the  effect  of  Earth’s  rotaEon.  

    The  verEcal  integraEon  result  in  a  transport  perpendicular  to  the  wind  blowing  direcEon.  

    To  the  right  in  the  northern  hemisphere.      To  the  lee  in  the  southern  hemisphere.  

    Ekman  transport  can  be  calculated  separately  in  two  approaches:  

    Indirect:  using  wind  stress      

    Direct:  using  ageostrophic  velocity      

    In  the  tropical  AtlanEc  Ocean,  Ekman  transport  is  an  important  upper  layer  component  of  the  meridional  overturning  circulaEon.  Wind  induced  Ekman  divergence  drives  upwelling  and  poleward  surface  flow,  forming  the  upper  limb  of  the  subtropical  cell.  Generally,  in  the  absence  of  direct  current  measurement,  Ekman  transport  and  the  associated  heat  and  salt  flux  is  derived  from  wind  stress,  SST  and  SSS  based  on  the  satellite  observaEon.  In  this  study,  Ekman  transport  is  calculated  using  direct  velocity  observaEon  along  two  hydrographic  secEons  and  compared  with  the  indirect  approach.    

    60oW 50oW 40oW 30oW 20oW 10oW 0o 10oE 20oS

    15oS

    10oS

    5oS

    0o

    5oN

    10oN

    15oN

    20oN

    Longitude

    Latit

    ude

    CTD stations

    Data:  Hydrographic  SecEons  along  14.5  N  and  11  S  14.5N  :  Meteor  96  in  May  2013  64  CTD  staEons,  336  underway  CTD  profiles,  Vessel  mounted  ADCP,  Ship-‐board  wind  measurement.  

    11  S  :  Meteor  98  in  July  2013  47  CTD  staEons  near  the  coasts  243  underway  CTD  profiles,  Vessel  mounted  ADCP,  Ship-‐board  wind  measurement.  

    Underway  CTD  (uCTD)  data  are  applied  to  calculate  the  Ekman  transport  at  both  laEtudes.    Satellite  based  wind,  SST,  SSS  products  are  used  as  a  comparison.  

    Direct  Method:  Ageostrophic  Velocity  

    Mixed  Layer  Depth  and  Top  of  the  Thermocline  

    −5 −4 −3 −2 −1 0 1 2 3

    0

    50

    100

    150

    200

    Velocity [cm/s]

    Dept

    h [d

    bar]

    Section−averaged velocity profiles

    VadcpVgeoVageo

    −3 −2 −1 0 1 2 3 4 5

    0

    50

    100

    150

    200

    Velocity [cm/s]

    Depth

    [dba

    r]

    Section−averaged velocity profiles

    VadcpVgeoVageo14.5  N   11  S  

    35 W 30 W 25 W 20 W 15 W 10 W 5 W 0 5 E 10 E

    0

    50

    100

    150Longitude

    Dep

    th [m

    ]

    60W 55 W 50 W 45 W 40 W 35 W 30 W 25 W 20 W

    0

    50

    100

    150Longitude

    Dep

    th [m

    ]

    MLD  depth     TTC  depth    mean  MLD  =  32  m   Mean  TTC  =  57  m  range  =  [17,      57]     range  =  [17,      90]    

    mean  MLD  =  47  m  range  =  [15,      95]     range  =  [15,      95]    

    Mean  TTC  =  45  m  14.5  N   11  S  

    MLD  is  defined  by  a  density  threshold  of  0.03  kg/m3.  TTC  is  defined  by  a  density  gradient  threshold  of  0.01  kg/m4.  

    Summary  and  Outlook  The  meridional  Ekman  transport  along  two  transatlanEc  secEons  is  esEmated  using  direct  and  indirect  method,  respecEvely.  The  underway  CTD  data  provide  consistent  results  compared  with  the  regular  CTD  data  in  esEmaEng  the  Ekman  transport.  At  both  laEtudes,  the  Ekman  transport  extended  beyond  the  mixed  layer.  In  the  direct  method,  the  Ekman  flux  is  sensiEve  to  the  choice  of  integral  depth,  the  top  of  the  thermocline  appears  to  be  a  reasonable  choice  for  the  integraEon  of  the  ageostrophic  velocity.  Though  in  these  two  cases,  the  Ekman  fluxes  using  the  SST  and  SSS  are  not  significantly  different  from  using  a  layer  of  temperature  and  salinity.  

    In  the  next  step,  the  observed  Ekman  transport  and  fluxes  will  be  compared  with  GECCO/GECCO2  assimilaEon  products.    Eventually  the  study  will  be  extended  to  the  full  water  depth  and  different  components  related  to  the  meridional  overturning  circulaEon  will  be  esEmated  using  observaEonal  data,  and  the  variability  of  the  MOC  at  14.5  N  will  be  analyzed  with  model  data.  

    Ekman  Heat  and  Salinity  Flux  

    ME  :  Ekman    volume  transport  [Sv]  He      :  Ekman  heat  flux  [PW]  SE        :  Ekman  salinity  transport  [109  kg/s]  

    θΕ        :  Transport  weighted  temperature  [C]  sE      :  Transport  weighted  salinity  [psu]  

    !3

    θΕ sE ME HE SE θΕ sE ME HE SE

    TTC 25,777 36,203 5,731 0,606 0,213 25,671 36,694 -11,959 -1,259 -0,449

    Const 25,618 36,171 6,342 0,666 0,235 26,051 36,836 -11,499 -1,228 -0,434

    Surface 25,907 36,207 5,731 0,609 0,213 25,672 36,668 -11,959 -1,259 -0,449

    Sat 25,893 36,266 5,731 0,608 0,213 25,768 36,390 -11,959 -1,263 0,446

    Surface 25,731 36,160 6,264 0,661 0,232 25,419 36,694 -12,971 -1,352 -0,488

    Sat 25,571 36,158 6,264 0,657 0,232 25,278 36,370 -12,996 -1,347 -0,484

    14,5 N

    Direct

    11 S

    Indirect

    Ekman  Theory  

    At  14.5  N,  The  calculaEon  based  on  the  uCTD  data  shows  good  consistency  with  the  calculaEon  based  on  the  CTD  data.  The  top  of  the  thermocline  appears  to  be  a  bener  choice  for  integraEng  the  ageostrophic  velocity  than  either  the  MLD  or  a  constant  depth.  

    60 W 55 W 50 W 45 W 40 W 35 W 30 W 25 W 20 W−1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    Longitude

    ship windsatellite windageo 50 mageo MLDageo TTCageo uCTD TTC

    35 W 30 W 25 W 20 W 15 W 10 W 5 W 0 5 E 10 E−14

    −12

    −10

    −8

    −6

    −4

    −2

    0

    2

    Longitude

    ship windageo 70mageo MLDageo TTC

    14.5  N   11  S  

    CumulaEve  Transport  [Sv]  

    2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011−25

    −20

    −15

    −10

    −5

    0

    Time [yr]

    Tran

    spor

    t [Sv

    ]

    Time series of Ekman Transport at 11S2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011−5

    0

    5

    10

    15

    20

    25

    Time

    Tran

    spor

    t

    Ekman Transport from NCEP CFSR wind

    Long-‐term  Variability  of  the  Northward  Ekman  Transport    

    14.5  N  

    11  S  

    The  wind  stress  data  from  NCEP  CFSr.  The  seasonal  cycle  dominates  the  variability.      At  14.5  N,  the  mean  Ekman  Transport  is  7.9  Sv  with  3.5  Sv  STD.    At  11  S,  the  mean  is  -‐10.4  Sv  with  3.3  Sv  STD.