CMOS,Current source, Differential Amplifier

21
EE2603-04 1 4. CMOS,Current source, Differential Amplifier (12.6 - 12.9 ) CMOS logic circuit Current Source circuits Differential Amplifier circuits

description

CMOS,Current source, Differential Amplifier - CMOS logic circuit- Current Source circuits- Differential Amplifier circuits

Transcript of CMOS,Current source, Differential Amplifier

Page 1: CMOS,Current source, Differential Amplifier

EE2603-04 1

4. CMOS,Current source, Differential Amplifier (12.6 - 12.9 )

•  CMOS logic circuit •  Current Source circuits •  Differential Amplifier circuits

Page 2: CMOS,Current source, Differential Amplifier

EE2603-04 2

nMOS and pMOS ID

VGS01234567

62 4

ID

VDS0Vt=2V

VGS= 6V

VGS= 4VVGS= 2V

VGS= 8V

VDS

VGS

ID

IG=0

IDON , VGSON ,Vt

VGSON

IDON

nMOS characteristics

ID ID

VDS

VGS= -6V

VGS= -4VVGS= -2V

VGS= -8V

VDS

-VGS

-ID

IG=0

IDON , VGSON ,Vt01234567

6 24 0

IDON

Vt=-2V-VGSON

-VGS

pMOS characteristics

nMOS will conduct when VGS > 0

pMOS will conduct when VGS < 0

Page 3: CMOS,Current source, Differential Amplifier

nMOS and pMOS, how they works

nMOS will conduct or Qn (on) when VGS > 0 (high)

pMOS will open or Qp (off) when VGS ≥ 0 (zero or positive)

nMOS will open or Qn (off) when VGS ≤ 0 (zero or negative)

pMOS will conduct or Qp (on) when VGS ‹ 0 (negative)

5V

0

-5V

QP

Qn (on)

(off)VGS > 0

V

G

G

S

VGS=+5V

0V

S

D

D

S

D

(off)QP

S

D

Qn (on)

+5

0

0

5V

+5

0

QP

Qn (on)

(off)VGS=0

V

G

G

S

VGS=+5V

5V

S

D

D

0V

+5

0

QP

Qn(off)

(on)VGS=-

5V

G

G

S

VGS=0V

0V

D

D

S

S

D

(off)QnS

D

Qp(on)

+5

+5-5V

0V

5V

QP

Qn

VGS=-5V

G

G

S

VGS ≤ 0V

0V

D

D

S

(on)

(off)

Page 4: CMOS,Current source, Differential Amplifier

When input Vin = 5V, Vo = 0V

CMOS inverter, how it works

inverter

A 0V 5V

Q=A 5V 0V

When input Vin = 0V, Vo = 5V

Vo

+5

0

=5VQP

Qn(off)

(on)

Vin=0V Vo

+5

0

=5VQP

Qn(off)

(on)VGS

=-5V

VGS=-5

V

0VGS=0V

G

G

S

SVGS=0V

G

G

S

S

Vo

+5

0

=0VQP

Qn (on)

(off)

Vin=5V Vo

+5

0

=0VQP

Qn (on)

(off)VGS

=0V

5G

G

S

SVGS=+5V

G

G

S

S

VGS=0V

VGS=+5V

Vin VoVGS(QP) VGS(Qn)Qp QnLogic(in)

Logic(out)

5VHi 0V off5V on 0V Lo

0VLo -5V on0V off 5V Hi

Page 5: CMOS,Current source, Differential Amplifier

When Control terminal is High TG becomes inactive making

Output Disconnected or high impedance whatever the input is

CMOS Transmission Gate Logic (Active low control)

C Input OutputC

Lo (0V) X

Hi (5V)

Hi (5V)

Lo (0V)

Lo (0V)

High impd

Hi (5V)Lo (0V)Lo (0V)

Hi (5V)

Hi (5V)

C

TG

C

C

Input Output

G

S D

G

S D

Qn

Qp VDD

Input

C

C (Control) Output

TG

C=5V(Hi)

C=0V(Lo)

Input OutputFloating(high Impedance)

TG

C=0V(Lo)

C=5V(Hi)

Input Output

When Control terminal is Low TG becomes active making

Output connected to the input whatever the input is

Page 6: CMOS,Current source, Differential Amplifier

G

S D

G

S D

Qn

QpC (Control) OutputInput

C=5V Input=0V(Lo)Input=5V(Hi)

High Impedance (Floating)

How the Output of TG is always High Impedance (Floating) if Control “C” is 5V(Hi)

5V

C=0V

Qp gate is always positive

C=5V

Therefore Qp is always open

Qp(off)

Qn(off)

Qn gate is always zero voltTherefore Qn is always open

C=0V

G

S

G

S

CMOS Transmission Gate,(Active low control gate) how it works

When Control input terminal is High and whatever the Input voltage is When Control C = 5V (Hi) Qp Gate is +5V (positive) so whatever the Source voltage is, VGS of Qp will be positve or zero and therefore Qp will be always open (off) When Control C = 5V (Hi) Qn Gate is 0V(zero) so whatever the Source voltage is, VGS of Qn will be negative or zero so Qn will be always open (off) Therefore as both Qpand Qn are open, output terminal is High Impedance or Floating and the Input is not transmitted through the TG gate to the Output

C=G(Qn) Input=S OutputC=G(Qp)

Lo (0V) XHi (5V) High impd

VGS(Qp)

VGS ≥ 0Qp

off

Qn

off

VGS(Qn)

VGS ≤ 0

Page 7: CMOS,Current source, Differential Amplifier

When Control terminal is Low and Input voltage is High When Control C = 0V (Lo) Qp Gate is 0V(zero) so when the input (Source voltage) is 5V (Hi), VGS of Qp will be -5V making Qp to conduct (on) When Control C = 0V (Lo) Qn Gate is 5V so when the input (Source voltage) is 5V (Hi), VGS of Qn will be zero making Qn to be open (off) Therefore Input 5V(Hi) is transmitted through conducting Qp to the Output

G

S D

G

S D

Qnopen

QpconductC (Control) Output

Therefore Qp is conductingInput

C=0V Input=5V(Hi)

How the Input 5V (Hi) is transmitted to the Output through Qp if Control “C” is 0V(Lo)

0V

C=5V

Output=5V(Hi)

VGS of Qp gate is negative

C=0V Qp(on)

Qn(off)

VGS of Qn gate is 0 voltTherefore Qn off

G

G

S=5V

C=5V

S=5V

C=G(Qn) Input=S OutputC=G(Qp)

Hi (5V)Lo (0V) Hi (5V)Hi (5V)

VGS(Qp)

VGS = -5VQp Qn

on off

VGS(Qn)VGS = 0V

Page 8: CMOS,Current source, Differential Amplifier

When Control terminal is Low and Input voltage is Low When Control C = 0V (Lo) Qp Gate is 0V(zero) so when the input (Source voltage) is 0V (Lo), VGS of Qp will be 0V making Qp to “off” When Control C = 0V (Lo) Qn Gate is 5V so when the input (Source voltage) is 0V (Lo), VGS of Qn will be 5V making Qn to “on” Therefore Input 0V(Lo) is transmitted through conducting Qn to the Output

G

S D

G

S

Qp(off)

Qn(on)C (Control) OutputInputC=0V Input=0V(Lo)

0V

C=5V

DOutput=0V(Lo)

How Input=0V(Lo) is transmitted to the Output through Qn if Control “C” is 0V(Lo)

VGS of Qp gate is zero

C=0V

Therefore Qp is off

Qp(off)

Qn(on)

VGS of Qn gate is 5 voltTherefore Qn is on

G

G

S=0V

C=5V

S=0V

C=G(Qn) Input=S OutputC=G(Qp) VGS(Qp) Qp QnVGS(Qn)

Lo (0V) Lo (0V)Lo (0V) Hi (5V) onoff VGS = 5VVGS = 0V

Page 9: CMOS,Current source, Differential Amplifier

EE2603-04 9

Current Source circuits

0W

1000W

1V1mA

1V/1000W=1mA1V/1001W=1mA

1V/1010W=1mA

1W

1mA

10W

1mA1mA

10W

1mA

1W

1mA1mA

0W

Current source of 1mA

VGS=0

ID=IDSS

IDSS

Current source of IDSS

Page 10: CMOS,Current source, Differential Amplifier

EE2603-04 10

BJT Current source

BJT-Zener Current source

other circuits using IC

IB

IE

IC

RE

-VEE

0.7

other circuits using IC

IB

IE

IC

RE+VCC

0.7R2R1R2R1

++

+ -

--+-

++-

-

+

-

-

+

-VEE

IC IC

⎥⎦

⎤⎢⎣

⎡−

+

×=∴

+=

+

×=×=

+=

+

−−=

7.0RRRV

R1I

RI7.0VRRRV

RIV

RRV

RR)V(0

I

21

2EE

EC

EC2R

21

2EE22R2R

21

EE

21

EE2R

[ ]7.0VR1I

RI7.0V

ZE

C

ECZ

−=∴

+=

other circuits using IC

IB

IE

IC

RE

-VEE

0.7

other circuits using IC

IB

IE

IC

RE+VCC

0.7R1VZR1

++

+ -

--+-

++-

-

-

+

-VEE

IC IC + +

-VZ

Page 11: CMOS,Current source, Differential Amplifier

EE2603-04 11

BJT Mirror Current sources

other circuits using IC

IC

0.7+

-

IX

RX

+-0.7

VCC

2IC/bIC

[ ]

X

BECCX

CCC

CXBEC

B

RVV

I

II2I2II7.0V

II

−=

≈β

+β=

β+=⇒=

β=

[ ]

X

BECCX

CCC

CXBEC

B

RVV

I

II3I3

II7.0VI

I

−=

≈β

+β=

β+=⇒=

β=

IC for circuit 1 and 2

IC1

0.7+

-

IX

RX

+-

0.7

VCC

3IC/b

IC2IC1

IC2

0.7+

-

Page 12: CMOS,Current source, Differential Amplifier

EE2603-04 12

other circuits using ICIC

0.7+

-

IX

RX

+-0.7

VCC

IC/b

IC

[ ]

X

BECCX

CCC

CXBEC

B

RVV

I

II1I

II7.0VI

I

−=

≈β

+β=

β+=⇒=

β=

other circuits using IC

IC

0.7+

-

IDSSVGS=0

+-0.7

+V

IC2IC/bIC

[ ]

CCC

CDSS

CBE

II2I2IIbut

equalareIboth7.0V

≈β

+β=

β+=

⇒=

Page 13: CMOS,Current source, Differential Amplifier

EE2603-04 13

Differential Amplifier circuits •  In differential amplifier, there are two inputs Vi1 and Vi2 and there are three outputs (1) at Vo1, (2) at Vo2, and (3) across between Vo1 and Vo2

•  Dual supply +VCC and –VEE are used so that Vi1 and Vi2 can be connected to the BJT directly without coupling capacitor

•  IC1 + IC2 = 2Ic flows through RE then VRE = 2Icx RE

Vi1

RC

-VEE

+VCC

Vo1 Vo2

RC

RE

Vi2

Q1 Q2

AC

AC

VE = -0.7V

VB = 0V dc

+ -

( ) ( )

Ce

E

EEC

EEEEREEC

ImV26r

R27.0V

I

7.0VV7.0VRI2

=⇒−

=∴

−=−−−==×

CCCC2C1C RIVVV −==

DC analysis

Page 14: CMOS,Current source, Differential Amplifier

EE2603-04 14

Example

In differential amplifier shown, find (1) VB1= VB2 (2) VE1= VE2 (3) IC1 = IC2 and (4) VC1= VC2

VB = 0V dc

VE = -0.7V

Vi1

-9V

+9V

Vo1 Vo2

RC

3.3kWVi2

Q1 Q2AC

AC

3.9kW

+ -

VC

IC

( ) ( )

mA26.1k3.327.09

R27.0V

I

7.0VV7.0VRI2

E

EEC

EEEEEEC

−=

−=∴

−=−−−==×

V1.4k9.3mA26.19RIVV CCCCC =×−=−=

V7.0V,V0V EB −==

Page 15: CMOS,Current source, Differential Amplifier

EE2603-04 15

AC analysis

Vi

Vo

RC

Q1 Q2

AC

RE

RC

AC ground

Vi

VoRC

Vi

AC

RE>>bre

RC

bre

ib

bib bre

then ib2=ib

bib+

++-

-

- IE<<ib2

Vo = -bibRC

AC equivalent circuit

Vi1=Vi

-VEE

+VCC

Vo

RC

Vi2=0

Q1 Q2

AC

RC

RE

Circuit

1. Single-ended input and single output

( ) ( )

e

C

e

Cv

i

o

e

iCCbo

e

ibebebebi

EeE

r2R

r2R

AVV

r2VRRiV

r2Viri2ririVthen

openRtakerRLet

−=β

β−==⇒

β×β−=β−=

β=⇒β×=β×+β×=

⇒β>>

For Single-ended input and single output

Page 16: CMOS,Current source, Differential Amplifier

EE2603-04 16

Vi1

Vo

RC

Q1 Q2

AC

RE

RC

ACVi2

AC ground

Vi1

VoRC

Vi2

AC

RE>>bre

RC

bre

ib

bib brebib+

+ +-

-

- IE<<ib2

Vo = -bibRC

AC+-

AC equivalent circuit

( ) ( )

i

C

e

C

e

Cd

d

o

2i1i

o

e

2i1iCCbo

e

2i1ibeb2i1i

ebeb2i1i

EeE

r2R

r2R

r2R

AVV

VVV

r2VVRRiV

r2VViri2VV

0ririVVgiveslooptheofKVLthenopenRtakerRLet

β−=−=

β

β−===

−⇒

β

−×β−=β−=

β

−=⇒β×=−

=β×−β×−−

⇒β>>

For Differential input and single output

Vi1

-VEE

+VCC

Vo

RC

Vi2

Q1 Q2

AC

RC

RE

Vd=Vi1-Vi2

AC

Circuit

2. Differential-mode input and single output

Page 17: CMOS,Current source, Differential Amplifier

EE2603-04 17

Vi

-VEE

+VCC

Vo

RC

Q1 Q2

AC

RC

RE

Circuit

3. Common-mode input and single output

Vo

RC

Q1 Q2

RE

RC

Vi

AC

AC ground

Vi

VoRC

AC

RC

bre

ib

bib brebib+

+- -

-

Vo = -bibRC

+

RE

ib

2(b+1)ib

ib ib

AC equivalent circuit

( ) ( )( ) ( ) ( )

( ) ( )

E

C

E

Cv

i

o

E

iCCbo

E

i

Ee

ib

EebEbebi

R2R

R2R

AVV

R2VRRiV

R2V

R2rVi

R2riRi12riV

−=β

β−==⇒

β×β−=β−=

β=

+β=⇒

+β=×+β+β×=

For Common input and single output

Page 18: CMOS,Current source, Differential Amplifier

EE2603-04 18

Example

In differential amplifier shown, find Vo when (1) Vi1= 1mV and Vi2= 0 (2) Vi1= 1mV and Vi2= -1mV (3) Vi1= 1mV and Vi2= 1mV

Vi1

-9V

+9V

Vo

Vi2

Q1 Q2

AC

3.9kW

AC

3.9kW

3.3kW

( ) ( )

Ω==⇒=×

−=

−=∴

−=−−−==×

63.20mA26.1mV26rmA26.1

k3.327.09

R27.0V

I

7.0VV7.0VRI2

eE

EEC

EEEEEEC

DC analysis

1. Vi1= 1mV and Vi2= 0 = Single-ended input and single output

mV52.94mV152.94V52.9463.202

3900r2R

mV1V

VV

oe

Co

i

o −=×−=⇒−=×

−=

−==

2. Vi1= 1mV and Vi2= -1mV = Differential-mode input and single output

mV189mV252.94V52.9463.202

3900r2R

)mV1(mV1V

VVV

oe

Co

2i1i

o −=×−=⇒−=×

−=

−=

−−=

3. Vi1= 1mV and Vi2= 1mV = Common-mode input and single output mV59.0mV159.0V59.0

330023900

R2R

mV1V

VV

oE

Co

i

o −=×−⇒−=×

−=

−==

Page 19: CMOS,Current source, Differential Amplifier

EE2603-04 19

4. Use of Constant Current Source

Vi1

-VEE

+VCC

Vo

RC

Vi2

Q1 Q2

AC

RC

RE

AC

ICIC

I=2ICVi1

-VEE

+VCC

Vo

RC

Vi2

Q1 Q2

AC

RC

AC

I=2IC ro

ICIC

IE

RE

-VEE

0.7R2R1

+ -

--+

-

Vi1

+VCC

Vo

RC

Vi2

Q1 Q2AC

RCAC

I=2IC

++

ICIC

•  Use of current source in-place-of RE is to get I=2IC and creating a very high resistance (equivalent current source resistance) at the emitter circuit •  If RE is very high common-mode gain becomes very low (see common-mode gain equation) •  For the same Differential gain, low common-mode gain makes Common Mode Rejection Ratio (CMRR) very high. •  Good Differential amplifier has a very high CMRR. Thus if an equivalent constant current source is used in Differential amplifier, it becomes better as CMRR is high.

⎥⎦

⎤⎢⎣

⎡−

+

×=∴

+=

+

×=×=

+=

+

−−=

7.0RRRV

R1I

IR7.0VRRRV

RIV

RRV

RR)V(0

I

21

2EE

E

E2R

21

2EE22R2R

21

EE

21

EE2R

Page 20: CMOS,Current source, Differential Amplifier

EE2603-04 20

IE

5.1kW

-9

0.7

+ -

--+

-

Vi1

+9

Vo

Vi2

Q1 Q2AC

10kW

AC

I=2IC

++

ICIC

10kW

b1=b2=b=75

b3=75ro=200kW

8.2kW1kW

Example

In differential amplifier shown, find (1) I= 2IC (2) re1= re2= re (3) Common-mode gain Ac , (4) Differential-mode gain Ad , and (5) CMRR

3. Common-mode input and single output

025.0k2002

k10r2R

R2R

VVA

o

C

E

C

i

oC −=

×

−=

−=

−==

mA44.11.57.08Ik1.5I7.0IR7.08V

V8k2.8mA98.0RIVmA98.0k2.9

9k2.8k1)9(0I

E2R

22R2R2R

=−

=⇒∴×+=+==

=×=×=⇒==+

−−=

1. Value of I (=2IC)

Ω=×=β=

Ω====⇒==−

=

k72.222.3675rr

22.36mA72.0mV26rrrmA72.0

2mA44.1

1.57.08I

ei

e2e1eC

2. Value of re

4. Differential-mode input and single output

13822.362

000,10r2R

AVV

Ve

Cd

2i1i

o −=×

−=

−==

5521025.0138

AA

CMRRc

d =−

−==

5. CMRR

Page 21: CMOS,Current source, Differential Amplifier

EE2603-04 21

Vi1

-V

+V

Vo

Vi2

AC

RD

AC

Vi1

-V

+V

Vo

Vi2

AC

AC

Vi1

Vo

Vi2

AC

AC

+V

+V +V

5. FET Differential amplifier circuits

BiFET Differential amplifier BiMOS Differential amplifier

CMOS Differential amplifier