Coding for Virtual and Augmented Reality -...

77
Coding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research Packet Video Workshop, 15 July 2016

Transcript of Coding for Virtual and Augmented Reality -...

Page 1: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Coding for Virtual and Augmented Reality

Philip A. Chou, Microsoft ResearchPacket Video Workshop, 15 July 2016

Page 2: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

VR puts you in a Virtual World

Page 3: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

AR puts virtual objects in your world

Page 4: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

HMDs for Virtual Reality are Enclosed

Cardboard VR Gear VR Daydream

Playstation VRHTC ViveOculus Rift

Page 5: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

HMDs for Augmented Reality are See-Through

HoloLens Meta Daqri

Page 6: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Mixed Reality: from AR to VR

Paul Milgram, Haruo Takemura, Akira Utsumi, Fumio KishinoAugmented reality: a class of displays on the reality-virtuality continuum Proc. SPIE Telemanipulator and Telepresence Technologies, Dec 1995

Page 7: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Eventual Merging of VR and AR

β€’ Video-see-through will be on VR devices

β€’ Full immersion (high contrast and FOV) will be on AR devices

Page 8: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Redirected Walking in VR

Razzaque, Kohn, Whitten (2001)

Page 9: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

β€œCinematic” Content for VR and AR

VR ARVR AR

Page 10: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

VR Capture: β€œInside-Out”

Lytro Immerge

Samsung Beyond

Nokia Ozo

GoPro Odyssey

Jaunt VR

Facebook Surround

Page 11: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

AR Capture: β€œOutside-In”

Page 12: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research
Page 13: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research
Page 14: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research
Page 15: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

1G: TELEPHONE (1876) 3G: HOLOPORTATION (2016)2G: TELEVISION (1926)

Immersive communication is the real time exchange of the natural social signals between people who are geographically separated, as if they were in co-located.

50 years 90 years

VR/AR: Third Generation of Immersive Communication

Page 16: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

VR/AR: Fourth Generation Computing Platform(after PC, web, and mobile)

http://www.digi-capital.com/news/2016/01/augmentedvirtual-reality-revenue-forecast-revised-to-hit-120-billion-by-2020/

http://www.goldmansachs.com/our-thinking/pages/technology-driving-innovation-folder/virtual-and-augmented-reality/report.pdf

Goldman Sachs: $80B by 2025

Page 17: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Coding

Page 18: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Degree of Motion Parallax determines Coding

Virtual Reality (panoramic)β€’ Motion Parallax is limited because

of limited movementβ€’ Requires yaw, pitch, roll but not

(much) x, y, z translationβ€’ Stationary camera with 360Β° view

makes sense (inside-out)β€’ Representation can be spherical

video (possibly stereo, depth)β€’ Coding: map spherical video to

rectangular video

Augmented Reality (volumetric)β€’ Motion Parallax is unlimited

because roaming is allowedβ€’ Requires x, y, z translation as well

as yaw, pitch, roll (6DoF)β€’ Object capture makes sense

(outside-in)β€’ Representation must be light field,

mesh, point cloud, etc.β€’ Coding: novel compression

techniques

Page 19: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Omnidirectional Mappings

Equirectangular projection

- Simple, popular

- Large horizontal oversampling near poles

Equal-area projection- Decreased vertical sampling near

poles

Cube Map- Popular in graphics

community

Courtesy Hari Lakshman and MPEG/JPEG

Page 20: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Omnidirectional Mapping Application Framework (OMAF)β€’ MPEG activity

β€’ Phases

β€’ Timeline

OMAF v1 (2017)

β€’ Basic framework

OMAF v2 (2018)

β€’ 3D Audio metadata

β€’ New projection

β€’ AR

OMAF v3 (2020)

β€’ New video coding

Page 21: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Issues for VR

β€’ Mapping

β€’ Audio

β€’ Video coding may need adjustment (e.g., motion comp)

β€’ Evaluation criteria

β€’ Streaming on demandβ€’ Directional or spatial random access, ROI coding

β€’ Interactivity (much more rapid than trick modes)

β€’ Latency

β€’ Broadcasting

Page 22: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Pipeline for Video / VR / AR

capture fuse encode decode render display

Video Video Digital video Digital video Video

VR Array of video

Digital video(may be stereo, may have depth)

Digital video(may be stereo, may have depth)

β€’ Browserβ€’ Phone, tablet appβ€’ Low-end VR device (e.g., Cardboard VR, Gear VR)β€’ High-end VR device (e.g., Oculus Rift, HTC Vive, Playstation VR)

AR Array of video + depth

Volumetricrepresentation

Volumetricrepresentation

β€’ Browserβ€’ Phone, tablet appβ€’ Low-end VR device (e.g., Cardboard VR, Gear VR)β€’ High-end VR device (e.g., Oculus Rift, HTC Vive, Playstation VR)β€’ High-end AR device (e.g., HoloLens)

Page 23: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Volumetric Representations

β€’ At present, not even the representation is agreed upon

β€’ Some candidates:β€’ Dynamic Meshes

β€’ Advantages: typical pipeline, easy to interpolate as it represents a surfaceβ€’ Disadvantages: does not handle noise well, or non-surfaces

β€’ Dynamic Point Cloudsβ€’ Advantages: easily processed in parallel, handles noise and non-surfacesβ€’ Disadvantages: hard to interpolate

β€’ Hybridsβ€’ Light Fieldsβ€’ Hologramsβ€’ Dense volumetric functions and implicit surfaces

Page 24: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Meshes and Point Clouds: Irregular Domains

Page 25: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Graph Signal Processing (GSP):Framework for Signals on Irregular Domains

β€’ Generalizes processing of real-valued signals defined on a regular domain (such as an image grid) to real-valued signals defined on a discrete graph.

β€’ Applications to networks: social, sensor, communication, energy, transportation, neuronal; and geometry.

β€’ Generalizes linear transform, impulse response, shift invariance, spectrum, frequency response, filtering, smoothing, interpolation, denoising, convolution, sampling, translation, etc.

Reference: Shuman, Narang, Frossard, Ortega, and Vendergheynst, β€œSignal Processing on Graphs,” IEEE Signal Processing Magazine, May 2013.

𝑣 ∈ 𝑉

π‘₯(𝑣)

Domain 𝑉

Graph (𝑉, 𝐸)

Signal π‘₯

Page 26: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Adjacency Matrix as Shift Operator

β€’ A graph (𝑉, 𝐸) is represented by an (optionally weighted) adjacency matrix𝐴 = π‘Žπ‘šπ‘› , with π‘Žπ‘šπ‘› > 0 being the weight on edge π‘š, 𝑛 ∈ 𝐸.

Example 1Left Shift

operator on N points on a circle𝐴 =

0 1 0 00 0 β‹± 00 0 0 11 0 0 0

Eigenvectors are π‘’π‘–π‘šπ‘›/𝑁

since 𝐴 π‘’π‘–π‘šπ‘›/𝑁 =

π‘’π‘–π‘šπ‘›/𝑁 π‘‘π‘–π‘Žπ‘”(𝑒𝑖𝑛/𝑁)

Example 2Symmetric Random Walk

operator on N points on a circle𝐴 =

1

2

0 1 0 11 0 β‹± 00 β‹± 0 11 0 1 0

0 50 100 150-0.2

0

0.2

A. Sandryhaila and J. M. F. Moura, β€œDiscrete signal processing on graphs,” IEEE Transactions on Signal Processing, vol. 61, no. 7, pp.1644-1656, 2013

Page 27: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Linear Shift Invariant operators and the GFT

β€’ {LSI operators} βŠ‡ {analytic functions 𝑓(𝐴)} βŠ‡ {rational functions π‘žβˆ’1 𝐴 𝑝(𝐴)} βŠ‡ {polynomials 𝑝 𝐴 = 𝑝0𝐼 + 𝑝1𝐴 +β‹―+ 𝑝𝑀𝐴

𝑀}β€’ 𝑓 𝐴 𝐴 = βˆ‘π‘π‘šπ΄

π‘š 𝐴 = βˆ‘π‘π‘šπ΄π‘š+1 = 𝐴(βˆ‘π‘π‘šπ΄

π‘š) = 𝐴𝑓 𝐴

β€’ If shift operator 𝐴 has eigenvectors Ξ¨ and eigenvalues Ξ› (i.e., 𝐴Ψ = ΨΛ)then any LSI operator 𝑓(𝐴) has eigenvectors Ξ¨ and eigenvalues 𝑓 Ξ›(i.e., 𝑓 𝐴 Ξ¨ = Ψ𝑓 Ξ› )β€’ 𝐴 = Ξ¨Ξ›Ξ¨βˆ’1

β€’ 𝑓 𝐴 = βˆ‘π‘π‘šπ΄π‘š = βˆ‘π‘π‘š Ξ¨Ξ›Ξ¨βˆ’1 π‘š = Ξ¨βˆ‘π‘π‘šΞ›

π‘šΞ¨βˆ’1 = Ψ𝑓 Ξ› Ξ¨βˆ’1

Therefore 𝑓 𝐴 π‘₯ = Ψ𝑓 Ξ› Ξ¨βˆ’1π‘₯.

β€’ Ξ¨βˆ’1π‘₯ is known as the Graph Fourier Transform of π‘₯.

Page 28: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Graph Laplacian

β€’ Often shift 𝐴 is stochastic (rows or columns sum to 1)β€’ 𝐿 = 𝐼 βˆ’ 𝐴 is the Graph Laplacian (same eigenvectors as 𝐴, eigenvalues 𝐼 βˆ’ Ξ›)

β€’ More generallyβ€’ 𝐿 = 𝐷 βˆ’ 𝐴 is the Graph Laplacian (𝐷 = π‘‘π‘–π‘Žπ‘”(𝑑𝑖), 𝑑𝑖 = βˆ‘π‘— 𝐴𝑖𝑗)

β€’ Normalizationsβ€’ 𝐿 = 𝐼 βˆ’ π·βˆ’1𝐴 is the β€œRandom Walk” Graph Laplacian

β€’ 𝐿 = 𝐼 βˆ’ π·βˆ’1

2π΄π·βˆ’1/2 is the β€œNormalized” Graph Laplacian

β€’ Frequently 𝐿 = Ξ¨Ξ›Ξ¨βˆ’1 is the starting point instead of 𝐴, and real PSDβ€’ Eigenvalues π‘‘π‘–π‘Žπ‘”(Ξ›) are real non-negative (the graph spectrum)

Page 29: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Mesh as a Graph

Page 30: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Eigenvectors of a Mesh

Page 31: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Eigenvalues (Spectrum) as β€œFrequencies”

0 2000 4000 6000 8000 10000 12000 140000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5x 10

4 Zero-crossings of eigenvectors

0 2000 4000 6000 8000 10000 12000 14000-2

0

2

4

6

8

10

12Eigenvalues of L

Page 32: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Spectrum of Geometry as a Signal

0 2 4 6 8 10 12-500

-400

-300

-200

-100

0

100

200

300

400

500Spectrum of Z component as a signal

0 2 4 6 8 10 12-500

-400

-300

-200

-100

0

100

200

300

400

500Spectrum of Y component as a signal

0 2 4 6 8 10 12-500

-400

-300

-200

-100

0

100

200

300

400

500Spectrum of X component as a signal

Page 33: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Energy Compaction100% of coefficients 50% of coefficients 10% of coefficients 2% of coefficients

Page 34: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Spectral Domain Filtering / Denoising

Page 35: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Spectral Domain Filtering / Denoising

Page 36: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Impulse Response is Localized

Page 37: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Polynomials and Vertex-Domain Filtering

β€’ Spectral filters do not generally have compact vertex-domain support.

β€’ Spectral filters 𝑓(πœ†) correspond to LSI transforms 𝑓 𝐿 = Ψ𝑓 Ξ› Ψ𝑇 .

β€’ Polynomial spectral filters have compact supportβ€’ 𝑦 = 𝑝 𝐿 π‘₯ = βˆ‘π‘š=0

𝑀 π‘π‘šπΏπ‘š π‘₯

β€’ If π‘₯ 𝑖 = 𝛿(𝑖, 𝑖0) then 𝑦 𝑖 β‰  0 only if 𝑑 𝑖, 𝑖0 ≀ 𝑀, where 𝑑 is geodesic distance

β€’ Polynomial filters can be efficiently evaluated in vertex domainβ€’ Evaluate 𝐿π‘₯ by message passing, then 𝐿2π‘₯, …, and lastly 𝐿𝑀π‘₯.

β€’ Finally sum βˆ‘π‘š=0𝑀 π‘π‘šπΏ

π‘š π‘₯. All can be done in parallel (e.g., on GPU).

Page 38: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Prediction and Interpolation

β€’ Problem: Find π‘₯π‘’π‘›π‘˜π‘›π‘œπ‘€π‘›such that

π‘₯ =π‘₯π‘˜π‘›π‘œπ‘€π‘›π‘₯π‘’π‘›π‘˜π‘›π‘œπ‘€π‘›

minimizes the norm

𝐿 Ξ€1 2π‘₯2= π‘₯𝑇𝐿π‘₯

of the high-pass signal 𝑦 = 𝐿1/2π‘₯(using high-pass filter 𝑓 πœ† = πœ†1/2)

β€’ Solution:π‘₯π‘’π‘›π‘˜π‘›π‘œπ‘€π‘› = 𝐿22

βˆ’1𝐿21π‘₯π‘˜π‘›π‘œπ‘€π‘›β€’ Remark:

Same as 𝐸 π‘‹π‘’π‘›π‘˜π‘›π‘œπ‘€π‘› π‘‹π‘˜π‘›π‘œπ‘€π‘› = π‘₯π‘˜π‘›π‘œπ‘€π‘›if 𝑋 ∼ 𝑁(0, πΏβˆ’1)

Previous Frame

Front Back

Page 39: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Prediction and Interpolation

β€’ Problem: Find π‘₯π‘’π‘›π‘˜π‘›π‘œπ‘€π‘›such that

π‘₯ =π‘₯π‘˜π‘›π‘œπ‘€π‘›π‘₯π‘’π‘›π‘˜π‘›π‘œπ‘€π‘›

minimizes the norm

𝐿 Ξ€1 2π‘₯2= π‘₯𝑇𝐿π‘₯

of the high-pass signal 𝑦 = 𝐿1/2π‘₯(using high-pass filter 𝑓 πœ† = πœ†1/2)

β€’ Solution:π‘₯π‘’π‘›π‘˜π‘›π‘œπ‘€π‘› = 𝐿22

βˆ’1𝐿21π‘₯π‘˜π‘›π‘œπ‘€π‘›β€’ Remark:

Same as 𝐸 π‘‹π‘’π‘›π‘˜π‘›π‘œπ‘€π‘› π‘‹π‘˜π‘›π‘œπ‘€π‘› = π‘₯π‘˜π‘›π‘œπ‘€π‘›if 𝑋 ∼ 𝑁(0, πΏβˆ’1)

Current Frame

Front Back

Page 40: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Prediction and Interpolation

β€’ Problem: Find π‘₯π‘’π‘›π‘˜π‘›π‘œπ‘€π‘›such that

π‘₯ =π‘₯π‘˜π‘›π‘œπ‘€π‘›π‘₯π‘’π‘›π‘˜π‘›π‘œπ‘€π‘›

minimizes the norm

𝐿 Ξ€1 2π‘₯2= π‘₯𝑇𝐿π‘₯

of the high-pass signal 𝑦 = 𝐿1/2π‘₯(using high-pass filter 𝑓 πœ† = πœ†1/2)

β€’ Solution:π‘₯π‘’π‘›π‘˜π‘›π‘œπ‘€π‘› = 𝐿22

βˆ’1𝐿21π‘₯π‘˜π‘›π‘œπ‘€π‘›β€’ Remark:

Same as 𝐸 π‘‹π‘’π‘›π‘˜π‘›π‘œπ‘€π‘› π‘‹π‘˜π‘›π‘œπ‘€π‘› = π‘₯π‘˜π‘›π‘œπ‘€π‘›if 𝑋 ∼ 𝑁(0, πΏβˆ’1)

Warp of Previous to Current Frame

Front Back

Page 41: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Smoothing

β€’ Smoothing is similar, with a loose constraint:

Find π‘₯ =π‘₯1π‘₯2

minimizing π‘₯1 βˆ’ π‘₯π‘˜π‘›π‘œπ‘€π‘›2 + 𝛼π‘₯𝑇𝐿π‘₯

β€’ Special case:

Find π‘₯ minimizing π‘₯ βˆ’ π‘₯π‘˜π‘›π‘œπ‘€π‘›2 + 𝛼π‘₯𝑇𝐿π‘₯

β€’ Solution:

π‘₯βˆ— =𝐼 00 0

+ π›ΌπΏβˆ’1 π‘₯π‘˜π‘›π‘œπ‘€π‘›

0(equivalent to low-pass Tikhonov filteringwith 𝑓 πœ† =

1

1+π›Όπœ†in special case)

Page 42: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Perfect Reconstruction Critically Sampled2-Channel Filter Banks with Compact SupportNarang and Ortega, β€œCompact Support Biorthogonal Wavelet Filterbanks for Arbitrary Undirected Graphs,” TSP 2012

Graph Wavelet with Compact Support

𝐽𝛽 = π‘‘π‘–π‘Žπ‘” 𝛽𝑖 , 𝛽𝑖 = +1/βˆ’1 if 𝑖 ∈ 𝐿/𝐻

𝐼 =1

2𝐺0 𝐼 + 𝐽𝛽 𝐻0 +

1

2𝐺1 𝐼 βˆ’ 𝐽𝛽 𝐻1

=1

2𝐺0𝐻0 + 𝐺1𝐻1 +

1

2𝐺0𝐽𝛽𝐻0 βˆ’ 𝐺1𝐽𝛽𝐻1

Design for Bipartite Graph

β€’ πœ“2βˆ’πœ† = π½π›½πœ“πœ† (spectral folding)

β€’ Perfect Reconstruction ifβ€’ 𝑔0 πœ† β„Ž0 πœ† + 𝑔1 πœ† β„Ž1 πœ† = 2

β€’ 𝑔0 πœ† β„Ž0 2 βˆ’ πœ† βˆ’ 𝑔1 πœ† β„Ž1 2 βˆ’ πœ† = 0

𝑔0 πœ† = β„Ž1(2 βˆ’ πœ†) 𝑔1 πœ† = β„Ž0(2 βˆ’ πœ†)

Β½(𝐼 + 𝐽𝛽)

Β½(𝐼 βˆ’ 𝐽𝛽)

Page 43: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Multi-Resolution Processing

Iterate Low-Pass Filtering Procedure

β€’ At level 𝐿, use some rule to color graph with only two colors( = low pass, = high pass)β€’ Easy if graph is bi-partiteβ€’ Otherwise separate graph into union

of bi-partite graphs

β€’ Filter to get coeffs at L/H vertices

β€’ At level 𝐿 βˆ’ 1, use some rule to reconnect low pass vertices

β€’ Repeat

Page 44: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Application to Mesh Geometry and Color CompressionNguyen, Chou, and Chen, β€œCompression of Human Body Sequences Using Graph Wavelet Filter Banks,” ICASSP 2014Anis, Chou, and Ortega, β€œCompression of Dynamic 3D Point Clouds using Subdivisional Meshes and Graph Wavelet Transforms,” ICASSP 2016

Page 45: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

Coarse quad mesh

Page 46: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

Page 47: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

Page 48: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

Page 49: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

Target quad mesh

Page 50: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

0

0 0

0

0

0

0

Lowpass subband

Highpass subband

Page 51: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

0

0 0

0

0

0

0

1

1

1

Lowpass subband

Highpass subband

Page 52: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

0

0 0

0

0

0

0

1

1

1

2

2

22

22

2

2

2

Lowpass subband

Highpass subband

Page 53: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

0

0 0

0

0

0

0

1

1

1

2

2

22

22

2

2

2

3

3 3

3

3

3

3

333

3 3

Lowpass subband

Highpass subband

Page 54: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quad Mesh Subdivision

0

0 0

0

0

0

0

1

1

1

2

2

22

22

2

2

2

3 3

33

3 3

3

3

3

3

334 4

4

4

44

4

4 4

44

4

4

4

4

4

4

4

44

44

4

4

4 4

44

4

4

Lowpass subband

Highpass subband

Page 55: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

0

0 0

0

0

0

Tri Mesh Subdivision

Lowpass subband

Highpass subband

Page 56: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

0

0 0

0

0

0

1

1

1

1

1

11

1

1

1

Lowpass subband

Highpass subband

Tri Mesh Subdivision

Page 57: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

0

0 0

0

0

0

1

1

1

1

1

11

1

1

12 2

2

2

2

2

2

2

2

2

2

2

22

22

2

2

2 2

22

2

422

2

2

2

2 2

2

22

2

222

Lowpass subband

Highpass subband

Tri Mesh Subdivision

Page 58: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Hybrid Predictive-Transform Coding

β€’ Graph transform, uniform scalar quantization, entropy coding

β€’ Temporal prediction removes the temporal redundancy, creates motion vectors

β€’ Graph transform removes spatial correlation among the motion vectors

𝑇 π‘‡βˆ’1

Page 59: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Context-Adaptive Arithmetic Coding

β€’ Let 𝑛 = 0,1,2,3,4 be the subband index

β€’ If coefficient at node 𝑖 is in subband 𝒱𝑛, model it as Laplacian with parameter

πœ†π‘– = 𝛽𝑛,0 +

𝑗=1

π‘›βˆ’1

𝛽𝑛,π‘—βˆ‘π‘˜βˆˆπ’©π‘–βˆ©π’±π‘›βˆ’π‘—

π‘₯π‘˜

|𝒩𝑖 ∩ π’±π‘›βˆ’π‘—|

βˆ’1

depending on average of magnitudes |π‘₯π‘˜| of neighbors π‘˜ ∈ 𝒩𝑖 ∩ π’±π‘›βˆ’π‘— in previous subbands

β€’ Fit constants {𝛽𝑛,𝑗} to data

0

0 0

0

0

0

0

1

1

1

2

2

22

22

2

2

2

3 3

33

3 3

3

3

3

3

334 4

4

4

44

4

4 4

44

4

4

4

4

4

4

4

44

44

4

4

4 4

44

4

4

Page 60: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Rate-distortion Performance

Geometry Color

Page 61: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Application to Point Cloud Geometry and Color CompressionThanou, Chou, and Frossard, β€œGraph-based compression of dynamic 3D point cloud sequences,” TIP 2015Queiroz and Chou, β€œCompression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform,” TIP 2016Queiroz and Chou, β€œMotion-Compensated Compression of Dynamic Voxelized Point Clouds,” TIP 2016

Page 62: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Application to Point Cloud Geometry and Color CompressionThanou, Chou, and Frossard, β€œGraph-based compression of dynamic 3D point cloud sequences,” TIP 2015Queiroz and Chou, β€œCompression of 3D Point Clouds Using a Region-Adaptive Hierarchical Transform,” TIP 2016Queiroz and Chou, β€œMotion-Compensated Compression of Dynamic Voxelized Point Clouds,” TIP 2016

Page 63: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Octree Coding for (Static) Geometry

10010001

10010001 11001001 10010001

Page 64: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Octree Coding for Color?

221,136,255

255,153,255 255,102,255 153,153,255

Page 65: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Quantization, Entropy Coding, and Transmission

Haar Butterfly

𝑔3,0

β„Ž2,0𝑔2,0

𝑔3,1 𝑔3,2 𝑔3,3 𝑔3,4 𝑔3,5 𝑔3,6 𝑔3,7

β„Ž2,1𝑔2,1 β„Ž2,2

𝑔2,2 β„Ž2,3𝑔2,3

β„Ž1,0𝑔1,0 β„Ž1,1

𝑔1,1

β„Ž0,0𝑔0,0

1/√2

1/√21/√2 βˆ’1/√2

βˆ’1/√21/√21/√2

1/√2

1/√21/√2

1/√2βˆ’1/√2

β„Ž0,0ΰ·œπ‘”0,01/√2

βˆ’1/√21/√2

1/√2β„Ž1,0ΰ·œπ‘”1,0 β„Ž1,1ΰ·œπ‘”1,1

β„Ž2,0ΰ·œπ‘”2,0 β„Ž2,1ΰ·œπ‘”2,1 β„Ž2,2ΰ·œπ‘”2,2 β„Ž2,3ΰ·œπ‘”2,3

ΰ·œπ‘”3,0 ΰ·œπ‘”3,1 ΰ·œπ‘”3,2 ΰ·œπ‘”3,3 ΰ·œπ‘”3,4 ΰ·œπ‘”3,5 ΰ·œπ‘”3,6 ΰ·œπ‘”3,7

𝑔𝑙,π‘˜β„Žπ‘™,π‘˜

=

1

2

1

2βˆ’1

2

1

2

𝑔𝑙+1,2π‘˜π‘”π‘™+1,2π‘˜+1

ΰ·œπ‘”π‘™+1,2π‘˜ΰ·œπ‘”π‘™+1,2π‘˜+1

=

1

2

βˆ’1

21

2

1

2

ΰ·œπ‘”π‘™,π‘˜β„Žπ‘™,π‘˜

Tran

sfo

rmIn

vers

e

Tran

sfo

rm

Page 66: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Haar Tree

𝑔3,0

𝑔2,0

𝑔3,1 𝑔3,2 𝑔3,3 𝑔3,4 𝑔3,5 𝑔3,6 𝑔3,7

β„Ž2,0

β„Ž0,0

ΰ·œπ‘”3,0 ΰ·œπ‘”3,1 ΰ·œπ‘”3,2 ΰ·œπ‘”3,3 ΰ·œπ‘”3,4 ΰ·œπ‘”3,5 ΰ·œπ‘”3,6 ΰ·œπ‘”3,7

Quantization, Entropy Coding, and Transmission

𝑔𝑙,π‘˜β„Žπ‘™,π‘˜

=

1

2

1

2βˆ’1

2

1

2

𝑔𝑙+1,2π‘˜π‘”π‘™+1,2π‘˜+1

ΰ·œπ‘”π‘™+1,2π‘˜ΰ·œπ‘”π‘™+1,2π‘˜+1

=

1

2

βˆ’1

21

2

1

2

ΰ·œπ‘”π‘™,π‘˜β„Žπ‘™,π‘˜

Tran

sfo

rmIn

vers

e

Tran

sfo

rm

𝑔2,1 β„Ž2,1 𝑔2,2 β„Ž2,2 𝑔2,3 β„Ž2,3

𝑔1,0 β„Ž1,0 𝑔1,1 β„Ž1,1

𝑔0,0 β„Ž0,0

β„Ž1,0ΰ·œπ‘”1,0 β„Ž1,1ΰ·œπ‘”1,1

β„Ž2,0ΰ·œπ‘”2,0 β„Ž2,1ΰ·œπ‘”2,1β„Ž2,2ΰ·œπ‘”2,2 β„Ž2,3ΰ·œπ‘”2,3

ΰ·œπ‘”0,0

1/ 2 𝑔𝑙,π‘˜

β„Žπ‘™,π‘˜

(𝑔𝑙+1,2π‘˜, 𝑔𝑙+1,2π‘˜+1)

1/ 2βˆ’1/ 2

Page 67: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Region Adaptive Haar Transform (RAHT)

𝑔3,0

𝑔2,0

𝑔3,1 𝑔3,3 𝑔3,6

β„Ž2,0

β„Ž0,0

ΰ·œπ‘”3,0 ΰ·œπ‘”3,1 ΰ·œπ‘”3,3 ΰ·œπ‘”3,6

Quantization, Entropy Coding, and Transmission

𝑔𝑙,π‘˜β„Žπ‘™,π‘˜

=π‘Ž π‘βˆ’π‘ π‘Ž

𝑔𝑙+1,2π‘˜π‘”π‘™+1,2π‘˜+1

ΰ·œπ‘”π‘™+1,2π‘˜ΰ·œπ‘”π‘™+1,2π‘˜+1

=π‘Ž βˆ’π‘π‘ π‘Ž

ΰ·œπ‘”π‘™,π‘˜β„Žπ‘™,π‘˜

Tran

sfo

rmIn

vers

e

Tran

sfo

rm

𝑔2,1 𝑔2,3

𝑔1,0 β„Ž1,0 𝑔1,1

𝑔0,0 β„Ž0,0

β„Ž1,0ΰ·œπ‘”1,0 ΰ·œπ‘”1,1

β„Ž2,0ΰ·œπ‘”2,0 ΰ·œπ‘”2,1 ΰ·œπ‘”2,3

ΰ·œπ‘”0,0

π‘Ž =𝑀𝑙+1,2π‘˜

𝑀𝑙+1,2π‘˜ + 𝑀𝑙+1,2π‘˜+1

𝑀3,0 = 1 𝑀3,1 = 1 𝑀3,3 = 1 𝑀3,6 = 1

𝑀2,0 = 2

𝑀1,0 = 3

𝑀0,0 = 4

𝑀2,1 = 1 𝑀2,3 = 1

𝑀0,0 = 4

𝑀1,0 = 3

𝑀1,1 = 1

𝑀1,1 = 1

𝑀2,0 = 2 𝑀2,1 = 1 𝑀2,3 = 1

𝑀3,0 = 1 𝑀3,1 = 1 𝑀3,3 = 1 𝑀3,6 = 1𝑏 =

𝑀𝑙+1,2π‘˜+1𝑀𝑙+1,2π‘˜ + 𝑀𝑙+1,2π‘˜+1

π‘Ž2 + 𝑏2 = 1

π‘Ž

𝑏

βˆ’π‘ π‘Ž

(𝑔𝑙+1,2π‘˜, 𝑔𝑙+1,2π‘˜+1)

𝑔𝑙,π‘˜β„Žπ‘™,π‘˜

Scaled DC: 𝑀𝑙+1,2π‘˜ + 𝑀𝑙+1,2π‘˜+1 𝑔𝑙,π‘˜ = 𝑀𝑙+1,2π‘˜ 𝑔𝑙+1,2π‘˜ + 𝑀𝑙+1,2π‘˜+1 𝑔𝑙+1,2π‘˜+1

Page 68: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Tree specifies bi-partite graph

β€’ Tree is a ruleβ€’ At level 𝐿, how to connect and color nodes to form a bi-partite graph

β€’ At level 𝐿 βˆ’ 1, how to reconnect low-pass nodes into a bi-partite graph

β€’ Could be the way to generalize beyond 2-tap Haar using GSP

𝑔3,0

𝑔2,0

𝑔3,1 𝑔3,3 𝑔3,6

β„Ž2,0 𝑔2,1 𝑔2,3

𝑔1,0 β„Ž1,0 𝑔1,1

𝑔0,0 β„Ž0,0

Lowpass subband

Highpass subband

Page 69: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Feedforward Adaptive Arithmetic Coding

β€’ Each final transformed data with the same weight is grouped in the same subband

β€’ Typically we have about 1000 subbands

β€’ Each subband is encoded using Arithmetic codingβ€’ Probabilities according to Laplacian distribution

β€’ Both encoder and decoder have to agree on the standard deviation πœ†

β€’ For each subband 𝑛, we send πœ†π‘›β€’ πœ†π‘› are optimally quantized and encoded using Run-Length Golomb-

Rice

Page 70: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

RAHT Results (1)

Santa Octopus

Comparison to Huang, Peng, Kuo,and Gopi, β€œA generic scheme forprogressive point cloud coding,”IEEE Trans. Vis. Comput. Graph., 2008

Page 71: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Results RAHT (2) Comparison to Zhang, Florencio, and Loop, β€œPoint cloud attribute compression with graph transform,” ICIP 2014

Page 72: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Results RAHT (3)

Andrew Phil

Ricardo Sarah

Comparison to Zhang, Florencio, and Loop, β€œPoint cloud attribute compression with graph transform,” ICIP 2014

Page 73: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Compression of Dynamic Point Clouds

Dorina Thanou, Philip A. Chou, and Pascal Frossard, Graph-Based Motion Estimation and Compensation for Dynamic 3D Point Cloud Compression, IEEE Trans. Image Processing, Apr. 2016

Ricardo L. de Queiroz and Philip A. Chou, Motion-Compensated Compression of Dynamic Voxelized Point Clouds, IEEE Trans. Image Processing, submitted 2016

RAHT 2.6 bpv MCIC 2.6 bpv(Intra coded) (Block motion comp)

Sparse motion estimation;Dense (interpolated) motion compensation

Page 74: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Rough sense of overall bitrates

β€’ 2 Gbps: barely coded (holoportation demo) – 1 Mpixel color

β€’ 450 Mbps: Intra-frame only, octree for geometry, uncoded 8:1:1 YUV

β€’ 150 Mbps: Intra-frame only, octree for geometry, RAHT for YUV

β€’ 45 Mbps: Inter-frame, hybrid (real time)

β€’ 15 Mbps: poorly-coded mesh + H264-coded texture (siggraph paper, not real time)

β€’ 8 Mbps: well-coded mesh + H265-coded texture

β€’ 6 Mbps: well-coded mesh + periodic texture refresh

Page 75: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Future Issues

β€’ Better motion estimation and compensation for point clouds

β€’ Perceptually relevant distortion measures

β€’ Hybrid mesh / point cloud coding – best of both

β€’ Hybrid AR/VR coding – outside-in + inside-out

β€’ Scalable codingβ€’ Spatial as well as temporal random accessβ€’ Object scalability, spatial resolution scalability, signal resolution (SNR) scalability

β€’ Rate-distortion optimization

β€’ Error resilience

β€’ Rate control, buffer management

β€’ Streaming architectureβ€’ Low-end vs high-end devices and rendering location

Page 76: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

Conclusion

β€’ VR/AR are 3G immersive comm, 4G platform, to be ~$100 billion / year

β€’ VR is closer in deployment and technology (similar to video coding); AR is later but may subsume VR (will need new coding tools)

β€’ GSP provides an extension of classic tools necessary to process AR signals

β€’ AR coding analogous to video coding circa 1980: coding paradigm not commonly agreed upon. History of video coding gives us a roadmap for development of AR coding.

Page 77: Coding for Virtual and Augmented Reality - struga.orgstruga.org/Jakov/Misc/PacketVideo2016KeynotePhilChou.pdfCoding for Virtual and Augmented Reality Philip A. Chou, Microsoft Research

ThanksSpecial thanks go to my interns Ha Nguyen, Dorina Thanou, Amir Anis, and Eduardo Pavel Carvelli; visiting researcher Ricardo de Queiroz; colleagues Dinei Florencio, Cha Zhang, Charles Loop, Qin Cai, and the I3D group; and university collaborators Pascal Frossard, Antonio Ortega, Gene Cheung, and Minh Do.