Chuong iii -dao dong1_ma

29
Chöông III DAO ĐỘNG MẠNG TINH THỂ

Transcript of Chuong iii -dao dong1_ma

Page 1: Chuong iii -dao dong1_ma

Chöông III

DAO ĐỘNG MẠNG TINH THỂ

Page 2: Chuong iii -dao dong1_ma

• Các nguyên tử (ion) nằm ở nút mạng luôn dao động quanh vị trí cân bằng của nó. Dao động này truyền khắp tinh thể => sóng đàn hồi. Sóng này phụ thuộc vào 2 yếu tố chính : loại liên kết và cấu trúc mạng tinh thể.• Đặc trưng của dao động mạng tinh thể giải thích cho các tính chất nhiệt dung, độ dẫn nhiệt, hệ số dãn nở.• Dao động mạng và sự tương tác của e- với mạng tinh thể đều liên quan chặt chẽ đến nhiều hiện tượng vật lý trong vật rắn : hấp thụ photon hồng ngoại, nơtron, siêu dẫn, hiệu ứng nhiệt điện,…

Page 3: Chuong iii -dao dong1_ma

Khảo sát các mô hình dao động mạng đơn giản => sự truyền sóng trong mạng

3.1 Lý thuyết cổ điển- Chuỗi nguyên tử một loại- Chuỗi nguyên tử hai loại- Mạng tinh thể ba chiều- Phân bố dao động theo tần số

3.2 Lý thuyết lượng tử: - Lượng tử hóa dao động mạng - Phonon.3.3 Nhiệt dung của chất rắn3.4 Độ dẫn nhiệt và sự dãn nở nhiệt

Page 4: Chuong iii -dao dong1_ma

Dao động của mạng một chiềuDao động của mạng một chiều

Bài toán của một hệ hạt có tương tác với Bài toán của một hệ hạt có tương tác với nhau và nhau và dao động với biên độ nhỏ dao động với biên độ nhỏ quanh vi quanh vi trí cân bằng là một dạng bài toán cơ bản của trí cân bằng là một dạng bài toán cơ bản của Cơ học cổ điểnCơ học cổ điển

Trong thực tế, thường gặp các mạng tinh thể 3 chiều.

Trong trường hợp nào thì mạng tinh thể 3 Trong trường hợp nào thì mạng tinh thể 3 chiều được xét như mạng tinh thể 1 chiều ?chiều được xét như mạng tinh thể 1 chiều ?

Page 5: Chuong iii -dao dong1_ma

Kết quả của bài toán 1 chiều cũng áp dụng được cho tinh thể 3 chiều nếu ta xét trong một số trường hợp đặc biệt, khi sóng đàn hồi là thuần tuý dọc hoặc thuần tuý ngang.

Trong sóng dọc, các nguyên tử dịch chuyển song song với phương truyền sóng

Trong sóng ngang, các nguyên tử dịch chuyển vuông góc với phương truyền sóng. Trong các trường hợp này, các nguyển tử nằm trên cùng một mặt phẳng tinh thể vuông góc với phương truyền sóng thì dao động giống nhau

Vì thế, thay cho nghiên cứu chuyển động của mọi nguyên tử trong tinh thể ta chỉ cần xét chuyển động của mỗi mặt phẳng tinh thể nguyên tử. Bài toán được qui về trường hợp mạng tinh thể một chiều.

Page 6: Chuong iii -dao dong1_ma

Trường hợp đơn giản nhất : “mạng tinh thể một chiều” gồm các nguyên tử giống nhau, đặt cách đều nhau trên một đường thẳng.

Page 7: Chuong iii -dao dong1_ma
Page 8: Chuong iii -dao dong1_ma

Các gần đúng nào nào đã được đưa vào để giải bài toán dao động?chỉ xét sóng ngang (hoặc sóng dọc), và coi

như chỉ có tương tác giữa nguyên tử đang xét với hai nguyên tử gần nó nhất.

Các nguyên tử cách đều nhau một khoảng a nên ô mạng có kích thước là a.

lực tương tác là lực đàn hồi, tức là tỷ lệ với độ dời khỏi vị trí cân bằng.

Page 9: Chuong iii -dao dong1_ma

Trường hợp chuỗi thẳng dài vô hạn Trường hợp chuỗi thẳng dài vô hạn các nguyên tử có cùng khối lượngcác nguyên tử có cùng khối lượng

Ta có:

Với:

xn – là độ lệch khỏi vị trí cân bằng của nguyên tử thứ n

f – là he so đàn hồi

Lực tác động lên ng tử thứ n do sự dịch chuyển của ngtử(n-1) tđộng lên n và (n+1) tđộng lên n => Fn = C(xn+1 -xn)+C(xn-1 -xn)

Nghiệm của phương trình trên có dạng:

Với : L = na ; q – số sóng

Xn = Aexp i (qna – ωt)

Page 10: Chuong iii -dao dong1_ma

Thay nghiệm vào phương trình chuyển động:

Phương trình trên cho thấy sự phụ thuộc của tần số dao động vào số sóng q và được gọi là hệ thức tán sắc của dao động

là hàm tuần hoàn của q với chu kỳ 2/a

Như vậy ta chỉ cần xét q trong khoảng

khoảng này chứa mọi giá trị khả dĩ của

)(sin2

4 22 qa

m

f

)()(

)sin(

qq

qa

m

f

2

2

Page 11: Chuong iii -dao dong1_ma

q có thứ nguyên nghịch đảo chiều dài, nên nó chính là đại lượng được xét trong không gian mạng đảo.

Page 12: Chuong iii -dao dong1_ma

Trong trường hợp đang xét, mạng thuận có chu kỳ a thì mạng đảo có chu kỳ 2/a. Mạng đảo của mạng một chiều cũng là mạng một chiều.

Khoảng giá trị:

trong mạng đảo (ở đây là trường hợp một chiều) gọi là vùng Brillouin thứ nhất.

Định nghĩa vùng Brillouin thứ nhất như thế nào ?

Page 13: Chuong iii -dao dong1_ma

Vùng BrillouinVùng Brillouin

Cũng giống như với mạng thuận, trong mạng đảo, có thể xây dựng ô sơ cấp dạng đối xứng trung tâm (kiểu ô WIGNER – SEITZ của mạng thuận). Trong mạng đảo, ô này được gọi là vùng Brillouin thứ nhất

Nó được giới hạn bởi các mặt phẳng trung trực của các vectơ mạng đảo nối nút đang chọn với các nút lân cận.

Khái niệm về mạng đảo và vùng Brillouin được sử dụng rất thuận tiện để nghiên cứu các vấn đề có liên quan đến các quá trình sóng trong vật rắn như lý thuyết về cung năng lượng, lý thuyết về dao động của mạng tinh thể, hiện tượng nhiễu xạ trong tinh thể v.v…

Page 14: Chuong iii -dao dong1_ma

CAÙCH VEÕ OÂ WIGNER – SEITZ CHO MAÏNG 2 CHIEÀU

Page 15: Chuong iii -dao dong1_ma
Page 16: Chuong iii -dao dong1_ma

ĐỊNH NGHĨA VÙNG BRILLOUIN THỨ NHẤT ĐỊNH NGHĨA VÙNG BRILLOUIN THỨ NHẤT TRONG KG ĐẢOTRONG KG ĐẢO

Page 17: Chuong iii -dao dong1_ma

Những vectơ cơ sở của mạng CFC trong KG

thực

* Ví dụ vùng Brillouin thứ 1 của FCC trong KG đảo, chúng trở thành mạng I

.*ijji aa 2

nTGhkl 2

Nhắc lại :

Page 18: Chuong iii -dao dong1_ma

a) Vùng Brillouin thứ 1 cho FCC (Al)

b) Vùng Brillouin thứ 2 cho FCC (Al)

Page 19: Chuong iii -dao dong1_ma

Mạng TT trong mạng thực và đảo. Vectơ cơ sở trong mạng đảo là vectơ b, |b| = 2π/a. Những đường phân đôi vuông góc

của 2 vectơ ngắn nhất ± b của mạng đảo tạo thành những đường biên giới của vùng Brillouin thứ 1, với k = ± π/a

Page 20: Chuong iii -dao dong1_ma

Nếu xét tại một thời điểm, thì trạng thái dao động của tinh thể lặp lại một cách tuần hoàn trong không gian, với chu kỳ là bước sóng λ.

Ở tâm vùng Brillouin thứ nhất, tức là với qa<<1 (vùng bước sóng dài, tần số thấp), thì

Do đó: constqa

m

f

22

Như vậy với giá trị q nhỏ, tức là với dao động có bước sóng λ rất lớn, lớn hơn hằng số mạng a thì ω ∝ q, giống như sóng truyền trên sợi dây liên tục.

0

0

vdq

dv

vam

f

qv

gr

ph

Vận tốc phase và vận tốc nhóm :

Page 21: Chuong iii -dao dong1_ma

Kết luận nêu trên đúng với dải tần số kéo dài đến 10Kết luận nêu trên đúng với dải tần số kéo dài đến 101212 Hz, đó Hz, đó là dải tần số của sóng âm và sóng siêu âm, vì vậy các dao là dải tần số của sóng âm và sóng siêu âm, vì vậy các dao động ứng với trường hợp này được gọi là dao động âmđộng ứng với trường hợp này được gọi là dao động âm

Xn = Aexp iq(xn – v0t) là sóng truyền với vận tốc không đổi và không phụ thuộc vào vector sóng (q nhỏ).

Khi đó sóng phẳng đơn sắc trở thành :

Hơn nữa vận tốc pha vHơn nữa vận tốc pha vpp = a(f/m) = a(f/m)1/21/2 = HS và bằng vận tốc truyền = HS và bằng vận tốc truyền

âm trong tinh thể (~ 3.10âm trong tinh thể (~ 3.1055 cm/s) cm/s)

Page 22: Chuong iii -dao dong1_ma

Xét giá trị q lớn, lúc này vận tốc truyền sóng không còn là hằng số :

Vận tốc truyền sóng vgr = 0. Điều này chứng tỏ không có năng lượng được truyền đi, nói cách khác tại biên vùng các kiểu dao động này không đặc trưng cho sóng chuyển động mà đặc trưng cho sóng dừng trong mạng.

Như vậy ở biên vùng Brillouin vận tốc truyền sóng bằng không ứng với sự tạo thành sóng đứng => không truyền năng lượng không truyền năng lượng.

2

qa

m

fa

dq

dvgr cos

Ở giá trị

)(

)sin(

2

20 qa

qa

vq

v ph

Page 23: Chuong iii -dao dong1_ma

Hiện tượng: các kiểu dao động ứng với biên vùng Brillouin có bước sóng = 2a thoả mãn điều kiện nhiễu xạ Bragg, với d = a; =/2 và n = 1. Như vậy sóng phản xạ và sóng tới giao thoa nhau sẽ tạo thành sóng dừng

Page 24: Chuong iii -dao dong1_ma

Với

Đó là giá trị bước sóng ngắn nhất có thể tồn tại trong mạng tinh thể. Nó ứng với trường hợp hai nguyên tử lân cận dao động ngược pha nhau.

a2min Ta có

Do đó, có tất cả N giá trị được phép của vector sóng (và bước sóng) nằm trong khoảng: -/a <q< /a

Mỗi giá trị đó tương ứng một mode dao động của mạng. Mode đó được gọi là mode chuẩn.

Page 25: Chuong iii -dao dong1_ma

Trong thực tế không có tinh thể lớn vô hạn mà chỉ có tinh thể chứa rất nhiều nguyên tử N >> 1: xét ảnh hưởng của biên tinh thể. Trong trường hợp mạng một chiều đó chính là đầu và cuối của dãy nguyên tử.

Tuy nhiên nếu mạng tinh thể đủ lớn, thì ảnh hưởng của biên là rất nhỏ, và tính chất của tinh thể cũng gần giống như khi là mạng vô hạn.

Page 26: Chuong iii -dao dong1_ma

Điều kiện biên tuần hoàn Điều kiện biên tuần hoàn Để bảo toàn tính đối xứng tịnh tiến của mạng tinh thể, ta đưa ra

điều kiện biên tuần hoàn Born-Karman như sau: dao động của nguyên tử ở cuối dãy (nút thứ N) giống hệt như dao động của nguyên tử ở đầu dãy (nút thứ 1) => mạng một chiều có đầu và cuối nối nhau thành một vòng kín.

Giả thiết về điều kiện biên tuần hoàn giúp cho việc tính toán được thuận lợi nhưng không ảnh hưởng gì tới kết quả vật lý.

Page 27: Chuong iii -dao dong1_ma

Từ điều kiện biên tuần hoàn ta có:Từ điều kiện biên tuần hoàn ta có:

Với: j - là số nguyên Với: j - là số nguyên

Trong mạng một chiều ta có: Trong mạng một chiều ta có:

Vì vậy các giá trị j nằm trong khoảng : Vì vậy các giá trị j nằm trong khoảng :

Xn = Aexp i (qna – ωt)

exp iqna = exp i(n+N)qaexp iNqa = 1 = exp 2πj

q = 2 πj/Na (j ϵ Z)

22

Nj

N

Page 28: Chuong iii -dao dong1_ma

Hệ quả của điều kiện biên tuần Hệ quả của điều kiện biên tuần hoànhoàn

Nghiệm tổng quát thu được là:Nghiệm tổng quát thu được là:

Các giá trị của j cho ta N giá trị khác nhau của q. Như vậy điều kiện biên tuần hoàn đã đưa đến sự gián đoạn của giá trị vectơ sóng q.

Các giá trị của q cách nhau 2/N Trong phổ ω(q) chỉ có các giá trị của ω ứng với N giá

trị đó của q.

s

ssn tjN

niAx )(exp 2

Page 29: Chuong iii -dao dong1_ma

Câu hỏiCâu hỏi