CMOS Analog Circuitshome.iitk.ac.in/~baquer/L14_diff_amp_2.pdf · 2018. 7. 24. · CMOS Analog...

53
CMOS Analog Circuits L14: Differential Amplifier-2 (30.9.13) (30.9.13) B Mazhari G-Number B. Mazhari, IITK 42 B. Mazhari Dept. of EE, IIT Kanpur

Transcript of CMOS Analog Circuitshome.iitk.ac.in/~baquer/L14_diff_amp_2.pdf · 2018. 7. 24. · CMOS Analog...

  • CMOS Analog Circuits

    L14: Differential Amplifier-2(30.9.13)(30.9.13)

    B Mazhari

    G-NumberB. Mazhari, IITK42

    B. MazhariDept. of EE, IIT Kanpur

  • Input Common Mode Range (ICMR)

    Since differential pairs are often used as the input stage of multi-stageamplifiers, output voltage swing is not as important. What is instead veryimportant is the positive and negative input common mode range voltagep p g p g g(ICMR).

    VDDVDD

    M3 M4M3 M4

    VO

    Vi12.5V+vsig

    5V

    M2M1 Vi2Vi1

    2.5V

    VBias M5

    ISS

    G-NumberB. Mazhari, IITK43

    VSS

  • 3 3V

    V

    +3.3V3V

    -3V

    3V

    VO

    VS-3.3V3V

    -3V

    -3VLarge ICMR is required here

    100k

    +3.3V1k

    VO

    3V

    -3VVS

    ~0

    G-NumberB. Mazhari, IITK44

    -3.3V

    ICMR is not important here

  • G-NumberB. Mazhari, IITK45

  • V

    ICMR+

    VDD

    10/110/1

    VDD

    M3 M4

    VO2.21V2.21V

    M3 M4

    VO2.21V2.21V

    M2M1

    VO

    Vic Vic0V 0V M2M1Vic Vic

    1V 1V-0.54V

    ISS

    21

    V

    ic ic

    10/110/1

    20µA

    -1.37V ISSM5VBias

    VSS

    M5VBias10/1

    -2.41µ

    VSS

    A Vi i i d f h llSS As Vic is increased further, eventuallythe drain-source voltage of m1 and m2will fall below saturation voltage and

    G-NumberB. Mazhari, IITK46

    these transistors will enter linear modeof operation.

  • V

    ICMR+

    VDD

    1 3D DD SGV V V

    M3 M4

    VO 1 1 1DS D SV V V

    M2M1Vic Vic

    1 1 1

    3 1

    DS D S

    DD SG GS ICV V V V

    ISSM5VBias

    1 1DS SatV V

    VSS1 1S GS icV V V

    3 1 1ic DD SG GS satV V V V V

    3 1 1DD SG GS satICMR V V V V

    3

    SSDD TN TP

    IICMR V V V

    G-NumberB. Mazhari, IITK47

    3

    ICMR+ close to VDD or even larger can be obtained

  • Summary

    VDDVDD

    VO(dc)VSG3

    Vsat1M3 M4

    ICMR+M2M1

    VO

    Vic Vic-VGS1

    ISS

    M2

    M

    M1

    V

    Vic Vic

    VSS

    M5VBias3 1 1DD SG sat GSICMR V V V V

    G-NumberB. Mazhari, IITK48

  • Example VDD

    10/1 10/1

    M3 M4

    VO

    10/1

    SSDD TN TP

    IICMR V V V

    M1Vic VicM210/110/1

    3

    3.3 1.89 0.86 0.23 4.1V

    M5

    10/1

    10/1

    -2.408V

    20A10/1

    VSS

    10/1

    G-NumberB. Mazhari, IITK49

  • Building Differential amplifiers with higher differential mode gain

    3.3V

    Vbias2

    3.3V

    (W/L)P

    VDD= 3.3VRD M3

    Vbi 2

    Vbias3

    vO

    M2

    (W/L)N-3.3V

    VO

    v

    VBias1 vO

    M2

    Vbias2

    VBias1

    vS Vbias1

    -3.3V

    M13.3Vvin

    -3.3V

    M1vS

    VDD VDD VDD

    M3 M4M3 M4

    VORD RD

    VO1 VO2

    3 4

    M6 M7VO

    ISS

    M2

    M5

    M1

    VBias

    Vi1 Vi2M1

    ISS

    Vi1 M2

    M3

    Vi2

    VBiasISS

    M2

    M5

    M1

    VBias

    Vi1 Vi2

    G-NumberB. Mazhari, IITK50

    VSS

    5

    VSS

    3

    VSS

    5

  • Differential Amplifier with Cascode Current mirror load

    VDD

    M MVDD

    M3 M4

    M6 M7

    VSG3

    VSG6

    M2M1Vi1 Vi2

    6 7VO VO(dc)Vsat1

    VSG6

    ISSM5VBias

    ICMR+

    -VVSS

    -VGS1

    1 2 7 7 4 1 2dm m o o m o m oA g r r g r g r

    1 1g g

    A higher differential mode gain isobtained at the expense of a reducedcommon mode range

    G-NumberB. Mazhari, IITK51

    3 6

    1 5

    1 11 2

    m mcm

    m o

    g gAg r

    common mode range

  • VDDVDD

    M3 M4VDD

    M7V

    M6

    VSG3

    VSG6VO

    MV VM

    M8 M9VBias1 VBias1VO(dc)

    SG6

    Vsat1

    Vsat8

    ISS

    M1Vi1 Vi2M2ICMR+

    -VGS1M5

    VSS

    VBiasGS1

    How do we use a cascode loadi h d i i dSS without reducing input common mode

    range?

    G-NumberB. Mazhari, IITK52

    Folded Cascode ?

  • V

    ICMR-

    VDD

    10/110/1

    VDD=3.3V

    M3 M4

    VO2.21V2.21V

    M3 M4

    VO2.21V2.21V

    M2M1

    VO

    Vic Vic0V 0V M2M1Vic Vic

    -1V -1V-2.18V

    ISS

    21

    V

    ic ic

    10/110/1

    20µA

    -1.37V ISSM5VBias

    VSS

    M5VBias10/1

    -2.41µ

    VSS=-3.3V

    A V i d d f h llSS As Vic is decreased further, eventuallythe drain-source voltage of m5 will fallbelow saturation voltage and the

    G-NumberB. Mazhari, IITK53

    transistor will enter linear mode ofoperation.

  • ICMR-

    VDD DD

    M MM3 M4

    VO 5 5 5DS D SV V VV V V

    I

    M2M1Vic Vic1GS IC SSV V V

    ISSM5VBias 5 5DS Sat

    V V

    VSS

    1 5 1S D GS icV V V V 1 5ic GS SS satV V V V

    1 5SS GS satICMR V V V

    1 5

    2SS SSSS TN

    I IICMR V V

    G-NumberB. Mazhari, IITK54

    1 5

    ICMR- is poor in NMOS differential pair

  • VDD

    Summary

    -V

    VDD

    M M -VGSQ1

    ICMR-M3 M4

    VO

    Vsat5

    V

    M2M1Vic Vic

    VSSISSM5VBias

    ICMR V V VVSS 5 1SS sat GS

    ICMR V V V

    G-NumberB. Mazhari, IITK55

  • Example VDD

    10/1 10/1

    M3 M4

    VO

    10/1

    M1Vic VicM210/110/1

    M5

    10/1

    10/1

    -2.408V

    20A10/1

    1 5

    2SS SSSS TN

    I IICMR V V

    VSS

    10/13.3 0.74 0.145 0.205 2.21V

    G-NumberB. Mazhari, IITK56

  • VDD

    -VGSQ1

    M3 M4

    VO

    ICMR-

    M2M1

    O

    Vic VicVBias1-VGS5

    Vsat5

    Vsat6ISS

    VBias1 M5

    sat6

    VSS

    V ICMR V V V

    VSS

    VBias2 M61 5 1 5

    1 5 1 5( )GS sat Bias GS

    Bias GS GS sat

    V ICMR V V V

    ICMR V V V V

    VSS

    To maximize ICMR-, we should choose VBias1-VGS5 = VSS +Vsat6Bias1 GS5 SS sat6

    6 5 1SS sat sat GSICMR V V V V

    G-NumberB. Mazhari, IITK57

    We thus see that a higher CMRR is obtained at the expense of reduced ICMR-

  • V

    PMOS Differential Pair

    VDD

    M5VBiasI

    1 5

    2SS SSDD TP

    I IICMR V V

    M MV V

    ISS 3.3 0.86 0.23 0.32 1.89V

    SSIICMR V V VM1 M2Vi1 Vi2

    VO2VO13

    3.3 0.7 0.145 0.86 3.3

    SSSS TN TP

    IICMR V V V

    V

    M3 M4

    VSS

    G-NumberB. Mazhari, IITK58

  • VDD VDD

    M5VBiasM3 M4

    VO

    5Bias

    ISS

    M2M1Vic VicM1 M2Vi1 Vi2

    VO2VO1ISS

    M5VBias M3 M4

    VO2VO1

    VSS

    I

    VSS

    2I I

    3

    : GoodSSDD TN TPIICMR V V V

    1 5

    2 : PoorSS SSDD TPI IICMR V V

    1 5

    2 : PoorSS SSSS TNI IICMR V V

    3

    : GoodSSSS TN TPIICMR V V V

    G-NumberB. Mazhari, IITK59

    Can we combine both of them in some way to obtain a wide-swing differentialpair

  • Output Swing

    VVDD

    M MM3 M4

    VOV(7)V(1)

    ISS

    M1 M2vid

    SS

    VSS

    M5VBias

    SS

    1 2id GS GSv V V

    As vid is increased, VGS1increases and VGS2 decreases

    Good positive swing

    G-NumberB. Mazhari, IITK60

    1 2DS DSI I 3 4SD SDI I

  • Output Swing

    VVDD

    M MM3 M4

    VOV(7)V(1)

    ISS

    M1 M2vid

    SS

    VSS

    M5VBias

    SS

    1 2id GS GSv V V Poor negative swing

    As vid is decreased, VGS1decreases and VGS2 increases

    Poor negative swing

    G-NumberB. Mazhari, IITK61

    1 2 ?DS DSI I 3 4 ?SD SDI I2

    2 2 2{( ) 0.5 )}DS GS T DS DSI V V V V

  • VDD

    M3 M4

    VO

    I

    M1 M2id

    ISS

    V

    M5VBias

    VSSVDD

    RD RDVO2VO1

    IDS1 IDS2

    M2

    ISS

    M1

    VIN

    DS1 DS2

    G-NumberB. Mazhari, IITK62

    VSS= -3.3V

    RSS

  • VDD Output Swing

    M3 M4

    VO

    I

    M1

    VO

    M2vid

    ISS

    VSS

    M5VBias

    VDD

    M5VBiasISS

    M1 M2Vi1 Vi2

    VO2VO1

    G-NumberB. Mazhari, IITK63

    M3 M4

    VSS

  • Frequency Response

    4 4 2 2Total db gd db gdC C C C C VDD

    M4M3Cdb4

    C1f

    VOC d2

    Cgd4 34 4 2 22 ( )

    dBO db gd db gd

    fR C C C C

    vi1M2M1

    vi2Cdb2Cgd2

    1 2 4dm m o oA g r r

    13

    mdm dB

    gUGF A f VBiasISS

    M 3 2dm dB totalf

    CVSS

    M5

    G-NumberB. Mazhari, IITK64

  • Example

    V

    2 2.7gdC fF 2 5dbC fFVDD

    M M10/1 10/1

    4 2.4gdC fF 4 4.3dbC fFM3 M4

    VO

    4 4 2 2 14.4Total db gd db gdC C C C C fF M1 M2

    10/110/1

    Vi2Vi1

    1.28OR M M5

    10/1

    -2.408V

    20A

    31 8.5

    2 ( )dBf MHz

    R C C C C

    VSS

    4 4 2 22 ( )O db gd db gdR C C C C

    1g

    G-NumberB. Mazhari, IITK65

    1 1.52

    m

    total

    gUGF GHzC

  • VDD

    M4M3Cdb4

    VO

    VO

    Cdb4

    C 2

    Cgd4 ROIN=gm1 vid CTotal

    vi1M2M1

    I

    vi2Cdb2Cgd2

    VBiasISS

    M5VO

    RO

    VSS5

    I f N ’ i l

    CTotalAdmvid

    In terms of Norton’s equivalent,the differential amplifier can beexpressed using an RC

    G-NumberB. Mazhari, IITK66

    equivalent circuit

  • VORO

    VO

    CTotalAdmviddm id

    This equivalent circuit showsthat the transient response ispdetermined by time constantRoCTotal

    If input voltage is largeIf input voltage is large,then output voltage varieslinearly rather than

    ti ll

    G-NumberB. Mazhari, IITK67

    exponentially

  • VDD

    10/1 10/1

    M3 M4VO

    CL=1pF

    M1 M2

    20A10/1 10/1

    vid

    VSS

    M510/1

    -2.408V

    G-NumberB. Mazhari, IITK68

  • VDD

    10/1 10/120µA

    M3 M410/1 10/1

    VOCL=1pF20µA 0µA

    M1 M210/1 10/1

    +200mV0µA

    M510/1

    20A

    -2.408V

    vid

    VSS

    O SS

    L

    dV Idt C

    M3 M410/1 10/1

    V

    VDD 0µA

    M M

    VOCL=1pF

    200 V0µA 20µA

    M

    M1 M2

    20A10/1 10/1

    vid

    -200mV

    O SSdV I

    G-NumberB. Mazhari, IITK69VSS

    M510/1

    -2.408V O SS

    L

    dV Idt C

  • Noise

    10 noise currents have to beM3 M4

    VO

    10 noise currents have to beconsidered, 2 from each transistor, onethermal and the other flicker

    M1M2

    There are three noise calculations that

    M

    need to be done since noise analysis isidentical for M1, M2 and M3, M4

    M5

    G-NumberB. Mazhari, IITK70

  • M3 M4 5 1 2,i i i

    M

    INiN1-i1 i2

    iN1-i1

    211 iiiN M1 M2iN1

    211N

    121 5.0 Niii

    ro5

    i1 i2i5

    121 5.0 Niii

    1NN iI ro5 1NN

    2 4i R kT R1 1 143ON N O m Ov i R kTg R

    G-NumberB. Mazhari, IITK71

  • Consider next the noise contribution due to noise current of transistor M3:

    M MiN3 M3 M4IN

    i

    iN3

    i

    iN3- i1 iN3- i13nN iI

    M1M2

    i2i1

    i2i5

    i1

    ro5

    5

    2 4i R kT R

    G-NumberB. Mazhari, IITK72

    3 3 343ON N O m Ov i R kTg R

  • M3 M421 iiIN

    M M2

    INi1

    i1i2 i1 ~i2 and so IN ~0.

    M1 2

    i1 i2

    ro5 iN5

    i5

    N i ib i d i i d i h M5 li ibl ThiNoise contribution due to noise currents associated with M5 are negligible. Thisis understandable since the noise currents constitute common mode signals

    G-NumberB. Mazhari, IITK73

  • Noise1

    1 1 11 1

    2 2 443 3

    tt m t

    m m

    i kTi kT g eg g

    M M

    1 13 3m mg g

    22 43t

    kTe M3 M4

    VO lf Fi k

    213

    tmg

    M1M2 l 2

    1 1 1

    f Ff f AFm ox

    e eg f C W L

    3 32 2i g

    M5

    3 33 3 3 21 1

    2 24 43 3

    t mt m t

    m m

    i gi kT g e kTg g

    5

    4 34 21 1

    2 43

    t mt

    m m

    i ge kTg g

    23 33 4 21 3 3 1

    f F mf f AFm

    i k ge eg f C W L g

    2 2 2 21 3 32( )ntotal t t fl fe e e e e

    G-NumberB. Mazhari, IITK74

    1 3 3 1m ox mg f C W L g

  • Noise

    M3 M4

    VOM1

    M2

    VO

    M5

    342 (1 ) (1 )3

    m F Pntotal AF

    kT g k KPeg g f C W L KP

    1 1 13 m m ox Ng g f C W L KP

    Make the size of NMOS transistors M1 and M2 large to reduce Noise

    G-NumberB. Mazhari, IITK75

    Make the size of NMOS transistors M1 and M2 large to reduce Noise

  • Example VDD

    M3 M410/1 10/1 91.8 / @1ntotale nV Hz kHz

    M1

    3 4

    VO

    M2 Vi2Vi1 16.54 / @1ntotale nV Hz MHz

    V

    M5

    10/1

    10/1

    -2.408V

    20A10/1

    @ntotal

    VSS

    G-NumberB. Mazhari, IITK76

  • Power Supply Rejection Ratio

    M3 M4vdd M3

    vddM3 M4

    VO VO

    M1 M2 M1

    2ro5

    M5

    o5

    dmAPSRR 1 1 52 11 2

    o o m o

    dd

    v r g rv r g r

    o

    dd

    vv

    1 1 53

    2o m om

    r g rg

    G-NumberB. Mazhari, IITK77

    dmPSRR A

  • M3 M4

    M3 M4

    VO

    3 4

    VO

    M1 M2

    M1 M2

    r

    M5

    gm5vss ro5

    vssM3

    V

    dm

    o

    APSRR v

    M1

    VO

    53

    10.5o mv gv g

    o

    ssv2ro50.5gm5vss

    3ss mv g

    G-NumberB. Mazhari, IITK78

  • Mismatch

    G-NumberB. Mazhari, IITK79

  • 80

    100

    60

    80

    Cou

    nt

    20

    40C

    G-NumberB. Mazhari, IITK80

    -0.010 -0.005 0.000 0.005 0.0100

    VTN (V)

  • 80

    1002

    2 2 2( ) VTT VTAV S D

    W L

    20

    40

    60

    Cou

    nt

    W L

    13 ;5 / for NMOS

    VT

    VT

    A mV mS V m

    -0.010 -0.005 0.000 0.005 0.010

    0

    20

    VTN (V)

    5 / for NMOS22 ;5 / for PMOS

    VT

    VT

    VT

    S V mA mV mS V m

    VT

    To minimize mismatch,make device larger andmake separation betweenthem zero (?)

    G-NumberB. Mazhari, IITK81

  • 20.02 ;A m 2

    2 2 2( )A

    S DW L

    62 10 / for NMOS

    0 03 ;

    S m

    A m

    6

    0.03 ;

    2 10 / for PMOS

    A m

    S m

    2( )D GS TI V V

    2( ) ( )D GS T GS T TI V V V V V ( )

    2D GS T( ) ( )

    2D GS T GS T TI V V V V V

    2DI 2( )

    DT

    D GS T

    I VI V V

    2 2 22

    4( ) ( ) ( )( )

    DT

    D GS T

    I VI V V

    G-NumberB. Mazhari, IITK82

  • D1

    G1

    D2

    G210/1 10/1D1 D2

    M1 M2

    G1S1 S2

    G210/1 10/1

    S1

    G1 G2S2

    22 2 2( ) VTT VT

    AV S DW L

    ( ) 4.1VTTAV mV

    W L

    0.5GS TV V V

    22 2 2( )

    AS D

    W L

    3( ) 9.5 10A

    W L

    W L W L

    4I 2 22

    4( ) ( ) ( ) 0.019( )

    DT

    D GS T

    I VI V V

    I( ) 4.2% for V 0.2D GS T

    D

    I V VI

    3 ( ) 12.6% DD

    II

    G-NumberB. Mazhari, IITK83

    Accuracy –Power tradeoff

  • Effect of Mismatch on Differential Pair

    1 2685 ; 690T TV mV V mV

    1 2 690T TV V mV

    1 2695 ; 690T TV mV V mV

    G-NumberB. Mazhari, IITK84

  • 1 2695 ; 690T TV mV V mV 1 2690 ; 690T TV mV V mV

    Th ff t f i t h b d ib d i t f i t ff t lt

    G-NumberB. Mazhari, IITK85

    The effect of mismatches can be described in terms of input offset voltage

  • VDD VDD

    M3 M4

    V

    M3 M4

    VO

    M2M1

    VO

    V V I

    M2M1Vi2Vos

    ISSM5VBias

    Vi1 Vi2 ISS

    V

    M5VBiasVi1

    VSSVSS

    A differential amplifier with mismatches can be modeled as a differentialamplifier with no mismatches but with a non-zero input offset voltage

    ( , , , )OS TN N TP PV f V V

    G-NumberB. Mazhari, IITK86

  • VDD

    Input Offset Voltage due to M1-M2 mismatch

    M3 M4

    MM

    VO 2( )2 2SS

    D GS TII V V

    ISS

    M2

    M

    M1

    VBi

    Vos

    VSS

    M5VBias

    11

    0DS DS DSDS T OST GS

    I I II V VV V

    1( )4 N

    SSOS T

    IV V

    G-NumberB. Mazhari, IITK87

    1 14 N

  • Input Offset Voltage due to M3-M4 mismatch: VT mismatch

    VDD

    M4M3 M4

    1/gm3

    4

    VO

    3

    VTP4

    VTP INV=0

    M2M1

    ISS

    M1 M2

    M5VBias

    VSSSS

    4N TPI g V 1 4 0N OS TPI g V g V 4N m TPI g V 1 4 0N m OS m TPI g V g V

    G-NumberB. Mazhari, IITK88

    4

    1POS T

    V V

  • Input Offset Voltage due to M3-M4 mismatch: β mismatch

    VDD VDD

    M4M3 M4M3

    VO

    4

    VO

    3

    VGS3 4

    M2M1

    ISS

    M2M1

    ISSM5VBias

    VSS

    M5VBias

    VSSSS

    2( )2D GS T

    I V V 0D DD GSGS

    I II VV

    GSD

    DSGS

    IIV I

    4 3SS

    OS GSIV V

    G-NumberB. Mazhari, IITK89

    2GS DGS

    V IV

    1 1 34

    OS GSV V

  • VDD

    Net Offset Voltage

    DD

    M3 M43 4

    VO

    ISS

    M2M1

    V

    Vos

    VSS

    M5VBias

    1 3 3( )SSIV V V 1 1 3 1

    ( )4OS TN TP

    V V V

    G-NumberB. Mazhari, IITK90

  • ●While making a differential pair or a current mirror wherematching between the transistors is important, one should ensureh h i l iblthat the two transistors are as close as possible.

    D1 D2D1

    G1 G2

    D2

    M1 M2S1 S2

    D DD1G1

    D2G2

    S1 S2

    G-NumberB. Mazhari, IITK91

  • Noting that source is common to both the transistors, one candraw the following more compact layout where distance betweendraw the following more compact layout where distance betweenthe two transistors is also smaller

    D1D D 1G1

    S

    D1

    G G

    D2

    SG2

    M1 M2

    G1 G2S1 S2

    D2

    G2

    G-NumberB. Mazhari, IITK92

  • An even better layout is shown below:

    D DD1G1

    S S

    D2G2

    SG2

    SG1

    D2 D1

    Each transistor is made of two fingers and it can be seen that the centroid oftwo transistors coincide, in other words effective separation between the two iszero! The above scheme can be conveniently represented by the followingy p y gschematic:

    M1 M21

    M

    2

    M

    G-NumberB. Mazhari, IITK93

    M2 M1

  • For five finger mosfets, the common centroid layout can bedescribed asdescribed as

    M1 M2

    M2 M1

    M1 M2

    M2

    M

    M1

    MM1 M2

    G-NumberB. Mazhari, IITK94