Eccentric Tension and Compression

download Eccentric Tension and Compression

of 20

Transcript of Eccentric Tension and Compression

  • 8/10/2019 Eccentric Tension and Compression

    1/20

    ECCENTRICTENSION

    AND

    COMPRESSION

  • 8/10/2019 Eccentric Tension and Compression

    2/20

    ECCENTRIC TENSION AND COMPRESSION

    definition

    side panels of a beam element are subjectedto a perpendicular forcenot passing

    through their centroid

    M M

    N N

    F F

    +

    =

    y

    xz

    Mx

    My

    N

    F

    F = (N, Mx, My)

    eccentric tension / compression

    bending + simple tension / compression

    deformation of a beam element: all points move axially, see uniform strains (centric

    tension / compression) or assumptions of Bernoulli and Navier (classical beam theory)/!

  • 8/10/2019 Eccentric Tension and Compression

    3/20

    z

    yMxNF

    C

    "uperposition of stress distributions according to our

    former studies (assume uniaxial bending aboutx) if

    the material resists bot tension !nd compression#

    $

    %

    zN z

    M$

    z

    +

    "

    #

    (applies also for biaxial bending)

    if the material resists compression

    onl$# (e&g& concrete, soil)

    F

    $

    %%

    %

    F

    %

    z

    '/!

    alculation of stresses:N/Aand any of the methods

    discussed at bending (general formula, methods of

    superposition, neutral axis, ulmann*s +ernel)

    ###

    compressive and noncompressive

    parts of the cross section, other

    approach is needed

    ECCENTRIC TENSION AND COMPRESSION

  • 8/10/2019 Eccentric Tension and Compression

    4/20

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

    /!

    Reminder( e-uations of simple tension / compression and simple bending

    dwC

    C Cdx

    dy

    +

    =

    +.Fiz: z(x,y,z) dA=N (z)

    .Mix: z(x,y,z)ydA=Mx(z)

    .Miy: z(x,y,z)xdA=My(z)

    A(z)

    A(z)

    A(z)

    )EOMETRIC e-uationsSTATICA' e-uations

    dwS(z)

    dz

    $ etc&

    z(x,y,z) = $ y% xdy(z)

    dz

    dx(z)

    dz

    z(x,y,z) = zS(z)$ x(z)y% y(z)x

    simple tension / compression

    simple bending

    effects ofN and (Mx, My)can be calculated

    independently

    N (Mx, My)

  • 8/10/2019 Eccentric Tension and Compression

    5/20

    /!

    0etermination of stresses by superposition

    Cx 1 2

    y1

    u

    %

    ' stress distributions can be dra3nseparately:

    for the angle of uit still holds:

    = arctanMyIx

    MxIy

    z

    Mx=M2

    My=M

    $%

    $

    %

    neutral axis bet3eenMand the nd principalaxis but udoes not p!ss tro*g te centroid4

    signs rather from

    inspection again:

    5fxandy

    are principal:

    N($)

    zC

    = N

    EA6 x=

    Mx

    EIx6 y=

    My

    EI y

    Nz=

    N

    A

    Mx

    Ixy

    My

    Iyx

    N

    $

    $ z=

    N

    A

    Mx

    Ixy

    My

    Iyx

    N

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

  • 8/10/2019 Eccentric Tension and Compression

    6/20

    7/!

    8xample:

    determine minimum and maximum normal stresses of the section in eccentric compression

    M= 9!!,!' =,+Nm

    I = 2'7cm)

    I = 7)cm)

    C = )9cm)

    cm

    7cm

    ' cm

    Ix = I2 = 27! cm)

    I y = I = )!cm)

    ! = 7,/;o =arctg!,/

    y 1

    x 1 2

    !

    it is already +no3n&&&

    y 1

    x 1 2

    !

    A

    !

    C

    Mx= ,277+Nm

    My

    = 2,!;''+Nm

    2,;99< ',2'!/

    zA

    =

    9!

    )

    2),77

    27! 2,;99

  • 8/10/2019 Eccentric Tension and Compression

    7/20

    %

    $

    $

    %

    C

    M= ,+Nm

    y 1

    x 1 2

    !

    A

    Mx= ,277+Nm

    My= 2,!

    ;''+Nm

    z 9,!![ +Ncm ]9,!!

    7,!!!

    ;,!!;/!

    %

    $

    $

    $

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

    biaxial bending part:

  • 8/10/2019 Eccentric Tension and Compression

    8/20

    %

    $

    $

    %

    S

    M= ,+Nm

    y 1

    x 1 2

    !

    A

    Mx= ,277+Nm

    My= 2,!;''+Nm

    z 9,!![ +Ncm ]9,!!

    7,!!!

    ;,!!

    '7,9;!

    9/!

    N= 9! +N(%)

    %','''

    %

    %

    $

    $

    $

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

  • 8/10/2019 Eccentric Tension and Compression

    9/20

    ?

    y 1

    C

    Fcentric (e

    = !) >F1N:

    uniform stress distribution,

    (as if u3as at infinity)

    Fat isnfinity (e> ?):

    ifM=Fe is given,N=F> !

    yieldsMonly> linear stress

    distribution, upasses through C

    M

    generic case ###

    NandM> linear

    stress distribution

    M

    N(%)

    z z z

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

  • 8/10/2019 Eccentric Tension and Compression

    10/20

    2!/!

    x 1 2

    %

    u

    F(%)

    e

    y 1

    "pecial position:

    there is#ustno stress 3ith

    sign opposite toF

    (uis just tangent to the cross

    section, no intersection occurs)

    @

    e= # (point of appl& ofF#)M

    N(%)

    0efinition:

    ACDNN*" E8FN8:

    ocii of points of application ofF(axial) in the cross section, for 3hich the neutral axis u

    is tangent to (not intersecting) the boundary of the cross section&

    Fis located just at the

    boundary of ulmann*s +ernel

    assume thatFis compressive,

    but could be (FG !) as 3ell

    z

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

    8ccentricity of the load and position of the neutral axis

  • 8/10/2019 Eccentric Tension and Compression

    11/20

    22/!

    8-uivalent definition (3ithout proof):

    ACDNN*" E8FN8:

    ocii of points of application ofF(axial) in the cross section, for 3hich the neutral axis u

    is tangent to (not intersecting) the boundary of the cross section&

    ACDNN*" E8FN8:

    5nner envelope of neutral axes pertaining to axial loadsFlocated at the convex hull of the

    cross section (that is, ulmann*s +ernel is convex)&

    corollary: ifFis located at the contour of the (convex hull of) the cross section, uis tangent to

    ulmann*s +ernel !nd ,ice ,ers!

    let us analyse the increasing eccentricity ofF:@

    (there also exists a pure geometric definition H not considered here&&&)

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

    8ccentricity of the load and position of the neutral axis

  • 8/10/2019 Eccentric Tension and Compression

    12/20

  • 8/10/2019 Eccentric Tension and Compression

    13/20

    Iracing the contour of ulmann*s +ernel

    2'/!

    x 1 2u

    F

    y 1

    general case (using the method of superposition)

    ey= -z=!=

    N

    A

    Mx

    Ixy

    My

    Iyx

    Na

    $

    starting from the e-uation of u:

    N

    A=

    Mx

    Ixy

    My

    Iyx

    N

    N

    A=

    Mx

    Ixy

    My

    Iyx

    F Fey Fex

    2=A e

    y

    Ixy

    Aex

    Iyx

    e-uation of uas a line

    3ith axial segments a% $(here a% $J !):

    2= 2$

    y2a

    x

    Mx=Fey

    My=%Fex

    ey=Ix

    A$=

    ix

    $6 ex=

    Iy

    Aa=

    iy

    aix =

    Ix

    A6 iy=

    Iy

    A: radius of gyration

    ex= -

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

  • 8/10/2019 Eccentric Tension and Compression

    14/20

    2/!

    x 1 2

    u

    F

    y 1

    ey= -

    5fFis at one of the principal axes (): >

    MKK (2): uniaxial bending >

    uis also parallel to (2)

    8xample: determine contour points of ulmann*s +ernel alongyof a rectangular section

    s

    "

    $

    z

    assume thatFG!:

    (ifF3as compressive: $ L %)

    z=!=N

    A

    Nex

    Ixy

    F Fey

    ey = Ix

    A"/ =

    s"'

    2s"

    " =

    "

    7

    brea+point > line,

    curve > curve,

    line > brea+point

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

    ""/7

    s/7

  • 8/10/2019 Eccentric Tension and Compression

    15/20

    2/!

    5mportance of ulmann*s +ernel:

    in the analysis of no tension materials

    ulmann*s +ernel for simple sections

    a

    $

    a &

    &/

    a/a/'

    $/'

    SECTIONS O% TENSION&COMPRESSION MATERIA'S

  • 8/10/2019 Eccentric Tension and Compression

    16/20

    27/!

    Ddditional assumptions:

    % symmetric cross section and compressi,e forcelocated at the axis of symmetry% principle of plane cross sections still applies but Moo+e*s la3 holds just in part&&

    IO PO""5B8 D"8":

    a) the force is located inside ulmann*s +ernel, then only compressive stresses occur irrespective of the resistance to tension >

    "AP8FPO"5I5ON "MOA0 "I5 B8 DPP580

    b) the force is located inside the convex hull of the section but outside the

    +ernel: compressive (zQ !) and noncompressive (z= !) parts >

    CO05R580 8SA55BF5AC ON05I5ON" DF8 N88080

    @

    SECTIONS O% NO TENSION MATERIA'S

  • 8/10/2019 Eccentric Tension and Compression

    17/20

    u

    2;/!

    )EOMETRIAI e-uationsSTATICA' e-uations

    dw(y') =y'dxy'

    x'z

    .Fiz: z(y'%z) dA=F (z) J !

    .Mix': z(y',z)y'dA=yFF (z)

    A(

    A(

    $ rig& c&s&:x=y=!

    )xy=!

    z(y',z) = y'dx(z)

    dz

    z(y',z) = x(z)y'

    )zx

    = !, )zy

    = !

    u

    z(y',z) =Ez(y',z), if z(y',z) J !,

    z(y',z) = !, if z(y',z) T !

    MATERIA' e-uations! ! !

    ! ! !

    ! ! z

    .=

    ! ! !

    ! ! !

    ! ! z

    =

    dxy'

    F

    F= (N, Mx

    ) x'at the neutral axis(not through C4)A(

    *: +no3n

    yF: sought for

    yFFQMx

    0EAM E'EMENTS O% NO TENSION MATERIA'

  • 8/10/2019 Eccentric Tension and Compression

    18/20

    29/!

    )EOMETRIC e-uationsSTATICA' e-uations

    $ etc&

    Rirstly, "IDI&: .MixU .Fiz

    yFz=A(

    zy ' % zy 'dA

    A

    (

    zy ' % zdAU CDI $ V8OC

    yF

    z =

    xEA(

    y 'dA

    xEA

    (

    y 'dA=

    Ix 'z

    Sx 'z

    .Fiz: z(y'%z) dA=F (z) J !

    .Mix': z(y',z)y'dA=yFF (z)A(A(

    z(y',z) = y'd

    x(z)

    dz

    z(y',z) = x(z)y'

    z(y',z) =Ez(y',z), if z(y',z) J !,z(y',z) = !, if z(y',z) T !

    MATERIA' e-uations

    moment e-uilibrium (line ofF 1 resultant of z(y',z))

    implicite condition foryF

    .Fizxz=

    Fz

    ESx 'zF

    z+y% "ax

    z= Fz

    Sx 'zy '"ax z

    F

    (better 3ith absolute values&&&)

    0EAM E'EMENTS O% NO TENSION MATERIA'

    -

    -

  • 8/10/2019 Eccentric Tension and Compression

    19/20

    2

  • 8/10/2019 Eccentric Tension and Compression

    20/20

    Criteri!

    '!&Bending and tension or compression& 8ccentric tension or compression&

    '2&Bending and tension or compression for bars of tensioncompression materials&

    ulmanYs (internal) +ernel& 0efinition of neutral axis&'&"tresses in cross section 3ith eccentric compressive load in axis of symmetry

    3ith notension material&

    Oter e1!m 2*estions

    ;2&0etermine the stresses for eccentric tension/compression by using the general

    method (method of neutral axis) of biaxial bending4 Ihe material behaviour is the

    same for tension and compression& 0ra3 the stress diagrams&

    ;&0etermine the stresses for eccentric tension/compression by using the

    superposition method of s+e3 bending4 Ihe material behaviour is the same for

    tension and compression&;'&

    ;&alculate the stresses in a cross section loaded symmetrically by an eccentric

    compressive force, if the material cannot resist tension&!/!