Emitting PbS Nanocrystal Solids through Matrix … 1 Supporting Information for: Infrared Emitting...

9
S 1 Supporting Information for: Infrared Emitting PbS Nanocrystal Solids through Matrix Encapsulation. Pavel Moroz 1,3† , Geethika Liyanage 3† , Natalia N. Kholmicheva 1,3 , Sergii Yakunin 4,5 , Prakash Uprety 3 , Ebin Bastola 3 ,Upendra Rijal 3 , Bryan Mellott 2 , Kamal Subedi 3 , Liangfeng Sun 1,3 , Maksym V. Kovalenko 4,5 , Mikhail Zamkov 1,3,* . The Center for Photochemical Sciences 1 , Department of Chemistry 2 , and Department of Physics 3 , Bowling Green State University, Bowling Green, Ohio 43403. Department of Chemistry and Applied Biosciences 4 , ETH Zürich, Zürich, 8093, Switzerland. EMPA-Swiss Federal Laboratories for Materials Science and Technology 5 , Dübendorf, 8600, Switzerland. Corresponding author: [email protected]; Tel: 419-372-0264; Fax: 419-372-9938

Transcript of Emitting PbS Nanocrystal Solids through Matrix … 1 Supporting Information for: Infrared Emitting...

S 1  

Supporting Information for: 

 

 

Infrared Emitting PbS Nanocrystal Solids through 

Matrix Encapsulation. 

Pavel Moroz1,3†, Geethika Liyanage3†, Natalia N. Kholmicheva1,3, Sergii Yakunin4,5, Prakash Uprety3,

Ebin Bastola3,Upendra Rijal3, Bryan Mellott2, Kamal Subedi3, Liangfeng Sun1,3, Maksym V.

Kovalenko4,5, Mikhail Zamkov1,3,*.

The Center for Photochemical Sciences1, Department of Chemistry2, and Department of Physics3,

Bowling Green State University, Bowling Green, Ohio 43403. Department of Chemistry and Applied

Biosciences4, ETH Zürich, Zürich, 8093, Switzerland. EMPA-Swiss Federal Laboratories for Materials

Science and Technology5, Dübendorf, 8600, Switzerland.

Corresponding author: [email protected]; Tel: 419-372-0264; Fax: 419-372-9938

S 2  

Volume fraction calculations. Suppose that on average a unit length of the mixed nanocrystal

film contains Nc of CdS and Np and core/shell nanocrystals. A unit volume of such film be given by

3/ )( CCCPP DNDN , where Dp/c and Dc are the average diameters of PbS/CdS and CdS NCs,

respectively. The number of PbS cores in a unit volume will be given by 3)(/ CPp NNNN ,

where CP NNN , where N = Nc + Np. Therefore the volume fraction can be expressed as:

3/

32

3/

33

)(3

4)1(

)(3

4)(/

CPC

core

CCCPP

coreCPP

CdS

PbS

DnD

Rn

DNDN

RNNNN

V

V

where n=Np/Nc, and Rcore is the average radius of the PbS core domain in PbS/CdS core/shell

nanoparticles.

S 3  

Figure SF1: Fluorescence intensity decay of CdS-encapsulated PbS nanocrystals. The fast and

the slow decay components correspond to charge transfer and charge trapping processes,1 

respectively.

S 4  

Figure SF2: (top). Steady-state emission of PbS/CdS core/shell NCs in solution (black curve)

and encapsulated into a film (red curve). (bottom). Fluorescence intensity decay of OA-acid

capped PbS/CdS core/shell NCs in solution.

S 5  

Figure SF3: Steady-state emission of PbS/CdS solids featuring large Redge distances. The use of

a conventional SMENA methodology leads to excessive trap state emission in the λ=500-800 nm

range.

S 6  

Table ST1: Quantum yield of CdS-encapsulated PbS NC solids emitting at λPbS = 1300 nm. The relative error of Quantum Yield measurement is about 15%. The effects of self-absorption were neglected due to low optical density of the samples.

Sample

(λPbS=1300 nm)

PbS volume fraction (νPbS)

Optical density @808 nm

Quantum Yield,

%

Life time, ns

Redge=2.5 nm 0.24 0.032 2.0 105

Redge=6.5 nm 0.096 0.015 3.3 350

Redge=7.9 nm 0.07 0.015 3.7 480

S 7  

500 1000 1500

0.0

0.5

1.0

laser PL

Nor

mal

ised

em

issi

on

nm

0

50

100Filters:

Lognpass Shortpass

Filt

er t

rans

mitt

ance

, %

 

Figure SF4: Spectra of laser and PL emission of the solid with Redge=2.5 nm, Transmission spectra of longpass and shortpass filters applied for quantum yield.

S 8  

600 800 1000 1200 1400 1600 1800

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Abs

orba

nce

nm

Redge

= 2.5 nm

Redge

= 6.5 nm

Redge

= 7.9 nm

 

Figure SF5: Absorption spectra of samples measured with integrating sphere spectrometer.

S 9  

Figure SF6: High resolution TEM image of PbS/CdS core/shell NCs.

                                                            1 Moroz, P.; Kholmicheva, N.; Mellott, B.; Liyanage, G.; Rijal, U.; Bastola, E.; Huband, K.; Khon, 

E.; McBride, K.; Zamkov, M. Suppressed Carrier Scattering in CdS‐Encapsulated PbS Nanocrystal 

Films. ACS Nano 2013, 7, 6964‐6977.