Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

27
Cu 2 O and CuO Nanocrystalline Photoelectrochemi cal Systems Thomas Polson

description

Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems. Thomas Polson. Why use a semiconductor?. Absorbed photons promote electrons to a higher energy state (conductive band) Electrons from conductive band used to split H 2 O - PowerPoint PPT Presentation

Transcript of Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Page 1: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Cu2O and CuO Nanocrystalline

Photoelectrochemical Systems

Thomas Polson

Page 2: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Why use a semiconductor?

Absorbed photons promote electrons to a higher energy state (conductive band)

Electrons from conductive band used to split H2O

Differing semiconductors have varying conductive band potentials

Conductive Band

Valence Band

Page 3: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Usable band gap of 1.9 eV

2 H2O(l) O2 (g) + 4 H+(aq) +4 e

E0 = +1.23 eV

2 H+ + 2 e- H2(g)

E0 = 0.0 eV Conductive Band higher than

Hydrogen

-.9 V

1 V

hν1.9V

Why Cu2O?

Page 4: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Cu2O Stability

Cu2O known to be unstable by photo degradation when illuminated in H2O Cu2O + H2O + 2e- 2 Cu + OH- -.25ev

Nanocrystalline Cu2O does not degrade Stability unexplained

Page 5: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Cu2O film production

Electrochemical deposition pH Deposition time

Sol-gel Commercially available Cu2O CuCl2 Nanocubes

Page 6: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Electrochemical Deposition

Working

Counter

Reference

Cupric Lactate Solution

45g CuSO4

75 mL 85% Lactic acid

225mL 5M NaOH

ITO Coated Glass

SCE

(sat’d KCl)

Pt

Page 7: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Electrochemical Deposition

Vary time from 15 mins to 2 hrs Longer time thicker film

Vary pH from 8 to 12 pH ~10 most uniform film

Based on ‘Cu2O: Electrodeposition and Characterization’ P.E. de Jongh , Chem. Mater. 11 3512-

3517 (1999) ‘Photoelectrochemistry of Electrodeposited Cu2O’, P.E. de Jongh JES, 147(2) 484-489

(2000).

Page 8: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Electrochemical Deposition

Page 9: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Electrochemical Deposition

0

10000

20000

30000

40000

50000

60000

70000

80000

25 35 45 55 65 75 85

CP

S

Cu2O

Standard

111 222

• Highly oriented crystal structure

Page 10: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Electrochemical Deposition

Page 11: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Electrochemical Deposition

-2.00E-05

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

V (V vs SCE[sat'd KCl])

I (A

)

Light Current

Dark Current

Effective Photocurrent

Page 12: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Sol-gel(Cu2O)

Cu2O suspended in H2O w/ acetyl acetone and triton X

Annealed for 1 hr @ 360˚C to ITO glass Adapted from

‘Testing of Dye Sensitized TiO2 Solar Cells I & II’ G.P. Smestad SEM&SC 32 259-273 (1994).

Page 13: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Sol-gel(Cu2O)

01000

200030004000

500060007000

80009000

25 35 45 55 65 75

cps

Cu2O

Standard

• Positive ID of Cu2O• Random orientation

Page 14: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Sol-gel(Cu2O)

Page 15: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Sol-gel(Cu2O)

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

-0.2 -0.15 -0.1 -0.05 0

V vs SCE (sat'd KCl)

I (A

)

Light Current

Effective Photocurrent

Dark Current

Page 16: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Sol-gel (Nanocubes)

Chemical reduction

CuCl2 + 2 NaOH Cu(OH)2 + 2 NaCl

4 Cu(OH)2 + N2H4 Cu2O + 6 H2O + N2

Page 17: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Sol-gel (Nanocubes)

Nanocubes annealed in same manner as bulk Cu2O

Method adapted from ‘Room temperature synthesis of Cu2O nanocubes and nanoboxes’ Z. Wang

SSC 130 585-589 (2004)

Page 18: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

XRD of Nanocubes

0200400600800

100012001400160018002000

25 30 35 40 45 50 55 60 65 70 75 802 theta

CP

S

Free Powder

Annealed

Cu2O

CuOCuO

Cu2O CuO

Page 19: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Sol-gel (Nanocubes)

Page 20: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Nanocubes

Page 21: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Sol-gel (Nanocubes)

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

4.00E-04

-0.2 -0.15 -0.1 -0.05 0

V vs SCE(sat'd KCl

I(A

)

Light Current

Dark Current

Effective Photocurrent

Page 22: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Redox Potentials of Relevant Rxns

E (V vs. SCE)

-1.0

-.5

0

+.5VB

CB

Cu2O

- Cu2O + H2O + 2e- ↔ 2Cu + 2OH-

- 2CuO + H2O + 2e- ↔ Cu2O + 2OH- - O2 + 2H2O +2e- ↔ 2OH- + H2O2

- O2 + 2H2O +4e- ↔ 4OH-

- 2H+ + 2e- ↔ H2

Page 23: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Mechanism of CuO Solar Cell

Ox

Red

h+

VB

CB e-

e-

e-

Pt

CuO

redox couple in solution

VB

CB

Ef

Ph(CN)2

PhNO2

PhN2

AQ

BQ

0.00+0.16+0.26

-0.52

-0.95

-1.20-1.33

-1.72

-1.74

AQ = anthroquinoneBQ = benzoquinone

Page 24: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Redox Couple Photocurrent

-4.00E-04

-2.00E-04

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

V vs Ag/Ag+

I(A

)

Ph(CN)2 Dark

PhNO2 Dark

PhN2 Dark

BQ Dark

Ph(CN)2 Light

PhNO2 Light

PhN2 Light

BQ Light

Page 25: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

-5.00E-05

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

V vs Ag/Ag+

I(A

)

Ph(CN)2

PhNO2

PhN2

BQ

Redox Couple Photocurrent

Page 26: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Future of the Project

Deposit Pt on electrodeposited nanocrystalline sheets

Couple with n-type semiconductor Produce hydrogen

Page 27: Cu 2 O and CuO Nanocrystalline Photoelectrochemical Systems

Thank you

Cornell Center for Materials Research

Ithaca Chemistry Department

Jacy Spado

Meagan Daniels

Akiko Fillinger