Chemical Engineering 378mjm82/che378/Fall2019/LectureNotes/Lecture_17_notes.pdfAncient Polymers •...

38
1 Chemical Engineering 378 Science of Materials Engineering Lecture 17 Polymers and Applications I

Transcript of Chemical Engineering 378mjm82/che378/Fall2019/LectureNotes/Lecture_17_notes.pdfAncient Polymers •...

  • 1

    Chemical Engineering 378

    Science of Materials Engineering

    Lecture 17Polymers and Applications I

  • Spiritual Thought

    Isaiah 1:1818. Come now, and let us reason together, saith the LORD: though your sins be as scarlet, they shall be as white as snow; though they be red like crimson, they shall be as wool.

    2

  • Materials Roadmap3

  • 4

    What is a Polymer?

    Poly mermany repeat unit

    C C C C C CHHHHHH

    HHHHHH

    Polyethylene (PE)ClCl Cl

    C C C C C CHHH

    HHHHHH

    Poly(vinyl chloride) (PVC)HH

    HHH H

    Polypropylene (PP)

    C C C C C CCH3

    HH

    CH3CH3H

    repeatunit

    repeatunit

    repeatunit

  • 5

    Ancient Polymers

    • Originally natural polymers were used– Wood – Rubber– Cotton – Wool– Leather – Silk

    • Oldest known uses– Rubber balls used by Incas– Noah used pitch (a natural polymer)

    for the ark

  • 6

  • 7

    Unsaturated Hydrocarbons

    • Double & triple bonds somewhat unstable – can form new bonds– Double bond found in ethylene or ethene - C2H4

    – Triple bond found in acetylene or ethyne - C2H2

    C CH

    H

    H

    H

    C C HH

  • Organic Chemists8

  • 9

    Isomerism

    • Isomerism– two compounds with same chemical formula can

    have quite different structures for example: C8H18

    • normal-octane

    • 2,4-dimethylhexane

    C C C C C C C CHH

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    HH H3C CH2 CH2 CH2 CH2 CH2 CH2 CH3=

    H3C CHCH3

    CH2 CHCH2

    CH3

    CH3

    H3C CH2 CH3( )6

  • 10Polymerization and Polymer Chemistry

    • Free radical polymerization

    • Initiator: example - benzoyl peroxide

    CH

    HO O C

    H

    H

    CH

    HO2

    C CH H

    HHmonomer(ethylene)

    R +

    free radical

    R C CH

    H

    H

    H

    initiation

    R C CH

    H

    H

    HC CH H

    HH

    + R C CH

    H

    H

    HC CH H

    H H

    propagation

    dimer

    R= 2

    propagation

  • 11

    Chemistry and Structure of Polyethylene

    Adapted from Fig. 14.1, Callister & Rethwisch 10e.

    Note: polyethylene is a long-chain hydrocarbon- paraffin wax for candles is short polyethylene

  • Polymers – Molecular Shape12

  • 13

    Bulk or Commodity Polymers

  • 14

    Bulk or Commodity Polymers (cont)

  • 15

    Bulk or Commodity Polymers (cont)

  • 16

    To very complicated

  • 17

    And Super Complicated!

  • 18

  • 19

    MOLECULAR WEIGHT• Molecular weight, M: Mass of a mole of chains.

    Low M

    high M

    Not all chains in a polymer are of the same length— i.e., there is a distribution of molecular weights

  • 20

    Chain End-to-End Distance, r

    Fig. 14.6, Callister & Rethwisch 10e.

  • 21

    xi = number fraction of chains in size range i

    MOLECULAR WEIGHT DISTRIBUTIONFig. 14.4, Callister & Rethwisch 10e.

    wi = weight fraction of chains in size range i

    Mi = mean (middle) molecular weight of size range i

  • 22

    Molecular Weight Calculation

    Example: average mass of a classStudent Weight

    mass (lb)1 1042 1163 1404 1435 1806 1827 1918 2209 22510 380

    What is the averageweight of the students inthis class:a) Based on the number

    fraction of students in each mass range?

    b) Based on the weight fraction of students in each mass range?

  • 23

    Molecular Weight Calculation (cont.)

    Solution: The first step is to sort the students into weight ranges. Using 40 lb ranges gives the following table:

    total number

    total weight

    Calculate the number and weight fraction of students in each weight range as follows:

    For example: for the 81-120 lb range

    Sheet1

    Weight

    mass (lb)

    104

    116

    140

    143

    180

    182

    191

    220

    225

    380

    Sheet2

    weightnumber ofmeannumberweight

    rangestudentsweightfractionfraction

    NiWixiwiStudentWeight

    mass (lb)mass (lb)mass (lb)

    81-12021100.20.1171104

    121-16021420.20.1502116

    161-20031840.30.2943140

    201-24022230.20.2374143

    241-2800-00.0005180

    281-3200-00.0006182

    321-3600-00.0007191

    361-40013800.10.2028220

    9225

    SNiSNiWiMnMw10380

    101881188 lb218 lb

    188.1217.7529682793

    Sheet2

    1

    Sheet3

  • 24

    Molecular Weight Calculation (cont.)

    Sheet1

    Weight

    mass (lb)

    104

    116

    140

    143

    180

    182

    191

    220

    225

    380

    Sheet2

    weightmeannumberweight

    rangeweightfractionfraction

    WixiwiStudentWeight

    mass (lb)mass (lb)mass (lb)

    81-1201100.20.1171104

    121-1601420.20.1502116

    161-2001840.30.2943140

    201-2402230.20.2374143

    241-280-00.0005180

    281-320-00.0006182

    321-360-00.0007191

    361-4003800.10.2028220

    9225

    10380

    188.1217.7529682793

    MnMw

    188 lb218 lb

    Sheet3

  • 25

    Degree of Polymerization, DPDP = average number of repeat units per chain

    C C C C C C C CHH

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    H

    HC C C CH

    H

    H

    H

    H

    H

    H

    HH( ) DP = 6

    mol. wt of repeat unit iChain fraction

  • 26

    Adapted from Fig. 14.7, Callister & Rethwisch 10e.

    Molecular Structures for Polymers

    Branched Cross-Linked NetworkLinear

    secondarybonding

  • 27

    Molecular Configurations for Polymers

    Configurations – to change must break bonds• Stereoisomerism

    EB

    A

    D

    C C

    D

    A

    BE

    mirror plane

    C CR

    HH

    HC CH

    H

    H

    R

    or C CH

    H

    H

    R

    Stereoisomers are mirrorimages – can’t superimposewithout breaking a bond

  • 28

    Tacticity

    Tacticity – stereoregularity or spatial arrangement of R units along chain

    C CH

    H

    H

    R R

    H

    H

    HCC

    R

    H

    H

    HCC

    R

    H

    H

    HCC

    isotactic – all R groups on same side of chain

    C CH

    H

    H

    RC CH

    H

    H

    RC CH

    H

    H

    R R

    H

    H

    HCC

    syndiotactic – R groups alternate sides

  • 29

    Tacticity (cont.)

    atactic – R groups randomlypositioned

    C CH

    H

    H

    R R

    H

    H

    HCC

    R

    H

    H

    HCC

    R

    H

    H

    HCC

  • 30

    cis/trans Isomerism

    C CHCH3

    CH2 CH2C C

    CH3

    CH2

    CH2

    H

    ciscis-isoprene

    (natural rubber)

    H atom and CH3 group on same side of chain

    transtrans-isoprene (gutta percha)

    H atom and CH3 group on opposite sides of chain

  • 31

    Copolymers

    two or more monomers polymerized together

    • random – A and B randomly positioned along chain

    • alternating – A and B alternate in polymer chain

    • block – large blocks of A units alternate with large blocks of B units

    • graft – chains of B units grafted onto A backbone

    A – B –

    random

    block

    graft

    Fig. 14.9, Callister & Rethwisch 10e.

    alternating

  • Thermoplastic or Thermosetting32

  • 33

    Crystallinity in Polymers

    • Ordered atomic arrangements involving molecular chains

    • Crystal structures in terms of unit cells

    • Example shown– polyethylene unit cell

    Fig. 14.10, Callister& Rethwisch 10e.

  • 34

    Polymer Crystallinity

    • Crystalline regions – thin platelets with chain folds at faces– Chain folded structure

    Fig. 14.12, Callister& Rethwisch10e.

    ≈ 10 nm

  • 35

    Polymer Crystallinity (cont.)

    Polymers rarely 100% crystalline• Difficult for all regions of all chains to

    become aligned

    • Degree of crystallinityexpressed as % crystallinity.-- Some physical properties

    depend on % crystallinity.-- Heat treating causes

    crystalline regions to grow and % crystallinity to increase.

    Fig. 14.11, Callister 6e. (From H.W. Hayden, W.G. Moffatt, and J. Wulff, The Structure and Properties of Materials, Vol. III, Mechanical Behavior, John Wiley and Sons, Inc., 1965.)

    crystalline region

    amorphousregion

  • 36

    Polymer Single Crystals

    • Electron micrograph – multilayered single crystals (chain-folded layers) of polyethylene

    • Single crystals – only for slow and carefully controlled growth rates

    Fig. 14.11, Callister & Rethwisch 10e. [From A. Keller, R. H. Doremus, B. W. Roberts, and D. Turnbull (Eds.), Growth and Perfection of Crystals. General Electric Company and John Wiley & Sons, Inc., 1958, p. 498. Reprinted with permission of John Wiley & Sons, Inc.]

    1 μm

  • 37

    Semicrystalline Polymers

    Spherulitesurface

    Fig. 14.13, Callister & Rethwisch 10e.

    • Some semicrystallinepolymers form spherulite structures

    • Alternating chain-folded crystallites and amorphous regions

    • Spherulite structure for relatively rapid growth rates

  • 38Photomicrograph – Spherulites in Polyethylene

    Fig. 14.14, Callister & Rethwisch 10e.

    Cross-polarized light used -- a maltese cross appears in each spherulite

    Cou

    rtesy

    F. P

    . Pric

    e, G

    ener

    al E

    lect

    ric C

    ompa

    ny

    100 μm

    Chemical Engineering 378��Science of Materials Engineering��Spiritual ThoughtMaterials RoadmapWhat is a Polymer?Ancient PolymersSlide Number 6Unsaturated HydrocarbonsOrganic ChemistsIsomerismPolymerization and �Polymer ChemistryChemistry and Structure of PolyethylenePolymers – Molecular ShapeBulk or Commodity PolymersBulk or Commodity Polymers (cont)Slide Number 15Slide Number 16Slide Number 17Slide Number 18MOLECULAR WEIGHTChain End-to-End Distance, rMOLECULAR WEIGHT DISTRIBUTIONMolecular Weight CalculationMolecular Weight Calculation (cont.)Molecular Weight Calculation (cont.)Degree of Polymerization, DPMolecular Structures for PolymersMolecular Configurations for PolymersTacticityTacticity (cont.)cis/trans Isomerism CopolymersThermoplastic or ThermosettingCrystallinity in PolymersPolymer CrystallinityPolymer Crystallinity (cont.)Polymer Single CrystalsSemicrystalline PolymersPhotomicrograph – Spherulites in Polyethylene