ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10...

41
2/10/2012 1 Chapter 2 FET Biasing Spring 2012 4 th Semester Mechatronics SZABIST, Karachi CH 2 10 12 FET Biasing Course Support [email protected] Office: 100 Campus (404) Official: ZABdesk https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd ebooks: https://sites.google.com/site/zabistmechatronics/home/ebooks 10 12 2 CH 2 FET Biasing

Transcript of ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10...

Page 1: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

1

Chapter 2

FET Biasing

Spring 2012

4th Semester Mechatronics

SZABIST, Karachi

CH 210 12

FET

Biasing

Course Support

[email protected]

Office: 100 Campus (404)

Official: ZABdesk

https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd

ebooks: https://sites.google.com/site/zabistmechatronics/home/ebooks

10 12

2

CH 2

FET

Biasing

Page 2: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

2

Chapter Contents

10 12

• Fixed biased

• Self biased

• Voltage Divider Biasing

• Common Gate

• Configurations of D-MOSFETs

• Configurations of E-MOSFETs

• p-channel FET configurations

• Practical Applications

• Computer Analysis

3

CH 2

FET

Biasing

10 12

4

CH 2

FET

Biasing

Introduction

Page 3: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

3

10 12

Common JFET Biasing Circuits:

JFET Biasing Circuits

• Fixed – Bias

• Self-Bias

• Voltage-Divider Bias

D-Type MOSFET Biasing Circuits

• Self-Bias

• Voltage-Divider Bias

E-Type MOSFET Biasing Circuits

• Feedback Configuration

• Voltage-Divider Bias

Introduction 5

CH 2

FET

Biasing

10 12

Basic Current Relationshipss

For all FETs:

For JFETS and D-Type MOSFETs:

For E-Type MOSFETs:

Introduction 6

CH 2

FET

Biasing

0 & G D SI A I I≅ =

2

P

GSDSSD

V

V1II

−−−−====

2TGSD )VV(kI −−−−====

Page 4: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

4

10 12

7

JFET Configurations

CH 2

FET

Biasing

10 12

8

Fixed

Biased

CH 2

FET

Biasing

Page 5: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

5

10 12

JFET Fixed Bias:

Fixed Biased 9

CH 2

FET

Biasing

10 12

JFET Fixed Bias:

Fixed Biased 10

CH 2

FET

Biasing

Page 6: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

6

10 12

Plotting Shockley’s equation Finding the solution for the fixed-bias

configuration

Fixed Biased 11

CH 2

FET

Biasing

10 12

Measuring the quiescent values of ID and VGS

Fixed Biased 12

CH 2

FET

Biasing

Page 7: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

7

10 12

JFET Fixed Bias:

Fixed Biased 13

CH 2

FET

Biasing

0

D S D D D D

S

S D S

D S G S

G S G G

V V I R

V V

V V

V V

V V

= −

=

=

=

= −

10 12

Example 7-1:

Determine the following:

Fixed Biased 14

CH 2

FET

Biasing

Page 8: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

8

10 12

Example 7-1:

Fixed Biased 15

CH 2

FET

Biasing

10 12

Example 7-1:

Fixed Biased 16

CH 2

FET

Biasing

Computer Analysis

-8 -7 -6 -5 -4 -3 -2 -1 00

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

X: -2

Y: 0.005625

example 7-1

VGS (V)

ID (

mA

)

Page 9: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

9

10 12

Example 7-1:

Fixed Biased 17

CH 2

FET

Biasing

Computer Analysis

% JFET DC Biasing Configurations

% Fixed bias

% Example 7-1 Boylestad

RD = 2000; VGG= 2; VDD = 16; IDSS = 10/1000; Vp = -8;

VGS = Vp:0.1:0;

ID = IDSS*(1-VGS/Vp).^2;

plot(VGS,ID), grid on,

title('example 7-1') , xlabel('VGS (V)'), ylabel('ID (mA)')

% Fixed bias line

hold,

plot(-VGG,ID,'*')

10 12

18

Self Bias

CH 2

FET

Biasing

Page 10: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

10

10 12

JFET: Self Biased

Self Bias 19

CH 2

FET

Biasing

10 12

DC Analysis:

Self Bias 20

CH 2

FET

Biasing

( )

GS D S

DS DD D S D

S D S

D DS S DD RD

V I R

V V I R R

V I R

V V V V V

= −

= − +

=

= + = −

Page 11: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

11

10 12

Calculations:For the indicated loop,

To solve this equation:

• Select an ID < IDSS and use the component value of RS to calculate VGS

• Plot the point identified by ID and VGS. Draw a line from the origin of the

axis to this point.

• Plot the transfer curve using IDSS and

VP (VP = VGSoff in specification sheets) and a few points such as ID = IDSS / 4

and ID = IDSS / 2 etc.

The Q-point is located where the first line intersects the transfer curve. Use the value

of ID at the Q-point (IDQ) to solve for the other voltages:

Self Bias 21

CH 2

FET

Biasing

RDDDSDSD

SDS

DSDDDDS

VVVVV

RIV

)RR(IVV

−−−−====++++====

====

++++−−−−====

SDGS RIV −−−−====

10 12

Calculations:

Self Bias 22

CH 2

FET

Biasing

Page 12: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

12

10 12

Calculations:

Self Bias 23

CH 2

FET

Biasing

10 12

Example 7-2:Determine the following:

Self Bias 24

CH 2

FET

Biasing

Page 13: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

13

10 12

Example 7-2:

Self Bias 25

CH 2

FET

Biasing

10 12

Example 7-2:

Self Bias 26

CH 2

FET

Biasing

Page 14: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

14

10 12

Example 7-2:

Self Bias 27

CH 2

FET

Biasing

10 12

Example 7-2:

Self Bias 28

CH 2

FET

Biasing

Computer Analysis

-8 -7 -6 -5 -4 -3 -2 -1 00

1

2

3

4

5

6

7

8x 10

-3

X: -2.601

Y: 0.002601

Example 7-2

VGS (V)

ID (

mA

)

Page 15: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

15

10 12

Example 7-2:

Self Bias 29

CH 2

FET

Biasing

Computer Analysis

%% EXAMPLE 7-2

% Self Bias Configuration

RD = 3300; Rs=1000; IDSS = 8/1000; Vp = -6; VDD = 20;

VGS = Vp:0.001:0;

ID = IDSS*(1-VGS/Vp).^2;

plot(VGS,ID), grid on,

title('Example 7-2') , xlabel('VGS (V)'), ylabel('ID (mA)')

% self bias line calculations

Vgs = -ID*Rs;

hold,

plot(Vgs, ID,'r.-')

10 12

Example 7-3:Find the quiescent point for the given network: (Example 7.2)

Self Bias 30

CH 2

FET

Biasing

Page 16: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

16

10 12

Example 7-3:Find the quiescent point for the given network: (Example 7.2)

Self Bias 31

CH 2

FET

Biasing

%% EXAMPLE 7-3

% Self Bias Configuration

RD = 3300; IDSS = 8/1000; Vp = -6; VDD = 20;

VGS = Vp:0.001:0;

ID = IDSS*(1-VGS/Vp).^2;

plot(VGS,ID), grid on,

title('Example 7-3') , xlabel('VGS (V)'), ylabel('ID (mA)')

% self bias line calculations for Rs = 100 Ohms

Rs=100;

Vgs = -ID*Rs;

hold,

plot(Vgs, ID,'r.-')

% self bias line calculations for Rs = 10k Ohms

Rs = 10000;

Vgs = -ID*Rs;

plot(Vgs, ID,'m.-')

Computer Analysis

10 12

Example 7-3:Find the quiescent point for the given network: (Example 7.2)

Self Bias 32

CH 2

FET

Biasing

-8 -6 -4 -2 0 20

1

2

3

4

5

6

7

x 10-3

X: -0.6401

Y: 0.006401

Example 7-3

VGS (V)

ID (

mA

)

Computer Analysis

Page 17: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

17

10 12

33

Voltage

Divider Biased

CH 2

FET

Biasing

10 12

VDB:

Voltage Divider Bias 34

CH 2

FET

Biasing

IG = 0 A

ID responds to changes in VGS

Page 18: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

18

10 12

VDB:

Voltage Divider Bias 35

CH 2

FET

Biasing

The Q point is established by plotting a

line that intersects the transfer curve.

21

DD2G

RR

VRV

++++====

VG is equal to the voltage across divider

resistor R2:

Using Kirchhoff’s Law:

SDGGS RIVV −−−−====

10 12

VDB:

Voltage Divider Bias 36

CH 2

FET

Biasing

• IG = 0 A and ID responds to changes in VGS

• Using the value of ID at the Q-point, solve for

the other variables in the voltage-divider bias

circuit:

2 DDG

1 2

DDR1 R2

1 2

DS DD D D S

D DD D D

S D S

R VV ;

R R

VI I

R R

V V I (R R )

V V I R

V I R

=+

= =+

= − +

= −

=

GS G D S

V V I R= −

Page 19: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

19

10 12

VDB Q-point:

Voltage Divider Bias 37

CH 2

FET

Biasing

Step 1

Plot the line by plotting two points:

• VGS = VG, ID = 0 A

• VGS = 0 V, ID = VG / RS

Step 2

Plot the transfer curve by plotting

IDSS, VP and the calculated values of

ID

Step 3

The Q-point is located where the line

intersects the transfer curve

10 12

Effect of increasing RS:

Voltage Divider Bias 38

CH 2

FET

Biasing

Page 20: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

20

10 12

Example 7-5:For the given network, find:

a. IDQ and VGSQ

b. VD and VS

c. VDS and VDG

Voltage Divider Bias 39

CH 2

FET

Biasing

10 12

Example 7-5:

Voltage Divider Bias 40

CH 2

FET

Biasing

Page 21: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

21

10 12

Example 7-5:

Voltage Divider Bias 41

CH 2

FET

Biasing

%% EXAMPLE 7-5

% Voltage Divider Bias Configuration

R1 = 2.1*10^6; R2 = 270*10^3; RD = 2400;

IDSS = 8/1000; Vp = -4; VDD = 16;

VGS = Vp:0.1:0;

ID = IDSS*(1-VGS/Vp).^2;

plot(VGS,ID), grid on,

title('Example 7-5') , xlabel('VGS (V)')

ylabel('ID (A)')

% Load line (Voltage Divider Bias)

calculations

% Rs = 1.5k Ohms

Rs=1500;

Vg = VDD*R2/(R1+R2);

Vgs = Vg-(ID*Rs);

hold,

plot(Vgs, ID,'r.-')-12 -10 -8 -6 -4 -2 0 20

1

2

3

4

5

6

7

8x 10

-3

X: -7.594e-005

Y: 0.001215

Example 7-5

VGS (V)

ID (

A)

X: -1.801

Y: 0.002416

X: 1.823

Y: 0

X: -8

Y: 0.006549

10 12

42

Common Gate

Configuration

CH 2

FET

Biasing

Page 22: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

22

10 12

Common Gate:

Common Gate Configuration 43

CH 2

FET

Biasing

10 12

Common Gate:

Common Gate Configuration 44

CH 2

FET

Biasing

GS SS D S

V V I R= −

DS DD D D S

D DD D D

S D S

V V I (R R )

V V I R

V +I R

SS

SS

V

V

= + − +

= −

= −

Page 23: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

23

10 12

Example 7-4:

Determine the following: IDQ, VGSQ, VDS, VD and VS:

Common Gate Configuration 45

CH 2

FET

Biasing

10 12

Example 7-6:Determine the following: (RD = 1.5 kΩ, RS = 680 Ω, VDD = 12 V)

Common Gate Configuration 46

CH 2

FET

Biasing

Page 24: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

24

10 12

Example 7-6:

Common Gate Configuration 47

CH 2

FET

Biasing

-9 -8 -7 -6 -5 -4 -3 -2 -1 00

0.002

0.004

0.006

0.008

0.01

0.012Example 7-6

VGS (V)

ID (

A)

X: 0

Y: 0

X: -5.007

Y: 0.007363

X: -2.62

Y: 0.003853

%% EXAMPLE 7-6: % Common Gate

Configuration

RD = 1500; IDSS = 12/1000; Vp = -6;

VDD = 12;

VGS = Vp:0.1:0;

ID = IDSS*(1-VGS/Vp).^2;

plot(VGS,ID), grid on,

title('Example 7-6') , xlabel('VGS (V)')

ylabel('ID (A)')

% Load line (Common Gate) calculations for

% Rs = 680 Ohms

Rs=680;

Vss = 0;

Vgs = Vss-(ID*Rs);

hold,

plot(Vgs, ID,'r.-')

10 12

Special Case: VGSQ = 0 V:

Common Gate Configuration 48

CH 2

FET

Biasing

Q SSD D

I I=

DS DD D D

D

V V I R

V

0

DS

S

V

V V

= −

=

=

Page 25: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

25

10 12

49

D-MOSFETs

CH 2

FET

Biasing

10 12

Configurations:

1. Voltage Divider

2. Self Bias

3. Common Gate Special Case

D-MOSFETs 50

CH 2

FET

Biasing

Page 26: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

26

10 12

Voltage Divider Bias:

Example 7-7:

Determine the following:

a. Q-point

b. VDS

D-MOSFETs 51

CH 2

FET

Biasing

10 12

Example 7-8:

Determine the following: (Data of Ex. 7-7, RS = 150Ω )

D-MOSFETs 52

CH 2

FET

Biasing

Page 27: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

27

10 12

Self Bias:

Example 7-9:

Determine the following, if RD = 6.2 k, RS = 2.4 k, IDSS = 8mA and VP = − 8V.

D-MOSFETs 53

CH 2

FET

Biasing

10 12

Common Gate (Special case):

Example 7-10:

Determine VDS for the following network:

D-MOSFETs 54

CH 2

FET

Biasing

Page 28: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

28

10 12

55

E-MOSFETs

CH 2

FET

Biasing

10 12

Configurations:

1. Feedback Biasing Arrangement

2. Voltage Divider Biasing Arrangement

E-MOSFETs 56

CH 2

FET

Biasing

Page 29: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

29

10 12

The transfer characteristic for the e-type MOSFET is very different from that

of a simple JFET or the d-type MOSFET.

E-MOSFETs 57

CH 2

FET

Biasing

10 12

Feedback Biasing Arrangement:

E-MOSFETs 58

CH 2

FET

Biasing

IG = 0 A

VRG = 0 V

VDS = VGS

VGS = VDD – IDRD

Page 30: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

30

10 12

Feedback Biasing Q-point:

Step 1Plot the line using

• VGS = VDD, ID = 0 A• ID = VDD / RD , VGS = 0 V

Step 2Using values from the specification sheet, plot the transfer curve with

• VGSTh , ID = 0 A • VGS(on), ID(on)

Step 3The Q-point is located where the line and the transfer curve intersect

Step 4Using the value of ID at the Q-point, solve for the other variables in the bias circuit

E-MOSFETs 59

CH 2

FET

Biasing

10 12

Example 7-11:

Determine IDQ and VDSQ:

E-MOSFETs 60

CH 2

FET

Biasing

Page 31: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

31

10 12

Example 7-11:

E-MOSFETs 61

CH 2

FET

Biasing

10 12

Voltage Divider Bias:Plotting the line and the transfer curve to find the Q-point:

E-MOSFETs 62

CH 2

FET

Biasing

21

DD2G

RR

VRV

++++====

)RR(IVV

RIVV

DSDDDDS

SDGGS

++++−−−−====

−−−−====

Page 32: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

32

10 12

Voltage Divider Bias Q-point:Step 1

Plot the line using • VGS = VG = (R2VDD) / (R1 + R2), ID = 0 A • ID = VG/RS , VGS = 0 V

Step 2Using values from the specification sheet, plot the transfer curve with

• VGSTh, ID = 0 A• VGS(on) , ID(on)

Step 3The point where the line and the transfer curve intersect is the Q-point.

Step 4Using the value of ID at the Q-point, solve for the other circuit values.

E-MOSFETs 63

CH 2

FET

Biasing

10 12

Example 7-12:Determine IDQ, VGSQ and VDS:

E-MOSFETs 64

CH 2

FET

Biasing

Page 33: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

33

10 12

Example 7-12:Determine IDQ, VGSQ and VDS:

E-MOSFETs 65

CH 2

FET

Biasing

10 12

Summary 66

CH 2

FET

Biasing

Page 34: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

34

10 12

Summary 67

CH 2

FET

Biasing

10 12

68

Design

CH 2

FET

Biasing

Page 35: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

35

10 12

Example 7-15:Determine RS and RD:

Design 69

CH 2

FET

Biasing

10 12

Example 7-16:Determine RS when RD = 1800 Ω, R1 = 91kΩ, R2 = 47 kΩ, VDD = 16 V, VGSQ = -2V.

Design 70

CH 2

FET

Biasing

Page 36: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

36

10 12

Example 7-17:Determine VDD and RD , when VDS = ½ VDD and ID = ID(on).

Design 71

CH 2

FET

Biasing

10 12

72

p-channel

FETs

CH 2

FET

Biasing

Page 37: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

37

10 12

For p-channel FETs the same calculations and graphs are used, except that

the voltage polarities and current directions are reversed.

The graphs are mirror images of the n-channel graphs.

p-channel FETs 73

CH 2

FET

Biasing

p-channel JFET

10 12

p-channel FETs 74

CH 2

FET

Biasing

p-channel D MOSFET (VDB)

Page 38: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

38

10 12

p-channel FETs 75

CH 2

FET

Biasing

p-channel E MOSFET (FB)

10 12

p-channel FETs 76

CH 2

FET

Biasing

p-channel DMOSFET (VDB)

Page 39: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

39

10 12

p-channel FETs 77

CH 2

FET

Biasing

Example 7-18:Determine IDQ, VGSQ and VDS:

10 12

78

Applications

CH 2

FET

Biasing

Page 40: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

40

10 12

Applications:

1. Voltage Controlled Resistor

2. JFET Voltmeter

3. Timer Network

4. Fiber Optic System

5. MOSFET Relay Driver

Applications 79

CH 2

FET

Biasing

CH 110 12

Home Task 80FET

1. Exercise Problem 1, 2 and 4

2. Exercise Problem 7 and 11

3. Exercise Problem 13

4. Exercise Problem 15 and 17

5. Exercise Problem 19

6. Exercise Problem 21

7. Exercise Problem 25

8. Exercise Problem 31

CH 2

FET

Biasing

Page 41: ECD 2-FET Biasing - ZabDesk - Fall-2017 Gate Configuration CH 2 FET Biasing. 2/10/2012 22 12 10 Common Gate: Common Gate Configuration 43 CH 2 FET Biasing 12 10 Common Gate: Common

2/10/2012

41

CH 110 12

Refernces 81FET

1. Bolestad

2. Paynter

3. Floyd

CH 2

FET

Biasing