CMOS Analog Design Lect 4

22
EE 290C CMOS Analog Design Using All-region MOSFET Modeling Lecture 4: Design-oriented dc MOSFET model

Transcript of CMOS Analog Design Lect 4

Page 1: CMOS Analog Design  Lect 4

EE 290C

CMOS Analog Design Using All-region MOSFET Modeling

Lecture 4: Design-oriented dc MOSFET model

Page 2: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling2

Symmetry and Normalization - 1

( ), ,D D G S DI I V V V=

Ungrounded local substrate:

VG→ VGB VS→ VSB VD→ VDB

VG

VDVS

B ID

1.

2. Symmetry

( ) ( )1 2 2 1, , , ,D G D GI V V V I V V V= −

VG

V2V1

B

ID

Page 3: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 3

( ) ( ), ,D F R S f r SQ G S G D

WI I I I i i I f V V f V V

L = − = − = −

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

2

2

/

/

2

SF R IS D IS D

ox tIS D IS D

Sf r F R

tS ox SQ

I I q q

q Q nC

i I I

W WI C n I

L L

φ

φµ

′ ′= +

′ ′ ′= −

=

′= =

3. For a long-channel MOSFET

D

S

B

ID

F RI I−G

IS and ISQ are the normalization (specific) current and the “sheet” normalization current, slightly dependent on bias.

Symmetry and Normalization - 2

Page 4: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 4

Long-channel MOSFET ),(),( DGSGRFD VVIVVIIII −=−=

IF: forward current

IR: reverse currentI

F=

IR=

Forward and Reverse Currents

Page 5: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 5

The specific (normalization) current2

2

t

S ox SQ

W WI C n I

L L

φµ ′= =

ISQ : design parameter slightly dependent on VG

ISQ ≈25 nA (p-channel)

ISQ ≈75 nA (n-channel)

in 0.35 µm CMOS

Specific Current

Page 6: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 6

22

02 2

2 2P G T F F

V V Vγ γ

φ φ = − + + − −

( ) ( ) ( )1 lnP S D t IS D IS DV V q qφ ′ ′− = − + ( ) ( )1 1IS D f rq i′ = + −UCCM &

VT0

VP

VG

Slope =1 Slope =1/n

VG0

VP0

Linearization:

( )0

0

0

G GP P

G

V VV V

n V

−= +

( )0

0

12 2

G

P F

n VV

γ

φ= +

+

In particular:

( )0

0

G TP

T

V VV

n V

−=

( )01

2 2T

F

n Vγ

φ= +

Pinch-off Voltage and Slope Factor - 1

Page 7: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling7

Pinch-off Voltage and Slope Factor - 2

Determination of the pinch-off voltage and the slope factor asfunctions of VG. NMOS transistor W=20 µm, L=2 µm, 0.18 µmCMOS technology.

Page 8: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 8

Common-source characteristics

1,00E-09

1,00E-08

1,00E-07

1,00E-06

1,00E-05

1,00E-04

1,00E-03

0,00E+00 5,00E-01 1,00E+00 1,50E+00 2,00E+00 2,50E+00 3,00E+00 3,50E+00 4,00E+00 4,50E+00

10-3

10-6

10-9

VS = 0 V

3.0

2.5

2.0

1.5

0.5 1.0

0 1 2 3 4 VG (V)

ID (A) VD = VG

( )( )1 2 ln 1 1

P S t f f rV V i iφ − = + − + + −

VD

ID

VGVS

The I-V Relationship

Page 9: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 9

VG = 4.8 V

ID (A) VD = VG

10-3

10-6

10-9

0 1 2 3 VS (V)

0.8 V

Common-gate characteristics VG=0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 3.6, 4.2, and 4.8 V

VD

ID

VS

VG

The I-V relationship

( )( )1 2 ln 1 1P S t f f rV V i iφ − = + − + + −

Page 10: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 10

( )0

( ) ( ) ( )1 2 ln 1 1G T

S D t f r f r

V VV i i

− − = + − + + −

Weak inversion if(r)<1

-1if(r)/2

0 //

0 1

G TS t

DS t

V VV

VnDI I e e

φφ

− − − = −

2 110 2ox Sn t

WI nC I ee

Lµ φ′= =

Weak inversion model

Page 11: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 11

( )0

( ) ( ) ( )1 2 ln 1 1G T

S D t f r f r

V VV i i

− − = + − + + −

Strong inversion if(r)>>1 0

( ) ( ) ( )

G TS D t f r t F R S

V VV i I I

nφ φ

−− ≅ =

( ) ( )2 2

0 02

D F R ox G T S G T Dn

WI I I C V V nV V V nV

nLµ ′= − ≅ − − − − −

Moderate inversion 1<if(r) <100 Both sqrt(.) and ln(.) terms are important

Strong inversion model - 1

Page 12: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 12

ID/IF

1

VDSsat=VP=(VG-VT0)/n VDS

VDS

ID

VG

Output characteristics at VS=0

Strong inversion model - 2

Page 13: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 13

VDD

ID

VG

VGVT0

DI ( )0

2

oxD G T

C WI V V

n L

µ ′= −

SCE, µ, n, “model”

( )0G TV V n−

( )02

oxD G T S

C WI V V nV

n L

µ ′= − −

DI

VS

VDD

ID

VS

VG

Strong inversion model - 3

Page 14: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 14

1 1ln 1 1 ln

1 1

fDS ISIS ID f r

t ID r

iV qq q i i

q iφ

+ −′ ′ ′= − + = + − + + ′ + −

(a) if= 4.5x 10-2 (VG=0.7 V).

(b) if= 65(VG= 1.2 V).

(c) if= 9.5x102 (VG= 2.0 V).

(d) if= 3.1x 103 (VG= 2.8 V).

(e) if= 6.8x 103 (VG= 3.6 V).

(f) if= 1.2x 104 (VG= 4.4 V).

(o): measured

(—): model

Universal output characteristics

Page 15: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 15

Saturation voltage (VDSsat) – VDS such that /ID IS

q q ξ′ ′ =

( ) ( ) ( )ln 1 1 1 1DSsat t fV iφ ξ ξ = + − + −

( )1 ξ− is the saturation level

Saturation voltage

Page 16: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 16

r r

G D

i i

V n V

∂ ∂= −

∂ ∂

( )F R Fms IS

S S

I I I Wg Q

V V L

∂ ∂µ

∂ ∂

−′= − = − = −

BmbDmdSmsGmgD VgVgVgVgI ∆+∆+∆−∆=∆

B

Dmb

D

Dmd

S

Dms

G

Dmg

V

Ig

V

Ig

V

Ig

V

Ig

∂==−== ,,,

Transconductances

Calculation of gms

Pao-Sah ID (UCCM)md ID

Wg Q

Lµ ′= −

G

rf

SmgV

iiIg

−∂=

)(

UCCM

f f

G S

i i

V n V

∂ ∂= −

∂ ∂ n

ggg mdms

mg

−=

ms

mg

gg

n= in saturation

Transconductances - 1

0mg ms md mb

g g g g− + + =

Page 17: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 17

Source transconductance VG= 0.8, 1.2, 1.6, 2.0, 2.4, 3.0, 3.6, 4.2, and 4.8 V (W=L=25 µm, tox=280 Å)

VDD

ID

VS

VG

Transconductances - 2

Page 18: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 18

Gate transconductance VS= 0, 0.5, 1.0,1.5, 2.0, 2.5, and 3.0 V W=L=25 µm, tox=280 Å

VDD

ID

VGVS

Transconductances - 3

Page 19: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling19

Transconductance-to-current ratio 11

2

)()(

)(

++=

rfRF

tdms

iI

g φ 1≅

( )

2

f ri≅

WI (if <1)

SI (if >>1)

10-4 10-2 100 102 104

1

10

100

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04

Seqüência1

Seqüência2

Seqüência3

if

tox = 28 nm (IS = 26 nA)

model

102

101

100

gms/IF

tox = 5.5 nm (IS = 111 nA)

W=25 µm

L=25 µm, tox= 280 Å

L=20 µm, tox= 55 Å

The transconductance-to-current ratio - 1

Page 20: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 20

Transconductance-to-current ratio 11

2

)()(

)(

++=

rfRF

tdms

iI

g φ 1≅

( )

2

f ri≅

WI (if <1)

SI (if >>1)

W=L=25 µm, tox= 280 Å

1,00E+00

1,00E+01

1,00E+02

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04

Seqüência1

Seqüência2

Seqüência3

Seqüência4

10-4 10-2 100 102 104

VGB = 2.0 V (IS = 26 nA)

VGB = 1.0 V (IS = 33 nA)

VGB = 3.0 V (IS = 24 nA)

model

if

102

101

100

gms/IF

The transconductance-to-current ratio - 2

Page 21: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 21

Transconductance-to-current ratio 11

2

)()(

)(

++=

rfRF

tdms

iI

g φ 1≅

( )

2

f ri≅

WI (if <1)

SI (if >>1)

W=25 µm, tox= 280 Å

1

10

100

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04 1,00E+05

Seqüência1

Seqüência2

Seqüência3

L = 25 µm (IS = 26 nA)

model

10-4 10-2 100 102 104if

102

101

100

gms/IF

L = 2.5 µm (IS = 260 nA)

The transconductance-to-current ratio - 3

Page 22: CMOS Analog Design  Lect 4

CMOS Analog Design Using All Region MOSFET Modeling 22

G

B

S D

id

dmd vg

bmbvg

smsvg

gmg vg

The low-frequency small-signal model