Design and Implementation of an Automatic Meter Reading...

35
ARAB ACADEMY FOR SCIENCE, TECHNOLOGY AND MARITIME TRANSPORT College Of Engineering and Technology Electronics & Communications Engineering Department Design and Implementation of an Automatic Meter Reading System for Electric Energy Consumption Using LonWorks Technology and GSM By RASHA HASSAN SADEK MOHAMED B.Sc., Electronics and Communications Engineering, 2006 Faculty of Engineering, AAST A Thesis Submitted in Partial Fulfillment of the Requirements for the Master's Degree in ELECTRONICS AND COMMUNICATIONS ENGINEERING Dr. Farouk AbdAllah Dept. of Electronics and Communications Engineering, Faculty of Engineering and Technology AAST Supervised by Dr. Mohamed EI-Habrouk Dept. of Electrical Engineering, Faculty of Engineering Alexandria University Alexandria 2012

Transcript of Design and Implementation of an Automatic Meter Reading...

ARAB ACADEMY FOR SCIENCE, TECHNOLOGY

AND MARITIME TRANSPORT

College Of Engineering and Technology

Electronics & Communications Engineering Department

Design and Implementation of an Automatic Meter

Reading System for Electric Energy Consumption Using

LonWorks Technology and GSM

By

RASHA HASSAN SADEK MOHAMED

B.Sc., Electronics and Communications Engineering, 2006 Faculty of Engineering, AAST

A Thesis Submitted in Partial Fulfillment of the Requirements for the Master's Degree

in

ELECTRONICS AND COMMUNICATIONS ENGINEERING

Dr. Farouk AbdAllah

Dept. of Electronics and Communications Engineering,

Faculty of Engineering and Technology

AAST

Supervised by

Dr. Mohamed EI-Habrouk

Dept. of Electrical Engineering, Faculty of Engineering Alexandria University

Alexandria 2012

DECLARATION

I certify that all the material in this thesis that is not my own work has been identified, and that no material is included for which a degree has previously been conferred on me.

The contents of this thesis reflect my own personal views, and are not necessarily endorsed by the university.

(Signature) .. ~~ .\;-\~"t:IOX\ .• ~~ •..•••.••••.•....••.•••••••••••...

(Date) ..... Cl.~.-:!:;>~ ;-.+.9~?. ....••............•........•...•..•..........

We certify that we have read the present work and that in our opinion it is fully adequate in scope and quality as thesis towards the partial fulfillment of the Master Degree requirements in

Specialization: Electronics and Communications Engineering

From

College of ... Engineering and Technology ... (AASTMT)

Date .Qh ..... ~~: .. 1.c.i1. ........ .

Supervisors:

Name: Dr. Farouk Abd-Allah Salam

Position: Associate Professor at Dept. of Electronics and Communications

Engineering, Faculty of Engineering and Technology AAST.

Signature: r~l.§v,..~ A SC1 (e.v...-

Name: Dr. Mohamed EI-Habrouk

Position: Lecturer at Dept. of Electrical Engineering, Faculty of Engineering,

Examiners:

Name: Professor Dr. Ahmed Khairy Abu EI-Soud

Position: Professor at Dept. of Electrical Engineering, Faculty of

Engineering, Alexandria University

Signature:

Name: Dr. Amr Mohamed Othman EI-Zawawy

Position: Associate Professor at Dept. of Electrical Engineering, Faculty of

Engineering, Alexandria University

Signature: ~ Z/ j;'W1. I~

Name: Dr. Farouk Abd-Allah Salem

Position: Associate Professor at Dept. of Electronics and Communications

Engineering, Faculty of Engineering and Technology AAST.

Signature: ~< A ~ \ '---

Acknowledgement

This work would not have been completed without help and support of my advisors Dr.

Farouk AbdAllah and Dr. Mohamed EI-Habrouk, without them achieving this work just

wouldn't have been possible. I would like to thank them for providing me an opportunity to

conduct my master's research under their guidance, support and valuable suggestions. Special

thanks to Dr. Mohamed EI-Habrouk for his patience and knowledge constant support during

this work and giving me a lot of his valuable time.

I would like to thank Eng. Kareem Youssri for his valuable help, personal support, and for

supporting me during this work.

I would also like to thank Notions family especially Eng. Mohamed EI-Kholy and Eng.

Mamdouh.

Lastly, I want to thanks my parents, who have made many sacrifices to allow me to be where I

am today, without whom my education would have been impossible, and without whose

support none of this would been possible.

Abstract

Electrical energy meter reading has been always performed manually through human meter

readers. This thesis deals with the electric energy Automated Meter Reading (AMR) in

which the meter reading and management processes are free from human involvement.

This thesis presents a comparative analysis of the surveyed techniques of data collection

and transfer from the consumer to the supply company in the literature showing their main

respective advantages and drawbacks. The desired specifications of the energy meter that

measures and records electrical energy consumed over periods of time by electrical

appliances as well as its accompanying AMR system are also presented. The proposed

energy measurement technique is thoroughly discussed and practically implemented in this

thesis using the ADE7758 from analog Devices. The main building blocks as well as the

functionality and data exchange techniques are also explained. The proposed system

makes use of the available LonWorks Power Line Communication technology from

Echelon as well as the GSM Messaging service in order to enable the data exchange

between the consumer side, the data collection and concentration and the host central

Station at the supply company premises. The design and analysis of the Host Central

Station is outside the scope of this work.

ii

Table of Contents Page

Acknowledgment .............................................................................. .. Abstract... ... ............ ......................................................... ...... ......... ii Table of Contents............................................. ................................... iii List of Tables............................................................................. .......... vi List of Figures.................................................................................... vii List of abbreviations............................................................................ x

Chapter ONE: Introduction

1.1 Introduction..................................................................... ........ 2 1.2 Why AMR ............... ................................. ......... ........ ................... 2 1.3 Problem and Solution.............................................................. ..... 3 1.4 Thesis Layout............................................................................. 3

Chapter TWO: A Survey of Automatic Electricity Meter Reading Techniques

2.1 Introduction ............................................................................. 5 2.2 Generalized Block Diagram of Electricity Meter Reading Techniques .... 5 2.3 Review of Different Meter Reading Techniques.......................... ....... 6 2.4 Manual Meter Reading Techniques........................... ......... ............. 7

2.4.1 Human Reading Techniques .............................................. 7 2.4.2 Handheld Meter Reading Techniques.................................. 8

2.5 Mobile Network Automatic Meter Reading Technique........ ................ 11 2.6 Fixed Network Automatic Meter Reading (AMR) Techniques ........ ...... 12

2.6.1 Direct Data Access .......................................................... 13 2.6.2 Intermediate Concentrator................................................ 26

2.7 Comparison of Fixed Network AMR Techniques .............................. 32 2.8 Summary ............................................................................ .... 34

Chapter THREE: Data Communication Techniques

3.1 Introduction............................................................................ 36 3.2 Signal Modulation Techniques .................. ................................ .... 36

3.2.1 Amplitude Modulation (AM) ................ ..... ................. ....... 36 3.2.2 Frequency Modulation (FM) and Phase Modulation (PM) .. ....... 37

3.3 Digital Transmission ofInformation .............................................. 38 3.3.1 Shift Modulation............................................................ 39 3.3.2 Bit Rate and Modulation Rate........................................... 40 3.3.3 Binary Modulation......................................................... 41 3.3.4 Modulation Combinations........................................... ...... 45

3.4 Spread Spectrum Systems............................................................ 46 3.4.1 Benefits of Spread Spectrum ...... .................. ..................... 47 3.4.2 Different Modulation Spreading Techniques for Spread 49

3.4.3 3.4.4 3.4.5

Spectrum .................................................................... . Direct Sequence Spread Spectrum (DSSS) ............................ 49 Frequency Hopping Spread Spectrum (FUSS) ................. ...... 50 Comparison of Frequency Hopping and Direct Sequence Spread 51 Spectrum Modulation .................................................... ..

3.5 Ultra Wide Band (UWB) ............................................................. 57

iii

3.5.1 UWB Characteristics ....................................................... 59 3.5.2 Ultra Short Pulse Width.............................................. ..... 63

3.6 Summary................................................................................ 64

Chapter FOUR: Basic Building Blocks of the AMR System

4.1 Introduction......... .................... ....... ........................................ 66 4.2 Block Diagram of the Fixed Network Indirect Electric Energy AMR 66

System .................................................................................. . 4.3 Energy Meter........................................................................... 68

4.3.1 Energy Measurement Products.......................................... 69 4.3.2 Comparison between Market-Available Products............ ....... 83

4.4 Analog Devices ADE7758 ........................................................... 85 4.4.1 Basic Operation............................................................... 87 4.4.2 Setting up the Input Signals for the ADE7758 .................... ...... 89 4.4.3 Communicating with the ADE7758 ............................ ........... 89

4.5 The Microcontroller .................................................................. 90 4.5.1 Microcontrollers Families Products.................................... 91 4.5.2 The AVR ATmega16 Microcontroller................................... 98

4.6 Power Line Communication ........................................................ 101 4.6.1 General Differences between BPL and NPL .......... ................. 102 4.6.2 Power Line Communication Technologies ............... .............. 103 4.6.3 LonWorks Neuron IC Products .......................................... 110

4.7 GSM: Global System for Mobile Communications ............................ 119 4.6.1 Telit GM862-GPS Module ............... ....... ................... ....... 120 4.6.2 AT Command Interface ................................................... 122

4.8 The OSI Network Model ............................................................ 123 4.7.1 Architecture of the PLC Systems........................................ 124 4.7.2 Architecture of the GSM ................................................... 126

4.9 Summary ................. ....................................... ................... ..... 128

Chapter FIVE: Proposed Automatic Electricity Meter Reading System Design and Implementation

5.1 Introduction ...... ...... ............... ...... ......... ...... ............ ......... ....... 130 5.2 Proposed AMR System............................................................... 130 5.3 Communication between MIU and DCU ............................. ............ 131

5.3.1 Using A VR microcontroller to Simulate the MIU Process 132 Control ....................................................................... .

5.3.2 Data Gathering using ADE7758 .......................................... 143 5.3.3 Serial Interface ofthe ADE7758 ............... ............ .............. 146 5.3.4 The Interface between ADE7758 and ATmega16 .................... 151 5.3.5 Performance under Harmonics Presence in the Power System... 152

5.4 Sending the Collected Data over Power Line.................................... 154 5.4.1 Serial SPI Input/output interface....... .......................... ....... 155 5.4.2 Communication Technique Simulation Using MATLAB .......... 156

5.5 Communication between DCU and HCS ......................................... 158 5.5.1 Serial Interface (US ART) of the AVR Microcontroller ............ 159 5.5.2 AT Command Interface ................................................... 164

iv

5.5.3 GSM Link Protocol......................................................... 168 5.6 Host Central Station.................................................................. 173 5.7 Total System Overview............................................................... 173 5.8 Summary................................................................................ 177

Chapter SIX: Conclusion and Future Work

6.l.Conclusion .............................................................................. 177 6.2.Future Work ........................................................................... 180

References ... II ••••••••••••• II ••••• II ••••• II •••••••••• II •••••••• II II •••••••• II ••• II II •••••••• II II 182 Appendix A ...................................................................................... A-I Appendix B ...................................................................................... B-1 Appendix C ...................................................................................... C-l Appendix D ...................................................................................... D-l

v

List of Tables

Table No. Title Page

2.1 Summary of the fixed network techniques 32 4.1 The 90E21, 90E22, 90E23, and 90E24 ICs 70 4.2 The 90E32 and 90E36 ICs 71 4.3 Cirrus Logic ICs 72 4.4 The ADE7755, AD71056, ADE7768, and ADE7769 75

ICs 4.5 The ADE7751, and ADE7761B ICs 76 4.6 The ADE7752A, ADE7752B, and ADE7762 ICs 77 4.7 The ADE7756, ADE7759, ADE7753, and ADE7763 78

ICs 4.8 The ADE7754, and ADE7758 ICs 79 4.9 ADEICs 81 4.10 Comparison between Market Available Energy 84

Metering Products 4.11 Comparison between Market Available 97

Microcontroller Products 4.12 Channel Characteristics 109 4.13 Motorola's Neuron Chip ICs Specification 111 4.14 Characteristic of PL Smart Transceivers 115 4.15 Summary of Direct 110 Objects 118 5.1 Task Index Description 169 5.2 Invalidity Action Overview 170

vi

List of Figures

Figure No. Caption Page

2.1 Generalized Block Diagram of Electricity Meter 6 Reading

2.2 Manual Meter Reading Technique 7 2.3 Human Reading Techniques 8 2.4 Pluggable Handheld Techniques 9 2.5 Short Range Wireless Handheld Technique 10 2.6 Mobile Network Automatic Meter Reading 11

Techniques 2.7 Fixed Network AMR Techniques 12 2.8 Direct Data Access Techniques 13 2.9 Typical Electrical Power Distribution Network 14 2.10 General Arrangement of Based Automatic Meter 16

Reading. 2.11 Intermediate Data Concentration Techniques 27 2.12 Intermediate Data Primary Network 27 2.13 Intermediate Data Secondary Network 31 2.14 Summary of Electricity Meter Reading 33

Classification Techniques 3.1 Amplitude and Frequency Modulation 38 3.2 Shift Modulations for Digitally Transmitted 39

Information 3.3 On/off modulation of light in an optical fiber 40 3.4 BPSK signal constellation. 41 3.5 BPSKwaveform 42 3.6 BPSK modulator, and coherent BPSK demodulator 43 3.7 Probability of Error Curve for BPSK and 45

FSKIASK 3.8 QAM with 16 modulation states 46 3.9 Spread-Spectrum Communication System 47

3.10 Spread-spectrum signal is buried under the noise 48 level

3.11 Illustration of how the signal can reach the receiver 48 over multiple paths.

3.12 Modulation Techniques for Spread Spectrum 49 3.13 Spectrum-analyzer photo of a direct-sequence (DS) 50

spread-spectrum signal 3.14 Spectrum-analyzer photo of a frequency-hop (FH) 51

spread-spectrum signal 3.15 DS and FH Modulation 52 3.16 Channel Response 53 3.17 Ranges of DS and FH 55 4.1 Block Diagram of the Fixed Network Indirect 67

Electric Energy AMR System 4.2 ADE7758 Pin Configuration 85

vii

4.3 Functional block diagram of ADE7758 86 4.4 ADE7758 Basic Operations 87 4.5 Active Power Calculations 88 4.6 Typical set up for the ADE7758 89 4.7 Microcontroller Features 91 4.8 Pinout ATmega16 99 4.9 CENELEC Frequency Band Designations 112 4.10 Dual-Carrier Frequency Operations 113 4.11 Functional block diagram of The PL-3120 and PL- 114

3150 Power Line Smart Transceivers 4.12 Typical Coupling Circuit for PL-3120 and PL-3150 117 4.13 PL3120- PL3150 1/0 Interface 118 4.14 GM862-GPS Connectors Position 122 4.15 The ISOIOSI reference model 123 4.16 PLC specific network layers 125 4.17 GSM specific network layers 127 5.1 The Proposed AMR Overall System Architecture 131 5.2 Meter Interface Unit 132 5.3 A VR Microcontroller Runner Circuit 134 5.4 Power Supply Source 135 5.5 Master And Slave Data Load To The Shift Registers 135 5.6 SPI Bus Description 136 5.7 SPI Master Slave Connection 137 5.8 SPI Control Register 139 5.9 Master and Slave Simulation 141 5.10 Master And Slave Operation Flowchart 142 5.11 Basic Operation of the ADE7758 144 5.12 The ADE7758 Circuit Digram 145 5.13 ADE7758 Active Energy Accumulation 146 5.14 ADE7758 Interrupt Timing 147 5.15 ADE7758 Registers via the Communications 148

Register 5.16 Communications Register 148 5.17 Writing Data to the ADE7758 via the Serial 149

Interface 5.18 Serial Interface Write Timing Diagram 149 5.19 Reading Data from the ADE7758 via tbe Serial 150

Interface 5.20 Serial Interface Read Timing Diagram 151 5.21 Tbe A VR is Interfaced with tbe ADE7756 Through 152

SPI 5.22 A Fundamental Sine Wave and Two Harmonic 152

Waves tbe 3rd and 5th Harmonics 5.23 PL 3150 and PL 3120 EVB Evaluation Boards 155 5.24 SPI Master And Slave Pins for tbe PLM modules 156 5.25 Model Diagram of DSSS System Using MA TLAB 157 5.26 Transmitted and Received signals 158 5.27 Data Concentration Unit 158

viii

5.28 5.29 5.30 5.31 5.32 5.33 5.34 5.35 5.36 5.37 5.38

MAX232 Serial Level Convertor Circuit USART Block Diagrams Control and Status Register A Control and Status Register B Control and Status Register C GSM Link Protocol GSM Link Protocol Example Host Central Station Overall Implemented System Block Diagram Total MIU Operation Flowchart Total DCU Operation Flowchart

ix

159 160 162 163 163 169 172 173 174 175 176

AID AC ADC ADE ADI AES AFE AJ AM AMR ANSI APCF ASK AT AVR BASK BFSK BPL BPL BPSK BW CATV CBI CDMA CEBus CEPT CISC CMOS CPHA CPOL CPU CR CR CS CSMAICA CT CTP D/A

List of Abbreviations

Analog to Digital Converter Alternating Current Analog to Digital Converter Analog Devices Energy Analog Devices Incorporated Advanced Encryption Standard Association for Facilities Engineering Anti-Jam Amplitude Modulation Automatic Meter Reading. American National Standards Institute Active Power Calibration Frequency Amplitude Shift Keying Attention Advanced Virtual RISC Binary Amplitude Shift Keying Binary Frequency Shift Keying Broadband Power Line Broadband Power Line. Binary Phase Shift Keying Band Width Community Antenna Television. Complement Bit Instruction Code Division Multiple Access Consumer Electronic Bus Conference of Postal and Telecommunications Complex Instruction Set Computing Complementary Metal Oxide Semiconductor Clock Phase Clock Polarity Central Processing Unit Carriage Return Carrier Recovery Chip Select Carrier Sense Multiple Access with Collision Avoidance Current Transformer Centralized Token Passing Digital to Analog Converter

x

D-AMPS DC DCU DDRBi DES DFT DMIPS DORD DSMA DSP DSSS EEPROM EIA EMC EMI EMIlEMC EPROM ESD ETSI FCC FEC FHSS FM FSK GFSK GMSK GPRS GPS GSM HCS HSPA IDT IDE IEEE IF IR IRQ IS ISDN ISM ISO ISO/OSI ISP

Digital Advanced Mobile Phone Service. Direct Current

Data Concentration Unit. Data Direction Register of bit i in port B of the AVR Microcontroller Data Encryption Standard

Discrete Fourier Transform Dhrystone Millions Of Instructions Per Seconds Data Order

Datagram Sensing Multiple Access Digital Signal Processing

Direct Sequence Spread Spectrum

Electrically Erasable Programmable Read-Only Memory Electronic Industry Association

Electromagnetic Compatibility

Electro Magnetic Interference. Electromagnetic InterferencelElectromagnetic Compatibility

Erasable Programmable Read-Only Memory

Electrostatic Discharge

European Telecommunications Standards Institute. Federal Communications Commission

Forward Error Correction

Frequency Hopping Spread Spectrum

Frequency Modulation

Frequency Shift Keying

Gaussian Frequency Shift Keying Gaussian Minimum Shift Keying

General Packet Radio Service.

Global Positioning System Global System for Mobile Communications.

Host Central Station.

High speed packet access Integrated Device Technology Integrated Development Environment Institute of Electrical and Electronics Engineers.

Intermediate Frequency Infrared.

Interrupt Request Output

Interim Standard Integrated Subscriber Digital Network.

Industrial, Scientific, and Medical.

International Standards Organization

International Standardization Organization! Open Systems Interconnection. In System Programmable

xi

JTAG LANs

LCD LLC LNS LonWorks LOS LPF LPI

LQFP LSB MAC MCU MIMO MIPS

MISO MIU MOSI MPSK MSB

MSTR NBL

NLOS NMT NPL NRZ OBIS

OCD OFDM

OOK OSI

OTP PA PCC PDU

PIC PGA PLC PLM PLT PM PP

Joint Test Action Group Local Area Networks.

Liquid Crystal Display Logical Link Control.

LonWorks Network Services

Local Operation Networks Line Of Sight

Low Pass Filter

Low Probability of Intercept

Low Profile Quad Flat packages

Least Significant Bit Medium Access Control.

Microcontroller Multiple Input Multiple Output

Millions of Instructions Per Seconds Master Data In, Slave Data Output

Meter Interface Unit.

Master Data Out, Slave Data In M-ary Phase Shift Keying Most Significant Bit

Master/Slave Select

Narrowband Power Line

Non Line Of Sight

Nordic Mobile Telephony

Narrowband Power Line. Non Return to Zero

Object Identification System.

On Chip Debugging

Orthogonal Frequency Division Multiplexing

On-Off Keying

Open Systems Interconnection.

One-Time Password

Power Amplifier

Point of Common Coupling

Protocol Description Unit

Programmable Interface Controller

Programmable Gain Amplifier Power Line Communication.

Power Line Modem. Power Line (smart) Transceiver Phase Modulation Point to Point

xii

PPM

PPP

PRN PSK PSTN

PT

PWM QAM QFT QoS

QPSK RAM

RCIF REVP RF RF RFID

RISC

RMS

ROM

RXD RXEN SAR SBI

SCK

SCLK SDCC SIM

SIM

SMS SNR

SOC SOIC SRAM SPDT SPE

SPI

SS

SS

SSB SSOP TCP TCPIIP

Pulse Position Modulation Point-to-Point Protocol.

Pseudo·Random Code Phase Shift Keying

Public Switched Telephone Network Potential Transformer

Pulse-Width Modulation

Quadrature Amplitude Modulation Quad Flat Package Quality of Service.

Quadrature Phase Shift Keying Random Access Memory

Received Interrupt Flag Reverse Polarity Radio Frequency

Radio Frequency

Radio Frequency Identification Reduced Instruction Set Computing

Root Mean Square

Read Only Memory

Received Complete

Receiver Enable

Successive Approximation Register

Set Bit Instruction

Master Clock Output

Serial Clock Small Device C Compiler Subscriber identity module

Subscriber Identity Module.

Short Message Service.

Signal to Noise Ratio

System On Chip Small-Outline Integrated Circuit Static Random Access Memory Single Pole, Double Throw

SP! Enable Serial Peripheral Interface

Slave select input Spread Spectrum

Signal Side Band Shrink Small Outline Package. Transmission Control Protocol. Transmission Control ProtocoVInternet Protocol).

xiii

TDMA THD THSS TMlUWB TQFP TTL TXC TXEN UBRR UCSRA UCSRB UCSRC UDR UDRE UMTS USART USB UWB UWB-PHY VLSI VPN VQFP

WAN WCDMA Wi-Fi WLAN WLAN WPA

Time-Division Multiple Access Total Hannonic Distortion

Time Hopping Spread Spectrum Time Modulated Ultra-Wideband Thin Quad Flat Package Transistor Transistor Logic

Transmit Complete

Transmitter Enable USART Baud Rate Registers

USART Control and Status Register A USART Control and Status Register B

USAR T Control and Status Register C USART I/O Data Register USART Data Register Empty Universal Mobile Telecommunication System Universal Synchronous Asynchronous Receiver Transmitter) Universal Serial Bus

Ultra Wide Band Ultra Wide Band Physical Layer Very Large Scale Integration Virtual Private Network.

Very small Quad Flat Package

Wide Area Network Wide code division multiple access Wireless Fidelity. Wireless Local Area Network. Wireless Local Area Network.

Wi-Fi Protected Access.

xiv

References

[1] R. Tahboub, D. Lazarescu, and V. Lazarescu, "Modeling and simulation of secure

automatic energy meter reading and management systems using mobile agents",

IJCSNS International Journal of Computer Science and Network Security, VOL.7

No.1, January 2007.

[2] T. Chandler, "The technology development of automatic metering and monitoring

systems", in IEEE International Power Eng. Conf., Dec. 2005.

[3] T. Khalifa, K. Naik, and A Nayak, "A Survey of Communication Protocols for

Automatic Meter Reading Applications", IEEE communications surveys &

tutorials, January 2010.

[4] Shoeb S. Sheikh, "Design And Implementation Of Wireless Automatic Meter

Reading System", International Journal of Engineering Science and Technology

(IJEST), Vol. 3 No.3 March 2011.

[5] SENSUS metering system, Auto Read Handheld DevicelPrograrnmer, Standard

Model-AR 5001, Radio-Read Model-AR 5002, www.sensus.com

[6] A.S. Mehmood, T. Choudhry, and M.A. Hanif, "A Reviewing the Technical Issues

for the Effective Construction of Automatic Meter Reading System", International

Conference on Microelectronics, 2005 IEEE.

[7] Hersery meters, Product Bulletin, PBO 1 005R January 26, 2006

[8] V. Cagri Gungor, and F. C. Lambertz, "A Survey on Communication Networks for

Electric System Automation".

[9] MASTER METER, "3G Mobile drive-by AMR", www.mastermeter.com.

[10] K. Moizumi. Thayer, "Mobile Agent Planning Problems", A Thesis Submitted to

the Faculty in partial fulfillment of the requirements for the degree of Doctor of

Philosophy. School of Engineering Dartmouth College, Hanover, New Hampshire,

October 23, 2004.

[11] Leveraging the Full Potential of Automated Meter Reading (AMR) Technologies,

182

GCI Group Inc, 2004

[12] T. Chandler, "The Technology Development of Automatic Metering and

Monitoring Systems", The 7th International Power Engineering Conference, pp.

147-150, Nov. 2005.

[13] A. Minosi, A. Martinola, S. Mankan, F. Balzarini, A. N. Kostadinov, and M.

Prevostini, "Intelligent, Low Power and Low Cost Measurement System for Energy

Consumption", International Symposium on Virtual Environments, Human­

Computer Interfaces and Measurement Systems, pp. 125-130, Jul. 2003.

[14] A. Treyl, T. Sauter, and G. Bumiller, "Real-Time Energy Management over Power­

Lines and Internet", the Proceeding of the International Symposium on Power Line

Communications and its Applications, pp. 306-311,2004.

[15] R. Tahboub, and V. Lazarescu, "Novel Approach for Remoter Energy Metering

Reading using Moke Agents", International Conference on Information

Technology, New Generation, pp. 84-89, Apr. 2006.

[16] V. C. Gungory, and F. C. Lambertz, "A Survey on Communication Networks for

Electric System Automation", 2006.

[17] I.H. Cavdar, "A Solution to Remote Detection of Illegal Electricity Usage via

Power Line Communications", IEEE Transactions on Power Delivery, vol. 19, pp.

1663-1667, October 2004.

[18] S. Galli, A. Scaglione, and K. Dosterl, "Broadband Is Power Internet Access

Through The Power Line Network", IEEE Communications Magazine, vol. 41 ,pp.

82-83, May 2003.

[19] W. Liu, H. Widmer, and P.Raffin, "Broadband PLC access systems and field

deployment in European power line networks", IEEE Communications Magazine,

vol. 41, pp. 114-118, May 2003.

[20] K. H. Zuberi, "Powerline Carrier (PLC) Communication Systems", Royal Institute

of Technology, KTH, IT-Universities, Kista, Stockholm, Sweden, September 2003

[21] R Nimare, "Automatic Meter Reading (AMR)", Metering Technologies Advance

183

Applications and Systems Distribution Reform, Upgrades and Management

(DRUM) Training Program.

[22] N.K. Tan, "Building VPNs with IPSec and MPLS", McGraw-Hill Networking,

2003.

[23] R. Cohen, "On the establishment of an access VPN in broadband access

networks", IEEE Communications Magazine, vol. 41, pp. 156-163, February 2003.

[24] F. Goodman et aI, "Technical and System Requirements for Advanced Distribution

Automation", Electric Power Research Institute Technical Report 1010915, June

2004.

[25] S. S. Sheikh, "Design And Implementation Of Wireless Automatic Meter Reading

System", International Journal of Engineering Science and Technology (IJEST),

Vol. 3 No.3 March 2011.

[26] T. Khalifa, K. Naik and A. Nayak, "A Survey of Communication Protocols for

Automatic Meter Reading Applications", 2010 IEEE.

[27] H. Tan, H. Lee, and V. Mok, "Automatic power meter reading system using GSM

network", in IEEE International Power Eng. Conf., Dec. 2007.

[28] Abdollahi, M. Dehghani, and N. Zamanzadeh, "SMS-based reconfigurable

automatic meter reading system", in IEEE International Conf. Control Appl., Oct.

2007.

[29] P. Zerfos, X. Meng, S. Wong, V. Samanta, and S. Lu, "A study of the short

message service of a nationwide cellular network", in ACM SIGCOMM Internet

Measurement Conf., Oct. 2006.

[30] X. Meng, P. Zerfos, V. Smanta, S. Wong, and S. Lu, "Analysis of the reliability of

a nationwide short message service", in IEEE INFOCOM, May 2007.

[31] Y. Hu, and V.O.K. Li, "Satellite-Based Internet: A Tutorial", IEEE

Communications Magazine, vol. 39, pp. 154-162, March 2001.

[32] E. Ekici, I.F. Akyildiz and M.D. Bender, "A Multicast Routing Algorithm for LEO

184

Satellite IP Networks", IEEE/ACM Transactions on Networking, vol. 10, no. 2, pp.

183-192, April 2002.

[33] B.R. Elbert, "Satellite Communications Applications Handbook", Artech House

Publishers, 2004.

[34] Li Quan-Xi, Li Gang, "Design of remote automatic meter reading system based on

ZigBee and GPRS", Proceedings of the Third International Symposium on

Computer Science and Computational Technology(ISCSCT ' 10) Jiaozuo, P. R.

China, 14-15, pp. 186-189, August 2010.

[35] Q. Spencer, "An information-theoretic analysis of electricity consumption data for

an AMR system", in IEEE International Symp. Power Line Communication. Appl.,

Apr. 2008.

[36] IEEE 802.16 and WiMAX: Broadband Wireless Access for Everyone, Intel

Corporation, 2003. www.intel.com!ebusiness/pdf/wireless/inte1l80216_wimax.pdf

[37] Specifications of Wi MAX. Retrieved on October 10,2006, www.wimax.com

[38] Westech Communications Inc. on behalf of the WiMAX Forum, Can WiMAX

Address Your Applications, White paper dated October 24,2005.

[39] B. Sidhu, H. Singh, and A. Chhabra "Emerging Wireless Standards-WiFi, ZigBee

and WiMAX", World Academy of Science, Engineering and Technology 252007.

[40] Echelon Corporation, http://www.echelon.com!. accessed June 2011.

[41] Advanced Motion Controls, "CAN Open Network CAN Bus Cabling Guide",

www.a-m-c.com.

[42] MODBUS Protocol, http://www.http:llwww.modicon.com!techpubs/toc7 .html.

[43] IDC TECHNOLOGIES, "Industrial Data Communication Networking and IT",

www.idc-online.comle_learninglditprospectus.pdf.

[44] AS Interface, http://as-interface.net.

[45] Real Time Automation, http://www.rtaautomation.comlprofibus/

185

[46]

[47]

[48]

[49]

V. Mocnik "Mixed Communication Solution for Implementation of an Effective

AMR System".

J. De Vriendt et al,"Mobile Network Evolution: A Revolution on the Move" IEEE ,

Communications Magazine, Vol. 40 No.4, April 2002

P. P. Parikh , "Opportunities and Challenges of Wireless Communication

Technologies for Smart Grid Applications", IEEE 2010

[802.11] IEEE Std.802.11, "IEEE Standard for Information Technology­

Telecommunications and Information Exchange between Systems - Local and

Metropolitan Area Networks", 2007.

[50] IEEE PSRC Tech. Rep., "Using Spread Spectrum Radio Communication for Power

_ System Protection Relaying Applications", July 2005.

[51] D. K. Holstein, "Wi-Fi Protected Access for Protection and Automation a work in

progress by CIGRE Working Group B5.22", in Proc. 2006 IEEE Power System

Conf. and Expo., pp. 2004-2011.

[52] EPRl Tech. Rep., "Wireless Connectivity for Electric Substations", Feb 2008.

[53] N. Kommu, P. Nagamani, and M. Kollam, "Designing of an Automated Power

Meter Reading with Zigbee Communication", 2009 International Journal of

Computer & Communication Technology.

[54] IEEE Std. 802.15, "Standard for Information Technology - telecommunications and

information exchange Systems between systems - Local and metropolitan area

networks", 2006.

[55] H. Zhang, G. Guan, and X. Zang, "The design of insulation online monitoring

system based on Bluetooth technology and IEEE 1451.5", in an international conf.

on Power Engineering, pp.l287-1291, Dec. 2007.

[56] S. Teger et aI., "End-User Perspectives on Home Networking", IEEE

Communications Magazine, Vol. 40 No.4, April 2002.

[57] K. De Craemer, and G. Deconinck, "Analysis of State-of-the-art Smart Metering

186

Communication Standards".

[58] Leveraging the Full Potential of Automated Meter Reading (AMR) Technologies,

GCI Group Inc, 2004

[59] I. Graabak, O. S. Grande, 1. Ikaheimo, and S. Karkkainen, "Establishment of

Automatic Meter Reading and Load Management, Experiences and Cost/Benefit",

2004 International Conference on Power System Technology, pp. 1333-1338, Nov.

2004.

[60] Regis 1. Bud Bates et aI., "Voice and Data Communications Handbook", ISBN-O-

07-213188-8, OsbomelMcGraw-Hill, 2001

[61] Understanding Telecommunications, http://www.ericsson.com/support/telecom/.

Ericsson, STF, Student literature, 2002

[62] V. Mey, and J.E., "Spread Spectrum Communications for the CEBUS Power line",

Consumer Electronics, 1990. ICCE90. IEEE 1990 IntI. conf., June 6-8, 1990, pp.

240 -241

[63] D. Radford, "New Spread Spectrum Technologies Enable Low Cost Control

Applications For Residential And Commercial Use", Intellon Corporation

[64] D. Radford, "Spread-Spectrum Data Leap through AC Power Wiring", Intellon

Corporation

[65] C. R. Anderson, J. H. Reed, R. M. Buehrer, D. Sweeney, and S. Griggs, "An

Introduction to Ultra Wideband Communication Systems", April 2005.

[66] A. Eltaher, and T. Kaiser, "Positioning Of Robots Using Ultra-Wideband Signals,"

2004

[67] V. Lottici, and A. D'Andrea, "Channel Estimation for Ultra-Wideband

Communications", IEEE Journal on selected areas in Communications, Vol. 20, No.9,

December 2002.

[68] J. Ding, L. Zhao, S. Medidi, and K. M. Sivalingam. "MAC Protocols for Ultra­

Wide-Band Wireless Networks: Impact of Channel Acquisition Time. In

187

Proceedings of SPIE", November 2002.

[69] K. Siwiak. "Ultra-Wide Band Radio: Introducing a New Technology", IEEE

Vehicular Tech. Conference (VTC) - Plenary session, May 2001.

[70] M. MAJCHRAK, J. HEINRICH, P. FUCHS, and V. HOSTYN, "Single phase

electricity meter based on mixed signal processor with PLC modem," in Radio

elektronika, 17th International Conf., Apr. 2007.

[71] I. T. Samuel, "An Automatic Smart Telemetering, Tele-billing, and Tele­

Conditional Access Control Of Electrical Energy", Domestic Use of Energy

Conference 2004.

[72] lOT Integrated Device Technology, www.idt.com.

[73] lOT Integrated Device Technology, "Single Phase High Performance Wide Span

Energy Metering IC", www.idt.com.

[74] lOT Integrated Device Technology, "Poly-Phase High-Performance Wide-Span

Energy Metering IC-90E32 and 90E36", www.idt.com.

[75] Cirrus Logic, www.cirrus.com

[76] Analog devices, www.analog.com

[77] Energy Measurement Solutions, www.analog.com

[78] Energy Measurement Products, www.analog.comlenergymeter

[79] Analog Devices ADE7758 datasheets, www.analog.com

[80] Evaluation Board Documentation ADE7758 Energy metering IC, www.analog.com

[81] N. Wan, "Reactive Energy Measurement Made Simple" Metering International

Issue 4 2003, www.metering.com

[82] E. Moulin, "Measuring Harmonic Energy with a Solid-State Energy Meter",

Metering International Issue 3 2003, www.metering.com

[83] M. Predko, "Handbook of Microcontrollers", publisher McGraw-Hill

188

[84] Intel, http://www.intel.comldesigniembcontrollindex.htrn

[8S] Keil http://keil.com

[86] SiLabs MCU List, http://embeddedbook.x8S.com

[87] Atrnel MCU List, http://embeddedbook.x8S.com.

[88] Maxim 80S 1 MCU List, http://embeddedbook.x8S.com.

[89] Microchip, http://www.microchip.com.

[90] M. Moghavvemi, S.Y. Tan and S. K. Wong, "PIC Microcontroller-Based

Automatic Meter Reading (AMR) System Using a Low Voltage (LV) Power Line

Network", IJE Transactions B: Applications, Vol. 18, No.1, April 2005.

[91] A TMEL, http://atmel.comlproducts/avr/default.asp.

[92] A TMEL, http://atmel.comlproducts/avr32/default.asp

[93] ATMEL ATmega16 Microcontroller datasheet, www.atrnel.com

[94] Brown PA, "Power line communications, past, present, and future", Proceedings of

International Symposium on Power-line Communications and its Applications,

September 1999.

[9S] E M. Faisal and A. Mohamed, "A new technique for power quality based condition

monitoring", in 17th Conf. Electrical Power Supply Industry, Oct. 2008.

[96] M. gotz, M. rapp, and K. dostert, "Power line channel characteristics and their

effect on communication system design", in IEEE communication magazine,

April2004

[97] A. Matov "Measurements and Modeling of Power Line Channel at High

Frequencies", Integrated systems Lab. Swiss federal institute of tech. ausanne,

Switzerland

[98] M. Zimmermann, and K. Dostert "A Multi path model for the power line channel",

IEEE transactions on communications, vol. SO, n04, April 2002.

189

[99] Yu-ju Lin, H. A. Latchman, and M. Lee "A power line communication network

infrastructure for the smart home", IEEE Wireless Communications, 1070-9916/02,

dec.2002.

[100] S.Galli, A. scagllone, and k. Dostert. "Broadband is power: Internet access through

the power line network", IEEE Communications Magazine, May 2003.

[101] B. Sivaneasan, E. Gunawan, and P. L, "Modeling and performance analysis of

automatic meter-reading systems using PLC under impulsive noise interference",

IEEE transactions on power delivery, Vol. 25, No.3, July 2010.

[102] B. Park, D. Hyun, and S. Cho, "Implementation of AMR system using power line

communication", in IEEEIPES Transmission Distribution Conf. Exhibition, Oct.

2002.

[103] M. J. Riezenman, "Networks for Homes", IEEE Spectrum, Vol. 36, December

1999.

[104] Dave Rye, "The X-IO POWERHOUSE Power Line Interface Model number PL513

and Two-Way Power Line Interface Model number TW523", Technical Note,

Revision 2.4, X-I 0 (USA) Inc.

[105] A. Dhir et al., "Home Networking Using No New Wires Phone line and Power line

Interconnection Technologies", White Paper, WP133 vl.O, Xilinx Inc., March 2001

[106] Peter House, "CEBus for the Masses", Technical Article number 0593, Intellon

Corporation

[107] Grayson Evans, "The CEBus Communication Standard", Part 1 & 2, Intellon

Corporation

[108] Frarneset for CEBus Users Group, http://www.cebus.org/, accessed July 2011

[109] "CEBus Power Line Encoding and Signaling", White Paper number 0027, Intellon

Corporation.

[110] M. K. Lee, R. E. Newman, H. A. Latchman, S. Katar, and L. Yonge3, "Home Plug

1.0 Powerline Communication LANs -Protocol Description and Performance

190

Results", International Journal of Communication Systems Int. J. Communication.

System, February 2003.

[Ill] Cogency Semiconductor Inc., http://www.cogency.com. accessed July 2011

[112] "Data Communications over Power Lines", White Paper, Cogency Semiconductor

Inc.

[113] HomePlug Powerline Alliance, http://www.homeplug.org, accessed July 2011

[114] HomePlug-certified Products, http://www.homeplug.com!products/. accessed July

2011

[115] Motorola Master Selection Guide. LONWORKS Products. 2.7-1. LONWORKS®

Neuron® IC Products. Neuron Chips.

[116] Echelon Corporation, http://www.echelon.com!. accessed June 2011

[117] Echelon Corporation, Technical Document, "Lon Works Technology Overview".

[118] Echelon Corporation ;'LonTalk Protocol", Echelon Engineering Bulletin 005-0017-

01,27 pages,

[119] Echelon Corporation "LonTalk Protocol Specification", Echelon Manual 078-0125,

114 pages.

[120] Echelon Corporation "LonWorks Network Services (LNS) Architecture Strategic

Overview".

[121] Echelon Corporation "LonMark Layer 1-6 Interoperability Guidelines", 078-0014-

01.

[122] "LonMark Layer 1-6 Interoperability Guidelines", 078-0014-01, Echelon Corporation

[123] Michael R. Tennefos "Technology Comparison LONWORKS® Systems versus

DeviceNet®", Echelon White Paper

[124] LonMark Interoperability Association, www.lonmark.org, accessed July 201

[125] M. R. Tennefos "Implementing Open, Interoperable Building Control Systems",

191

Echelon White Paper.

[126] PL 3120 IPL 3150 IPL 3170 Power Line Smart Transceiver Data Book , www.echelon.com

[127] PL3120 and PL 3150 Power Line Smart Transceivers datasheets,

www.echelon.com

[128] History and Timeline ofGSM. Emory University. Retrieved on 2011

[129] About GSM Association. GSM Association. Retrieved on 2011

[130] Two Billion GSM Customers Worldwide. 3G Americas June 13,2006.

[131] Texas Instruments Executive Meets with India Government Official to outline

Benefits of Open Standards to drive mobile phone penetration. Texas Instruments

July 12,2006.

[132] Brief History ofGSM & GSMA. GSM World. Retrieved on 2011.

[133] Nokia delivers first phase GPRS core network solution to Radiolinja, Finland.

Nokia January 24, 2000.

[134] Telit wireless solution, Telit GM862-GPS datasheet, www.telit.com.

[135] GM862 Family Hardware User Guide, www.telit.com

[136] GM862 Product Description, www.telit.com

[137] B. H. Walke, Mobile Radio Networks - Networking and Protocols, John Wiley &

Sons Ltd, Chichester, UK, ISBN 0-471-97595-8.

[138] A. S. Tanenbaum, Computer Networks, Third edition, Prentice-Hall Inc., USA,

German edition.

[139] C. Cepisca, H. Andrei, S. Ganatsios, M. Veyssiere, "Energy Measurement

Techniques for Non-Sinusoidal Situations", International Conference on Metrology

and Measurement Systems, June 27-28, Politehnica University, Romania, 2002.

[140] D. Placko, "Fundamentals ofInstrurnentation and Measurement", ISTE, 2007.

192

[141] A. S. Morris, "Measurements &Instrumentation Principles", Butterworth

Heinemann, 2001.

[142] S. Svensson, "Power Measurement Techniques for Non-Sinusoidal Conditions",

PhD thesis, Chalmers University of Technology, Goteborg, Sweeden, 1999.

[143] C. Gherasim, A. Ortiz, J. Van Den Keybus, J. Driesen, R. Belmans,

"Implementation and Comparison of Power Definitions using a DSP Based

Prototyping System", IEEE-ICHQP, 2004

[144] W. Boyes, "Instrumentation Reference Book", Butterworth Heinemann, 3rd edition,

2003.

[14S] A. Kusko, M. T. Thompson, "Power Quality in Electrical Systems",Mc Graw Hill,

02007.

[146] M. EI-Habrouk, M. K. Darwish, P. Mehta, "Active Power Filters: A Review",IEE­

Proceedings - Electric Power Applications, Vol. 147, No.5, September 2000, pp.

403-413.

[147] Analog Devices ADE77S8 datasheets, www.analog.com

[148] M. EI-Habrouk, M. K. Darwish, P. Mehta, "Design and Implementation of a

Modiied Fourier Analysis Harmonic Current Compensation Technique for Power

Active Filters using DSPs", lEE-Proceedings - Electric Power Applications, Vol.

148, No.1, January 2001, pp. 21-28.

[149] Z. D. Koozehkanani, "Active Filters, A Unified Approach", PhD thesis,

Department of Electrical Engineering and Electronics, Brunei University, U.K.,

1996.

[ISO] W. Xu, Y. Mansour, C. Siggers, M. B. Hughes, "Developing Utility Harmonic

Regulations based on IEEE standard-SI9-B.C., hydro's Approach", IEEE-trans. On

Power Delivery, Vol.lO, No.3, July 1995, pp. 1423-1431.

[1S1] Dranetz BMI, "DRANETZ 8000-2 Energy Analyzer Data Sheet",

www.dranetz.com.

193

4...1iLWI ~'('~'I ~ I·' J r:o-- . J J"

,". \ ~ 10... I., :~.)\:4 ~ j4-! J u...)1 01\ d...:i!1.1. r3

~I,.L.$I

C :W~I.ii"L...~1

.................................... ~~:~jill .l~I.t11 ioS~.l=..1 . .l.t :FYI

~y&.,!1 ~4- - ~I ~ - ~~I ~I ~ tfo ~\:i..1 ................. ~.\~r:!..i:. :~jill ioSJIJ)1 wWc JJ= . .l.1 -~.)~,!I ~4- - 4......~1 ~ - ~~I 4......~1 ~ tfo ..\c.L...... ~\:i..1 :~."ll

.. :-::-: ... :-:-:-: .... ~ ... :;: .... ~ ... ;;: ... :;. ~ .......... :~jill

~y.ll ~\sYI - 4-;.."lpl J ~I ~ - ..:.YL.....:iYl J ..:.~JfolYI ~..\c.L...... ~\:i..1 :~."ll

ioS.....,..,JI JU\I J 4-;.."l pI J r"wJ

.~ ;:;:::;:;;:;::: .-= .... :~jill rll... ...llI.l,lC J.,)j . ..l.1

~y.ll ~\sYI - 4-;.."l pI J 4......~1 ~ - ..:.YL.-."'ll J ..:.~ JPYI ~ ..\c.L...... ~\:i..1

L ioS~1 JU\I J 4;.."lpl J r)..1l

UHH.&~~':, ~~:"::;~,;:-' ~y&.,!I~~_4.. • • . .A-'" ~ (j"y,o

i i Ijl ~ J~ ~.)#- ~)I r.Sy.:.... ul,) ~llA~ ~ ~.lI ~)I.~ ~ iJ).,!1 ~I i.31.A11 u~)1 I uu,w ~I ~I}jl iJ')~ ~ r,rA,) ~WI ~411 .1) u&:! ~)I .~ U~ UIJ 'r.Spl ~ 4,Jl

.W\.JI~I

................................................................................ G.)j\l). .. ~4. :(""''/1

............................................................................................................ ... ~y. .. :(:jijill

:~411

I~u ~ ... ('I ~\.bll ~"J .. ~ "''i '\lll11 JIJLH 0 1 ,i ~', ,i;; 0 ~ ~ .... ~ ~ c.r "J"~ .. J~~;~

GSMJI J LonWorksJI ~J3.,w

0->t.,~

.1.'" t Jj~ ~ WIJ

DIS 621.3745 MO:DE-

73674 C1

DESIGN AND IMPLEMENTATION OF AN AUTOMATIC METER READING ~Y~TFM FOR ELECTHIC ENERGY

111I11/~~f~/~1111 73674