Cardiac Arrest and Sudden Cardiac Death -...

40
Sudden Cardiac Death Epidemiology and Genetics of Sudden Cardiac Death Rajat Deo, MD, MTR; Christine M. Albert, MD, MPH Sudden cardiac death (SCD) generally refers to an unexpected death from a cardiovascular cause in a person with or without preexisting heart disease. The specificity of this definition varies depending on whether the event was witnessed; however, most studies include cases that are associated with a witnessed collapse, death occurring within 1 hour of an acute change in clinical status, or an unexpected death that occurred within the previous 24 hours. 1–3 Further, sudden cardiac arrest describes SCD cases with resuscitation records or aborted SCD cases in which the individual survived the cardiac arrest. The incidence of SCD in the United States ranges between 180 000 and 450 000 cases annually. 4 These estimates vary owing to differences in SCD definitions and surveillance meth- ods for case ascertainment. 4,5 In recent prospective studies using multiple sources in the United States, 6,7 Netherlands, 8 Ireland, 9 and China, 10 SCD rates range from 50 to 100 per 100 000 in the general population. 3 Despite the need for multiple sources of surveillance to provide a more accurate estimate of SCD incidence, it is clear that the overall burden in the population remains high. Although improvements in primary and secondary prevention have resulted in substantial declines in overall coro- nary heart disease (CHD) mortality over the past 30 years, 11,12 SCD rates specifically have declined to a lesser extent. 13–16 SCD still accounts for 50% of all CHD deaths and 15% to 20% of all deaths. 17,18 For some segments of the population, rates are not decreasing 19 and may actually be increasing. 14,19 As a result, SCD prevention represents a major opportunity to further reduce mortality from CHD. Despite major advances in cardiopulmonary resuscitation 20 and postresuscitation care, survival to hospital discharge after cardiac arrest in major metropolitan centers remains poor. 21 Survival to hospital discharge was recently estimated to be only 7.9% among out-of-hospital cardiac arrests that were treated by emergency medical services personnel. 6 In addition, the majority of SCDs occur at home, often where the event is unwitnessed. 8,22 As a result, automated external defibrillators, which improve resuscitation rates for witnessed arrests, 21 may have limited effectiveness on reducing overall mortality from SCD. There- fore, substantial reductions in SCD incidence will require effec- tive primary preventive interventions. Since the majority of SCDs occur in the general population, an in-depth understanding of the epidemiology of SCD may lead to possible low-risk interventions that could be applied broadly to populations. In addition, recent data emerging related to the genetics of SCD may eventually aid in the identification of high-risk subsets within the general population or provide new molecular targets for intervention. Demographics: Age, Sex, and Race The incidence of SCD increases markedly with age regardless of sex or race (Figure 1). For example, the annual incidence for 50-year-old men is 100 per 100 000 population compared with 800 per 100 000 for 75-year-old men. 23 Although SCD increases with age, the proportion of deaths that are sudden is larger in the younger age groups 2,24,25 in which the socioeconomic impact of SCD is greater. At any age, 26 women have a lower incidence of SCD than men, even after adjustment for CHD risk factors. 27 This discrepancy may be decreasing over time. 7,16 The decline in SCD rates among women has been less than that observed for men, in particular in the younger age groups. 14 This may be due, in part, to a lower overall burden of CHD in women with SCD. Approximately two-thirds of women who present with SCD have no known history of heart disease compared with 50% of men. 8,24,28 In addition, among cardiac arrest survivors 29 and SCD patients, 30 women appear to have a higher prevalence of struc- turally normal hearts (Figure 2). There are also racial differences in the incidence of SCD that are not well understood. Black men and women appear to experience out-of-hospital cardiac arrest several years earlier than whites do. In 2 American cities, blacks had higher rates (relative risk1.3–2.8) of cardiac arrest than whites (Figure 3). 23,31 Data from death certificates also suggest that SCD is more common among black Americans than other ethnicities, and Hispanic Americans may have lower SCD rates than non-Hispanic populations. 14,32 In addition, survival rates after cardiac arrest are lower for African blacks. 23,33 In Chicago, the overall survival rate after an out-of-hospital cardiac arrest among blacks was only 31% of that among whites. 23 Blacks are more likely to have an unwitnessed arrest with an unfavorable rhythm such as pulseless electric activity docu- mented at the time of the arrest. 23,34 However, the disparity in survival does not appear to be entirely due to the initial rhythm at time of arrest. Even when limited to cardiac arrests due to ventricular fibrillation (VF) or pulseless ventricular tachycardia, rates of survival to hospital discharge are 27% lower among black patients. 35 In the National Registry of Cardiopulmonary Resuscitation, much, but not all, of this disparity appeared to be explained by black patients receiving From the Section of Electrophysiology, Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA (R.D.); Division of Preventive Medicine and Cardiovascular Medicine, Center for Arrhythmia Prevention, Brigham and Women’s Hospital, Boston, MA (C.M.A.). Correspondence to Christine M. Albert, MD, MPH, Division of Preventive Medicine and Cardiovascular Medicine, Center for Arrhythmia Prevention, Brigham and Women’s Hospital, 900 Commonwealth Ave E, Boston, MA 02215-1204. E-mail [email protected]. (Circulation. 2012;125:620-637.) © 2012 American Heart Association, Inc. Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIRCULATIONAHA.111.023838 620 by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from by guest on June 29, 2018 http://circ.ahajournals.org/ Downloaded from

Transcript of Cardiac Arrest and Sudden Cardiac Death -...

Page 1: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

Sudden Cardiac Death

Epidemiology and Genetics of Sudden Cardiac DeathRajat Deo, MD, MTR; Christine M. Albert, MD, MPH

Sudden cardiac death (SCD) generally refers to an unexpecteddeath from a cardiovascular cause in a person with or withoutpreexisting heart disease. The specificity of this definition variesdepending on whether the event was witnessed; however, moststudies include cases that are associated with a witnessedcollapse, death occurring within 1 hour of an acute change inclinical status, or an unexpected death that occurred within theprevious 24 hours.1–3 Further, sudden cardiac arrest describesSCD cases with resuscitation records or aborted SCD cases inwhich the individual survived the cardiac arrest.

The incidence of SCD in the United States ranges between180 000 and 450 000 cases annually.4 These estimates varyowing to differences in SCD definitions and surveillance meth-ods for case ascertainment.4,5 In recent prospective studies usingmultiple sources in the United States,6,7 Netherlands,8 Ireland,9

and China,10 SCD rates range from 50 to 100 per 100 000 in thegeneral population.3 Despite the need for multiple sources ofsurveillance to provide a more accurate estimate of SCDincidence, it is clear that the overall burden in the populationremains high. Although improvements in primary and secondaryprevention have resulted in substantial declines in overall coro-nary heart disease (CHD) mortality over the past 30 years,11,12

SCD rates specifically have declined to a lesser extent.13–16 SCDstill accounts for �50% of all CHD deaths and 15% to 20% ofall deaths.17,18 For some segments of the population, rates are notdecreasing19 and may actually be increasing.14,19 As a result,SCD prevention represents a major opportunity to further reducemortality from CHD.

Despite major advances in cardiopulmonary resuscitation20

and postresuscitation care, survival to hospital discharge aftercardiac arrest in major metropolitan centers remains poor.21

Survival to hospital discharge was recently estimated to be only7.9% among out-of-hospital cardiac arrests that were treated byemergency medical services personnel.6 In addition, the majorityof SCDs occur at home, often where the event is unwitnessed.8,22

As a result, automated external defibrillators, which improveresuscitation rates for witnessed arrests,21 may have limitedeffectiveness on reducing overall mortality from SCD. There-fore, substantial reductions in SCD incidence will require effec-tive primary preventive interventions. Since the majority ofSCDs occur in the general population, an in-depth understandingof the epidemiology of SCD may lead to possible low-riskinterventions that could be applied broadly to populations. Inaddition, recent data emerging related to the genetics of SCD

may eventually aid in the identification of high-risk subsetswithin the general population or provide new molecular targetsfor intervention.

Demographics: Age, Sex, and RaceThe incidence of SCD increases markedly with age regardless ofsex or race (Figure 1). For example, the annual incidence for50-year-old men is �100 per 100 000 population compared with800 per 100 000 for 75-year-old men.23 Although SCD increaseswith age, the proportion of deaths that are sudden is larger in theyounger age groups2,24,25 in which the socioeconomic impact ofSCD is greater. At any age,26 women have a lower incidence ofSCD than men, even after adjustment for CHD risk factors.27

This discrepancy may be decreasing over time.7,16 The decline inSCD rates among women has been less than that observed formen, in particular in the younger age groups.14 This may be due,in part, to a lower overall burden of CHD in women with SCD.Approximately two-thirds of women who present with SCDhave no known history of heart disease compared with 50% ofmen.8,24,28 In addition, among cardiac arrest survivors29 and SCDpatients,30 women appear to have a higher prevalence of struc-turally normal hearts (Figure 2).

There are also racial differences in the incidence of SCDthat are not well understood. Black men and women appear toexperience out-of-hospital cardiac arrest several years earlierthan whites do. In 2 American cities, blacks had higher rates(relative risk�1.3–2.8) of cardiac arrest than whites (Figure3).23,31 Data from death certificates also suggest that SCD ismore common among black Americans than other ethnicities,and Hispanic Americans may have lower SCD rates thannon-Hispanic populations.14,32 In addition, survival rates aftercardiac arrest are lower for African blacks.23,33 In Chicago,the overall survival rate after an out-of-hospital cardiac arrestamong blacks was only 31% of that among whites.23 Blacksare more likely to have an unwitnessed arrest with anunfavorable rhythm such as pulseless electric activity docu-mented at the time of the arrest.23,34 However, the disparity insurvival does not appear to be entirely due to the initialrhythm at time of arrest. Even when limited to cardiac arrestsdue to ventricular fibrillation (VF) or pulseless ventriculartachycardia, rates of survival to hospital discharge are 27%lower among black patients.35 In the National Registry ofCardiopulmonary Resuscitation, much, but not all, of thisdisparity appeared to be explained by black patients receiving

From the Section of Electrophysiology, Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA (R.D.); Division ofPreventive Medicine and Cardiovascular Medicine, Center for Arrhythmia Prevention, Brigham and Women’s Hospital, Boston, MA (C.M.A.).

Correspondence to Christine M. Albert, MD, MPH, Division of Preventive Medicine and Cardiovascular Medicine, Center for Arrhythmia Prevention,Brigham and Women’s Hospital, 900 Commonwealth Ave E, Boston, MA 02215-1204. E-mail [email protected].

(Circulation. 2012;125:620-637.)© 2012 American Heart Association, Inc.

Circulation is available at http://circ.ahajournals.org DOI: 10.1161/CIRCULATIONAHA.111.023838

620

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 2: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

treatment at hospitals with worse outcomes.35 As in all studiesof racial differences, it is difficult to separate socioeconomicinfluences from a true genetic predisposition.

Underlying PathophysiologyThe pathophysiology of SCD is complex and is believed torequire the interaction between a transient event and under-lying substrate. This process induces electric instability andlethal ventricular arrhythmias followed by hemodynamiccollapse. Although the challenge remains to predict whensuch interactions prove harmful, a variety of risk factors havebeen proposed (Figure 4).

CHD is the most common substrate underlying SCD in theWestern world, being responsible for �75% of SCDs.8,18,36,37

Cardiomyopathies (dilated, hypertrophic, and arrhythmo-genic right ventricular cardiomyopathy) and primary electricdisorders related to channelopathies account for most of theremainder.18 In �5% of SCDs or cardiac arrests, a significantcardiac abnormality is not found after extensive evaluation orat autopsy.29,38,39 CHD predisposes to SCD in 3 generalsettings: (1) acute myocardial infarction, (2) ischemia withoutinfarction, and (3) structural alterations such as scar forma-tion or ventricular dilatation secondary to prior infarction orchronic ischemia. In those who die suddenly of CHD, 19% to27%40,41 have pathological evidence for myocardial necrosis,and only 38% of cardiac arrest survivors will developenzymatic evidence of myocardial infarction.42 In autopsystudies, stable plaques and chronic changes alone are found in�50% of SCD patients with CHD41,43,44 suggesting thatplaque rupture and acute mycoardial infarction (MI) ispresent in some, but not the majority, of SCD cases.

Presumably, the mechanism of SCD in cases without acuteMI is an electric event due to a ventricular arrhythmia triggeredby ischemia or other arrhythmogenic stimuli in the setting of achronically diseased heart.45 This hypothesis is difficult to prove,because most deaths are not monitored, and those that areconstitute a highly selected population. Ventricular fibrillationdegenerates to asystole over the course of several minutes; as aresult, the majority of SCD patients demonstrate asystole orpulseless electric activity when first examined by rescue teams.34

In cases where there has been a relatively short delay betweencollapse and the initial determination of rhythm, the proportionwith documented ventricular tachyarrhythmias increases to 75%to 80% (Figure 5).42,46–49 Studies in epidemiological cohorts ofmen50 and women24 from the 1970s to 1990s suggest that 88%to 91% of deaths that occur within 1 hour of symptom onset arearrhythmic in nature. However, the proportion of SCD deathsdue to VF may be decreasing over time. VF is less oftenencountered as the initial rhythm in recent emergency medicalservices series,19 and the decline does not appear to be entirelyaccounted for by changing resuscitation patterns or patientcharacteristics.51

Figure 1. Incidence of sudden cardiac arrest according to age,sex, and race in the Chicago CPR project. The study populationwas comprised of 6451 patients including 3207 whites and 2910blacks. Adapted from Albert et al,23 with permission from the pub-lisher. Copyright © Massachusetts Medical Society, 1993.

Figure 2. Structural heart disease in cardiac arrest survivors.These pie charts depict the proportions of underlying cardiacdisease among men and women who survive out-of-hospitalcardiac arrests. The mean age was 58�12 years for men and55�17 years for women. Coronary artery disease was the prin-cipal diagnosis in the majority of men. In contrast, women hadmore nonischemic heart disease than men, including dilatedcardiomyopathy (19%) and valvular heart disease (13%).29 CADindicates coronary artery disease; DCM, dilated cardiomyopa-thy; VHD, valvular heart disease; SPASM, coronary vasospasm;and RV, right ventricular. Adapted from Albert et al,29 with per-mission from the publisher. Copyright © American Heart Associ-ation, Inc., 1996.

Figure 3. Relative risk of cardiac arrest in blacks in comparisonwith whites by age group. The bars represent 95% confidenceintervals. Adapted from Albert et al,23 with permission from thepublisher. Copyright © Massachusetts Medical Society, 1993.

Deo and Albert Sudden Cardiac Death 621

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 3: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

Risk FactorsStructural Heart DiseaseCoronary heart disease or congestive heart failure markedlyincreases SCD risk in the population.52 In the FraminghamStudy, preexisting CHD was associated with a 2.8- to 5.3-foldincrease in risk of SCD, and congestive heart failure wasassociated with a 2.6- to 6.2-fold increased risk.27 Afterexperiencing an MI, women and men have a 4- to 10-foldhigher risk of SCD, respectively.24,28 The absolute rate is

highest in the first 30 days after MI and decreases graduallywith time.53,54 The incidence of SCD after MI has declined inparallel with CHD mortality over time,54 and rates as low as1% per year in patients receiving optimal medical therapy andrevascularization have been documented.55,56 However, ratesare still high in certain subsets of post-MI patients withSCD.53 Both left ventricular dysfunction and New York HeartAssociation class are powerful risk factors for SCD inpatients with either ischemic or nonischemic cardiomyopa-thy,57 and implantable cardioverter defibrillators prolong lifein these high-risk patients.58,59 Other markers of structuralheart disease associated with elevated SCD risk include leftventricular hypertrophy,60,61 QTc prolongation,62 and abnor-mal heart rate profile during exercise.63 At the present time,none of these markers have been incorporated into riskstratification algorithms.

Although overt structural heart disease markedly increasesSCD risk, most patients who experience a cardiac arrest will nothave a left ventricular ejection fraction �35% documentedbefore SCD.2,18,30,64 This finding presents a major challengewhen designing SCD preventive strategies, because those mostat risk by current criteria make up a small percentage of the totalnumber of SCDs in the population. One recent study amongpostmenopausal women with overt CHD and relatively pre-served systolic function raised the possibility that a combinationof easily accessible clinical and epidemiological risk factorsmight be able to better reclassify SCD risk into clinicallymeaningful risk categories in comparison with left ventricularejection fraction alone.65 However, as is the case for leftventricular ejection fraction and most other clinical predictors,high risk patients identified by this approach were also at a

Figure 4. Critical pathways leading to electric instability and sudden cardiac death. HTN indicates hypertension; CHD, coronary heartdisease; CHF, congestive heart failure; LV, left ventricular; PUFA, polyunsaturated fatty acids; NEFA, nonesterified fatty acids; SCD,sudden cardiac death.

Figure 5. First cardiac rhythm documented at time of suddenarrhythmic death.46 VT indicates ventricular tachycardia; VF,ventricular fibrillation. Adapted from Bayes de Luna et al,46 withpermission from the publisher. Copyright © Elsevier, 1989.

622 Circulation January 31, 2012

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 4: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

similarly high risk for competing forms of cardiovasculardeath.53,66 The high risk for competing causes of death limits theeffectiveness of therapies such as the implantable cardioverterdefibrillators that are specifically targeted toward SCD preven-tion. In addition, SCD is often the first manifestation of cardio-vascular disease, and risk stratification in high-risk patients willnot address the majority of SCDs that occur in the population.Therefore, a more thorough understanding regarding risk factorsfor SCD in the general population is also needed.

CHD Risk FactorsBecause �80% of men who experience SCD have underlyingCHD, it follows that the standard CHD risk factors arepredictive of SCD in the general population. Modifiable CHDrisk factors that have been demonstrated to predict SCD indiverse cohorts include hypertension, hypercholesterolemia,diabetes mellitus,67–69 kidney dysfunction,70,71 obesity, andsmoking. 24,27,72,73 Although the prevalence of CHD amongfemale SCD patients may be lower than among male SCDpatients,29,30 conventional CHD risk factors still appear topredict SCD in women.24,28,65 Smoking, in particular, is animportant risk factor for SCD with risk elevations in thegeneral population similar to that conferred by MI.24,43,44

Continued smoking increases the risk of recurrent cardiacarrest,74 and smoking cessation is associated with a promptreduction in SCD risk among patients with CHD.26,75,76 Diabetesmellitus and hypertension are also strong risk factors forSCD,67–69 and recent evidence has highlighted the potentialimportance of diabetes as a potential risk stratifier for SCD evenin high-risk populations.77 Serum cholesterol appears to be morestrongly related to SCD at younger ages.24,28

All of the risk factors discussed above predict CHD ingeneral and are not specific for SCD, and with the exceptionof diabetes,65,77 kidney disease,65,70,71 and smoking,75 do notappear to predict SCD risk once overt CHD has beenestablished.52 However, modification of traditional CHD riskfactors will have an impact on SCD incidence at the popula-tion level. Reduced incidence rates of all manifestations ofCHD including SCD since the mid-1960s provide indirectevidence of the success of CHD risk factor modification.

Electrocardiographic Measures of RiskStandard 12-lead electrocardiographic measures includingheart rate, QRS duration, QT interval, and early repolariza-tion have been assessed as risk factors for SCD. Population-based studies have demonstrated that an elevated resting heartrate78 and prolonged QT interval increase SCD risk in thegeneral population.62,79 Similarly, a prolonged QRS durationhas also been associated with SCD.80,81 Recent interest hasfocused on early repolarization (ER) as a novel risk factor forSCD and cardiovascular death. ER is defined as an elevationof the junction between the end of the QRS complex and thebeginning of the ST segment (J point), and its presence in theinferior or lateral ECG leads has been associated with ahistory of sudden cardiac arrest and idiopathic VF in case-control studies.82–84 In a population-based study from Fin-land, ER patterns associated with �0.2 mV elevations in theinferior leads were associated with marked elevations in therisk of death from cardiac causes or from arrhythmia.85 In a

follow-up analysis from this same cohort, ER was associatedwith arrhythmic death only when horizontal or descending STsegments were present.84 Individuals with ER and rapidlyascending/upsloping ST segment were not at elevated risk.

Nutritional Risk FactorsDietary intake and blood-based measures of selected nutrientshave been specifically associated with SCD in observationalstudies (Table 1).70,86–101 Several epidemiological studies sug-gest that increased consumption of n-3 polyunsaturated fattyacids is inversely associated with SCD to a greater extent thannonfatal MI.102–106 In 4 observational studies, consuming fish�1 to 2 times per week was associated with 42% to 50%reductions in SCD risk.102–105 �-Linolenic acid, which is anintermediate chain n-3 polyunsaturated fatty acids found infoods of plant origin, has also been associated with a reducedrisk of SCD in 1 observational study of women.106 These datafrom relatively healthy observational cohorts support experi-mental data demonstrating a protective effect of these nutrientson arrhythmia susceptibility.107 Data from randomized clinicaltrials, however, have not consistently supported this hypothesis.The Gruppo Italiano per lo Studio della Sopravvivenzanell’Infarto miocardico (GISSI) Prevenzione trial, which testedsupplementation with n-3 polyunsaturated fatty acids (combina-tion of 850 mg eicosapentaenoic acid and docosahexaenoic aciddaily) in an open-label fashion among 11 324 patients withrecent MI, found a significant 45% reduction in SCD withoutany benefit on nonfatal MI or stroke.108 More recently, however,2 randomized, blinded trials of n-3 polyunsaturated fatty acidsperformed in post-MI populations were unable to confirm thesebenefits on SCD.109,110 The SCD event rates in both of thesepost-MI populations were much lower than expected, and thestudies were likely underpowered. As a result, it will bechallenging to test whether interventions reduce SCD rates inlower-risk populations.

Alcohol and magnesium intake may also have a selectiveeffect on SCD risk. Heavy alcohol consumption (�5 drinksper day) is associated with an increased risk of SCD73 but notnonfatal MI.111 In contrast, light-to-moderate levels of alco-hol consumption (� 1⁄2 to 1 drink per day) may be associatedwith reduced risks of SCD.112–114 Magnesium intake may alsobe related to SCD rates. In the Nurses’ Health Study, therelative risk of SCD was significantly lower among women inthe highest quartile of dietary magnesium intake. In additioneach 0.25 mg/dL (1 SD) increment in plasma magnesium wasassociated with a 41% reduced risk of SCD.87 A similarinverse association between serum magnesium and SCD wasalso found in the Atherosclerosis Risk in Communities study;however, a single measure of dietary magnesium intake wasnot associated with SCD risk.88

Finally, there is some evidence that certain dietary patternsthat account for additive and interactive effects of multiplenutrients115 are associated with lower SCD risk. AMediterranean-style diet consisting of higher intake of vege-tables, fruits, nuts, whole grains, fish, moderate intake ofalcohol, and low intake of red/processed meat, has beenassociated with lower risks of cardiovascular disease inclinical trials116 and observational studies.117 The associationappears stronger for fatal in comparison with nonfatal events,

Deo and Albert Sudden Cardiac Death 623

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 5: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

and may be driven partially through protection against ven-tricular arrhythmias and SCD.118 Recent data from theNurses’ Health Study suggest that women whose dietaryhabits most resemble the Mediterranean dietary pattern havea significantly lower risk of SCD.119

Biological MarkersIn addition to the nutrient biomarkers described above,multiple epidemiological investigations have evaluated dys-regulation in inflammatory, metabolic, and neurohormonalpathways as predisposing factors for SCD (Table 1). Several

Table 1. Biological Markers and Sudden Cardiac Death in Prospective Studies

Biomarker Mechanism Study Findings

Dietary markers

Long-chain n-3 fattyacids

Ionic channel stabilization,inflammation

Physicians’ Health Study86 (n�278) Baseline level of long-chain n-3 fatty acids were inversely relatedto the risk of SCD

Magnesium Repolarization, membranestabilization

Nurses’ Health Study87 (n�88 735) Higher plasma concentrations and dietary magnesium intake wereassociated with lower risks of SCD

ARIC study88 (n�14 232) Participants in the highest quartile of serum Mg were at asignificantly lower risk of SCD compared with those in the lowest

one

Nonesterified fattyacids

Membrane stabilization Paris Prospective Study89 (n�5250men)

Fasting plasma NEFA measurements at baseline wereindependently associated with SCD after a 22-y follow-up period

Trans-fatty acids Inflammation, endothelialdysfunction

Cardiovascular Health Study90

(n�428)Higher plasma phospholipid trans-18:2 fatty acids were associatedwith higher risk of SCD. Higher trans-18:1 levels were associated

with lower SCD risk

Inflammatory markers

CRP, IL-6,fibrinogen

Inflammation, oxidativestress, insulin resistance

PRIME Study91 (n�9771 men) Baseline concentrations of IL-6, but not CRP or fibrinogen, were anindependent risk factor for SCD after 10 y of follow-up

CRP Inflammation, oxidativestress

Nurses’ Health Study92 (n�121700 women)

Baseline concentrations of CRP were not associated with SCDevents after 16 y of follow-up

CRP Inflammation, oxidativestress, apoptosis

Physicians’ Health Study93 (n�22,071 men)

Baseline CRP levels were associated with an increased risk of SCDover a 17-y follow-up period

ST2 Interleukin-1 receptor,myocardial fibrosis

MUSIC Registry,94 ambulatory heartfailure patients (n�99)

Over a 3-y follow-up period, elevated soluble ST2 concentrationsat baseline were independently associated with SCD

Metabolic markers

Aldosterone Myocardial tension,fibrosis, electrical

remodeling

STEMI population95 (n�356) Among patients referred for primary PCI for STEMI, highaldosterone levels at admission were associated with death or

resuscitated cardiac arrest during a 6-mo follow-up period

Cystatin C Marker of glomerularfiltration rate

Cardiovascular Health Study,70

excluded participants withprevalent cardiac disease

(n�4482)

Over a median follow-up of 11.2 y, elevated cystatin Cconcentrations at baseline had an independent association withSCD in elderly people without prevalent cardiovascular disease

Renin Fibrosis and electricalremodeling

LURIC study,96 patients referred forcoronary angiography (n�3303)

Baseline plasma renin is associated with long-term cardiovascularmortality including both SCD and death due to heart failure.

Vitamin D andparathyroidhormone

Fibrosis, electricalremodeling, metabolic

effects

Cardiovascular Health Study,97

excluded participants withprevalent cardiac disease

(n�2312)

The combination of lower vitamin D and higher PTH concentrationswas an independent risk factor for SCD among older adults

without cardiovascular disease

Vitamin D Fibrosis and electricalremodeling

German Diabetes and DialysisStudy98 (n�1108)

Over a median follow-up of 4 y in this dialysis cohort withdiabetes, severe vitamin D deficiency was associated with SCD

Neurohormonal markers

BNPNT-pro-BNP

Increased myocardialtension

Nurses’ Health Study92 (n�121700 women)

Increased baseline NT-pro-BNP concentrations were independentlyassociated with SCD events after 16 y of follow-up

Cardiovascular Health Study99

(n�5447)Elevated baseline NT-pro-BNP levels were associated with SCD

after a median 12.5 y follow-up period

Vienna Heart Failure cohort (LVEF�35%)100 (n�452)

After 3 y of follow-up, elevated BNP levels at baseline were anindependent risk factor for SCD in patients with CHF

Multiple Risk Factor Analysis Trial(MRFAT, post-MI population) 101

(n�521)

During a 3.5-y follow-up period, elevated baseline BNP levels wereassociated with SCD after adjustment for clinical risk factors and LVEF

SCD indicates sudden cardiac death; ARIC, Atherosclerosis Risk in Communities; NEFA, nonesterified fatty acids; IL-6, interleukin 6; CRP, C-reactive protein; PRIME,Etude PRospective de l’Infarctus du Myocarde; MUSIC, MUerte Súbita en Insuficiencia Cardíaca; STEMI, ST segment elevation myocardial infarction; PCI, percutaneouscoronary intervention; LURIC, Ludwigshafen Risk and Cardiovascular Health; PTH, parathyroid hormone; BNP, brain natriuretic peptide; NT pro-BNP, amino-terminalpro-B type natriuretic peptide; and LVEF, left ventricular ejection fraction.

624 Circulation January 31, 2012

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 6: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

epidemiological studies have assessed biomarkers at a timewhen the majority of participants are free of significantclinical cardiovascular disease. As a result, abnormal concen-trations may reflect subclinical changes in cardiovascularprocesses that eventually predispose individuals to SCDrisk. The early stages of hemodynamic stress, atheroscle-rotic plaque instability, and cardiac remodeling may onlybe detectable with biomarkers that are associated withinflammatory processes, metabolic factors, and neurohor-monal regulation. Experimental evidence suggests thatthese markers regulate pathophysiologic mechanisms im-plicated in CHD, heart failure, and cardiac arrhythmias.Although many of the prospective epidemiological studieson which these inferences are based have enrolled manyparticipants, they contain only a limited number of SCDevents. Future studies will require larger samples of SCDcases with prospectively collected blood samples to vali-date these findings and to determine whether biomarkershave a diagnostic role120 in identifying high-risk individ-uals in the general population.

TriggersSCD risk in the population is not only a function of theunderlying substrate and its vulnerability to arrhythmias but alsothe frequency of exposure to acute precipitants or triggers(Figure 4). These triggers tend to increase sympathetic activity,which in turn may precipitate arrhythmias and SCD.

Diurnal/Seasonal VariationSeveral studies have demonstrated a circadian pattern to theoccurrence of SCD and out-of-hospital cardiac arrest.121 Thepeak incidence occurs in the morning hours from 6 AM to

noon122 with a smaller peak in the late afternoon for out-of-hospital VF arrests.123,124 This morning peak in SCD is bluntedby �-blockers,125 supporting the concept that excessive activa-tion of the sympathetic nervous system in the morning hoursmay be responsible. Weekly and seasonal patterns to SCD onsethave also been appreciated. The risk of out-of-hospital cardiacarrest126 and SCD127 appears to be highest on Monday with anadir over the weekend.126 These patterns of onset suggest thatactivity and psychological exposures play roles in triggeringSCD. There have also been reports of seasonal variation in SCDrates with lower rates in the summer and higher rates in wintermonths in both hemispheres.127,128 SCD may be associated withendogenous rhythms and environmental factors including tem-perature,128,129 sunlight exposure, and other climatic conditions.

Physical ActivityPhysical activity has both beneficial and adverse effects on SCDrisk. Most studies,65,73,130–133 but not all,134,135 have foundinverse associations between increasing regular physical activityand SCD or sudden cardiac arrest. Results are most consistentfor moderate levels of exertion,65,73,131–133 where the majority ofstudies have documented favorable associations. Despite thelong-term benefits of exercise, it is also well known that SCDoccurs with a higher-than-average frequency during or shortlyafter vigorous exertion.136 Case-control and case-crossover stud-ies performed among men have demonstrated that vigorousexertion can trigger cardiac arrest130 and SCD.135 Regularvigorous exertion diminishes the magnitude of this excess risk;however, the risk remains significantly elevated even in the mosthabitually active men.137 The magnitude of the risk associatedwith exertion appears to be lower among women133 whereexertion-related SCD is much less common (Figure 6).137 The

Figure 6. Sports engaged in at the time of the SCD events among 820 SCD events associated with exertion in France. N refers to the abso-lute number of SCD events that occurred during the specified sport. The percentage refers to the percent of deaths engaged in the specificactivity. The pink-shaded region represents the number of women.137 SDs indicate sudden deaths; SCD, sudden cardiac death. Adaptedfrom Marijon et al,137 with permission from the publisher. Copyright © American Heart Association, Inc., 2011.

Deo and Albert Sudden Cardiac Death 625

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 7: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

effect of exertion on plaque vulnerability138 and the sympatheticnervous system could account for both the transiently increasedrisk of SCD during a bout of exertion and the ability of habitualvigorous exercise to modify this excess risk.139,140 Acute boutsof exercise decrease vagal activity leading to an acute increase insusceptibility to ventricular fibrillation,139 whereas habitual ex-ertion increases basal vagal tone, resulting in increased cardiacelectric stability.

Despite these transiently elevated relative risks, the abso-lute risk of SCD during any particular episode of exertion isextremely low in most series,141 and exertion-related SCDsare felt to be relatively rare outcomes. A recent nationalsurvey in France estimated that the incidence of exertion-related SCD in the population may be as high as 17 cases permillion population per year.137 In this study, the absolutenumber of SCDs associated with exertion in the generalpopulation (n�770) far exceeded that observed among youngcompetitive athletes (n�50), where the majority of the publicattention has been directed.

Psychosocial DeterminantsLower socioeconomic status, depression, anxiety, social isola-tion, and psychological stress have all been linked to an increasein cardiovascular mortality in diverse populations.142,143 Al-though arrhythmic mechanisms have been postulated to partlyunderlie these associations, there are few studies that haveprospectively examined associations with SCD. The incidenceof SCD is higher in regions with lower socioeconomic status,and this gradient in risk is more exaggerated below age 65.144

Chronic psychological stressors such as anxiety disorders anddepression have also been associated with SCD in population-based studies. Phobic anxiety has been directly associated withSCD, but not nonfatal MI risk, in 3 separate populations ofmen145 and women.146 Depression has also been associated withelevated risks of cardiac arrest147 and SCD among womenwithout CHD.148 In addition to the chronic effects of psychos-ocial stress, it appears that acute mental stress can trigger SCDas well. Acute increases in the incidence of SCD have beendocumented in populations experiencing disasters such as earth-quakes or wars.149,150 In addition to disasters, life stresses such asdeath of a spouse and loss of a job have been associated with anincrease in total mortality151 and SCD152 in healthy populations.

Genetic Predisposition to SCDOver the past decade, investigations focused on the geneticbases of rare, inherited arrhythmic diseases (IADs) haveprovided insight into understanding the heritability of vulner-ability to ventricular arrhythmias.153 The discovery of novelgenes implicated in IADs and the effects of mutant alleles onbasic electrophysiology raised the possibility that commongenetic variants or polymorphisms in these same regions mayaccount for part of the familial component of SCD riskobserved in epidemiological studies. Subsequently, comple-tion of the Human Genome Project provided the foundationto identify novel genes and biological pathways implicated inconduction system disease, cardiac arrhythmias, and SCD.

Familial StudiesSeveral studies have demonstrated a familial predisposition toSCD.72,154–156 SCD events and fatal arrhythmias such as VF are

often the initial manifestation of an acute myocardial infarctionand appear to cluster in families. Two case-control studiesdemonstrate that a history of SCD in a first-degree relative is anindependent risk factor for VF155 or SCD156 in the setting of anacute myocardial infarction (AMI). Similar results have beendocumented in a prospective population-based study, whereparental history of SCD was ascertained before death. Over a 20plus year follow-up period,72 parental history of SCD was anindependent risk factor for SCD (RR�1.80; 95% CI 1.11–2.88),but not for fatal MI. Conversely, a parental history of fatal MIwas only associated with an increased risk of fatal MI and had noeffect on risk of SCD. These data in aggregate suggest that thefamilial aggregation of SCD or ischemic VF may be distinctfrom the familial risk pattern of MI or CHD. The consistentassociations implicating a family history of arrhythmic death asan independent risk factor for SCD in the general population hasled to several studies focused on identifying genetic variants thatmay influence vulnerability to ventricular arrhythmias and SCDin the population.

Intermediate Phenotypes for SCD:ECG Variables

As discussed previously, quantitative measures obtained fromECGs, including those for heart rate, QRS duration, and QTinterval, have been associated with SCD. These measures areheritable and have multiple environmental and genetic contrib-utors.157–161 As a result, genetic working groups across the worldhave partnered to identify common genetic variations associatedwith these quantitative traits through genome-wide associationstudies (GWAS). These genetic variants, which usually confermodest effects, may provide further insight, not only into thecardiac conduction system, but also into arrhythmic diseasesincluding SCD. Novel variants identified through this mecha-nism may also eventually serve as susceptibility alleles for SCDin the population.

QT IntervalThree GWAS focused on variation in the QT interval amongindividuals of European ancestry have been completed.162–164 Intotal, these studies evaluated almost 30 000 individuals.163,164

Approximately half the loci identified in these unbiasedanalyses map near the monogenic long–QT-syndrome genes(KCNQ1, KCNH2, KCNE1, and SCN5A) (Table 2). Thestrongest and most consistent signal is within the NOS1APgene, which encodes a nitric oxide synthase 1 adaptorprotein.162 This gene has been demonstrated to be a modula-tor of myocardial repolarization in translational models,165

and variants in NOS1AP also modulate risk in the long-QTsyndrome.166,167 Approximately half the genetic variantsidentified in these GWAS were in loci not previously impli-cated in cardiac electrophysiology or recognized to regulatemyocardial repolarization. In combination, these variantsexplain �5% to 6% of variation in QT interval.

QRS IntervalA recent genome-wide meta-analysis of 14 studies includinga total of 40 407 individuals of European descent has identi-fied 22 loci associated with QRS duration (Table 2).168 Someof these loci map within or near genes implicated in ventric-

626 Circulation January 31, 2012

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 8: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

Table 2. Genetic Variants of ECG Traits Identified Through Genome-Wide Association Studies

Chr Gene/Region SNPCoded Allele

Freq. Eff. (ms) Findings/Notes

QT interval

1p36 RNF207 rs846111 0.29 1.5 The function of this locus is unknown

1q24 ATP1B1 rs10919071 0.87 2.0 ATP1B1 encodes a transmembrane protein that maintains Na� andK� gradients across the membranes

1q23 NOS1AP rs12143842 0.24 3.2 Neuronal nitric oxide synthase 1 regulates calcium cycling in thesarcoplasmic reticulum

3p22 SCN5A rs12053903 0.34 �1.2 Rare variants in SCN5A result in long-QT syndrome type 3 and theBrugada syndrome

6q22 c6orf204, SLC35F1,PLN

rs11756438 0.47 1.4 PLN inhibits cardiac sarcoplasmic reticulum Ca2�-ATPase.Increased PLN activity is linked to cardiomyopathy and ventricular

tachycardia

7q36 KCNH2 rs2968864 0.25 �1.4 Rare variants in KCNH2 are associated with congenital long-QTsyndrome type 2 and short-QT syndrome type 17q36 KCNH2 rs4725982 0.22 1.6

11p15 KCNQ1 rs2074238 0.06 �7.9 Rare variants in KCNQ1 are associated with long-QT syndrometype 1 and short-QT syndrome type 211p15 KCNQ1 rs12576239 0.13 1.8

16p13 LITAF rs8049607 0.49 1.2 This gene has no known association with myocardial repolarization

16q21 NDRG4 rs7188697 0.74 1.7 Novel locus associated with myocardial repolarization

17q12 LIG3 rs2074518 0.46 �1.1 LIG3 encodes DNA ligase III repair; the mechanism of modulatingrepolarization is unknown

17q24 KCNJ2 rs17779747 0.35 �1.2 Rare variants are associated with Anderson syndrome, which ischaracterized by periodic paralysis, dysmorphic features and

ventricular arrhythmias

21q22 KCNE1 rs1805128 0.01 0.88 Rare variants in KCNE1 result in long-QT syndrome type 5

QRS interval

1p31 NFIA rs9436640 0.46 �0.59 The association of Nuclear Factor One with QRS duration isunclear

1p32 CDKN2C rs17391905 0.05 �1.35 This gene is a cyclin-dependent kinase inhibitor and regulates cellgrowth

1p13 CASQ2 rs4074536 0.29 �0.42 Calsequestrin 2 is a calcium-handling protein that regulatesopening of the ryanodine receptor. Mutations in CASQ2 have been

implicated in CPVT

2p22 HEATR5B, STRN rs17020136 0.21 0.51 Striatin is a calmodulin-binding protein. It has recently beenimplicated in a dog model of ARVC

2p21 CRIM1 rs7562790 0.40 0.39 CRIM1 is expressed in cardiac tissues and encodes atransmembrane protein that may bind to various members of the

TGF-� superfamily of ligands

3p22 SCN10A, SCN5A rs9851724 0.33 �0.66 Both genes encode voltage-gated Na channels and are important incardiac conduction. SCN5A is also associated with the QTc interval

3p14 TKT, PRKCD,CACNA1D

rs4687718 0.14 �0.63 TKT is an enzyme used in multiple metabolic pathways

3p14 LRIG1, SLC25A26 rs2242285 0.42 0.37 LRIG1 is upregulated in malignancies

5q33 HAND1, SAP30L rs13165478 0.36 �0.55 HAND1 encodes a transcription factor essential to cardiacdevelopment. Mutations have been associated with septal defects

and ventricular arrhythmias

6p21 CDKN1A rs9470361 0.25 0.87 CDKN1A is a cyclin-dependent kinase inhibitor that is important forcardiac conduction system development. It can also aid with gap

junction assembly

6q22 C6orf204, SLC35F1,PLN

rs11153730 0.49 0.59 Cardiac PLN regulates calcium uptake into the sarcoplasmicreticulum by SERCA2a. This locus is also associated with the QTc

and left ventricular end diastolic dimension

7p14 TBX20 rs1362212 0.18 0.69 TBX20 demarcates the left and right ventricles

7p13 IGFBP3 rs7784776 0.43 0.39 The function of this locus is unknown

10q25 VTI1A rs7342028 0.27 0.48 The function of this locus is unknown

(Continued)

Deo and Albert Sudden Cardiac Death 627

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 9: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

ular conduction, such as sodium channels, transcription fac-tors, and calcium-handling proteins. In addition, several lociare associated with previously unidentified biological pro-cesses. Several of these loci also exhibit associations with PRinterval and QT interval, but most often in the inversedirection for the latter. Overall, these loci in combinationexplain �5.7% of the observed variance in QRS duration.The strongest association signal mapped in or near 2 genes,SCN5A and SCN10A, which encode the �-subunit of theNav1.5 and Nav1.8 sodium channels, respectively. TheSCN5A locus is well established as a susceptibility locus fora variety of IADs, but the involvement of SCN10A in cardiacconduction was previously unrecognized until an initialGWAS identified associations with PR interval and QRSduration.169,170 Experimental models suggest that the SCN10Atranscript and product are expressed in mouse and humanhearts169 and localize to the mouse His-Purkinje system.168

RR IntervalGWAS have identified 9 loci associated with heart rate inpopulations of European ancestry (Table 2).170,171 Two of theseloci have been identified in participants of East Asian ances-try.172 One of the variants described in both Europeans and EastAsians is located on chromosome 6q22 and is located near theGJA1 gene. GJA1 encodes gap junction protein and is critical forsynchronized contraction of the heart. It is a major component ofcardiac gap junctions173 and is known to play a role inarrhythmogenesis.174,175

Genetic Determinants of ECG Phenotypes asSusceptibility Alleles for SCDSeveral of the single-nucleotide polymorphisms (SNPs) andrelated loci associated with variations in ECG phenotypeshave been evaluated for specific associations with SCD.NOS1AP variation has been associated with SCD risk in 3

Table 2. Continued

Chr Gene/Region SNPCoded Allele

Freq. Eff. (ms) Findings/Notes

10q11 DKK1 rs1733724 0.25 0.49 DKK1 is involved with axial development during embryologicaldevelopment. It also inhibits the Wnt signaling pathway, which is

an important modulator of connexin43 activity

12q24 TBX5 rs883079 0.29 0.49 TBX3 and TBX5 encode transcription factors found in the cardiacconduction system. TBX5 (activator) competes with TBX3

(repressor) for the regulation of myocardial genes such as GJA1.Mutations in TBX3 and TBX5 have been associated with rareinherited syndromes manifested by structural and conduction

defects

12q24 TBX3 rs10850409 0.27 �0.49

13q22 KLF12 rs1886512 0.37 �0.40 The association of this transcription factor with QRS duration isunclear

14q24 SIPA1L1 rs11848785 0.27 �0.50 It contributes to Wnt signaling and cardiac development

17q22 PRKCA rs9912468 0.43 0.39 Protein kinase C alters sarcoplasmic reticulum Ca2� loading.

17q21 GOSR2 rs17608766 0.16 0.53 The function of this locus is unknown

18q21 SETBP rs991014 0.42 0.42 The function of this locus is unknown

RR interval

1q32 CD46, LOC148696 rs12731740 0.03 �5.9 This locus has an unclear association with heart rate. It has beenobserved in both white and nonwhite studies

6q22 GJA1 rs9398652 0.49 �12.7 GJA1 encodes Cx43, a connexin family protein and component ofcardiac gap junctions. It is responsible for synchronized cardiac

contractions. Mutations in GJA1 have been implicated inhypoplastic left heart syndrome

6q22 SLC35F1, PLA rs281868 0.44 1.50 This locus is �3 Mb away from GJA1. It is also associated withQTc. PLN is also involved in excitation-contraction coupling and

intracellular calcium signaling

7q22 SLC12A9 rs314370 0.94 9.65 It encodes a Cl� cotransporter interacting protein

7q22 UfSp1 rs12666989 0.07 �9.31 The function of this locus is unknown

11q12 FADS1 rs174547 0.91 4.20 FADS1 was previously associated with cholesterol levels

12q24 GPR133 rs885389 0.30 �14 This locus encodes a G-protein-coupled receptor and is expressedin both the atria and ventricles

14q12 MYH6 rs452036 0.62 �9.65 Two different sarcomeric MYHC isoforms are present: �-MYHC(encoded by MYH6) and �-MYHC (encoded by MYH7). Mutations in

these genes have been implicated in various cardiomyopathies14q12 MYH6 rs365990 0.38 9.80

14q12 MYH7 rs223116 0.77 �4.47

Chr indicates chromosome; SNP, single-nucleotide polymorphism; Freq., frequency; Eff., effectiveness; PLN, phospholamban; CPVT, catecholaminergic polymorphicventricular tachycardia; ARVC, arrhythmogenic right ventricular cardiomyopathy; TGF-�, transforming growth factor beta; TKT, transketolase; and MYHC, myosin heavychain.

628 Circulation January 31, 2012

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 10: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

separate studies.176–178 In a combined analysis of 334 SCDsamong white individuals participating in the AtherosclerosisRisk In Communities Study and Cardiovascular HealthStudy, a tagging SNP approach identified 2 intronic variantsin NOS1AP that were associated with SCD even aftercontrolling for QT interval. Interestingly, the variant with thestrongest association (rs12567209) was not associated withQT-interval duration. A follow-up study in the Rotterdamcohort found evidence for replication for this latter variant inanalyses limited to witnessed SCDs177; however, a case-control study from Oregon did not.178 The latter studyreported another variant, which was correlated with thers12567209 SNP, to be nominally significant. A recent studyexamined 49 independent loci, including NOS1AP, associatedwith intermediate ECG traits of QT interval, QRS duration,and heart rate in 1283 SCD cases.179 Only one locus,TKT/CACNA1D/PRKCD, which had been previously associ-ated with QRS duration, was associated with SCD afteradjustment for multiple testing. However, the QRS-prolonging allele was associated with a reduction in risk,which was opposite to that predicted based on associationsbetween QRS duration and SCD.

All of the above common variants individually confer rela-tively modest effect sizes on ECG characteristics, and, thus, maynot display detectable associations with SCD even with largesample sizes. Therefore, attempts have been made to combinevariants into a genetic risk score to increase the power to detectassociations. Recently, all genome-wide significant SNPs asso-ciated with the QT interval were entered into a QT genotypescore, which was then evaluated for an association with SCD in2 Finnish cohort studies.180 The QT genotype score was linearlyassociated with QT interval and explained 8.6% of the variancein the QT interval within these populations. A linear relationshipbetween the genotype score and SCD risk, however, was notdetected for the combined 116 SCD cases within these cohorts,which may have been underpowered. From these data, it hasbecome clear that genetic variants identified in genome-widestudies on ECG markers can provide important information forfuture translational and experimental work, but will not besufficient to explain the heritability of SCD.

Intermediate Phenotypes for SCD: CHDGiven the high prevalence of CHD, often undiagnosed inSCD patients, genetic variants that are associated with CHDmay also serve as susceptibility alleles for SCD in the generalpopulation. Shared variants for both traits may further ourunderstanding regarding biological processes that predisposeto SCD in the setting of CHD. International consortiums havemeta-analyzed GWAS to enhance the power of identifyingloci associated with CHD in European, African American,and South Asian populations.181–183 The most recent meta-analysis included �22 000 cases of CHD in both the discov-ery and replication phase and identified 10 previously recog-nized and 13 novel loci associated with CHD.181 The majorityof these loci reside in gene regions that were not previouslysuspected in the pathogenesis of coronary disease. Thestrongest association signal remains a region on chromosome9p21 that has been documented to regulate expression of 2cyclin-dependent kinase inhibitor genes CDKN2A and

CDKN2B,184 known to have critical roles in cell proliferation,aging, senescence, and apoptosis.185 SNPs that tag the 9p21region have been specifically associated with SCD in ameta-analysis involving 492 SCDs among white individualsfrom 6 prospective cohort studies.186 None of the other lociassociated with CHD in GWAS have been reported to beassociated with SCD.

Candidate Genes Analyses of SCDThese examinations of genetic variation associated withintermediate phenotypes have been complemented by studiesusing a candidate gene approach to identify susceptibilityalleles for SCD. This hypothesis-driven approach has focusedon several biological pathways implicated in the monogenicarrhythmia disorders and SCD within the population.

Common VariantsPolymorphisms in genes fundamental to electric propagation,cardiac conduction, sympathetic activation, thrombosis, athero-genesis, and the renin-angiotensin-aldosterone system have beenassessed for associations with SCD in isolated studies using avariety of designs and definitions (Table 3).178,187–200 The prev-alence of allelic variants in these studies is at least 5% andoften extends to 50% to 60% of the control population. As aresult, it is expected that these variants will have a modesteffect on SCD risk, because a particularly deleterious variantwould evolve over time to a rare variant/mutation in thehuman gene pool (Figure 7). The vast majority of theseassociations have not been independently replicated. Of thecandidates studied, genetic variants encoding for amino acidpolymorphisms in the �2-adrenergic receptor (Gln27Glu in�2AR) in whites191,193 and the �-subunit of the Nav1.5 cardiacsodium channel (Y1102A in SCN5A) in African Ameri-cans189,190,201 have been associated with SCD or arrhythmicevents in �1 study; however, results have not been entirelyconsistent.192

Rare VariantsGiven the high lethality of SCD, it is possible that the geneticarchitecture might be more similar to that underlying the rareIADs, which is characterized by rare alleles associated withvariable penetrance. Such rare alleles are best detected by directsequencing, which is rapidly becoming more accessible becauseof the development of next-generation sequencing technologies.To our knowledge, very few studies have used sequencing toexamine rare variation in unselected SCD cases from adultpopulations.188,202 The entire coding sequence and splice junc-tions of 5 ion channel genes associated with IADs, SCN5A,KCNE1, KCNE2, KCNQ1, and KCNH2, were directly se-quenced in 113 cases of SCD.202 No unique or rare codingsequence variants were identified in any of the ion channel genesin 53 men.188 In 60 women with SCD, 6 rare missense variants(10%) were identified in the cardiac sodium channel gene(SCN5A).202 The overall frequency of these rare variants inSCN5A was significantly higher in the SCD cases than in 733controls from the same population (1.6%; P�0.001), and subtlealterations in ion channel function were observed for 4 of the 5variants. Although not a common cause of SCD, these datasuggest that functionally significant mutations and rare variants

Deo and Albert Sudden Cardiac Death 629

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 11: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

Table 3. Candidate Genes for SCD in the General Population

Study GeneFrequency ofVariant Allele Population

N (SCDCases/

Controls) Findings/Notes

Ion channels

Westaway et al 2011178 CASQ2 GPD1L 10–45% Americans of Europeanancestry, general population

670/299 Polymorphisms in these genes are associatedwith SCD

Albert et al 2010187 KCNQ1 KCNH2SCN5A KCNE1

KCNE2

60–70% Americans of Europeanancestry, general population

516/1522 2 intronic variants (1 in KCNQ1 and 1 inSCN5A) were associated with SCD

Stecker et al 2006188 SCN5A 1–4% Americans of Europeanancestry with coronary disease

67/91 No association was observed between SCN5Apolymorphisms or mutations with SCD

Burke et al 2005189 SCN5A (Y1102A) 9% Blacks, general population 182/107 Y1102A was associated with unexplainedarrhythmic death and SCA

Splawski et al 2002190 SCN5A (Y1102A) 13% Blacks, general population 23/100 Variant is associated with an increased riskof SCD or medication induced QTc

prolongation

Autonomic nervous system

Gavin et al 2011191 �2AR (Gln27Glu) 45% Americans of Europeanancestry, general population

492/1388 When combined with the 2 analyses below,the �2AR polymorphism is associated with

SCD

Tseng et al 2008192 �2AR and �1AR 30–40% (�2AR)10–30% (�1AR)

Aborted SCD and history ofMI/CAD, 75% Americans of

European ancestry

107/388 No association was observed between any ofthe �AR polymorphisms and SCD

Sotoodehnia et al 2006193 �2AR (Gln27Glu) 43% whites,19% blacks

American cohort (4441European ancestry, 808

Blacks)

195/5249 The �2AR variant is associated with SCD inwhites but not blacks

Snapir et al 2003194 Alpha2B-AR 48% Finnish, population based 278/405 The deletion/deletion genotype of the�2B-adrenoceptor gene increased the risk for

SCD in middle-aged men

Thrombotic and atherogenicfactors

Hernesniemi et al 2008195 IL-18 26% Finnish, population based 275/388 The IL-18 polymorphism is associated withSCD

Mikkelsson et al 2002196 GPIa 35–40% Finnish, population based 275/369 Polymorphisms on the glycoprotein Iareceptor are not associated with SCD

Reiner et al 2002197 Factor V Leidenand PT 20210A

6–9% American cohort (93%European ancestry)

145/592 Mutations in these genes are not associatedwith SCD

Mikkelsson et al 2001198 GPIb� 23% Finnish 255/367 The variant was associated with coronarythrombosis, fatal MI, and SCD in middle-aged

men

Mikkelsson et al 2000199 GPIIIa 30–40% Finnish, population based 281/385 The PlA1/A2 polymorphism of GPIIIa is a riskfactor for coronary thrombosis and SCD in

middle age

Angiotensin-convertingenzyme pathway

Sotoodehnia et al 2009200 REN 15% Americans of Europeanancestry, population based

211/730 Variations in AGTR1 and AGTR2 areassociated with SCA risk in a

population-based case-control studyAGTR1

AGTR2

ACE2

BDRK2

AGT

ACE

KNG1

SCD indicates sudden cardiac death; SCA, sudden cardiac arrest; �1AR, �1-adrenergic receptor; �2AR, �2-adrenergic receptor; MI, myocardial infarction; CAD,coronary artery disease; and IL-18, interleukin 18.

630 Circulation January 31, 2012

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 12: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

in SCN5A may contribute to SCD risk among women in whomthe prevalence of structural heart disease is lower.29,39

GWAS of SCDIn addition to these candidate gene studies for SCD, GWAShave been performed directly on SCD cases to identify novelgenetic variants associated with SCD risk. This unbiased ap-proach has the potential to discover previously unsuspectedgenetic variants and novel biological pathways involved in thegenesis of lethal ventricular arrhythmias. The number of vali-dated loci achieving genome-wide significance for SCD, how-ever, is much smaller than for other complex diseases. Thisfinding is likely due, in large part, to the smaller numbers ofSCD cases available for genetic analyses and greater heteroge-neity with respect to underlying pathology and case definitionsin comparison with other complex phenotypes.

One recent study sought to minimize heterogeneity by focus-ing on a highly specific arrhythmic phenotype. In the AGNEScase-control study,203 a GWAS was performed among 505 casesof VF and 457 controls, all presenting with a first ST-elevationMI. SNPs on chromosome 21q21 were associated with VF at alevel of genome-wide significance. The strongest signal, whichwas found at rs2824292, remained significantly associated withVF (OR�1.51; 95% CI, 0.30–0.76; P�0.005) after adjustmentfor baseline characteristics and was replicated in another 156cases of VF arrest in the setting of an acute MI from theARREST study. The genetic locus is situated near the CXADRgene, which encodes the coxsackievirus and adenovirus receptor(CAR) protein.204,205 These proteins have a recognized role inthe pathogenesis of viral myocarditis206 and may also be in-volved in connexin localization at intercalated discs of AV nodalmyocytes.207

Another recently published GWAS used a broader spectrumof SCD cases from case-control and cohort studies.179 Agenome-wide approach was implemented to identify variationsamong 1283 SCD cases from 5 separate studies and 20 000controls, all of European ancestry. The most significant SNPs inthis discovery phase were then genotyped in an additional 1730SCD and VF cases and 10 530 controls of European ancestry.The combined meta-analyses of all discovery and replication

populations resulted in the discovery of a novel marker at theBAZ2B locus (bromodomain adjacent zinc finger domain 2B)which reached genome-wide significance with a relativelystrong effect size (OR�1.92; 95% CI�1.57–2.34). The putativerisk allele was rare (minor allele frequency 1.4%) and in stronglinkage disequilibrium with genes critical in cardiogenesis andformation of the autonomic nervous system. This finding of arare variant, which is unusual for GWAS, highlights the poten-tial role that rare variants may play in SCD risk.

It should be noted that an unbiased evaluation of variantsassociated with SCD in these 2 genome-wide studies did notidentify the same variants. This lack of replication, which iscommonly seen in genetic studies related to SCD, probablyrelates to heterogeneity in the case definition. Although the casedefinition used in the AGNES study is highly specific, it is alsoquite selective and would not apply to the majority of SCDs inthe community.40–42 In contrast, the majority of cases in thepopulation-based samples were out-of-hospital SCD events de-fined broadly. However, the heterogeneity both within andbetween studies probably limited the power to detect associa-tions, even with a larger number of cases. Phenotypic homoge-neity, therefore, is critical across studies, especially when pool-ing results in a genome-wide analysis to detect variants withsmall effects. Larger sample sizes and a greater effort towardestablishing homogenous subphenotypes will be needed toidentify and replicate additional genetic variants associated withSCD.

Future DirectionsAlthough much is known regarding risk factors for SCD, there isstill a paucity of data for important subgroups within thepopulation, and established racial and sex differences are poorlyunderstood. In addition, our ability to accurately identify indi-viduals most at risk for SCD within the population remains poor.Unlike global CHD risk prediction, where there are widelyaccepted predictive models, there are no similar models for SCDrisk prediction among the general population, despite multiplestudies reporting on individual risk factors. Risk stratificationalgorithms based on findings from epidemiological studies thatevaluate traditional cardiovascular risk factors, lifestyle anddietary habits, biological markers, and genetic variants in com-bination may aid in the identification of susceptible subgroupswithin the population. It will also be critical to determinewhether novel markers associate with SCD to a greater extentthan with other manifestations of heart disease. Such markerswill not only improve risk stratification, but will also provideinsights into arrhythmic mechanisms within the population thatcould lead to novel preventive and therapeutic strategies.

The heritability of SCD remains poorly understood with thecurrent data. Although candidate gene and genome-wide analy-ses have enlightened our appreciation for the intricacies ofcardiac electrophysiology, arrhythmias, and SCD, many ques-tions remain. Very few of the SNPs identified or assessed inthese studies have been replicated, and many do not have clearfunctional implications as of yet. Because of the rapid develop-ment of next-generation sequencing technologies, large-scalesequencing projects are becoming possible that will allow theexamination of rare genetic variation as a component of SCDrisk. It is also possible that structural variations, including

Figure 7. Overview of genetic studies. Genome-wide associa-tion studies aim to identify common allelic variants that have alow relative risk of disease. Evolution will select for variants thatcarry a high relative risk of disease; as a result, they will be rare.

Deo and Albert Sudden Cardiac Death 631

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 13: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

copy-number variants, inversions, and translocations, may con-tribute to SCD risk and will not be identified with standardGWAS and sequencing techniques. To address this potentialcomplexity of the genetic architecture, large-scale collaborationsinvolving populations with synchronized definitions of SCD willbe necessary.

SCD is a complex disorder that has been a research andclinical focus for several decades. As our understanding ofthis condition continues to improve with epidemiologicalstudies, experimental investigations, and clinical trials, strat-egies to reduce the incidence and lethality of SCD across thepopulation remain important priorities. Low-risk interven-tions and therapies that are directed toward cardiovasculardisease in general and SCD specifically will likely helpreduce the burden of SCD in the population. In addition,continued campaigns in SCD education and awarenessamong the population remain important steps in reducing theimpact of this condition.

Sources of FundingDr Deo is supported by National Institutes of Health grantK23DK089118. This work was also funded by an EstablishedInvestigator Award from the AHA to Dr. Albert and HL091069 fromthe NHLBI to Dr. Albert.

DisclosuresDr Albert is the Principal Investigator on research grants receivedfrom National Heart, Lung, and Blood Institute, and St. Jude MedicalInc, as well, to study genetic and biological markers as riskpredictors of sudden cardiac death. Dr Albert has previously receivedfunding from National Heart, Lung, and Blood Institute, and BostonScientific, as well, to study triggers and predictors of ventriculararrhythmias in patients with implantable cardioverter-defibrillators,and from Siemens Healthcare Diagnostics to study biomarkers andprediction of sudden cardiac death.

References1. Lopshire JC, Zipes DP. Sudden cardiac death: Better understanding of

risks, mechanisms, and treatment. Circulation. 2006;114:1134–1136.2. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M,

Gregoratos G, Klein G, Moss AJ, Myerburg RJ, Priori SG, QuinonesMA, Roden DM, Silka MJ, Tracy C, Smith SC Jr, Jacobs AK, AdamsCD, Antman EM, Anderson JL, Hunt SA, Halperin JL, Nishimura R,Ornato JP, Page RL, Riegel B, Blanc JJ, Budaj A, Dean V, Deckers JW,Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J,Osterspey A, Tamargo JL, Zamorano JL. ACC/AHA/ESC 2006guidelines for management of patients with ventricular arrhythmias andthe prevention of sudden cardiac death: a report of the American Collegeof Cardiology/American Heart Association task force and the EuropeanSociety of Cardiology committee for practice guidelines (writing com-mittee to develop guidelines for management of patients with ventriculararrhythmias and the prevention of sudden cardiac death): developed incollaboration with the European Heart Rhythm association and the HeartRhythm Society. Circulation. 2006;114:e385–e484.

3. Fishman GI, Chugh S, DiMarco JP, Albert CM, Anderson ME, Bonow,Buxton AE, Chen P-S, Estes M, Jouven X, Kwong R, Lathrop DA,Mascette AM, Nerbonne JM, O’Rourke B, Page RL, Roden DM,Rosenbaum DS, Sotoodehnia N, Trayanova NA, Zheng Z-J. Suddencardiac death prediction and prevention report from a National Heart,Lung, and Blood Institute and Heart Rhythm Society workshop.Circulation. 2010;122:2335–2348.

4. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De SimoneG, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K,Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, LacklandD, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D,Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P,Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J. Heart

disease and stroke statistics–2010 update: a report from the AmericanHeart Association. Circulation. 2010;121:e46–e215.

5. Kong MH, Fonarow GC, Peterson ED, Curtis AB, Hernandez AF,Sanders GD, Thomas KL, Hayes DL, Al-Khatib SM. Systematic reviewof the incidence of sudden cardiac death in the United States. J Am CollCardiol. 2011;57:794–801.

6. Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, AufderheideTP, Rea T, Lowe R, Brown T, Dreyer J, Davis D, Idris A, Stiell I.Regional variation in out-of-hospital cardiac arrest incidence andoutcome. JAMA. 2008;300:1423–1431.

7. Chugh SS, Jui J, Gunson K, Stecker EC, John BT, Thompson B, Ilias N,Vickers C, Dogra V, Daya M, Kron J, Zheng ZJ, Mensah G, McAnultyJ. Current burden of sudden cardiac death: multiple source surveillanceversus retrospective death certificate-based review in a large U.S. Com-munity. J Am Coll Cardiol. 2004;44:1268–1275.

8. de Vreede-Swagemakers JJ, Gorgels AP, Dubois-Arbouw WI, van ReeJW, Daemen MJ, Houben LG, Wellens HJ. Out-of-hospital cardiacarrest in the 1990’s: a population-based study in the Maastricht area onincidence, characteristics and survival. J Am Coll Cardiol. 1997;30:1500–1505.

9. Byrne R, Constant O, Smyth Y, Callagy G, Nash P, Daly K, Crowley J.Multiple source surveillance incidence and aetiology of out-of-hospitalsudden cardiac death in a rural population in the west of Ireland. EurHeart J. 2008;29:1418–1423.

10. Hua W, Zhang LF, Wu YF, Liu XQ, Guo DS, Zhou HL, Gou ZP, ZhaoLC, Niu HX, Chen KP, Mai JZ, Chu LN, Zhang S. Incidence of suddencardiac death in China: analysis of 4 regional populations. J Am CollCardiol. 2009;54:1110–1118.

11. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE,Giles WH, Capewell S. Explaining the decrease in U.S. Deaths fromcoronary disease, 1980–2000. N Engl J Med. 2007;356:2388–2398.

12. Rosamond WD, Chambless LE, Folsom AR, Cooper LS, Conwill DE,Clegg L, Wang CH, Heiss G. Trends in the incidence of myocardialinfarction and in mortality due to coronary heart disease, 1987 to 1994.N Engl J Med. 1998;339:861–867.

13. Fox CS, Evans JC, Larson MG, Kannel WB, Levy D. Temporal trendsin coronary heart disease mortality and sudden cardiac death from 1950to 1999: the Framingham Heart Study. Circulation. 2004;110:522–527.

14. Zheng ZJ, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in theUnited States, 1989 to 1998. Circulation. 2001;104:2158–2163.

15. Dudas K, Lappas G, Stewart S, Rosengren A. Trends in out-of-hospitaldeaths due to coronary heart disease in Sweden (1991 to 2006).Circulation. 2011;123:46–52.

16. Gerber Y, Jacobsen SJ, Frye RL, Weston SA, Killian JM, Roger VL.Secular trends in deaths from cardiovascular diseases: a 25-year com-munity study. Circulation. 2006;113:2285–2292.

17. Gillum RF. Geographic variation in sudden coronary death. Am Heart J.1990;119:380–389.

18. Myerburg RJ, Interian A, Simmons J, Castellanos A. Sudden cardiacdeath. In: Zipes DP, ed. Cardiac Electrophysiology: From Cell toBedside. Philadelphia, PA: WB Saunders; 2004:720–731.

19. Cobb LA, Fahrenbruch CE, Olsufka M, Copass MK. Changingincidence of out-of-hospital ventricular fibrillation, 1980–2000. JAMA.2002;288:3008–3013.

20. Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM,Hemphill R, Samson RA, Kattwinkel J, Berg RA, Bhanji F, Cave DM,Jauch EC, Kudenchuk PJ, Neumar RW, Peberdy MA, Perlman JM, SinzE, Travers AH, Berg MD, Billi JE, Eigel B, Hickey RW, Kleinman ME,Link MS, Morrison LJ, O’Connor RE, Shuster M, Callaway CW, Cuc-chiara B, Ferguson JD, Rea TD, Vanden Hoek TL. Part 1: Executivesummary: 2010 American Heart Association guidelines for cardiopul-monary resuscitation and emergency cardiovascular care. Circulation.2010;122:S640–S656.

21. Hallstrom AP, Ornato JP, Weisfeldt M, Travers A, Christenson J,McBurnie MA, Zalenski R, Becker LB, Schron EB, Proschan M. Public-access defibrillation and survival after out-of-hospital cardiac arrest.N Engl J Med. 2004;351:637–646.

22. Straus SM, Bleumink GS, Dieleman JP, van der Lei J, Stricker BH,Sturkenboom MC. The incidence of sudden cardiac death in the generalpopulation. J Clin Epidemiol. 2004;57:98–102.

23. Becker LB, Han BH, Meyer PM, Wright FA, Rhodes KV, Smith DW,Barrett J. Racial differences in the incidence of cardiac arrest andsubsequent survival. The CPR Chicago Project. N Engl J Med. 1993;329:600–606.

632 Circulation January 31, 2012

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 14: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

24. Albert CM, Chae CU, Grodstein F, Rose LM, Rexrode KM, Ruskin JN,Stampfer MJ, Manson JE. Prospective study of sudden cardiac deathamong women in the United States. Circulation. 2003;107:2096–2101.

25. Krahn AD, Connolly SJ, Roberts RS, Gent M. Diminishing proportionalrisk of sudden death with advancing age: implications for prevention ofsudden death. Am Heart J. 2004;147:837–840.

26. Kannel WB, Schatzkin A. Sudden death: lessons from subsets in pop-ulation studies. J Am Coll Cardiol. 1985;5:141B–149B.

27. Cupples LA, Gagnon DR, Kannel WB. Long- and short-term risk ofsudden coronary death. Circulation. 1992;85:I11–I18.

28. Kannel WB, Wilson PW, D’Agostino RB, Cobb J. Sudden coronarydeath in women. Am Heart J. 1998;136:205–212.

29. Albert CM, McGovern BA, Newell JB, Ruskin JN. Sex differences incardiac arrest survivors. Circulation. 1996;93:1170–1176.

30. Chugh SS, Uy-Evanado A, Teodorescu C, Reinier K, Mariani R, GunsonK, Jui J. Women have a lower prevalence of structural heart disease asa precursor to sudden cardiac arrest: the ORE-SUDS (Oregon SuddenUnexpected Death Study). J Am Coll Cardiol. 2009;54:2006–2011.

31. Cowie MR, Fahrenbruch CE, Cobb LA, Hallstrom AP. Out-of-hospitalcardiac arrest: racial differences in outcome in Seattle. Am J PublicHealth. 1993;83:955–959.

32. Gillum RF. Sudden cardiac death in Hispanic Americans and AfricanAmericans. Am J Public Health. 1997;87:1461–1466.

33. Chan PS, Birkmeyer JD, Krumholz HM, Spertus JA, Nallamothu BK.Racial and gender trends in the use of implantable cardioverter-defibrillators among Medicare beneficiaries between 1997 and 2003.Congest Heart Fail. 2009;15:51–57.

34. Teodorescu C, Reinier K, Dervan C, Uy-Evanado A, Samara M, MarianiR, Gunson K, Jui J, Chugh SS. Factors associated with pulseless electricactivity versus ventricular fibrillation: the Oregon Sudden UnexpectedDeath Study. Circulation. 2010;122:2116–2122.

35. Chan PS, Nichol G, Krumholz HM, Spertus JA, Jones PG, Peterson ED,Rathore SS, Nallamothu BK. Racial differences in survival afterin-hospital cardiac arrest. JAMA. 2009;302:1195–1201.

36. Spain DM, Bradess VA, Mohr C. Coronary atherosclerosis as a cause ofunexpected and unexplained death. An autopsy study from 1949–1959.JAMA. 1960;174:384–388.

37. Manfredini R, Portaluppi F, Grandi E, Fersini C, Gallerani M. Out-of-hospital sudden death referring to an emergency department. J ClinEpidemiol. 1996;49:865–868.

38. Priori SG, Borggrefe M, Camm AJ, Hauer RN, Klein H, Kuck KH,Schwartz PJ, Touboul P, Wellens HJ. Unexplained cardiac arrest. Theneed for a prospective registry. Eur Heart J. 1992;13:1445–1446.

39. Chugh SS, Kelly KL, Titus JL. Sudden cardiac death with apparentlynormal heart. Circulation. 2000;102:649–654.

40. Adelson L, Hoffman W. Sudden death from coronary disease related toa lethal mechanism arising independently of vascular occlusion or myo-cardial damage. JAMA. 1961;176:129–135.

41. Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R. Suddencoronary death. Frequency of active coronary lesions, inactive coronarylesions, and myocardial infarction. Circulation. 1995;92:1701–1709.

42. Greene HL. Sudden arrhythmic cardiac death–mechanisms, resusci-tation and classification: the Seattle perspective. Am J Cardiol. 1990;65:4B–12B.

43. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R.Coronary risk factors and plaque morphology in men with coronarydisease who died suddenly. N Engl J Med. 1997;336:1276–1282.

44. Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effectof risk factors on the mechanism of acute thrombosis and suddencoronary death in women. Circulation. 1998;97:2110–2116.

45. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiacarrhythmias. N Engl J Med. 2001;345:1473–1482.

46. Bayes de Luna A, Coumel P, Leclercq JF. Ambulatory sudden cardiacdeath: mechanisms of production of fatal arrhythmia on the basis of datafrom 157 cases. Am Heart J. 1989;117:151–159.

47. Gang UJ, Jons C, Jorgensen RM, Abildstrom SZ, Haarbo J, MessierMD, Huikuri HV, Thomsen PE. Heart rhythm at the time of deathdocumented by an implantable loop recorder. Europace. 2010;12:254–260.

48. Liberthson RR, Nagel EL, Hirschman JC, Nussenfeld SR, BlackbourneBD, Davis JH. Pathophysiologic observations in prehospital ventricularfibrillation and sudden cardiac death. Circulation. 1974;49:790–798.

49. Eisenberg MS, Copass MK, Hallstrom AP, Blake B, Bergner L, ShortFA, Cobb LA. Treatment of out-of-hospital cardiac arrests with rapid

defibrillation by emergency medical technicians. N Engl J Med. 1980;302:1379–1383.

50. Hinkle LE Jr, Thaler HT. Clinical classification of cardiac deaths.Circulation. 1982;65:457–464.

51. Polentini MS, Pirrallo RG, McGill W. The changing incidence of ven-tricular fibrillation in Milwaukee, Wisconsin (1992–2002). PrehospEmerg Care. 2006;10:52–60.

52. Kannel WB, Cupples LA, D’Agostino RB. Sudden death risk in overtcoronary heart disease: the Framingham Study. Am Heart J. 1987;113:799–804.

53. Solomon SD, Zelenkofske S, McMurray JJ, Finn PV, Velazquez E, ErtlG, Harsanyi A, Rouleau JL, Maggioni A, Kober L, White H, Van deWerf F, Pieper K, Califf RM, Pfeffer MA. Sudden death in patients withmyocardial infarction and left ventricular dysfunction, heart failure, orboth. N Engl J Med. 2005;352:2581–2588.

54. Adabag AS, Therneau TM, Gersh BJ, Weston SA, Roger VL. Suddendeath after myocardial infarction. JAMA. 2008;300:2022–2029.

55. Huikuri HV, Tapanainen JM, Lindgren K, Raatikainen P, MakikallioTH, Juhani Airaksinen KE, Myerburg RJ. Prediction of sudden cardiacdeath after myocardial infarction in the beta-blocking era. J Am CollCardiol. 2003;42:652–658.

56. Makikallio TH, Barthel P, Schneider R, Bauer A, Tapanainen JM,Tulppo MP, Perkiomaki JS, Schmidt G, Huikuri HV. Frequency ofsudden cardiac death among acute myocardial infarction survivors withoptimized medical and revascularization therapy. Am J Cardiol. 2006;97:480–484.

57. Stevenson WG, Stevenson LW, Middlekauff HR, Saxon LA. Suddendeath prevention in patients with advanced ventricular dysfunction.Circulation. 1993;88:2953–2961.

58. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, DaubertJP, Higgins SL, Brown MW, Andrews ML. Prophylactic implantation ofa defibrillator in patients with myocardial infarction and reducedejection fraction. N Engl J Med. 2002;346:877–883.

59. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R,Domanski M, Troutman C, Anderson J, Johnson G, McNulty SE, Clapp-Channing N, Davidson-Ray LD, Fraulo ES, Fishbein DP, Luceri RM, IpJH. Amiodarone or an implantable cardioverter-defibrillator for con-gestive heart failure. N Engl J Med. 2005;352:225–237.

60. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventric-ular mass and hypertrophy are associated with increased risk for suddendeath. J Am Coll Cardiol. 1998;32:1454–1459.

61. Reinier K, Dervan C, Singh T, Uy-Evanado A, Lai S, Gunson K, Jui J,Chugh SS. Increased left ventricular mass and decreased left ventricularsystolic function have independent pathways to ventricular arrhythmo-genesis in coronary artery disease. Heart Rhythm. 2011;8:1177–1182.

62. Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A,Heeringa J, Deckers JW, Kingma JH, Sturkenboom MC, Stricker BH,Witteman JC. Prolonged QTc interval and risk of sudden cardiac deathin a population of older adults. J Am Coll Cardiol. 2006;47:362–367.

63. Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, DucimetiereP. Heart-rate profile during exercise as a predictor of sudden death.N Engl J Med. 2005;352:1951–1958.

64. Stecker EC, Vickers C, Waltz J, Socoteanu C, John BT, Mariani R,McAnulty JH, Gunson K, Jui J, Chugh SS. Population-based analysis ofsudden cardiac death with and without left ventricular systolic dys-function: two-year findings from the Oregon Sudden Unexpected DeathStudy. J Am Coll Cardiol. 2006;47:1161–1166.

65. Deo R, Vittinghoff E, Lin F, Tseng ZH, Hulley SB, Shlipak MG. Riskfactor and prediction modeling for sudden cardiac death in women withcoronary artery disease. Arch Intern Med. 2011;171:1703–1709.

66. Buxton AE. Should everyone with an ejection fraction less than or equalto 30% receive an implantable cardioverter-defibrillator? Not everyonewith an ejection fraction � or � 30% should receive an implantablecardioverter-defibrillator. Circulation. 2005;111:2537–2549.

67. Balkau B, Jouven X, Ducimetiere P, Eschwege E. Diabetes as a riskfactor for sudden death. Lancet. 1999;354:1968–1969.

68. Jouven X, Lemaitre RN, Rea TD, Sotoodehnia N, Empana JP, SiscovickDS. Diabetes, glucose level, and risk of sudden cardiac death. EurHeart J. 2005;26:2142–2147.

69. Kucharska-Newton AM, Couper DJ, Pankow JS, Prineas RJ, Rea TD,Sotoodehnia N, Chakravarti A, Folsom AR, Siscovick DS, RosamondWD. Diabetes and the risk of sudden cardiac death, the AtherosclerosisRisk in Communities study. Acta Diabetol. 2010;47:161–168.

70. Deo R, Sotoodehnia N, Katz R, Sarnak MJ, Fried LF, Chonchol M,Kestenbaum B, Psaty BM, Siscovick DS, Shlipak MG. Cystatin C and

Deo and Albert Sudden Cardiac Death 633

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 15: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

sudden cardiac death risk in the elderly. Circ Cardiovasc QualOutcomes. 2010;3:159–164.

71. Deo R, Lin F, Vittinghoff E, Tseng ZH, Hulley SB, Shlipak MG. Kidneydysfunction and sudden cardiac death among women with coronaryheart disease. Hypertension. 2008;51:1578–1582.

72. Jouven X, Desnos M, Guerot C, Ducimetiere P. Predicting sudden deathin the population: the Paris Prospective Study I. Circulation. 1999;99:1978–1983.

73. Wannamethee G, Shaper AG, Macfarlane PW, Walker M. Risk factorsfor sudden cardiac death in middle-aged British men. Circulation. 1995;91:1749–1756.

74. Hallstrom AP, Cobb LA, Ray R. Smoking as a risk factor for recurrenceof sudden cardiac arrest. N Engl J Med. 1986;314:271–275.

75. Vlietstra RE, Kronmal RA, Oberman A, Frye RL, Killip T III. Effect ofcigarette smoking on survival of patients with angiographically docu-mented coronary artery disease. Report from the CASS registry. JAMA.1986;255:1023–1027.

76. Goldenberg I, Jonas M, Tenenbaum A, Boyko V, Matetzky S, Shotan A,Behar S, Reicher-Reiss H. Current smoking, smoking cessation, and therisk of sudden cardiac death in patients with coronary artery disease.Arch Intern Med. 2003;163:2301–2305.

77. Junttila MJ, Barthel P, Myerburg RJ, Makikallio TH, Bauer A, Ulm K,Kiviniemi A, Tulppo M, Perkiomaki JS, Schmidt G, Huikuri HV.Sudden cardiac death after myocardial infarction in patients with type 2diabetes. Heart Rhythm. 2010;7:1396–1403.

78. Jouven X, Zureik M, Desnos M, Guerot C, Ducimetiere P. Resting heartrate as a predictive risk factor for sudden death in middle-aged men.Cardiovasc Res. 2001;50:373–378.

79. Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. QTc prolongationmeasured by standard 12-lead electrocardiography is an independentrisk factor for sudden death due to cardiac arrest. Circulation. 1991;83:1888–1894.

80. Teodorescu C, Reinier K, Uy-Evanado A, Navarro J, Mariani R, GunsonK, Jui J, Chugh SS. Prolonged QRS duration on the resting ECG isassociated with sudden death risk in coronary disease, independent ofprolonged ventricular repolarization. Heart Rhythm. 2011;8:1562–1567.

81. Morin DP, Oikarinen L, Viitasalo M, Toivonen L, Nieminen MS,Kjeldsen SE, Dahlof B, John M, Devereux RB, Okin PM. QRS durationpredicts sudden cardiac death in hypertensive patients undergoingintensive medical therapy: the life study. Eur Heart J. 2009;30:2908–2914.

82. Haissaguerre M, Derval N, Sacher F, Jesel L, Deisenhofer I, de Roy L,Pasquie JL, Nogami A, Babuty D, Yli-Mayry S, De Chillou C, Scanu P,Mabo P, Matsuo S, Probst V, Le Scouarnec S, Defaye P, Schlaepfer J,Rostock T, Lacroix D, Lamaison D, Lavergne T, Aizawa Y, Englund A,Anselme F, O’Neill M, Hocini M, Lim KT, Knecht S, Veenhuyzen GD,Bordachar P, Chauvin M, Jais P, Coureau G, Chene G, Klein GJ,Clementy J. Sudden cardiac arrest associated with early repolarization.N Engl J Med. 2008;358:2016–2023.

83. Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves andelectrical storms in patients with early repolarization. N Engl J Med.2008;358:2078–2079.

84. Rosso R, Kogan E, Belhassen B, Rozovski U, Scheinman MM, ZeltserD, Halkin A, Steinvil A, Heller K, Glikson M, Katz A, Viskin S. J-pointelevation in survivors of primary ventricular fibrillation and matchedcontrol subjects: incidence and clinical significance. J Am Coll Cardiol.2008;52:1231–1238.

85. Tikkanen JT, Anttonen O, Junttila MJ, Aro AL, Kerola T, Rissanen HA,Reunanen A, Huikuri HV. Long-term outcome associated with earlyrepolarization on electrocardiography. N Engl J Med. 2009;361:2529–2537.

86. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, WillettWC, Ma J. Blood levels of long-chain n-3 fatty acids and the risk ofsudden death. N Engl J Med. 2002;346:1113–1118.

87. Chiuve SE, Korngold EC, Januzzi JL Jr, Gantzer ML, Albert CM.Plasma and dietary magnesium and risk of sudden cardiac death inwomen. Am J Clin Nutr. 2011;93:253–260.

88. Peacock JM, Ohira T, Post W, Sotoodehnia N, Rosamond W, FolsomAR. Serum magnesium and risk of sudden cardiac death in the Athero-sclerosis Risk in Communities (ARIC) study. Am Heart J. 2010;160:464–470.

89. Jouven X, Charles MA, Desnos M, Ducimetiere P. Circulating nonest-erified fatty acid level as a predictive risk factor for sudden death in thepopulation. Circulation. 2001;104:756–761.

90. Lemaitre RN, King IB, Mozaffarian D, Sotoodehnia N, Siscovick DS.Trans-fatty acids and sudden cardiac death. Atheroscler Suppl. 2006;7:13–15.

91. Empana JP, Jouven X, Canoui-Poitrine F, Luc G, Tafflet M, Haas B,Arveiler D, Ferrieres J, Ruidavets JB, Montaye M, Yarnell J, MorangeP, Kee F, Evans A, Amouyel P, Ducimetiere P. C-reactive protein,interleukin 6, fibrinogen and risk of sudden death in Europeanmiddle-aged men: the Prime Study. Arterioscler Thromb Vasc Biol.2010;30:2047–2052.

92. Korngold EC, Januzzi JL Jr, Gantzer ML, Moorthy MV, Cook NR,Albert CM. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac deathamong women. Circulation. 2009;119:2868–2876.

93. Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM. Prospective studyof C-reactive protein, homocysteine, and plasma lipid levels as pre-dictors of sudden cardiac death. Circulation. 2002;105:2595–2599.

94. Pascual-Figal DA, Ordonez-Llanos J, Tornel PL, Vazquez R, Puig T,Valdes M, Cinca J, de Luna AB, Bayes-Genis A. Soluble ST2 forpredicting sudden cardiac death in patients with chronic heart failure andleft ventricular systolic dysfunction. J Am Coll Cardiol. 2009;54:2174–2179.

95. Beygui F, Collet JP, Benoliel JJ, Vignolles N, Dumaine R, BarthelemyO, Montalescot G. High plasma aldosterone levels on admission areassociated with death in patients presenting with acute ST-elevationmyocardial infarction. Circulation. 2006;114:2604–2610.

96. Tomaschitz A, Pilz S, Ritz E, Morganti A, Grammer T, Amrein K,Boehm BO, Marz W. Associations of plasma renin with 10-year car-diovascular mortality, sudden cardiac death, and death due to heartfailure. Eur Heart J. 2011;32:2642–2649.

97. Deo R, Katz R, Shlipak MG, Sotoodehnia N, Psaty BM, Sarnak MJ,Fried L, Chonchol M, de Boer IH, Enquobahrie D, Siscovick D, Kes-tenbaum B. Vitamin D, parathyroid hormone and sudden cardiac death:results from the cardiovascular health study. Hypertension. 2011;58:1021–1028.

98. Drechsler C, Pilz S, Obermayer-Pietsch B, Verduijn M, Tomaschitz A,Krane V, Espe K, Dekker F, Brandenburg V, Marz W, Ritz E, WannerC. Vitamin D deficiency is associated with sudden cardiac death,combined cardiovascular events, and mortality in haemodialysispatients. Eur Heart J. 2010;31:2253–2261.

99. Patton KK, Sotoodehnia N, DeFilippi C, Siscovick DS, Gottdiener JS,Kronmal RA. N-terminal pro-B-type natriuretic peptide is associatedwith sudden cardiac death risk: the Cardiovascular Health Study. HeartRhythm. 2011;8:228–233.

100. Berger R, Huelsman M, Strecker K, Bojic A, Moser P, Stanek B, PacherR. B-type natriuretic peptide predicts sudden death in patients withchronic heart failure. Circulation. 2002;105:2392–2397.

101. Tapanainen JM, Lindgren KS, Makikallio TH, Vuolteenaho O, Lep-paluoto J, Huikuri HV. Natriuretic peptides as predictors of non-suddenand sudden cardiac death after acute myocardial infarction in the beta-blocking era. J Am Coll Cardiol. 2004;43:757–763.

102. Albert CM, Hennekens CH, O’Donnell CJ, Ajani UA, Carey VJ, WillettWC, Ruskin JN, Manson JE. Fish consumption and risk of suddencardiac death. JAMA. 1998;279:23–28.

103. Mozaffarian D, Ascherio A, Hu FB, Stampfer MJ, Willett WC, Sis-covick DS, Rimm EB. Interplay between different polyunsaturated fattyacids and risk of coronary heart disease in men. Circulation. 2005;111:157–164.

104. Mozaffarian D, Lemaitre RN, Kuller LH, Burke GL, Tracy RP, Sis-covick DS. Cardiac benefits of fish consumption may depend on the typeof fish meal consumed: the Cardiovascular Health Study. Circulation.2003;107:1372–1377.

105. Siscovick DS, Raghunathan TE, King I, Weinmann S, Wicklund KG,Albright J, Bovbjerg V, Arbogast P, Smith H, Kushi LH. Dietary intakeand cell membrane levels of long-chain n-3 polyunsaturated fatty acidsand the risk of primary cardiac arrest. JAMA. 1995;274:1363–1367.

106. Albert CM, Oh K, Whang W, Manson JE, Chae CU, Stampfer MJ,Willett WC, Hu FB. Dietary alpha-linolenic acid intake and risk ofsudden cardiac death and coronary heart disease. Circulation. 2005;112:3232–3238.

107. Leaf A, Kang JX, Xiao YF, Billman GE. Clinical prevention of suddencardiac death by n-3 polyunsaturated fatty acids and mechanism ofprevention of arrhythmias by n-3 fish oils. Circulation. 2003;107:2646–2652.

108. Dietary supplementation with n-3 polyunsaturated fatty acids andvitamin E after myocardial infarction: results of the Gissi-Prevenzione

634 Circulation January 31, 2012

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 16: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

trial. Gruppo Italiano per Lo Studio della Sopravvivenza Nell’infartoMiocardico. Lancet. 1999;354:447–455.

109. Kromhout D, Giltay EJ, Geleijnse JM. N-3 fatty acids and cardiovas-cular events after myocardial infarction. N Engl J Med. 2010;363:2015–2026.

110. Rauch B, Schiele R, Schneider S, Diller F, Victor N, Gohlke H, GottwikM, Steinbeck G, Del Castillo U, Sack R, Worth H, Katus H, Spitzer W,Sabin G, Senges J. Omega, a randomized, placebo-controlled trial to testthe effect of highly purified omega-3 fatty acids on top of modernguideline-adjusted therapy after myocardial infarction. Circulation.2010;122:2152–2159.

111. Gaziano JM, Buring JE, Breslow JL, Goldhaber SZ, Rosner B, Van-Denburgh M, Willett W, Hennekens CH. Moderate alcohol intake,increased levels of high-density lipoprotein and its subfractions, anddecreased risk of myocardial infarction. N Engl J Med. 1993;329:1829–1834.

112. Siscovick DS, Weiss NS, Fox N. Moderate alcohol consumption andprimary cardiac arrest. Am J Epidemiol. 1986;123:499–503.

113. Albert CM, Manson JE, Cook NR, Ajani UA, Gaziano JM, HennekensCH. Moderate alcohol consumption and the risk of sudden cardiac deathamong US male physicians. Circulation. 1999;100:944–950.

114. Chiuve SE, Rimm EB, Mukamal KJ, Rexrode KM, Stampfer MJ,Manson JE, Albert CM. Light-to-moderate alcohol consumption andrisk of sudden cardiac death in women. Heart Rhythm. 2010;7:1374–1380.

115. Zarraga IG, Schwarz ER. Impact of dietary patterns and interventions oncardiovascular health. Circulation. 2006;114:961–973.

116. Sebbag L, Forrat R, Canet E, Renaud S, Delaye J, de Lorgeril M. Effectsof dietary supplementation with alpha-tocopherol on myocardial infarctsize and ventricular arrhythmias in a dog model of ischemia-reperfusion.J Am Coll Cardiol. 1994;24:1580–1585.

117. Sofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefitsof adherence to the Mediterranean diet on health: an updated systematicreview and meta-analysis. Am J Clin Nutr. 2010;92:1189–1196.

118. Fung TT, Rexrode KM, Mantzoros CS, Manson JE, Willett WC, Hu FB.Mediterranean diet and incidence of and mortality from coronary heartdisease and stroke in women. Circulation. 2009;119:1093–1100.

119. Chiuve SE, Fung TT, Rexrode KM, Spiegelman D, Manson JE,Stampfer MJ, Albert CM. Adherence to a low-risk, healthy lifestyle andrisk of sudden cardiac death among women. JAMA. 2011;306:62–69.

120. Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH,Elkind MS, Go AS, Harrell FE Jr, Hong Y, Howard BV, Howard VJ,Hsue PY, Kramer CM, McConnell JP, Normand SL, O’Donnell CJ,Smith SC Jr, Wilson PW. Criteria for evaluation of novel markers ofcardiovascular risk: a scientific statement from the American HeartAssociation. Circulation. 2009;119:2408–2416.

121. Muller JE, Ludmer PL, Willich SN, Tofler GH, Aylmer G, Klangos I,Stone PH. Circadian variation in the frequency of sudden cardiac death.Circulation. 1987;75:131–138.

122. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA. Meta-analysis of the morning excess of acute myocardial infarction andsudden cardiac death. Am J Cardiol. 1997;79:1512–1516.

123. Peckova M, Fahrenbruch CE, Cobb LA, Hallstrom AP. Circadian vari-ations in the occurrence of cardiac arrests: initial and repeat episodes.Circulation. 1998;98:31–39.

124. Willich SN, Goldberg RJ, Maclure M, Perriello L, Muller JE. Increasedonset of sudden cardiac death in the first three hours after awakening.Am J Cardiol. 1992;70:65–68.

125. Peters RW. Propranolol and the morning increase in sudden cardiacdeath: (the beta-blocker heart attack trial experience). Am J Cardiol.1990;66:57G–59G.

126. Peckova M, Fahrenbruch CE, Cobb LA, Hallstrom AP. Weekly andseasonal variation in the incidence of cardiac arrests. Am Heart J.1999;137:512–515.

127. Arntz HR, Willich SN, Schreiber C, Bruggemann T, Stern R, Schul-theiss HP. Diurnal, weekly and seasonal variation of sudden death.Population-based analysis of 24,061 consecutive cases. Eur Heart J.2000;21:315–320.

128. Gerber Y, Jacobsen SJ, Killian JM, Weston SA, Roger VL. Seasonalityand daily weather conditions in relation to myocardial infarction andsudden cardiac death in Olmsted county, Minnesota, 1979 to 2002. J AmColl Cardiol. 2006;48:287–292.

129. Empana JP, Sauval P, Ducimetiere P, Tafflet M, Carli P, Jouven X.Increase in out-of-hospital cardiac arrest attended by the medical mobile

intensive care units, but not myocardial infarction, during the 2003 heatwave in Paris, France. Crit Care Med. 2009;37:3079–3084.

130. Siscovick DS, Weiss NS, Fletcher RH, Lasky T. The incidence ofprimary cardiac arrest during vigorous exercise. N Engl J Med. 1984;311:874–877.

131. Lemaitre RN, Siscovick DS, Raghunathan TE, Weinmann S, ArbogastP, Lin DY. Leisure-time physical activity and the risk of primary cardiacarrest. Arch Intern Med. 1999;159:686–690.

132. Group MRFITR. Multiple risk factor intervention trial. Risk factorchanges and mortality results. JAMA. 1982;248:1465–1477.

133. Whang W, Manson JE, Hu FB, Chae CU, Rexrode KM, Willett WC,Stampfer MJ, Albert CM. Physical exertion, exercise, and suddencardiac death in women. JAMA. 2006;295:1399–1403.

134. Kannel WB. Exercise and sudden death. JAMA. 1982;248:3143–3144.135. Albert CM, Mittleman MA, Chae CU, Lee IM, Hennekens CH, Manson

JE. Triggering of sudden death from cardiac causes by vigorousexertion. N Engl J Med. 2000;343:1355–1361.

136. Kohl HW III, Powell KE, Gordon NF, Blair SN, Paffenbarger RS Jr.Physical activity, physical fitness, and sudden cardiac death. EpidemiolRev. 1992;14:37–58.

137. Marijon E, Tafflet M, Celermajer DS, Dumas F, Perier MC, Mustafic H,Toussaint JF, Desnos M, Rieu M, Benameur N, Le Heuzey JY, EmpanaJP, Jouven X. Sports-related sudden death in the general population.Circulation. 2011;124:672–681.

138. Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R.Plaque rupture and sudden death related to exertion in men withcoronary artery disease. JAMA. 1999;281:921–926.

139. Peronnet F, Cleroux J, Perrault H, Cousineau D, de Champlain J,Nadeau R. Plasma norepinephrine response to exercise before and aftertraining in humans. J Appl Physiol. 1981;51:812–815.

140. Hull SS Jr, Vanoli E, Adamson PB, Verrier RL, Foreman RD, SchwartzPJ. Exercise training confers anticipatory protection from sudden deathduring acute myocardial ischemia. Circulation. 1994;89:548–552.

141. Dahabreh IJ, Paulus JK. Association of episodic physical and sexualactivity with triggering of acute cardiac events: systematic review andmeta-analysis. JAMA. 2011;305:1225–1233.

142. Mensah GA, Mokdad AH, Ford ES, Greenlund KJ, Croft JB. State ofdisparities in cardiovascular health in the United States. Circulation.2005;111:1233–1241.

143. Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factorson the pathogenesis of cardiovascular disease and implications fortherapy. Circulation. 1999;99:2192–2217.

144. Reinier K, Stecker EC, Vickers C, Gunson K, Jui J, Chugh SS. Incidenceof sudden cardiac arrest is higher in areas of low socioeconomic status:a prospective two year study in a large United States community.Resuscitation. 2006;70:186–192.

145. Kawachi I, Colditz GA, Ascherio A, Rimm EB, Giovannucci E,Stampfer MJ, Willett WC. Prospective study of phobic anxiety and riskof coronary heart disease in men. Circulation. 1994;89:1992–1997.

146. Albert CM, Chae CU, Rexrode KM, Manson JE, Kawachi I. Phobicanxiety and risk of coronary heart disease and sudden cardiac deathamong women. Circulation. 2005;111:480–487.

147. Empana JP, Jouven X, Lemaitre RN, Sotoodehnia N, Rea T, Raghu-nathan TE, Simon G, Siscovick DS. Clinical depression and risk ofout-of-hospital cardiac arrest. Arch Intern Med. 2006;166:195–200.

148. Whang W, Kubzansky LD, Kawachi I, Rexrode KM, Kroenke CH,Glynn RJ, Garan H, Albert CM. Depression and risk of sudden cardiacdeath and coronary heart disease in women: results from the Nurses’Health Study. J Am Coll Cardiol. 2009;53:950–958.

149. Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by anearthquake. N Engl J Med. 1996;334:413–419.

150. Meisel SR, Kutz I, Dayan KI, Pauzner H, Chetboun I, Arbel Y, David D.Effect of Iraqi missile war on incidence of acute myocardial infarction andsudden death in Israeli civilians. Lancet. 1991;338:660–661.

151. Rosengren A, Orth-Gomer K, Wedel H, Wilhelmsen L. Stressful lifeevents, social support, and mortality in men born in 1933. BMJ. 1993;307:1102–1105.

152. Rahe RH, Romo M, Bennett L, Siltanen P. Recent life changes, myo-cardial infarction, and abrupt coronary death. Studies in Helsinki. ArchIntern Med. 1974;133:221–228.

153. Cerrone M, Priori SG. Genetics of sudden death: focus on inheritedchannelopathies. Eur Heart J. 2011;32:2109–2118.

154. Friedlander Y, Siscovick DS, Weinmann S, Austin MA, Psaty BM,Lemaitre RN, Arbogast P, Raghunathan TE, Cobb LA. Family history asa risk factor for primary cardiac arrest. Circulation. 1998;97:155–160.

Deo and Albert Sudden Cardiac Death 635

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 17: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

155. Dekker LR, Bezzina CR, Henriques JP, Tanck MW, Koch KT, Alings MW,Arnold AE, de Boer MJ, Gorgels AP, Michels HR, Verkerk A, VerheugtFW, Zijlstra F, Wilde AA. Familial sudden death is an important risk factorfor primary ventricular fibrillation: a case-control study in acute myocardialinfarction patients. Circulation. 2006;114:1140–1145.

156. Kaikkonen KS, Kortelainen ML, Linna E, Huikuri HV. Family historyand the risk of sudden cardiac death as a manifestation of an acutecoronary event. Circulation. 2006;114:1462–1467.

157. Newton-Cheh C, Larson MG, Corey DC, Benjamin EJ, Herbert AG,Levy D, D’Agostino RB, O’Donnell CJ. QT interval is a heritablequantitative trait with evidence of linkage to chromosome 3 in agenome-wide linkage analysis: the Framingham Heart Study. HeartRhythm. 2005;2:277–284.

158. Hanson B, Tuna N, Bouchard T, Heston L, Eckert E, Lykken D, SegalN, Rich S. Genetic factors in the electrocardiogram and heart rate oftwins reared apart and together. Am J Cardiol. 1989;63:606–609.

159. Russell MW, Law I, Sholinsky P, Fabsitz RR. Heritability of ECG mea-surements in adult male twins. J Electrocardiol. 1998;30(suppl):64–68.

160. Singh JP, Larson MG, O’Donnell CJ, Tsuji H, Evans JC, Levy D.Heritability of heart rate variability: the Framingham Heart Study.Circulation. 1999;99:2251–2254.

161. Martin LJ, Comuzzie AG, Sonnenberg GE, Myklebust J, James R,Marks J, Blangero J, Kissebah AH. Major quantitative trait locus forresting heart rate maps to a region on chromosome 4. Hypertension.2004;43:1146–1151.

162. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M,West K, Kashuk C, Akyol M, Perz S, Jalilzadeh S, Illig T, Gieger C,Guo CY, Larson MG, Wichmann HE, Marban E, O’Donnell CJ,Hirschhorn JN, Kaab S, Spooner PM, Meitinger T, Chakravarti A. Acommon genetic variant in the nos1 regulator NOS1AP modulatescardiac repolarization. Nat Genet. 2006;38:644–651.

163. Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger C,Ehret GB, Orru M, Pattaro C, Kottgen A, Perz S, Usala G, Barbalic M,Li M, Putz B, Scuteri A, Prineas RJ, Sinner MF, Gieger C, Najjar SS,Kao WH, Muhleisen TW, Dei M, Happle C, Mohlenkamp S, Crisponi L,Erbel R, Jockel KH, Naitza S, Steinbeck G, Marroni F, Hicks AA,Lakatta E, Muller-Myhsok B, Pramstaller PP, Wichmann HE, Sch-lessinger D, Boerwinkle E, Meitinger T, Uda M, Coresh J, Kaab S,Abecasis GR, Chakravarti A. Common variants at ten loci modulate theQT interval duration in the QTSCD study. Nat Genet. 2009;41:407–414.

164. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X,Estrada K, Bis JC, Marciante K, Rivadeneira F, Noseworthy PA, Sotoo-dehnia N, Smith NL, Rotter JI, Kors JA, Witteman JC, Hofman A,Heckbert SR, O’Donnell CJ, Uitterlinden AG, Psaty BM, Lumley T,Larson MG, Stricker BH. Common variants at ten loci influence QTinterval duration in the QTGEN study. Nat Genet. 2009;41:399–406.

165. Chang KC, Barth AS, Sasano T, Kizana E, Kashiwakura Y, Zhang Y,Foster DB, Marban E. Capon modulates cardiac repolarization vianeuronal nitric oxide synthase signaling in the heart. Proc Natl Acad SciU S A. 2008;105:4477–4482.

166. Tomas M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A,Bellazzi R, Arking DE, Marban E, Chakravarti A, Spooner PM, PrioriSG. Polymorphisms in the NOS1AP gene modulate QT interval durationand risk of arrhythmias in the long QT syndrome. J Am Coll Cardiol.2010;55:2745–2752.

167. Crotti L, Monti MC, Insolia R, Peljto A, Goosen A, Brink PA,Greenberg DA, Schwartz PJ, George AL Jr. NOS1AP is a geneticmodifier of the long-QT syndrome. Circulation. 2009;120:1657–1663.

168. Sotoodehnia N, Isaacs A, de Bakker PI, Dorr M, Newton-Cheh C, NolteIM, van der Harst P, Muller M, Eijgelsheim M, Alonso A, Hicks AA,Padmanabhan S, Hayward C, Smith AV, Polasek O, Giovannone S, FuJ, Magnani JW, Marciante KD, Pfeufer A, Gharib SA, Teumer A, Li M,Bis JC, Rivadeneira F, Aspelund T, Kottgen A, Johnson T, Rice K, SieMP, Wang YA, Klopp N, Fuchsberger C, Wild SH, Mateo Leach I,Estrada K, Volker U, Wright AF, Asselbergs FW, Qu J, Chakravarti A,Sinner MF, Kors JA, Petersmann A, Harris TB, Soliman EZ, MunroePB, Psaty BM, Oostra BA, Cupples LA, Perz S, de Boer RA, Uitter-linden AG, Volzke H, Spector TD, Liu FY, Boerwinkle E, DominiczakAF, Rotter JI, van Herpen G, Levy D, Wichmann HE, van Gilst WH,Witteman JC, Kroemer HK, Kao WH, Heckbert SR, Meitinger T,Hofman A, Campbell H, Folsom AR, van Veldhuisen DJ, Schwien-bacher C, O’Donnell CJ, Volpato CB, Caulfield MJ, Connell JM, LaunerL, Lu X, Franke L, Fehrmann RS, te Meerman G, Groen HJ, WeersmaRK, van den Berg LH, Wijmenga C, Ophoff RA, Navis G, Rudan I,Snieder H, Wilson JF, Pramstaller PP, Siscovick DS, Wang TJ,

Gudnason V, van Duijn CM, Felix SB, Fishman GI, Jamshidi Y, StrickerBH, Samani NJ, Kaab S, Arking DE. Common variants in 22 loci areassociated with QRS duration and cardiac ventricular conduction. NatGenet. 2010;42:1068–1076.

169. Chambers JC, Zhao J, Terracciano CM, Bezzina CR, Zhang W, Kaba R,Navaratnarajah M, Lotlikar A, Sehmi JS, Kooner MK, Deng G, SiedleckaU, Parasramka S, El-Hamamsy I, Wass MN, Dekker LR, de Jong JS,Sternberg MJ, McKenna W, Severs NJ, de Silva R, Wilde AA, Anand P,Yacoub M, Scott J, Elliott P, Wood JN, Kooner JS. Genetic variation inSCN10A influences cardiac conduction. Nat Genet. 2010;42:149–152.

170. Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Ste-fansdottir H, Gudjonsson SA, Jonasdottir A, Mathiesen EB, Njolstad I, NyrnesA, Wilsgaard T, Hald EM, Hveem K, Stoltenberg C, Lochen ML, Kong A,Thorsteinsdottir U, Stefansson K. Several common variants modulate heart rate,PR interval and QRS duration. Nat Genet. 2010;42:117–122.

171. Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, de Bakker PI, MullerM, Morrison AC, Smith AV, Isaacs A, Sanna S, Dorr M, Navarro P,Fuchsberger C, Nolte IM, de Geus EJ, Estrada K, Hwang SJ, Bis JC,Ruckert IM, Alonso A, Launer LJ, Hottenga JJ, Rivadeneira F, Nose-worthy PA, Rice KM, Perz S, Arking DE, Spector TD, Kors JA,Aulchenko YS, Tarasov KV, Homuth G, Wild SH, Marroni F, Gieger C,Licht CM, Prineas RJ, Hofman A, Rotter JI, Hicks AA, Ernst F, NajjarSS, Wright AF, Peters A, Fox ER, Oostra BA, Kroemer HK, Couper D,Volzke H, Campbell H, Meitinger T, Uda M, Witteman JC, Psaty BM,Wichmann HE, Harris TB, Kaab S, Siscovick DS, Jamshidi Y, Uitter-linden AG, Folsom AR, Larson MG, Wilson JF, Penninx BW, SniederH, Pramstaller PP, van Duijn CM, Lakatta EG, Felix SB, Gudnason V,Pfeufer A, Heckbert SR, Stricker BH, Boerwinkle E, O’DonnellCJ. Genome-wide association analysis identifies multiple loci related toresting heart rate. Hum Mol Genet. 2010;19:3885–3894.

172. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH, KimDJ, Park M, Cha SH, Kim JW, Han BG, Min H, Ahn Y, Park MS, Han HR,Jang HY, Cho EY, Lee JE, Cho NH, Shin C, Park T, Park JW, Lee JK,Cardon L, Clarke G, McCarthy MI, Lee JY, Oh B, Kim HL. A large-scalegenome-wide association study of Asian populations uncovers geneticfactors influencing eight quantitative traits. Nat Genet. 2009;41:527–534.

173. Peters NS. New insights into myocardial arrhythmogenesis: distributionof gap-junctional coupling in normal, ischaemic and hypertrophiedhuman hearts. Clinical Science. 1996;90:447–452.

174. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, WangH, Chen G, Wang Z. The muscle-specific microRNA miR-1 regulatescardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. NatMed. 2007;13:486–491.

175. Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, Doran R,Becher UM, Hwang SM, Bostani T, von Maltzahn J, Hofmann A, Reining S,Eiberger B, Gabris B, Pfeifer A, Welz A, Willecke K, Salama G, Schrickel JW,Kotlikoff MI, Fleischmann BK. Engraftment of connexin 43-expressing cellsprevents post-infarct arrhythmia. Nature. 2007;450:819–824.

176. Kao WH, Arking DE, Post W, Rea TD, Sotoodehnia N, Prineas RJ,Bishe B, Doan BQ, Boerwinkle E, Psaty BM, Tomaselli GF, Coresh J,Siscovick DS, Marban E, Spooner PM, Burke GL, Chakravarti A.Genetic variations in nitric oxide synthase 1 adaptor protein are asso-ciated with sudden cardiac death in US white community-based popu-lations. Circulation. 2009;119:940–951.

177. Eijgelsheim M, Newton-Cheh C, Aarnoudse AL, van Noord C,Witteman JC, Hofman A, Uitterlinden AG, Stricker BH. Geneticvariation in NOS1AP is associated with sudden cardiac death: evidencefrom the Rotterdam study. Hum Mol Genet. 2009;18:4213–4218.

178. Westaway SK, Reinier K, Huertas-Vazquez A, Evanado A, TeodorescuC, Navarro J, Sinner MF, Gunson K, Jui J, Spooner P, Kaab S, ChughSS. Common variants in CASQ2, GPD1L, and NOS1AP are significantlyassociated with risk of sudden death in patients with coronary arterydisease. Circ Cardiovasc Genet. 2011;4:397–402.

179. Arking DE, Junttila MJ, Goyette P, Huertas-Vazquez A, Eijgelsheim M,Blom MT, Newton-Cheh C, Reinier K, Teodorescu C, Uy-Evanado A,Carter-Monroe N, Kaikkonen KS, Kortelainen ML, Boucher G, LagaceC, Moes A, Zhao X, Kolodgie F, Rivadeneira F, Hofman A, WittemanJC, Uitterlinden AG, Marsman RF, Pazoki R, Bardai A, Koster RW,Dehghan A, Hwang SJ, Bhatnagar P, Post W, Hilton G, Prineas RJ, LiM, Kottgen A, Ehret G, Boerwinkle E, Coresh J, Kao WH, Psaty BM,Tomaselli GF, Sotoodehnia N, Siscovick DS, Burke GL, Marban E,Spooner PM, Cupples LA, Jui J, Gunson K, Kesaniemi YA, Wilde AA,Tardif JC, O’Donnell CJ, Bezzina CR, Virmani R, Stricker BH, Tan HL,Albert CM, Chakravarti A, Rioux JD, Huikuri HV, Chugh SS. Identi-fication of a sudden cardiac death susceptibility locus at 2q24.2 through

636 Circulation January 31, 2012

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 18: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

genome-wide association in European ancestry individuals. PLoS Genet.2011;7:e1002158.

180. Noseworthy PA, Havulinna AS, Porthan K, Lahtinen AM, Jula A,Karhunen PJ, Perola M, Oikarinen L, Kontula KK, Salomaa V,Newton-Cheh C. Common genetic variants, QT interval, and suddencardiac death in a Finnish population-based study. Circ CardiovascGenet. 2011;4:305–311.

181. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H,Preuss M, Stewart AF, Barbalic M, Gieger C, Absher D, Aherrahrou Z,Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL, ArdissinoD, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, BergerK, Bis JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ,Burnett MS, Buysschaert I, Carlquist JF, Chen L, Cichon S, Codd V,Davies RW, Dedoussis G, Dehghan A, Demissie S, Devaney JM,Diemert P, Do R, Doering A, Eifert S, Mokhtari NE, Ellis SG, ElosuaR, Engert JC, Epstein SE, de Faire U, Fischer M, Folsom AR, Freyer J,Gigante B, Girelli D, Gretarsdottir S, Gudnason V, Gulcher JR, HalperinE, Hammond N, Hazen SL, Hofman A, Horne BD, Illig T, Iribarren C,Jones GT, Jukema JW, Kaiser MA, Kaplan LM, Kastelein JJ, Khaw KT,Knowles JW, Kolovou G, Kong A, Laaksonen R, LambrechtsD, Leander K, Lettre G, Li M, Lieb W, Loley C, Lotery AJ, MannucciPM, Maouche S, Martinelli N, McKeown PP, Meisinger C, Meitinger T,Melander O, Merlini PA, Mooser V, Morgan T, Muhleisen TW, Muh-lestein JB, Munzel T, Musunuru K, Nahrstaedt J, Nelson CP, NothenMM, Olivieri O, Patel RS, Patterson CC, Peters A, Peyvandi F, Qu L,Quyyumi AA, Rader DJ, Rallidis LS, Rice C, Rosendaal FR, Rubin D,Salomaa V, Sampietro ML, Sandhu MS, Schadt E, Schafer A, SchillertA, Schreiber S, Schrezenmeir J, Schwartz SM, Siscovick DS,Sivananthan M, Sivapalaratnam S, Smith A, Smith TB, Snoep JD,Soranzo N, Spertus JA, Stark K, Stirrups K, Stoll M, Tang WH,Tennstedt S, Thorgeirsson G, Thorleifsson G, Tomaszewski M, Uitter-linden AG, van Rij AM, Voight BF, Wareham NJ, Wells GA,Wichmann HE, Wild PS, Willenborg C, Witteman JC, Wright BJ, Ye S,Zeller T, Ziegler A, Cambien F, Goodall AH, Cupples LA, QuertermousT, Marz W, Hengstenberg C, Blankenberg S, Ouwehand WH, Hall AS,Deloukas P, Thompson JR, Stefansson K, Roberts R, Thorsteinsdottir U,O’Donnell CJ, McPherson R, Erdmann J, Samani NJ. Large-scale asso-ciation analysis identifies 13 new susceptibility loci for coronary arterydisease. Nat Genet. 2011;43:333–338.

182. A genome-wide association study in Europeans and South Asians identifies fivenew loci for coronary artery disease. Nat Genet. 2011;43:339–344.

183. Lettre G, Palmer CD, Young T, Ejebe KG, Allayee H, Benjamin EJ,Bennett F, Bowden DW, Chakravarti A, Dreisbach A, Farlow DN,Folsom AR, Fornage M, Forrester T, Fox E, Haiman CA, Hartiala J,Harris TB, Hazen SL, Heckbert SR, Henderson BE, Hirschhorn JN,Keating BJ, Kritchevsky SB, Larkin E, Li M, Rudock ME, McKenzieCA, Meigs JB, Meng YA, Mosley TH, Newman AB, Newton-Cheh CH,Paltoo DN, Papanicolaou GJ, Patterson N, Post WS, Psaty BM, QasimAN, Qu L, Rader DJ, Redline S, Reilly MP, Reiner AP, Rich SS, RotterJI, Liu Y, Shrader P, Siscovick DS, Tang WH, Taylor HA, Tracy RP,Vasan RS, Waters KM, Wilks R, Wilson JG, Fabsitz RR, Gabriel SB,Kathiresan S, Boerwinkle E. Genome-wide association study ofcoronary heart disease and its risk factors in 8,090 African Americans:the NHLBI CARe project. PLoS Genet. 2011;7:e1001300.

184. Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, CohenJC, Rubin EM, Pennacchio LA. Targeted deletion of the 9p21 non-codingcoronary artery disease risk interval in mice. Nature. 2010;464:409–412.

185. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer andaging. Cell. 2006;127:265–275.

186. Newton-Cheh C, Cook NR, VanDenburgh M, Rimm EB, Ridker PM,Albert CM. A common variant at 9p21 is associated with sudden andarrhythmic cardiac death. Circulation. 2009;120:2062–2068.

187. Albert CM, MacRae CA, Chasman DI, VanDenburgh M, Buring JE,Manson JE, Cook NR, Newton-Cheh C. Common variants in cardiac ionchannel genes are associated with sudden cardiac death. Circ ArrhythmElectrophysiol. 2010;3:222–229.

188. Stecker EC, Sono M, Wallace E, Gunson K, Jui J, Chugh SS. Allelicvariants of SCN5A and risk of sudden cardiac arrest in patients withcoronary artery disease. Heart Rhythm. 2006;3:697–700.

189. Burke A, Creighton W, Mont E, Li L, Hogan S, Kutys R, Fowler D,Virmani R. Role of SCN5A Y1102 polymorphism in sudden cardiacdeath in blacks. Circulation. 2005;112:798–802.

190. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, BeggsAH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT. Variant of

SCN5A sodium channel implicated in risk of cardiac arrhythmia.Science. 2002;297:1333–1336.

191. Gavin MC, Newton-Cheh C, Gaziano JM, Cook NR, VanDenburgh M,Albert CM. A common variant in the beta2-adrenergic receptor and riskof sudden cardiac death. Heart Rhythm. 2011;8:704–710.

192. Tseng ZH, Aouizerat BE, Pawlikowska L, Vittinghoff E, Lin F, WhitemanD, Poon A, Herrington D, Howard TD, Varosy PD, Hulley SB, Malloy M,Kane J, Kwok PY, Olgin JE. Common beta-adrenergic receptor poly-morphisms are not associated with risk of sudden cardiac death in patientswith coronary artery disease. Heart Rhythm. 2008;5:814–821.

193. Sotoodehnia N, Siscovick DS, Vatta M, Psaty BM, Tracy RP, TowbinJA, Lemaitre RN, Rea TD, Durda JP, Chang JM, Lumley TS, Kuller LH,Burke GL, Heckbert SR. Beta2-adrenergic receptor genetic variants andrisk of sudden cardiac death. Circulation. 2006;113:1842–1848.

194. Snapir A, Mikkelsson J, Perola M, Penttila A, Scheinin M, Karhunen PJ.Variation in the alpha2b-adrenoceptor gene as a risk factor for pre-hospital fatal myocardial infarction and sudden cardiac death. J Am CollCardiol. 2003;41:190–194.

195. Hernesniemi JA, Karhunen PJ, Rontu R, Ilveskoski E, Kajander O,Goebeler S, Viiri LE, Pessi T, Hurme M, Lehtimaki T. Interleukin-18promoter polymorphism associates with the occurrence of suddencardiac death among caucasian males: the Helsinki Sudden Death Study.Atherosclerosis. 2008;196:643–649.

196. Mikkelsson J, Perola M, Penttila A, Karhunen PJ. Platelet collagen receptorGPIa (C807T/HPA-5) haplotype is not associated with an increased risk offatal coronary events in middle-aged men. Atherosclerosis. 2002;165:111–118.

197. Reiner AP, Rosendaal FR, Reitsma PH, Lemaitre RN, Pearce RM,Friedlander Y, Raghunathan TE, Psaty BM, Siscovick DS. Factor VLeiden, Prothrombin G20210A, and risk of sudden coronary death inapparently healthy persons. Am J Cardiol. 2002;90:66–68.

198. Mikkelsson J, Perola M, Penttila A, Karhunen PJ. Platelet glycoproteinIbalpha HPA-2 Met/VNTR B haplotype as a genetic predictor of myo-cardial infarction and sudden cardiac death. Circulation. 2001;104:876–880.

199. Mikkelsson J, Perola M, Laippala P, Penttila A, Karhunen PJ. Glyco-protein IIIa Plqq(A1/A2) polymorphism and sudden cardiac death. J AmColl Cardiol. 2000;36:1317–1323.

200. Sotoodehnia N, Li G, Johnson CO, Lemaitre RN, Rice KM, Rea TD,Siscovick DS. Genetic variation in angiotensin-converting enzyme-related pathways associated with sudden cardiac arrest risk. HeartRhythm. 2009;6:1306–1314.

201. Sun AY, Koontz JI, Shah SH, Piccini JP, Nilsson KR Jr, Craig D,Haynes C, Gregory SG, Hranitzky PM, Pitt GS. The S1103Y cardiacsodium channel variant is associated with implantable cardioverter-defibrillator events in blacks with heart failure and reduced ejectionfraction. Circ Cardiovasc Genet. 2011;4:163–168.

202. Albert CM, Nam EG, Rimm EB, Jin HW, Hajjar RJ, Hunter DJ, MacRaeCA, Ellinor PT. Cardiac sodium channel gene variants and suddencardiac death in women. Circulation. 2008;117:16–23.

203. Bezzina CR, Pazoki R, Bardai A, Marsman RF, de Jong JS, Blom MT,Scicluna BP, Jukema JW, Bindraban NR, Lichtner P, Pfeufer A,Bishopric NH, Roden DM, Meitinger T, Chugh SS, Myerburg RJ,Jouven X, Kaab S, Dekker LR, Tan HL, Tanck MW, Wilde AA.Genome-wide association study identifies a susceptibility locus at 21q21for ventricular fibrillation in acute myocardial infarction. Nat Genet.2010;42:688–691.

204. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, KrithivasA, Hong JS, Horwitz MS, Crowell RL, Finberg RW. Isolation of acommon receptor for coxsackie B viruses and adenoviruses 2 and 5.Science. 1997;275:1320–1323.

205. Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human andmouse cellular receptors for subgroup C adenoviruses and group Bcoxsackieviruses. Proc Natl Acad Sci U S A. 1997;94:3352–3356.

206. Bowles NE, Richardson PJ, Olsen EG, Archard LC. Detection ofcoxsackie-B-virus-specific RNA sequences in myocardial biopsysamples from patients with myocarditis and dilated cardiomyopathy.Lancet. 1986;1:1120–1123.

207. Lim BK, Xiong D, Dorner A, Youn TJ, Yung A, Liu TI, Gu Y, DaltonND, Wright AT, Evans SM, Chen J, Peterson KL, McCulloch AD,Yajima T, Knowlton KU. Coxsackievirus and adenovirus receptor(CAR) mediates atrioventricular-node function and connexin 45 local-ization in the murine heart. J Clin Invest. 2008;118:2758–2770.

KEY WORDS: death, sudden � epidemiology � genetics

Deo and Albert Sudden Cardiac Death 637

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 19: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

Rajat Deo and Christine M. AlbertEpidemiology and Genetics of Sudden Cardiac Death

Print ISSN: 0009-7322. Online ISSN: 1524-4539 Copyright © 2012 American Heart Association, Inc. All rights reserved.

is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231Circulation doi: 10.1161/CIRCULATIONAHA.111.023838

2012;125:620-637Circulation. 

http://circ.ahajournals.org/content/125/4/620World Wide Web at:

The online version of this article, along with updated information and services, is located on the

http://circ.ahajournals.org/content/suppl/2013/10/17/125.4.620.DC1Data Supplement (unedited) at:

  http://circ.ahajournals.org//subscriptions/

is online at: Circulation Information about subscribing to Subscriptions: 

http://www.lww.com/reprints Information about reprints can be found online at: Reprints:

  document. Permissions and Rights Question and Answer this process is available in the

click Request Permissions in the middle column of the Web page under Services. Further information aboutOffice. Once the online version of the published article for which permission is being requested is located,

can be obtained via RightsLink, a service of the Copyright Clearance Center, not the EditorialCirculationin Requests for permissions to reproduce figures, tables, or portions of articles originally publishedPermissions:

by guest on June 29, 2018http://circ.ahajournals.org/

Dow

nloaded from

Page 20: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 346

Page 346

Mort subite

Epidémiologie et génétique de la mort subite

Rajat Deo, MD, MTR ; Christine M. Albert, MD, MPH

Le terme de mort subite (MS) se rapporte généralement àun décès de cause cardiovasculaire survenu de manière

totalement imprévisible chez une personne atteinte ou nond’une affection cardiaque préexistante. La spécificité de cettedéfinition varie selon que l’événement s’est ou non produit enprésence d’un témoin ; cela étant, la plupart des études ontporté sur des cas dans lesquels le collapsus avait été constatépar un tiers (la personne étant décédée dans l’heure ayantsuivi une modification brutale de son état clinique) ou surdes décès survenus brutalement au cours des précédentes24 heures.1–3 Par ailleurs, on parle d’arrêt cardiaque subitdans le cas d’une MS récupérée grâce à une procédure deréanimation documentée ou d’une MS qui a spontanémentavorté, l’intéressé ayant survécu à l’arrêt cardiaque.

L’incidence annuelle des MS aux Etats-Unis est compriseentre 180 000 et 450 000 cas.4 Les variations dans lesestimations tiennent aux différences en matière de définitionsde la MS et de méthodes de suivi employées pour documenterles cas.4,5 Dans les études prospectives récemment menéesà partir des informations recueillies aux Etats-Unis,6,7 auxPays-Bas,8 en Irlande9 et en Chine,10 les taux de MS varient de50 à 100 cas pour 100 000 individus.3 Bien qu’il apparaissenécessaire de multiplier les observatoires afin de pouvoirétablir des estimations plus précises de l’incidence des MS,il est néanmoins indubitable que le poids global de cesévénements au sein de la population demeure élevé. Alors queles progrès accomplis dans le domaine de la préventionprimaire et secondaire ont notablement réduit la mortalitéglobale imputable aux affections coronaires au cours destrente années écoulées,11,12 l’impact sur l’incidence des MS aété plus limité.13–16 Ces événements représentent aujourd’huiencore plus de 50 % des décès de causes coronaires et entre15 et 20 % de la mortalité globale.17,18 Dans certaines strates dela population, loin de diminuer,19 les taux semblent en faitaugmenter.14,19 C’est pourquoi il apparaît essentiel de prévenirles MS si l’on veut que la mortalité de cause coronairecontinue à diminuer.

En dépit des progrès majeurs réalisés en matière deréanimation cardiorespiratoire20 et de soins ultérieurs, les tauxde survie après hospitalisation pour arrêt cardiaque dansles grandes métropoles demeurent médiocres.21 Selon uneestimation récente, ils ne dépasseraient pas 7,9 % pour lesarrêts cardiaques survenus en milieu extrahospitalier et prisen charge par le personnel urgentiste.6 De plus, les MS se

produisent majoritairement au domicile, en l’absence de touttémoin.8,22 De ce fait, la mise à disposition de défibrillateursexternes automatiques, qui a permis d’améliorer le tauxde récupération des arrêts cardiaques survenus sur la voiepublique,21 n’a qu’un impact limité en termes de diminutionde la mortalité globale par MS. C’est pourquoi, si l’on veutsignificativement diminuer l’incidence de ces accidents, il y alieu de se doter de moyens de prévention primaire efficaces.Etant donné que la majorité des MS survient dans lapopulation générale, la connaissance approfondie del’épidémiologie de ces événements peut permettre d’identifiercertains types d’interventions à faible risque susceptiblesd’être mises en œuvre à large échelle. De plus, les donnéesrécemment acquises sur la génétique de la MS pourraient,à terme, faciliter l’identification des sous-groupes à hautrisque au sein de la population générale ou révéler denouvelles cibles moléculaires accessibles à une intervention.

Caractéristiques démographiques :âge, sexe et origine ethnique

L’incidence de la MS augmente fortement au cours del’avancée en âge indépendamment du sexe ou de l’origineethnique (Figure 1). Ainsi, l’incidence annuelle chezl’homme est d’environ 100 cas pour 100 000 à 50 ans, maisatteint 800 cas pour 100 000 à 75 ans.23 Bien que le risquede MS augmente avec l’âge, le taux de décès de survenuebrutale est plus élevé dans les tranches d’âge inférieures,2,24,25

où la MS a un impact socio-économique plus important.Quel que soit l’âge,26 l’incidence de la MS est plus faible chezles femmes que chez les hommes, cela même après ajustementen fonction des facteurs de risque coronaire.27 Il sembleraittoutefois que l’écart tende à se resserrer avec le temps.7,16

Les taux de MS ont, en effet, moins diminué chez les femmesque chez les hommes, en particulier dans les tranchesd’âge inférieures.14 Cela pourrait en partie tenir au faitque les femmes victimes de MS sont globalement moinssujettes que les hommes aux coronaropathies. Près desdeux tiers des femmes qui décèdent de MS n’ont aucunantécédent connu d’affection cardiaque, contre seulement50 % des hommes.8,24,28 De plus, que l’on considère aussibien les personnes ayant survécu à un arrêt cardiaque29

que celles ayant présenté une MS,30 il semblerait que laproportion d’événements survenus en l’absence d’anomalie

Laboratoire d’Electrophysiologie, Service de Médecine Cardiovasculaire, Université de Pennsylvanie, Philadelphie, Pennsylvanie, Etats-Unis (R.D.) ;Service de Médecine Préventive et Cardiovasculaire, Centre de Prévention des Troubles du Rythme Cardiaque, Brigham and Women’s Hospital, Boston,Massachusetts, Etats-Unis (C.M.A.).

Correspondance : Christine M. Albert, MD, MPH, Division of Preventive Medicine and Cardiovascular Medicine, Center for Arrhythmia Prevention,Brigham and Women’s Hospital, 900 Commonwealth Ave E, Boston, MA 02215–1204, Etats-Unis. E-mail : [email protected].

(Traduit de l’anglais : Epidemiology and Genetics of Sudden Cardiac Death. Circulation. 2012;125:620–637.)© 2012 American Heart Association, Inc.

Circulation est disponible sur le site http://circ.ahajournals.org

346

Page 21: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 347

Page 347

structurale cardiaque soit plus élevée parmi les femmes(Figure 2).

Il existe également, dans l’incidence de la MS, des différencesinterethniques que l’on s’explique mal. Les hommes et lesfemmes noirs semblent être victimes d’arrêts cardiaquesextrahospitaliers à un âge de plusieurs années inférieur àcelui des sujets blancs. Dans deux villes américaines, les tauxd’arrêts cardiaques se sont révélés plus élevés chez les Noirs(risque relatif compris entre 1,3 et 2,8) que chez les sujetsblancs (Figure 3).23,31 Les données fournies par les certificatsde décès suggèrent également que la MS est plus répandueparmi les Noirs américains que dans les autres groupesethniques, alors que les taux sont plus faibles chez lesAméricains d’origine hispanique que dans les autrescommunautés.14,32 De plus, les taux de survie après arrêtcardiaque sont inférieurs chez les Africains.23,33 A Chicago, il aété établi que le taux global de survie après arrêt cardiaqueextrahospitalier chez les sujets noirs atteignait seulement31 % de celui observé chez les sujets blancs.23 Les sujets noirssont davantage exposés aux arrêts cardiaques survenanten l’absence de témoin et qui ont pour origine immédiatedocumentée un trouble du rythme tel qu’une activitéélectrique sans pouls.23,34 Cela étant, la différence de taux desurvie ne semble pas seulement due au type d’anomalierythmique sous-tendant l’arrêt cardiaque. Même si l’on neretient que les événements imputables à une fibrillationventriculaire (FV) ou à une tachycardie ventriculaire sanspouls, les taux de survie intrahospitalière sont de 27 %inférieurs chez les sujets noirs.35 Selon le registre nationalaméricain des réanimations cardiorespiratoires, cettedisparité semblerait être liée en grande partie (mais pastotalement) au fait que les patients noirs sont pris en chargedans des hôpitaux moins efficients en termes de résultats.35

Comme dans toute étude ayant trait aux différencesinterethniques, il est difficile de faire la part entre lesfacteurs socio-économiques et la prédisposition génétiqueréelle.

Figure 1. Incidence de la mort subite selon l’âge, le sexe etl’origine ethnique dans le programme de réanimationcardiorespiratoire de Chicago. La population de l’étude comptait6 451 patients, dont 3 207 Blancs et 2 910 Noirs. Adapté d’Albertet al23 avec l’autorisation de l’éditeur. Copyright © MassachusettsMedical Society, 1993.

Mécanismes physiopathologiquesLa physiopathologie de la MS est complexe et semblenécessiter une interaction entre un événement transitoireet un substrat sous-jacent. Ce processus génère une instabilitéélectrique et un trouble du rythme ventriculaire létal, celaétant suivi d’une défaillance hémodynamique. Bien qu’il soitdifficile de prévoir à quel moment ce type d’interaction estappelé à devenir dangereux, divers facteurs de risque peuventjouer un rôle (Figure 4).

La maladie coronaire est le principal substrat pourvoyeurde MS dans les pays occidentaux, en cause dans près de75 % des cas.8,18,36,37 Les cas restants sont pour l’essentielimputables aux cardiomyopathies (dilatée, hypertrophique et

Figure 2. Pathologies cardiaques structurales chez les personnesayant survécu à un arrêt cardiaque. Ces diagrammes à secteursdécrivent les pourcentages d’affections cardiaques sous-jacenteschez les sujets des deux sexes ayant survécu à un arrêtcardiaque survenu en milieu extrahospitalier. L’âge moyen était de58 ± 12 ans pour les hommes et de 55 ± 17 ans pour les femmes.La maladie coronaire a été le diagnostic principal chez la majoritédes hommes. En revanche, les femmes ont été plus souventsujettes que les hommes à des troubles cardiaques d’origine nonischémique, notamment à type de cardiomyopathie dilatée (19 %)ou de valvulopathie cardiaque (13 %).29 MC : maladie coronaire ;CMD : cardiomyopathie dilatée ; VC : valvulopathie cardiaque ;C. cong. : cardiopathie congénitale ; spasme : spasme coronaire ;VD : ventricule droit. Adapté d’Albert et al29 avec l’autorisation del’éditeur. Copyright © American Heart Association, Inc., 1996.

Figure 3. Comparaison des risques relatifs d’arrêt cardiaqueencourus par les Noirs et par les Blancs en fonction de la tranched’âge. Les barres figurent les intervalles de confiance à 95 %.Adapté d’Albert et al23 avec l’autorisation de l’éditeur.Copyright © Massachusetts Medical Society, 1993.

Deo et Albert La mort subite 347

Page 22: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 348

Page 348

Figure 4. Eléments physiopathologiques majeurs responsables de l’instabilité électrique et de la survenue d’une mort subite. HTA :hypertension artérielle ; Eco : événement coronaire ; ICC : insuffisance cardiaque congestive ; VG : ventriculaire gauche ; AGPI : acides graspolyinsaturés ; AGNE : acides gras non estérifiés ; MS : mort subite.

ventriculaire droite arythmogène) et aux troubles électriquesprimitifs en rapport avec l’existence de canalopathies.18

Dans près de 5 % des MS et des arrêts cardiaques, aucuneanomalie cardiaque notable n’est décelée lors d’une enquêteapprofondie ou à l’autopsie.29,38,39 La maladie coronaire pré-dispose à la MS dans trois contextes généraux : (1) l’infarctusaigu du myocarde, (2) l’ischémie sans infarctus et (3) lesanomalies structurales consistant, par exemple, en laformation d’une cicatrice ou en une dilatation ventriculairesecondaire à un infarctus ou à une ischémie chronique. Parmiles individus qui décèdent brutalement d’un trouble coronaire,19 à 27 %40,41 présentent des lésions anatomopathologiquesen faveur d’une nécrose myocardique et seulement 38 % despersonnes ayant survécu à un arrêt cardiaque sont sujettes àune élévation de leurs paramètres enzymatiques témoignantde la survenue d’un infarctus du myocarde.42 Dans les étudespost-mortem, des plaques stables et des remaniementschroniques isolés ont été mis en évidence chez environ 50 %des patients coronariens victimes de MS,41,43,44 ce qui tend àindiquer que l’événement peut parfois être secondaire à larupture d’une plaque d’athérosclérose ou à un infarctus dumyocarde (IDM) en phase aiguë, mais que cela n’est pasl’éventualité la plus fréquente.

Il est permis de penser que, lorsqu’elle ne survient pas dansun contexte d’IDM aigu, la MS est causée par une anomalieélectrique engendrée par un trouble du rythme ventriculaire,lui-même provoqué par une ischémie ou un autre stimulusarythmogène sur fond de cardiopathie chronique.45 Cettehypothèse est difficilement vérifiable sachant que la plupartdes décès se produisent en l’absence de toute surveillancemédicalisée et que les individus qui font l’objet d’un tel

monitorage forment une population hautement sélectionnée.La fibrillation ventriculaire évolue en asystolie en l’espace dequelques minutes, de sorte que, chez la majorité des patientsvictimes d’une MS, l’examen immédiat effectué par lepersonnel urgentiste met en évidence une asystolie ou uneactivité électrique sans pouls.34 Lorsque la déterminationinitiale du rythme peut être réalisée dans un délai relativementcourt après la survenue du collapsus, le taux de tachy-arythmies ventriculaires documentées augmente jusqu’à 75 à80 % (Figure 5).42,46–49 Des études épidémiologiques menéesdans les années 1970 à 1990 sur des cohortes d’hommes50 et defemmes24 suggèrent que 88 à 91 % des décès qui se produisentdans l’heure qui suit l’apparition de symptômes seraient dus àun trouble du rythme cardiaque. Cela étant, la proportion desMS imputables à une FV semble diminuer au fil du temps.Selon de récentes données émanant de services d’urgencesmédicales,19 la FV constituerait moins souvent le trouble durythme inaugural, sa diminution d’incidence ne semblant pasêtre totalement imputable à l’évolution des protocoles deréanimation ou des caractéristiques des patients.51

Facteurs de risqueCardiopathies structuralesLa maladie coronaire et l’insuffisance cardiaque congestiveaugmentent notablement le risque de MS encouru par lesindividus.52 Dans l’étude de Framingham, l’existence d’unecoronaropathie a été associée à un risque de MS 2,8 à 5,3 foissupérieur et celle d’une insuffisance cardiaque congestive a unrisque 2,6 à 6,2 fois plus élevé.27 Après un IDM, le risque deMS est quadruplé chez la femme et décuplé chez l’homme.24,28

348 Circulation Septembre 2012

Page 23: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 349

Page 349

Le risque absolu est maximal au cours des 30 premiers joursqui suivent l’IDM et diminue ensuite progressivement au fil dutemps.53,54 L’incidence de la MS post-IDM connaît toutefoisune diminution parallèle à celle de la mortalité de causecoronaire,54 des taux n’excédant pas 1 % par an étantdésormais rapportés chez les patients ayant bénéficiéd’un traitement médical optimal et d’une intervention derevascularisation.55,56 Malgré tout, les taux de MS post-IDMdemeurent encore élevés dans certains sous-groupes depatients.53 La dysfonction ventriculaire gauche et la classede la New York Heart Association sont de puissants facteursde risque de MS chez les patients atteints d’une cardio-myopathie, que celle-ci soit ou non de type ischémique,57 lapose d’un défibrillateur automatique implantable ayant poureffet d’allonger l’espérance de vie de ces patients à hautrisque.58,59 Les autres marqueurs d’atteinte structurale dumuscle cardiaque qui contribuent à augmenter le risquede MS sont l’hypertrophie ventriculaire gauche,60,61 l’allonge-ment de l’espace QTc62 et la réponse anormale de la fréquencecardiaque à l’effort.63 Pour l’heure, aucun de ces marqueursn’a encore été incorporé aux algorithmes de stratificationdes risques.

Bien que la présence d’une cardiopathie structuralemanifeste augmente fortement le risque de MS, chez laplupart des patients qui sont victimes d’un arrêt cardiaque,celui-ci ne se produit pas dans un contexte de diminutiondocumentée de la fraction d’éjection ventriculaire gauche endeçà de 35 %.2,18,30,64 Cette observation rend compte de ladifficulté qu’il y a à concevoir des stratégies de prévention dela MS, car les individus qui, selon les critères actuels,encourent le risque le plus élevé ne représentent qu’unefaible fraction des MS qui surviennent dans la population.Les résultats d’une récente étude menée chez des femmesménopausées atteintes de maladie coronaire patente maisdont la fonction systolique était relativement préservéesuggèrent qu’une combinaison de facteurs de risque cliniqueset épidémiologiques faciles à rechercher pourrait permettre

Figure 5. Premier événement arythmique documenté lorsd’une mort subite liée à un trouble du rythme cardiaque.46

TV : tachycardie ventriculaire ; FV : fibrillation ventriculaire.Adapté de Bayes de Luna et al46 avec l’autorisation de l’éditeur.Copyright © Elsevier, 1989.

une reclassification des risques de MS en catégories clinique-ment plus pertinentes que celles fondées sur la seule fractiond’éjection ventriculaire gauche.65 Pour autant, comme cela estle cas pour la fraction d’éjection ventriculaire gauche et pourla plupart des autres facteurs prédictifs cliniques, les patientsidentifiés par cette approche comme étant à haut risquese sont révélés encourir un risque tout aussi élevé de décèsd’origine cardiovasculaire revêtant une forme autre que laMS.53,66 Cet important risque de décès lié à des causesconcurrentes limite l’efficacité des traitements qui, telle lapose d’un défibrillateur automatique implantable, visentexclusivement à prévenir la MS. De plus, celle-ci constituesouvent la première manifestation d’une maladie cardio-vasculaire, de sorte que la stratification des niveaux de risquechez les seuls patients à haut risque conduit à ignorer lamajorité des MS qui se produisent au sein de la population.C’est pourquoi il est également nécessaire d’acquérir unemeilleure connaissance des facteurs de risque de MS présentsdans la population générale.

Facteurs de risque coronaireEtant donné que près de 80 % des hommes victimes de MSprésentent une maladie coronaire sous-jacente, il ressort queles classiques facteurs de risque coronaire sont prédictifsde MS dans la population générale. Les facteurs de risquecoronaire sur lesquels il est possible d’agir et dont la valeurprédictive en termes de survenue d’une MS a été établie dansdiverses cohortes comprennent l’hypertension artérielle,l’hypercholestérolémie, le diabète,67–69 l’insuffisance rénale,70,71

l’obésité et le tabagisme.24,27,72,73 Bien que la prévalence de lamaladie coronaire semble plus faible chez les femmes qui sontvictimes de MS que chez les hommes,29,30 les facteurs de risquecoronaire conventionnels demeurent néanmoins prédictifsde MS parmi la population féminine.24,28,65 Le tabagismeest notamment un important facteur de risque de MS, carl’augmentation du risque qu’il induit dans la populationgénérale est du même ordre que celle imputable à l’IDM.24,43,44

La poursuite du tabagisme augmente le risque de nouvelarrêt cardiaque,74 alors que l’arrêt du tabac est rapidementsuivi d’une diminution du risque de MS chez les sujetscoronariens.26,75,76 Le diabète et l’hypertension artérielle sontégalement de puissants facteurs de risque de MS,67–69 derécentes données ayant, de plus, montré que le diabètepourrait être un intéressant élément à prendre en comptedans la stratification des risques de MS, y compris dansles populations à haut risque.77 Il semblerait que lacholestérolémie soit surtout corrélée avec le risque de MSchez le sujet jeune.24,28

Tous les facteurs de risque qui viennent d’être mentionnésfavorisent la survenue d’événements coronaires considérésdans leur globalité et ne sont pas spécifiquement prédictifs deMS ; de plus, hormis le diabète,65,77 l’atteinte rénale65,70,71 etle tabagisme,75 ils ne semblent pas prédire le risque de MSlorsqu’il existe une maladie coronaire avérée.52 Cela étant,la modification des facteurs de risque coronaire connus a unimpact sur l’incidence de la MS à l’échelon de la population.La diminution d’incidence des diverses manifestations de lamaladie coronaire, dont la MS, qui est observée depuis le

Deo et Albert La mort subite 349

Page 24: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 350

Page 350

milieu des années 1960 constitue une preuve indirecte dusuccès des mesures visant à agir sur les facteurs de risquecoronaire.

Paramètres électrocardiographiques d’évaluationdu risqueDes travaux ont été menés pour déterminer si les caractéris-tiques de l’électrocardiogramme standard à douze dérivations,telles que la fréquence cardiaque, la durée des complexesQRS, l’espace QT et la repolarisation précoce, pouvaient êtreretenues en qualité de facteurs de risque de MS. Des études depopulations ont ainsi montré qu’une fréquence cardiaque derepos élevée78 et un espace QT de durée allongée augmententtous deux le risque de MS dans la population générale.62,79

L’allongement de la durée des complexes QRS est, lui aussi,associé au risque de MS.80,81 L’attention s’est depuis peuportée sur la repolarisation précoce (RP) en tant qu’autrefacteur de risque de MS et de décès de cause cardiovasculaire.La RP est définie par l’ascension de la zone de jonction entrela fin du complexe QRS et le début du segment ST (point J),la présence d’une telle anomalie dans les dérivations électro-cardiographiques inférieures ou latérales de l’ECG ayant étérattachée à la survenue d’arrêts cardiaques subits et de FVidiopathiques dans des études cas-témoins.82–84 Dans uneétude de population finlandaise, l’existence d’une RP donnantlieu à un sus-décalage de plus de 0,2 mV dans les dérivationsinférieures s’est montrée corrélée avec une forte augmentationdu risque de décès lié à une cause cardiaque ou à un trouble durythme.85 Dans une analyse de suivi de cette même cohorte, laRP n’est apparue associée au décès par survenue d’un troubledu rythme que dans les cas où le segment ST était horizontalou descendant.84 Les individus qui présentaient une RP maischez lesquels le segment ST dessinait une pente rapidementascendante n’encouraient pas de risque important.

Facteurs de risque d’origine alimentaireDes études observationnelles ont permis de rattacherspécifiquement la consommation et le taux sanguin decertains nutriments au risque de MS (Tableau 1).70,86–101

Plusieurs études épidémiologiques tendent à indiquer que laconsommation plus importante d’acides gras polyinsaturésn-3 diminuerait le risque de MS de façon inversementproportionnelle et ce, plus fortement encore que le risqued’IDM non fatal.102–106 Dans quatre études observationnelles,la consommation de poisson environ une ou deux fois parsemaine a eu pour effet d’abaisser le risque de MS de 42 à50 %.102–105 L’ingestion d’acide α-linolénique, un acide graspolyinsaturé n-3 à chaîne intermédiaire présent dans lesaliments d’origine végétale, a également contribué à diminuerle risque de MS dans une étude observationnelle menée chezla femme.106 Ces observations recueillies au sein de cohortesd’individus en relativement bonne santé corroborent lesdonnées expérimentales ayant objectivé un effet protecteur deces nutriments à l’égard de la sensibilité aux troubles durythme.107 Néanmoins, les essais cliniques randomisés n’ontpas tous validé cette hypothèse. L’essai de prévention duGISSI (Gruppo Italiano per lo Studio della Sopravvivenzanell’Infarto miocardico [groupe italien d’étude de la survieaprès infarctus du myocarde]), qui visait à évaluer sur un

mode ouvert les effets de la supplémentation en acides graspolyinsaturés n-3 (prise journalière de 850 mg d’acided’eicosapentaénoïque et d’acide docosahexaénoïque) chez11 324 patients ayant des antécédents d’IDM récent, a montréque ce traitement avait induit une diminution significative de45 % de l’incidence des MS, mais n’avait, en revanche, euaucun impact bénéfique sur les taux d’IDM et d’accidentsvasculaires cérébraux non fatals.108 Toutefois, deux essaisrandomisés en double aveugle menés plus récemment sur lesacides gras polyinsaturés n-3 dans des cohortes de patients enpost-infarctus n’ont pas permis de confirmer cette influencefavorable sur le risque de MS.109,110 Dans les deux populationsétudiées, l’incidence de la MS a été nettement inférieure àce qui était attendu, ce qui porte à penser que ces essaismanquaient probablement de puissance. Cela signifie qu’ilsera encore plus difficile d’évaluer la capacité d’interventionsdiététiques à réduire les taux de MS dans les populations chezlesquelles le risque est plus faible.

L’ingestion d’alcool et celle de magnésium pourraientégalement exercer un effet sélectif sur le risque de MS. Uneforte consommation d’alcool (au-delà de 5 verres par jour)augmente le risque de MS,73 mais pas celui d’IDM nonfatal.111 Il semblerait, en revanche, que l’ingestion d’alcool enquantités faibles à modérées (c’est-à-dire n’excédant pas undemi-verre à un verre par jour) ait pour effet de diminuer lerisque de MS.112–114 La prise de magnésium pourrait égalementinfluer sur la propension à la MS. Dans la Nurses’ HealthStudy (étude américaine sur l’état de santé des infirmières), lerisque relatif de MS s’est révélé significativement abaissé chezles femmes dont la ration alimentaire en magnésium se situaitdans le quartile le plus élevé. En outre, à chaque augmentationde 0,25 mg/dl (1 ET) de la magnésémie a correspondu unediminution de 41 % du risque de MS.87 La même relationinverse entre magnésémie et MS a été rapportée dansl’étude Atherosclerosis Risk in Communities (risque d’athéro-sclérose dans les communautés ethniques) ; cela étant, aucunecorrélation n’a été mise en évidence entre la mesure isolée dela ration alimentaire en magnésium et le risque de MS.88

Pour terminer, des observations tendent à indiquer quecertains schémas alimentaires qui associent des nutrimentsayant des effets additifs et/ou synergiques115 contribuent àréduire le risque de MS. Aussi bien des essais cliniques116 quedes études observationnelles117 ont démontré la diminution durisque cardiovasculaire associée à l’adoption d’un régime detype méditerranéen, consistant en une consommation plusimportante de fruits et légumes, de fruits à écale, de céréalescomplètes et de poisson, une ingestion modérée d’alcool etune faible consommation de viande rouge ou cuisinée. Le lienparaît plus puissant pour les événements fatals que pourceux n’entraînant pas la mort et pourrait en partie tenir à laprotection exercée à l’égard des troubles du rythmeventriculaire et de la MS.118 Les récentes données de la Nurses’Health Study suggèrent que les femmes ayant des habitudesalimentaires proches de ce régime dit méditerranéenencourent un risque de MS significativement abaissé.119

Marqueurs biologiquesAu-delà des biomarqueurs nutritionnels décrits ci-dessus, denombreux travaux épidémiologiques ont évalué le rôle joué

350 Circulation Septembre 2012

Page 25: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 351

Page 351

Tab

leau

1.

Lie

ns

rele

vés

entr

e le

s m

arq

ueu

rs b

iolo

giq

ues

et l

a m

ort

su

bit

e d

ans

les

étu

des

pro

spec

tive

s

Biom

arqu

eur

Méc

anis

me

Etud

eRé

sulta

ts

Mar

queu

rs d

’orig

ine

alim

enta

ireAc

ides

gra

s n-

long

ue c

haîn

eSt

abili

satio

n de

s ca

naux

ioni

ques

, infl

amm

atio

nPh

ysic

ians

’ Hea

lth S

tudy

86

(n=

278)

Une

corr

élat

ion

inve

rse

a ét

é ob

ject

ivée

ent

re le

taux

d’a

cide

s gr

as n

-3 à

long

ue c

haîn

e m

esur

é à

l’ent

rée

dans

l’ét

ude

et le

risq

ue d

e M

SM

agné

sium

Repo

laris

atio

n, s

tabi

lisat

ion

mem

bran

aire

Nurs

es’ H

ealth

Stu

dy87

(n=

8873

5)L’

élév

atio

n de

la m

agné

sém

ie e

t l’a

ugm

enta

tion

de la

ratio

n al

imen

taire

en

mag

nési

um o

nt to

utes

deu

x co

ntrib

ué à

rédu

ire le

risq

ue d

e M

SEt

ude

ARIC

88 (n

=14

232)

Le ri

sque

de

MS

est a

ppar

u si

gnifi

cativ

emen

t plu

s fa

ible

che

z le

s pa

rtic

ipan

ts d

ont l

a m

agné

sém

ie s

e si

tuai

t dan

s le

quar

tile

le p

lus

élev

é qu

e ch

ez c

eux

qui p

rése

ntai

ent d

es v

aleu

rs s

’insc

rivan

t dan

s le

qua

rtile

le p

lus

bas

Acid

es g

ras

non

esté

rifiés

Stab

ilisa

tion

mem

bran

aire

Paris

Pro

spec

tive

Stud

y89

(n=

525

0 ho

mm

es)

Les

taux

pla

smat

ique

s d’

AGNE

mes

urés

à je

un à

l’en

trée

dan

s l’é

tude

se

sont

mon

trés

cor

rélé

s de

faço

n in

dépe

ndan

teav

ec le

risq

ue d

e M

S ap

rès

une

pério

de d

e su

ivi d

e 22

ans

Acid

es g

ras

tran

sIn

flam

mat

ion,

dys

fonc

tion

endo

thél

iale

Card

iova

scul

ar H

ealth

Stu

dy90

(n=

428)

L’él

évat

ion

du ta

ux p

lasm

atiq

ue d

e ph

osph

olip

ides

du

type

des

aci

des

gras

tran

s-18

:2 a

eu

pour

effe

t d’a

ugm

ente

r le

risqu

e de

MS.

En

reva

nche

, l’é

léva

tion

du ta

ux d

’aci

des

gras

tran

s-18

:1 a

exe

rcé

l’effe

t inv

erse

Mar

queu

rs in

flam

mat

oire

sCR

P, IL

-6,

fibrin

ogèn

eIn

flam

mat

ion,

str

ess

oxyd

atif,

insu

linor

ésis

tanc

eEt

ude

PRIM

E91

(n=

977

1 ho

mm

es)

Le ta

ux d

’IL-6

mes

uré

à l’e

ntré

e da

ns l’

étud

e es

t app

aru

com

me

un fa

cteu

r ind

épen

dant

de

risqu

e de

MS

au te

rme

d’un

suiv

i de

10 a

ns, c

e qu

i n’a

pas

été

le c

as d

es ta

ux d

e CR

P et

de

fibrin

ogèn

eCR

PIn

flam

mat

ion,

str

ess

oxyd

atif

Nurs

es’ H

ealth

Stu

dy92

(n=

121

700

fem

mes

)Il

n’a

pas

été

obje

ctiv

é de

cor

réla

tion

entr

e le

taux

de

CRP

mes

uré

à l’e

ntré

e da

ns l’

étud

e et

l’au

gmen

tatio

n du

risq

uede

MS

sur u

ne p

ério

de d

e su

ivi d

e 16

ans

CRP

Infla

mm

atio

n, s

tres

s ox

ydat

if,ap

opto

sePh

ysic

ians

’ Hea

lth S

tudy

93

(n=

2207

1 ho

mm

es)

Une

corr

élat

ion

a ét

é m

ise

en é

vide

nce

entr

e le

taux

de

CRP

mes

uré

à l’e

ntré

e da

ns l’

étud

e et

l’au

gmen

tatio

n du

risq

uede

MS

sur u

ne p

ério

de d

e su

ivi d

e 17

ans

ST2

Réce

pteu

r à l’

inte

rleuk

ine-

1,fib

rose

myo

card

ique

Regi

stre

MUS

IC,94

pat

ient

s in

suffi

sant

s ca

rdia

ques

non

hosp

italis

és (n

=99

)Su

r une

pér

iode

de

suiv

i de

3 an

s, l’

exis

tenc

e d’

un ta

ux é

levé

de

ST2

solu

ble

à l’e

ntré

e da

ns l’

étud

e s’

est r

évél

ée ê

tre

un fa

cteu

r ind

épen

dant

favo

risan

t la

MS

Mar

queu

rs m

étab

oliq

ues

Aldo

stér

one

Tens

ion

myo

card

ique

, fibr

ose,

rem

odel

age

élec

triq

uePo

pula

tion

de p

atie

nts

atte

ints

d’ID

M-S

T+95

(n=

356)

Chez

les

patie

nts

hosp

italis

és e

n vu

e de

faire

l’ob

jet d

’une

ICP

prem

ière

pou

r un

IDM

-ST+

, l’e

xist

ence

d’u

n ta

uxd’

aldo

stér

one

augm

enté

à l’

adm

issi

on a

été

cor

rélé

e av

ec la

sur

venu

e d’

un d

écès

ou

d’un

arr

êt c

ardi

aque

récu

péré

sur

une

pério

de d

e su

ivi d

e 6

moi

sCy

stat

ine

CM

arqu

eur d

u dé

bit d

efil

trat

ion

glom

érul

aire

Card

iova

scul

ar H

ealth

Stu

dy,70

exc

lusi

on d

es in

divi

dus

prés

enta

nt d

éjà

une

affe

ctio

n ca

rdia

que

(n=

448

2)Au

cou

rs d

’une

pér

iode

méd

iane

de

suiv

i de

11,2

ans

, l’e

xist

ence

d’u

n ta

ux é

levé

de

cyst

atin

e C

à l’e

ntré

e da

ns l’

étud

ees

t app

arue

com

me

un fa

cteu

r ind

épen

dant

favo

risan

t la

MS

chez

le s

ujet

âgé

inde

mne

de

tout

e af

fect

ion

card

iova

scul

aire

Réni

neFi

bros

e et

rem

odel

age

élec

triq

ueEt

ude

LURI

C,96

pat

ient

s ad

ress

és e

n vu

e d’

une

coro

naro

grap

hie

(n=

330

3)La

réni

ném

ie m

esur

ée à

l’en

trée

dan

s l’é

tude

s’e

st m

ontr

ée c

orré

lée

avec

la m

orta

lité

card

iova

scul

aire

à lo

ng te

rme,

cela

eng

loba

nt n

otam

men

t la

MS

et le

déc

ès li

é à

une

insu

ffisa

nce

card

iaqu

eVi

tam

ine

D et

para

thor

mon

eFi

bros

e, re

mod

elag

e él

ectr

ique

,ef

fets

mét

abol

ique

sCa

rdio

vasc

ular

Hea

lth S

tudy

,97 e

xclu

sion

des

indi

vidu

spr

ésen

tant

déj

à un

e af

fect

ion

card

iaqu

e (n

=2

312)

L’as

soci

atio

n d’

un fa

ible

taux

de

vita

min

e D

et d

’un

taux

aug

men

té d

e PT

H a

cons

titué

un

fact

eur i

ndép

enda

nt d

e ris

que

de M

S ch

ez le

suj

et d

’âge

ava

ncé

inde

mne

de

tout

e af

fect

ion

card

iova

scul

aire

Vita

min

e D

Fibr

ose

et re

mod

elag

eél

ectr

ique

Germ

an D

iabe

tes

and

Dial

ysis

Stud

y98 (n

=1

108)

Au c

ours

d’u

ne p

ério

de m

édia

ne d

e su

ivi d

e 4

ans

de c

ette

coh

orte

de

patie

nts

dial

ysés

et a

ttein

ts d

e di

abèt

e,l’e

xist

ence

d’u

ne c

aren

ce s

évèr

e en

vita

min

e D

s’es

t mon

trée

cor

rélé

e av

ec le

risq

ue d

e M

SM

arqu

eurs

neu

ro-h

orm

onau

xBN

PNT

-Pro

-BNP

Augm

enta

tion

de la

tens

ion

myo

card

ique

Nurs

es’ H

ealth

Stu

dy92

(n=

121

700

fem

mes

)Le

s co

ncen

trat

ions

éle

vées

de

NT-p

ro-B

NP à

l’in

clus

ion

ont é

té in

dépe

ndam

men

t lié

es a

ux é

véne

men

ts d

e M

S ap

rès

un s

uivi

de

16 a

nsCa

rdio

vasc

ular

Hea

lth S

tudy

99 (n

=5

447)

L’ex

iste

nce

d’un

taux

éle

vé d

e NT

-pro

-BNP

à l’

entr

ée d

ans

l’étu

de e

st a

ppar

ue c

omm

e un

fact

eur i

ndép

enda

nt d

eris

que

de M

S au

term

e d’

une

pério

de m

édia

ne d

e su

ivi d

e 12

,5 a

nsCo

hort

e de

la V

ienn

a He

art F

ailu

re (F

EVG

<35

%)10

0

(n=

452)

Aprè

s 3

ans

de s

uivi

, l’e

xist

ence

d’u

n ta

ux a

ugm

enté

de

BNP

à l’e

ntré

e da

ns l’

étud

e s’

est r

évél

ée ê

tre

un fa

cteu

rin

dépe

ndan

t de

risqu

e de

MS

chez

les

patie

nts

coro

narie

nsM

ultip

le R

isk

Fact

or A

naly

sis

Tria

l (M

RFAT

,pa

tient

s en

pos

t-ID

M)10

1 (n=

521)

Au c

ours

d’u

ne p

ério

de d

e su

ivi d

e 3,

5 an

s, l’

exis

tenc

e d’

un ta

ux a

ugm

enté

de

BNP

à l’e

ntré

e da

ns l’

étud

e s’

est

mon

trée

cor

rélé

e av

ec la

sur

venu

e d’

un M

S ap

rès

ajus

tem

ent e

n fo

nctio

n de

s fa

cteu

rs d

e ris

que

clin

ique

s et

de

la F

EVG

AGNE

: ac

ides

gra

s no

n es

térifi

és ;

ARIC

: At

hero

scle

rosi

s Ri

sk in

Com

mun

ities

; BN

P : p

eptid

e na

triu

rétiq

ue d

e ty

pe B

; CR

P : C

-réa

ctiv

e pr

otéi

ne ;

FEVG

: fr

actio

n d’

éjec

tion

vent

ricul

aire

gau

che

; IDM

: in

farc

tus

dum

yoca

rde

; IDM

-ST+

: in

farc

tus

du m

yoca

rde

avec

sus

-déc

alag

e du

seg

men

t ST

; IL-

6 : i

nter

leuk

ine-

6 ; L

URIC

: Lu

dwig

shaf

en R

isk

and

Card

iova

scul

ar H

ealth

; M

S : m

ort s

ubite

; M

USIC

: M

Uert

e Sú

bita

en

Insu

ficie

ncia

Card

íaca

; NT

Pro

-BNP

: fr

agm

ent N

-ter

min

al d

u pr

opep

tide

natr

iuré

tique

de

type

B ;

ICP

: int

erve

ntio

n co

rona

ire p

ercu

tané

e ; P

RIM

E : é

tude

pro

spec

tive

de l’

Infa

rctu

s du

Myo

card

e ; P

TH :

para

thor

mon

e.

Deo et Albert La mort subite 351

Page 26: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 352

Page 352

par les perturbations des voies inflammatoires, métaboliqueset neuro-hormonales en tant que facteurs prédisposant à laMS (Tableau 1). Dans plusieurs études épidémiologiques, lestaux de marqueurs biologiques ont été mesurés alors que lesparticipants étaient en majorité indemnes de toute pathologiecardiovasculaire cliniquement significative. L’existence deconcentrations anormales pouvait, dès lors, constituer latraduction d’altérations infracliniques de processus cardio-vasculaires ayant pour effet de prédisposer l’individu concernéà la MS. Les premiers stades du stress hémodynamique, del’instabilité des plaques d’athérosclérose et du remodelagecardiaque ne sont décelables que par la mesure des bio-marqueurs qui sont le reflet des processus inflammatoires,des voies métaboliques et de la régulation neuro-hormonale.Certaines données expérimentales suggèrent que cesmarqueurs moduleraient les mécanismes physiopathologiquesqui sous-tendent la maladie coronaire, l’insuffisancecardiaque et les troubles du rythme cardiaque. Toutefois, bienque nombre des études épidémiologiques prospectives à partirdesquelles ont été formulées ces conclusions aient porté sur devastes cohortes, elles n’ont permis d’enregistrer qu’un nombrelimité de MS. Les futures études devront être menées sur deséchantillons réunissant un nombre plus élevé de cas de MSavec recueil de prélèvements sanguins sur un mode prospectifpour pouvoir valider ces observations et tenter d’établir siles marqueurs biologiques présentent ou non un intérêtdiagnostique120 pour le dépistage des individus à haut risqueau sein de la population générale.

Facteurs déclenchantsLe risque de MS auquel la population est soumise dépendnon seulement du substrat sous-jacent et de sa vulnérabilitéaux arythmies, mais aussi de la fréquence d’expositionaux éléments favorisants de survenue aiguë ou facteursdéclenchants (Figure 4). Ces facteurs tendent à augmenterl’activité sympathique, ce qui est susceptible de provoquerun trouble du rythme cardiaque et une MS.

Variations diurnes et saisonnièresPlusieurs études ont montré que les MS et les arrêtscardiaques qui surviennent en milieu extrahospitalierobéissent à un rythme circadien.121 L’incidence maximale estobservée entre 6 h du matin et midi,122 les arrêts cardiaquessecondaires à une FV connaissant un second pic, moinsmarqué, en fin d’après-midi.123,124 Ce pic matinal de survenuede la MS est aboli par les bêtabloquants,125 ce qui conforte lerôle imputé à l’hyperactivation matinale du système nerveuxsympathique. Les variations d’incidence de la MS au cours dela semaine et selon les saisons ont également été étudiées.Le risque d’arrêt cardiaque126 et de MS127 en milieu extra-hospitalier semble être maximal le lundi et présenter un nadirpendant le week-end.126 Ces schémas de survenue portentà supposer que l’activité et les influences psychologiquespourraient jouer un rôle dans l’induction d’une MS. Ila également été fait état de variations saisonnières dansl’incidence des MS, celle-ci étant plus faible en été et enaugmentation pendant les mois d’hiver dans les deux

hémisphères.127,128 Le risque de MS pourrait être influencé parcertains rythmes endogènes et par des facteurs environ-nementaux tels que la température, l’exposition au rayonne-ment solaire128,129 et autres conditions climatiques.

L’activité physiqueL’exercice physique a sur le risque de MS des effets à la foisbénéfiques et néfastes. La plupart des études,65,73,130–133

mais pas toutes,134,135 ont objectivé une relation inverse entrel’augmentation de l’activité physique régulière et le risquede MS ou d’arrêt cardiaque subit. Les données les plusconcordantes concernent l’entraînement physique de degrémodéré,65,73,131–133 que la majorité des travaux créditent d’unimpact bénéfique. S’il est démontré que l’exercice physiqueexerce un effet favorable à long terme, il est tout aussiclairement établi que la MS connaît une fréquence desurvenue supérieure à la moyenne pendant ou peu de tempsaprès les efforts intenses.136 Des études cas-témoins et de cascroisés menées chez des hommes ont montré qu’un effortphysique énergique peut provoquer un arrêt cardiaque130 ouune MS.135 Lorsque de tels efforts intenses sont pratiquéssur une base régulière, cela atténue la majoration du risque ;celui-ci demeure néanmoins significativement augmenté,même chez les hommes les plus rompus aux effortsphysiques.137 Le risque engendré par l’effort semble être plusfaible chez les femmes,133 celles-ci étant beaucoup moinssouvent victimes de MS à l’occasion d’activités physiques(Figure 6).137 L’effet exercé par les efforts sur la vulnérabilitédes plaques d’athérosclérose138 et sur le système nerveuxsympathique pourrait expliquer tout à la fois l’augmentationtransitoire du risque de MS engendrée par les efforts aigus etl’atténuation de ce sur-risque associée à la pratique régulièred’exercices physiques vigoureux.139,140 Les efforts de courtedurée diminuent l’activité vagale, ce qui provoque uneaugmentation aiguë de la sensibilité à la fibrillationventriculaire,139 alors qu’un entraînement physique régulieraugmente le tonus vagal de base, ce qui renforce la stabilitéélectrique du cœur.

En dépit de ces risques relatifs transitoires élevés, le risqueabsolu de MS au cours d’une activité physique quelle qu’ellesoit est extrêmement faible dans la plupart des séries,141 cequi porte à penser que la survenue d’une MS imputable àl’exercice physique constitue une éventualité relativementrare. Dans une récente enquête nationale menée en France,l’incidence annuelle des MS liées à l’activité physique au seinde la population a néanmoins été estimée à 17 cas par milliond’habitants.137 Dans l’étude en question, le nombre absolude MS imputables à l’activité physique enregistré dansla population générale (n = 770) s’est révélé très supérieurà celui rapporté parmi les jeunes athlètes de compétition(n = 50) et sur lequel le public focalise l’essentiel de sonattention.

Les facteurs psychosociauxLe statut socio-économique médiocre, la dépression, l’anxiété,l’isolement social et la tension psychologique sont autant defacteurs dont il a été établi, dans diverses populations, qu’ilsaugmentent la mortalité cardiovasculaire.142,143 Bien que

352 Circulation Septembre 2012

Page 27: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 353

Page 353

Figure 6. Sports pratiqués lors des MS survenues à l’effort chez 820 sportifs français. N désigne le nombre absolu de MS survenuespendant la pratique du sport considéré. Le pourcentage est celui des décès imputables à la pratique de ce sport. Les parties plus clairesreprésentent les nombres de femmes.137 MS : mort subite. Adapté de Marijon et al137 avec l’autorisation de l’éditeur. Copyright © AmericanHeart Association, Inc., 2011.

certains aient supposé que les corrélations observéespouvaient être en partie sous-tendues par des mécanismesarythmiques, quelques études ont examiné par une approcheprospective les liens unissant ces facteurs à la MS. L’incidencede la MS est plus élevée dans les zones géographiques où leniveau socio-économique est faible, le gradient de risque étantencore plus marqué chez les individus âgés de moins de65 ans.144 Des études de populations ont, par ailleurs, montréque les facteurs de tension psychologique chronique tels queles troubles anxieux ou la dépression favorisent également laMS. Dans trois cohortes distinctes d’hommes145 et defemmes,146 un lien direct a été objectivé entre l’existence d’uneanxiété phobique et le risque de MS, mais pas avec celuid’IDM non fatal. La dépression a également été associée àune augmentation des risques d’arrêt cardiaque147 et de MSchez la femme non coronarienne.148 Outre les effets chroniquesdes tensions psychosociales, un stress psychique aigu peutlui aussi provoquer une MS. De brusques augmentations del’incidence des MS ont ainsi été observées dans despopulations confrontées à des catastrophes telles qu’untremblement de terre ou une guerre.149,150 Au-delà descatastrophes, les événements traumatisants comme le décèsdu conjoint ou la perte de son emploi contribuent égalementà augmenter la mortalité globale151 et les MS152 parmi lesindividus en bonne santé.

Prédisposition génétique à la MSAu cours des dix années écoulées, les recherches menées surles fondements génétiques des arythmies héréditaires (AH)rares ont permis de mieux comprendre la transmissibilité de lavulnérabilité à l’égard des troubles du rythme ventriculaire.153

La découverte de nouveaux gènes impliqués dans ces AHainsi que des effets exercés par les allèles mutants surl’électrophysiologie basale a conduit à supposer que desvariants ou des polymorphismes génétiques courants siégeantdans ces mêmes régions pouvaient en partie rendre comptede la composante familiale du risque de MS mise en évidencepar les études épidémiologiques. Par la suite, la finalisationdu Projet sur le génome humain a jeté les bases de l’identifi-cation d’un nouvel ensemble de gènes et de voies biologiquesimpliqués dans les troubles de la conduction, les arythmiescardiaques et la MS.

Etudes familialesPlusieurs études ont montré qu’il existe une prédispositionfamiliale à la MS.72,154–156 Celle-ci ainsi que les troublesdu rythme fatals tels que la FV sont souvent la premièremanifestation d’un infarctus aigu du myocarde et semblentprésenter une tendance à l’agrégation dans certaines familles.Deux études cas-témoins ont ainsi montré que la survenued’une MS chez un parent du premier degré constitue unfacteur indépendant de risque de FV155 ou de MS156 chez lesindividus victimes d’un infarctus myocardique aigu (IMA).Des observations similaires ont été rapportées dans uneétude de population prospective, au cours de laquelle lesantécédents parentaux de MS ont été documentés avant mêmela survenue des décès. Sur une période de suivi de plus de20 ans,72 l’existence de tels antécédents est apparue comme unfacteur indépendant de risque de MS (RR : 1,80 ; IC à 95 % :1,11–2,88), mais non d’IDM fatal. En revanche, unantécédent familial d’IDM fatal a seulement eu pour effetd’augmenter le risque d’IDM fatal sans modifier le risque de

Deo et Albert La mort subite 353

Page 28: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 354

Page 354

MS. Considérées dans leur globalité, ces données suggèrentque l’agrégation familiale de la MS ou de la FV d’origineischémique pourrait être distincte de la prédispositionfamiliale à l’IDM ou à la maladie coronaire. Les liensconstants mis en évidence entre les antécédents familiauxde décès par trouble du rythme cardiaque et le risque de MSdans la population générale ont conduit à plusieurs étudesdont l’objectif était de rechercher les variants génétiquessusceptibles d’influer sur la vulnérabilité à l’égard des troublesdu rythme ventriculaire et de la MS au sein de la population.

Phénotypes intermédiaires de la MS :les paramètres électrocardiographiques

Comme cela a déjà été évoqué plus haut, des liens ont étéétablis entre le risque de MS et les mesures quantitativesdes paramètres électrocardiographiques, dont la fréquencecardiaque et les durées des complexes QRS et des espaces QT.Ces caractéristiques électrocardiographiques sont trans-missibles et sous-tendues par de nombreuses influencesenvironnementales et génétiques.157–161 Cela a conduit deséquipes de généticiens du monde entier à s’unir pourrechercher les variations génétiques courantes à l’origine deces traits quantitatifs par la réalisation d’études d’associationspangénomiques (EAPG). Ces variants génétiques, dontles effets sont généralement modestes, peuvent fournir denouveaux éclairages non seulement sur le système deconduction cardiaque, mais aussi sur les événementspathologiques liés à des troubles du rythme, dont la MS.Les nouvelles mutations identifiées par cette approchepourraient également être ensuite employées comme allèlesde susceptibilité à la MS dans la population.

L’espace QTTrois EAPG entreprises pour analyser la variabilité del’espace QT parmi les individus d’ascendance européennesont récemment parvenues à leur terme.162–164 Au total, ce sontprès de 30 000 personnes qui ont été ainsi étudiées.163,164

Environ la moitié des loci découverts grâce à ces analyses nonbiaisées se situent au voisinage des gènes (KCNQ1, KCNH2,KCNE1 et SCN5A) responsables du syndrome du QT long,qui est une affection monogénique (Tableau 2). Le signal à lafois le plus puissant et le plus constant siège au sein du gèneNOS1AP, qui code pour une protéine adaptatrice de lamonoxyde d’azote synthétase de type 1.162 L’emploi demodèles traductionnels a permis d’établir que ce gène modulela repolarisation myocardique,165 les variants de NOS1APinfluant, par ailleurs, sur le risque de syndrome du QTlong.166,167 Près de la moitié des variants génétiques identifiéspar ces EAPG sont portés par des loci auxquels il n’avaitjusqu’alors été attribué aucun rôle dans l’électrophysiologiecardiaque ni dans la régulation de la repolarisationmyocardique. Conjointement, ces mutations rendent compted’environ 5 à 6 % de la variabilité de l’espace QT.

Le complexe QRSUne récente méta-analyse pangénomique de 14 études ayantporté sur un total de 40 407 individus d’origine européenne aidentifié 22 loci ayant une influence sur la durée des complexes

QRS (Tableau 2).168 Certains de ces loci siègent au sein ouà proximité des gènes impliqués dans la conductionventriculaire, tels ceux codant pour les canaux sodiques,les facteurs de transcription et les protéines de transport ducalcium. En outre, différents loci interviennent dans desprocessus biologiques qui n’avaient pas été identifiésjusqu’alors. Plusieurs de ces loci influent également surl’espace PR et l’espace QT, mais l’effet exercé sur ce dernier estle plus souvent de direction opposée. L’ensemble de ces locirend compte d’environ 5,7 % de la variance observée dans ladurée des complexes QRS. Le signal le plus puissant siège ausein ou au voisinage de deux gènes, SCN5A et SCN10A, quicodent respectivement pour les sous-unités α des canauxsodiques Nav1.5 et Nav1.8. Le locus associé à SCN5A estconnu pour favoriser divers types d’arythmies héréditaires ;en revanche, le rôle joué par SCN10A dans la conductioncardiaque n’a été découvert qu’après qu’une première EAPGa eu objectivé l’influence qu’il exerçait sur les duréesde l’espace PR et du complexe QRS.169,170 Des modèlesexpérimentaux suggèrent que le transcrit et le produit deSCN10A seraient exprimés dans les tissus cardiaques tantchez la souris que chez l’homme,169 leur localisation étantsupposée être le faisceau de His chez la première.168

L’espace RRLes EAPG ont permis d’identifier 9 loci qui influent sur lafréquence cardiaque dans les populations d’ascendanceeuropéenne (Tableau 2).170,171 Deux de ces loci ont étédécouverts chez des individus originaires d’Asie de l’Est.172

L’un des variants décrits aussi bien chez les Européens quechez les Asiatiques siège sur le chromosome 6q22, à proximitédu gène GJA1. Ce dernier code pour la protéine des jonctionscommunicantes et est indispensable au synchronisme descontractions cardiaques. Il s’agit d’un élément majeur desjonctions communicantes cardiaques,173 dont il apparaît,en outre, qu’il est impliqué dans la genèse des troubles durythme.174,175

Facteurs génétiques sous-tendant les variations desphénotypes électrocardiographiques à l’origined’une prédisposition allélique à la MSPlusieurs des polymorphismes mononucléotidiques (PMN) etdes loci à l’origine de variations des phénotypes électrocardio-graphiques ont été étudiés quant à leurs liens particuliers avecla MS. Des variants de NOS1AP ont ainsi été identifiéscomme contribuant au risque de MS dans trois étudesdistinctes.176–178 Dans une analyse groupée de 334 MSsurvenues chez des participants blancs à l’AtherosclerosisRisk In Communities Study (étude sur le risque d’athéro-sclérose dans les communautés ethniques) et à la Cardio-vascular Health Study (étude sur la santé cardiovasculaire),le marquage des PMN a permis d’identifier deux variantsintroniques de NOS1AP qui se sont révélés responsables deMS, y compris après ajustement en fonction de l’espace QT. Ilest d’ailleurs intéressant de noter que le variant pour lequel larelation s’est révélée la plus forte (rs12567209) n’exerceaucune influence sur la durée de l’espace QT. Une étude desuivi de la cohorte de Rotterdam a confirmé la responsabilité

354 Circulation Septembre 2012

Page 29: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 355

Page 355

Tableau 2. Variants génétiques des traits électrocardiographiques identifiés par les études d’associations pangénomiques

Chromosome Gène/région PMNFréquence del’allèle codé Eff. (ms) Commentaires

Espace QT

1p36 RNF207 rs846111 0,29 1,5 On ignore la fonction de ce locus

1q24 ATP1B1 rs10919071 0,87 2,0 ATP1B1 code pour une protéine transmembranaire qui maintient lesgradients transmembranaires d’ions Na+ et K+

1q23 NOS1AP rs12143842 0,24 3,2 La monoxyde d’azote synthétase neuronale de type 1 régule le cycle ducalcium dans le réticulum endoplasmique

3p22 SCN5A rs12053903 0,34 –1,2 Des variants rares de SCN5A sont responsables de syndromes du QTlong de type 3 et de syndromes de Brugada

6q22 c6orf204,SLC35F1,

PLN

rs11756438 0,47 1,4 Le PLN inhibe la Ca2+ ATPase au sein du réticulum endoplasmique cardiaque.L’augmentation d’activité du PLN est impliquée dans le développement de

cardiomyopathies et de tachycardies ventriculaires

7q367q36

KCNH2KCNH2

rs2968864rs4725982

0,250,22

–1,41,6

Des variants rares de KCNH2 sont responsables de syndromes congénitauxdu QT long de type 2 et de syndromes du QT court de type 1

11p1511p15

KCNQ1KCNQ1

rs2074238rs12576239

0,060,13

–7,91,8

Des variants rares de KCNQ1 sont responsables de syndromes du QT long detype 1 et de syndromes du QT court de type 2

16p13 LITAF rs8049607 0,49 1,2 Ce gène n’a aucune influence connue sur la repolarisation myocardique

16q21 NDRG4 rs7188697 0,74 1,7 Locus nouvellement identifié comme agissant sur la repolarisation myocardique

17q12 LIG3 rs2074518 0,46 –1,1 LIG3 code pour la réparation de l’ADN ligase III ; le mécanisme demodulation de la repolarisation est inconnu

17q24 KCNJ2 rs17779747 0,35 –1,2 Des variants rares provoquent la maladie de Fabry (ou syndrome d’Anderson),qui se caractérise par une paralysie périodique, une dysmorphie et des

troubles du rythme ventriculaire

21q22 KCNE1 rs1805128 0,01 0,88 Des variants rares de KCNE1 sont responsables de syndromes duQT long de type 5

Complexe QRS

1p31 NFIA rs9436640 0,46 –0,59 L’influence exercée par le facteur nucléaire I sur la durée des complexesQRS demeure mal cernée

1p32 CDKN2C rs17391905 0,05 –1,35 Ce gène inhibe les kinases cycline-dépendantes et régule la croissancecellulaire

1p13 CASQ2 rs4074536 0,29 –0,42 La calséquestrine 2 est une protéine de transport du calcium qui régulel’ouverture des récepteurs à la ryanodine. Des mutations de CASQ2

ont été reconnues responsables de TVPC

2p22 HEATR5B,STRN

rs17020136 0,21 0,51 La striatine est une protéine de liaison de la calmoduline qui a récemment étémise en cause dans le développement de CVDA dans un modèle canin

2p21 CRIM1 rs7562790 0,40 0,39 CRIM1 est exprimé dans les tissus cardiaques et code pour une protéinetransmembranaire susceptible de se lier à divers membres de la

superfamille des ligands du TGF-β3p22 SCN10A,

SCN5Ars9851724 0,33 –0,66 Ces gènes codent tous deux pour des canaux sodiques voltage-dépendants

et jouent un rôle important dans la conduction cardiaque. SCN5Ainflue également sur l’espace QTc

3p14 TKT, PRKCD,CACNA1D

rs4687718 0,14 –0,63 TKT est une enzyme qui intervient dans de multiples voies métaboliques

3p14 LRIG1, SLC25A26 rs2242285 0,42 0,37 LRIG1 est activé dans les affections malignes

5q33 HAND1, SAP30L rs13165478 0,36 –0,55 HAND1 code pour un facteur de transcription indispensable au développementcardiaque. Certaines mutations ont été identifiées comme responsables de

malformations septales et de troubles du rythme ventriculaire

6p21 CDKN1A rs9470361 0,25 0,87 CDKN1A est un inhibiteur des kinases cycline-dépendantes qui joue un rôleimportant dans le développement des voies de conduction cardiaque. Il pourrait

également faciliter la constitution des jonctions communicantes

6q22 C6orf204,SLC35F1, PLN

rs11153730 0,49 0,59 Le PLN cardiaque régule l’entrée du calcium dans le réticulum endoplasmiquemédiée par SERCA2a. Ce locus influe également sur la durée de l’espace QTc

et sur le diamètre télédiastolique du ventricule gauche

7p14 TBX20 rs1362212 0,18 0,69 TBX20 régit le développement des ventricules gauche et droit

7p13 IGFBP3 rs7784776 0,43 0,39 On ignore la fonction de ce locus

10q25 VTI1A rs7342028 0,27 0,48 On ignore la fonction de ce locus(Suite )

Deo et Albert La mort subite 355

Page 30: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 356

Page 356

Tableau 2. Suite

Chromosome Gène/région PMNFréquence del’allèle codé Eff. (ms) Commentaires

10q11 DKK1 rs1733724 0,25 0,49 DKK1 intervient dans le développement axial de l’embryon. Par ailleurs,il inhibe la voie de signalisation de Wnt, qui est un important

modulateur de l’activité de la connexine 43

12q2412q24

TBX5TBX3

rs883079rs10850409

0,290,27

0,49–0,49

TBX3 et TBX5 codent tous deux pour des facteurs de transcription présentsdans les voies de conduction cardiaque. TBX5 (activateur) s’oppose à TBX3(répresseur) dans la régulation de gènes myocardiques tels que GJA1. Desmutations de TBX3 et TBX5 sont à l’origine de syndromes héréditaires rarescaractérisés par des anomalies structurales et des troubles de la conduction

13q22 KLF12 rs1886512 0,37 –0,40 L’influence exercée par ce facteur de transcription sur la durée descomplexes QRS demeure mal cernée

14q24 SIPA1L1 rs11848785 0,27 –0,50 Contribue à la signalisation de Wnt et au développement cardiaque

17q22 PRKCA rs9912468 0,43 0,39 La protéine kinase C modifie la charge du réticulum endoplasmique en ions Ca2+

17q21 GOSR2 rs17608766 0,16 0,53 On ignore la fonction de ce locus

18q21 SETBP rs991014 0,42 0,42 On ignore la fonction de ce locus

Espace RR

1q32 CD46,LOC148696

rs12731740 0,03 –5,9 L’influence exercée par ce locus sur la fréquence cardiaque demeuremal cernée. Celui-ci a été identifié dans des études menées aussi bien

chez des sujets blancs que dans d’autres groupes raciaux

6q22 GJA1 rs9398652 0,49 –12,7 GJA1 code pour Cx43, une protéine de la famille des connexines qui est l’un deséléments constitutifs des jonctions communicantes cardiaques. Ce gène régit le

synchronisme des contractions cardiaques. Des mutations de GJA1 ont étéidentifiées comme impliquées dans le syndrome d’hypoplasie du cœur gauche

6q22 SLC35F1, PLA rs281868 0,44 1,50 Ce locus, qui est situé à plus de 3 Mb de GJA1, influe également sur la durée del’espace QTc. Le PLN intervient également dans le couplage excitation-

contraction et dans la signalisation calcique intracellulaire

7q22 SLC12A9 rs314370 0,94 9,65 Ce gène code pour une protéine qui interagit avec le cotransporteur des ions Cl–

7q22 UfSp1 rs12666989 0,07 –9,31 On ignore la fonction de ce locus

11q12 FADS1 rs174547 0,91 4,20 FADS1 a été précédemment décrit comme influant sur le taux de cholestérol

12q24 GPR133 rs885389 0,30 –14 Ce locus code pour un récepteur couplé à la protéine G et est exprimé àla fois dans les oreillettes et dans les ventricules

14q1214q1214q12

MYH6MYH6MYH7

rs452036rs365990rs223116

0,620,380,77

–9,659,80

–4,47

Il existe deux isoformes différentes du MYHC sarcomérique : l’α-MYHC(codé par MYH6) et le β-MYHC (codé par MYH7). Des mutations de cesgènes ont été reconnues responsables de diverses cardiomyopathies

PMN : polymorphisme mononucléotidique ; Eff. : efficience ; PLN : phospholamban ; TVPC : tachycardie ventriculaire polymorphe catécholaminergique ; CVDA :cardiomyopathie ventriculaire droite arythmogène ; TGF-β : facteur de croissance transformant bêta ; TKT : transkétolase ; MYHC : chaîne lourde de la myosine.

du variant en question dans les analyses limitées aux MSsurvenues en présence de témoins177 ; en revanche, cetteobservation n’a pas été corroborée par une étude cas-témoinsmenée dans l’Oregon.178 Les investigateurs de cette dernièreont décrit un autre variant, corrélé avec le PMN rs12567209 etpour lequel le lien dépassait à peine le seuil de significativité.Une récente étude ayant porté sur 1 283 cas de MS a examinéle rôle joué dans la survenue de tels événements par 49 lociindépendants, dont NOS1AP, qui conditionnent les phéno-types électrocardiographiques intermédiaires représentés parl’espace QT, la durée des complexes QRS et la fréquencecardiaque.179 Parmi ces différents loci, seul TKT/CACNA1D/PRKCD (dont il avait déjà été établi qu’il influe sur la duréedes complexes QRS) s’est montré corrélé avec le risque de MSaprès ajustement en fonction des variables multiples. Il esttoutefois apparu que l’allèle à l’origine de l’élargissement descomplexes QRS contribue à réduire le risque, ce qui est àl’opposé de ce que l’on prévoyait sur la base du lien existantentre la durée desdits complexes et la MS.

Les variants courants qui viennent d’être évoqués exercenttous des effets relativement modestes sur les paramètresélectrocardiographiques, de sorte que leurs liens avec la MSpeuvent être difficiles à objectiver, même en analysant devastes populations. Certains ont donc tenté de combiner lesvariants en un score de risque génétique afin d’augmenterla puissance de détection des associations. Récemment, latotalité des PMN recensés dans le génome entier commeexerçant une influence significative sur l’espace QT ont étéincorporés à un score de génotype QT, qui a été ensuite évaluéquant à sa valeur prédictive du risque de MS dans deux étudesde cohortes finlandaises.180 Ce score génotypique s’est révélécorrélé de façon linéaire avec l’espace QT et a expliqué 8,6 %de la variance de ce paramètre au sein des populationsétudiées. Aucune relation linéaire n’a, en revanche, étéobjectivée entre le score génotypique et le risque de MS pourles 116 cas de MS qu’ont totalisés les deux cohortes, quin’offraient peut-être pas une puissance suffisante. De cesdonnées, il ressort clairement que les variants génétiques

356 Circulation Septembre 2012

Page 31: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 357

Page 357

identifiés par les études pangénomiques menées sur lesmarqueurs électrocardiographiques peuvent fournir desinformations d’un grand intérêt pour de futures recherchestraductionnelles et expérimentales, mais ne suffiront pasà expliquer l’héritabilité de la MS.

Phénotypes intermédiaires de la MS :la maladie coronaire

Compte tenu de la prévalence élevée des coronaropathies,souvent méconnues chez les sujets victimes de MS, les variantsgénétiques associés à la maladie coronaire peuvent égalementêtre recherchés en tant qu’allèles de prédisposition à la MSdans la population générale. L’identification des variants quiinfluent sur les deux traits à la fois peut, en effet, permettre demieux cerner les processus biologiques qui prédisposent lesindividus coronariens à la MS. Des groupes de collaborationinternationaux ont réalisé des méta-analyses à partir d’EAPGafin d’augmenter la puissance d’identification des loci quisous-tendent la maladie coronaire dans des populationseuropéennes, noires américaines et d’Asie du Sud-Est.181–183 Laméta-analyse la plus récente, qui a porté sur plus de 22 000 casde maladie coronaire tant en phase de recherche que deréplication, a confirmé l’existence de 10 loci déjà connuscomme associés au risque de coronaropathie et en a identifié13 nouveaux.181 La plupart de ces loci siègent dans desrégions géniques dont, jusqu’alors, on ne soupçonnait pasl’implication dans la pathogenèse de la maladie coronaire. Lesite pour lequel l’association demeure la plus puissante est unerégion du chromosome 9p21 qui était déjà connue pourréguler l’expression de CDKN2A et CDKN2B, deux gènesinhibiteurs des kinases cycline-dépendantes184 dont on saitqu’ils jouent un rôle majeur dans la prolifération, lasénescence et l’apoptose cellulaires.185 Les PMN localisés à larégion 9p21 ont été directement rattachés au risque de MS parune méta-analyse ayant porté sur 492 cas survenus chez desindividus blancs dans six études de cohortes prospectives.186

Aucun des autres loci dont les EAPG avaient établi laresponsabilité dans la maladie coronaire ne s’est révéléimpliqué dans le risque de MS.

Analyses des gènes candidatspotentiellement pourvoyeurs de MS

Ces recherches des variants génétiques associés auxphénotypes intermédiaires ont été complétées par desétudes fondées sur la méthode des gènes candidats afind’identifier les allèles de prédisposition à la MS. Cetteapproche, qui consiste à formuler des hypothèses, a étéappliquée à plusieurs voies biologiques impliquées dansla survenue de troubles du rythme cardiaque et de MS àfondement monogénique au sein de la population.

Variants courantsDes études menées indépendamment les unes des autres et enemployant des méthodologies et des définitions différentes(Tableau 3) ont recherché les influences potentiellementexercées sur le risque de MS par les polymorphismes des gènesjouant des rôles essentiels dans la propagation des influxélectriques, la conduction cardiaque, l’activation sympathique,

la thrombose, l’athérogenèse et le système rénine-angiotensine-aldostérone.178,187–200 Dans ces travaux, laprévalence des variants alléliques a été d’au moins 5 % eta souvent atteint 50 à 60 % de la population témoin. Celaautorise à considérer que ces variants ne doivent quemodestement influer sur le risque de MS dans la mesure oùun variant particulièrement dangereux est appelé à évoluerau cours du temps en une mutation rare dans le patrimoinegénétique humain (Figure 7). Dans leur immense majorité,les liens rapportés n’ont pas été confirmés par des étudesultérieures. Parmi les gènes candidats explorés, les variants quicodent pour les polymorphismes affectant les acides aminésdes récepteurs β2-adrénergiques (Gln27Glu dans β 2AR)chez les Blancs191,193 et de la sous-unité α du canal sodiquecardiaque Nav1.5 (Y1102A dans SCN5A) chez les Noirsaméricains189,190,201 ont été identifiés comme impliqués dansla MS ou les événements arythmiques dans au moinsdeux études ; toutefois, les résultats n’ont pas toujours étéconcordants.192

Variants raresEtant donné la létalité élevée de l’arrêt cardiaque subit, il n’estpas exclu que son architecture génétique soit plus proche decelle des arythmies héréditaires peu courantes, qui repose surdes allèles rares ayant une pénétrance variable. La meilleureméthode d’identification de ces allèles rares est le séquençagedirect, qui, grâce aux techniques de seconde génération, estrapidement en train de devenir beaucoup plus largementaccessible. A notre connaissance, très peu d’études ont étémenées en employant le séquençage pour rechercher lesvariations rares parmi les cas non sélectionnés de MSsurvenus dans des populations d’adultes.188,202 Dans 113 cas deMS, il a été possible d’effectuer le séquençage direct dela totalité de la séquence codante et des jonctions d’épissagede cinq gènes, SCN5A, KCNE1, KCNE2, KCNQ1 et KCNH2,codant pour des canaux ioniques et impliqués dans lasurvenue d’arythmies héréditaires.202 Chez 53 hommes, ceséquençage n’a objectivé aucune variation isolée ou rare de la

Figure 7. Synopsis des études génétiques. Les étudesd’associations pangénomiques visent à identifier les variantsalléliques courants qui induisent un faible risque relatif demorbidité. L’évolution tend à ne conserver que les variants àl’origine d’un haut risque relatif de morbidité, ce qui rend comptede leur rareté.

Deo et Albert La mort subite 357

Page 32: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 358

Page 358

Tableau 3. Gènes candidats potentiellement responsables de MS dans la population générale

Etude GènesFréquence de

variation allélique PopulationN (cas de

MS/témoins) Commentaires

Canaux ioniquesWestaway et al 2011178 CASQ2, GPD1L 10–45 % Américains d’ascendance

européenne, populationgénérale

670/299 Les polymorphismes de ces gènes sontimpliqués dans la MS

Albert et al 2010187 KCNQ1, KCNH2,SCN5A, KCNE1,

KCNE2

60–70 % Américains d’ascendanceeuropéenne, population

générale

516/1 522 Deux variants introniques (intéressantrespectivement KCNQ1 et SCN5A) ont

été reconnus responsables de MSStecker et al 2006188 SCN5A 1–4 % Américains d’ascendance

européenne atteints demaladie coronaire

67/91 Aucun lien n’a été identifié entre lespolymorphismes ou les mutations de

SCN5A et la MSBurke et al 2005189 SCN5A (Y1102A) 9 % Noirs, population générale 182/107 Un lien a été établi entre Y1102A et la

survenue de décès inexpliqués àfondement arythmique et d’ACS

Splawski et al 2002190 SCN5A (Y1102A) 13 % Noirs, population générale 23/100 Le variant contribue à augmenter lesrisques de MS et d’allongement de

l’espace QTc d’originemédicamenteuse

Système neurovégétatifGavin et al 2011191 β2AR (Gln27Glu) 45 % Américains d’ascendance

européenne, populationgénérale

492/1 388 En combinant les données avec cellesdes deux analyses ci-dessous, le

polymorphisme de β2AR contribue àaugmenter le risque de MS

Tseng et al 2008192 β2AR et β1AR 30–40 % (β2AR)10–30 % (β1AR)

MS avortée et antécédentsd’IDM ou de maladie

coronaire, 75 % d’Américainsd’ascendance européenne

107/388 Aucun des polymorphismes des gènesβAR n’a pu être relié au risque de MS

Sotoodehnia et al 2006193 β2AR (Gln27Glu) 43 % chez les Blancs,19 % chez les Noirs

Cohorte américaine(4 441 sujets d’ascendance

européenne, 808 Noirs)

195/5 249 Le variant β2AR est responsable de MSchez les Blancs mais pas les Noirs

Snapir et al 2003194 Alpha2B-AR 48 % Finlandais, étude depopulation

278/405 Le génotype délétion/délétion du gènecodant pour les récepteurs α2B-

adrénergiques augmente le risque deMS chez l’homme d’âge moyen

Facteurs thrombotiques et athérogènesHernesniemi et al 2008195 IL-18 26 % Finlandais, étude de

population275/388 Le polymorphisme du gène IL-18 est

responsable de MSMikkelsson et al 2002196 GPIa 35–40 % Finlandais, étude de

population275/369 Les polymorphismes du gène codant

pour les récepteurs à la glycoprotéineIa n’ont pas d’influence sur le

risque de MSReiner et al 2002197 Facteur V de

Leiden etPT 20210A

6–9 % Cohorte américaine (93 %d’individus d’ascendance

européenne)

145/592 Les mutations de ces gènes ne sont pasresponsables de MS

Mikkelsson et al 2001198 GPIbα 23 % Finlandais 255/367 Le variant a été reconnu responsable dethrombose coronaire, d’IDM fatal et de

MS chez l’homme d’âge moyenMikkelsson et al 2000199 GPIIIa 30–40 % Finlandais, étude de

population281/385 Le polymorphisme PIA1/A2 du gène GPIIIa

est un facteur de risque d’infarctus dumyocarde et de MS chez les individus

d’âge moyenVoie de l’enzyme de conversion de l’angiotensine

Sotoodehnia et al 2009200 RENAGTR1AGTR2ACE2

BDRK2AGTACE

KNG1

15 % Américains d’ascendanceeuropéenne, étude de

population

271/730 Les mutations d’AGTR1 et d’AGTR2 ontété identifiées comme des facteurs

d’augmentation du risque d’ACS dansune étude de population cas-témoins

ACS : arrêt cardiaque subit ; β 1AR : récepteur β 1-adrénergique ; β 2AR : récepteur β 2-adrénergique ; IDM : infarctus du myocarde ; IL-18 : interleukine-18 ;MS : mort subite.

358 Circulation Septembre 2012

Page 33: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 359

Page 359

séquence codante de l’un quelconque des gènes codant pourdes canaux ioniques.188 Chez 60 femmes victimes de MS,six mutations faux-sens rares (10 %) ont été identifiées, quiintéressaient le gène des canaux sodiques cardiaques(SCN5A).202 La fréquence globale de ces variants rares deSCN5A s’est révélée significativement plus élevée dans les casde MS que chez 733 témoins issus de la même population(1,6 % ; p = 0,001) ; de plus, quatre des cinq variants étaient àl’origine de discrètes altérations de la fonction des canauxioniques. Ces observations permettent de penser que, mêmesi elles ne constituent pas des causes courantes de MS, lesmutations fonctionnellement conséquentes et les variationsrares de SCN5A pourraient contribuer au risque de MSchez les femmes, population dans laquelle la prévalence descardiopathies structurales est plus faible.29,39

EAPG de la MSA côté de ces études menées sur les gènes candidats de la MS,des EAPG ont été directement effectuées sur des cas de MSafin de rechercher de nouveaux variants génétiques impliquésdans la survenue de tels événements. Cette approche nonbiaisée peut permettre de découvrir des variants encoreméconnus ainsi que de nouvelles voies biologiques impliquéesdans la genèse des troubles du rythme ventriculaire fatals. Lenombre de loci validés comme sous-tendant le risque deMS de façon statistiquement significative à l’échelonpangénomique est toutefois beaucoup plus faible que pourles autres maladies complexes. Cela est probablement engrande partie lié au fait que les cas de MS disponibles pourles analyses génétiques sont en nombre plus réduit et que lesdéfinitions des pathologies sous-jacentes et des cas sont plushétérogènes que pour les autres phénotypes complexes.

Les investigateurs d’une récente étude ont tenté de limiter leplus possible cette hétérogénéité en concentrant leur analysesur un phénotype arythmique très précis. Dans cette étudecas-témoins baptisée AGNES,203 une EAPG a été réaliséesur 505 cas de FV et 457 témoins, les deux groupes étantconstitués d’individus qui avaient tous présenté un premierIDM avec sus-décalage du segment ST. Des PMN portés parle chromosome 21q21 ont été identifiés comme significative-ment pourvoyeurs de FV à l’échelle pangénomique. Le signalle plus puissant, qui correspondait au PMN rs2824292, estdemeuré significativement corrélé avec le risque de FV (oddsratio [OR] : 1,51 ; IC à 95 % : 0,30–0,76 ; p = 0,005) aprèsajustement pour les caractéristiques initiales et a pu êtrerépliqué, dans l’étude ARREST, dans 156 autres cas d’arrêtcardiaque consécutif à une FV survenus chez des individusprésentant un IDM aigu. Le locus génétique est situé auvoisinage du gène CXADR, qui code pour la protéine durécepteur aux virus Coxsackie et aux adénovirus (CAR).204,205

Cette protéine, qui joue un rôle connu dans la pathogenèse desmyocardites virales,206 pourrait également être impliquéedans la localisation des connexines au niveau des disquesintercalaires des myocytes du nœud auriculo-ventriculaire.207

Une autre EAPG récemment publiée a été réalisée sur unegamme plus large de cas de MS issus d’études cas-témoins etde cohortes.179 Les investigateurs ont eu recours à cetteapproche pangénomique pour rechercher les variations parmi1 283 cas de MS enregistrés dans cinq études distinctes ainsi

que chez 20 000 témoins, les individus ainsi analysés étanttous d’ascendance européenne. Les PMN identifiés commeayant été les plus statistiquement significatifs dans cette phasede découverte ont ensuite été génotypés dans 1 730 autres casde MS et de FV et chez 10 530 témoins qui, là encore, étaienttous d’ascendance européenne. Les méta-analyses combinéesde l’ensemble des populations des phases de découverte et deréplication ont permis d’identifier un nouveau marqueursiégeant au niveau du locus BAZ2B (bromodomaine adjacentau domaine doigt de zinc 2B) qui a atteint la significativitéstatistique à l’échelle pangénomique et dont l’effet est apparude taille relativement importante (OR : 1,92 ; IC à 95 % :1,57–2,34). L’allèle supposé à risque s’est révélé rare(fréquence allélique mineure : 1,4 %) et en fort déséquilibrede liaison avec les gènes qui jouent un rôle crucial dans laformation du cœur et celle du système neurovégétatif. La miseen évidence d’un tel variant rare, qui est inhabituelle dansles EAPG, met en lumière l’impact que peut avoir ce type devariant sur le risque de MS.

Il convient de noter que les recherches non biaiséesdes variants associés à la MS effectuées dans le cadre de cesdeux études pangénomiques n’ont pas identifié les mêmesmutations. Cette absence de reproductibilité, qui est courantedans les études génétiques menées sur la MS, est probable-ment liée aux différences de définitions des cas. Bien que, dansl’étude AGNES, les cas aient été définis sur des critèresextrêmement précis, la définition était toutefois relativementsélective et, donc, non applicable à la majorité des MSobservées en milieu communautaire.40–42 A l’inverse, les casanalysés dans les études de populations étaient pour l’essentieldes MS extrahospitalières définies de façon sommaire. Celaétant, l’hétérogénéité des cas tant dans une même étude qued’un travail à l’autre a probablement limité la puissancede détection des associations, même lorsque les analysesont porté sur un nombre de cas plus élevé. Il est doncindispensable que les phénotypes explorés dans les différentesétudes soient homogènes, surtout si l’on veut pouvoirregrouper les résultats dans une analyse pangénomique envue de rechercher les variants ayant des effets réduits. Pouridentifier et répliquer les autres variants génétiques impliquésdans la MS, les études devront à la fois porter sur deséchantillons plus vastes et sur des sous-phénotypes dontl’homogénéité aura été mieux assurée.

Orientation futuresBien que nous en sachions déjà beaucoup sur les facteursde risque de MS, les données disponibles à ce jour surd’importantes sous-populations sont encore ténues et lesdifférences observées selon l’origine ethnique et d’un sexe àl’autre demeurent mal élucidées. De plus, notre capacitéà dépister précisément, au sein de la population, les individusexposés à un risque de MS maximal reste faible. Alors quepour le risque coronaire global il existe des modèles prédictifslargement reconnus, aucun modèle équivalent n’a encore étédéveloppé pour évaluer le risque de MS dans la populationgénérale et ce, malgré les multiples études ayant mis enlumière différents facteurs de risque. L’identification des sous-groupes prédisposés au sein de la population pourrait êtrefacilitée par l’élaboration d’algorithmes de stratification des

Deo et Albert La mort subite 359

Page 34: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 360

Page 360

risques à partir des données des études épidémiologiquesmenées pour évaluer tout à la fois l’impact des facteursde risque cardiovasculaire établis, du mode de vie et deshabitudes alimentaires, des marqueurs biologiques etdes variants génétiques. Il sera également important dedéterminer si de nouveaux marqueurs sont plus puissammentcorrélés avec la MS qu’avec les autres manifestations de lamaladie cardiaque. De tels marqueurs contribueraient nonseulement à améliorer la stratification des risques, mais aussi àmieux cerner les mécanismes arythmiques dans la population,ce qui pourrait ouvrir la voie à de nouvelles stratégiespréventives et thérapeutiques.

L’héritabilité de la MS demeure mal comprise compte tenudes données dont nous disposons. Bien que les analysesfondées sur les gènes candidats et les études pangénomiquesaient permis de mieux comprendre les intrications entrel’électrophysiologie cardiaque, les troubles du rythme et laMS, de nombreuses questions demeurent encore sans réponse.Seul un très petit nombre des PMN identifiés ou évalués dansces études ont pu être confirmés et, pour beaucoup d’entreeux, on ignore encore quelles sont les influences fonctionnellesqu’ils exercent. Du fait du rapide développement destechniques de séquençage de nouvelle génération, il devientdésormais possible d’entreprendre des programmes deséquençage à grande échelle qui permettront l’identificationde variants génétiques rares jouant un rôle dans le risque deMS. Il est également possible que ce dernier soit sous-tendupar des mutations structurales consistant, par exemple, endes variations du nombre de copies, des inversions ou destranslocations et que ni les EAPG ni les méthodes deséquençage classiques ne permettent d’identifier. Cettecomplexité potentielle de l’architecture génétique nepourra être maîtrisée qu’en entreprenant de vastes étudescollaboratives sur des populations dans lesquelles la définitionde la MS repose sur des critères homogènes.

La MS est un événement complexe qui fait l’objet derecherches et d’études cliniques depuis plusieurs décennies.Alors que notre compréhension de ce trouble ne cesse deprogresser grâce aux études épidémiologiques, aux étudesexpérimentales et aux essais cliniques, réduire l’incidence et lalétalité de la MS au sein de la population demeure au cœur despriorités. Les interventions et traitements à faible risque axéssur les affections cardiovasculaires en général et sur la MS enparticulier permettront très certainement de diminuer le tributpayé par les populations à cette dernière. En outre, lescampagnes régulières d’éducation et de sensibilisation dupublic à la MS demeurent d’importantes mesures à mettre enœuvre si l’on veut réduire l’impact de ce type d’accident.

Sources de financementLe Dr Deo a bénéficié d’une bourse K23DK089118 des NationalInstitutes of Health des Etats-Unis. L’étude a également été financéepar un Established Investigator Award de l’AHA décerné auDr Albert et par une bourse HL091069 octroyée par le NationalHeart, Lung, and Blood Institute (NHLBI) des Etats-Unis auDr Albert.

DéclarationsLe Dr Albert a bénéficié de bourses de recherche émanant du NHLBIet de St. Jude Medical Inc. en sa qualité d’investigateur principal dans

des études destinées à évaluer des marqueurs génétiques etbiologiques quant à leur valeur prédictive du risque de mort subite. LeDr Albert a, par ailleurs, bénéficié de dotations du NHLBI et deBoston Scientific en vue d’étudier les éléments déclencheurs et lesfacteurs prédictifs de troubles du rythme ventriculaire chez lespatients munis de défibrillateurs automatiques implantables et areçu le soutien financier de Siemens Healthcare Diagnostics en vue del’étude des biomarqueurs et des facteurs prédictifs de mort subite.

Références1. Lopshire JC, Zipes DP. Sudden cardiac death: Better understanding of

risks, mechanisms, and treatment. Circulation. 2006;114:1134–1136.2. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer

M, Gregoratos G, Klein G, Moss AJ, Myerburg RJ, Priori SG, QuinonesMA, Roden DM, Silka MJ, Tracy C, Smith SC Jr, Jacobs AK, AdamsCD, Antman EM, Anderson JL, Hunt SA, Halperin JL, Nishimura R,Ornato JP, Page RL, Riegel B, Blanc JJ, Budaj A, Dean V, Deckers JW,Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J,Osterspey A, Tamargo JL, Zamorano JL. ACC/AHA/ESC 2006 guide-lines for management of patients with ventricular arrhythmias and theprevention of sudden cardiac death: a report of the American College ofCardiology/American Heart Association task force and the EuropeanSociety of Cardiology committee for practice guidelines (writingcommittee to develop guidelines for management of patients withventricular arrhythmias and the prevention of sudden cardiac death):developed in collaboration with the European Heart Rhythm associationand the Heart Rhythm Society. Circulation. 2006;114:e385–e484.

3. Fishman GI, Chugh S, DiMarco JP, Albert CM, Anderson ME,Bonow, Buxton AE, Chen P-S, Estes M, Jouven X, Kwong R, LathropDA, Mascette AM, Nerbonne JM, O’Rourke B, Page RL, Roden DM,Rosenbaum DS, Sotoodehnia N, Trayanova NA, Zheng Z-J. Suddencardiac death prediction and prevention report from a National Heart,Lung, and Blood Institute and Heart Rhythm Society workshop.Circulation. 2010;122:2335–2348.

4. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S,De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A,Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B,Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, MeigsJ, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W,Sacco R, Sorlie P, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J. Heart disease and stroke statistics–2010 update: a report fromthe American Heart Association. Circulation. 2010;121:e46–e215.

5. Kong MH, Fonarow GC, Peterson ED, Curtis AB, Hernandez AF,Sanders GD, Thomas KL, Hayes DL, Al-Khatib SM. Systematic reviewof the incidence of sudden cardiac death in the United States. J Am CollCardiol. 2011;57:794–801.

6. Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, AufderheideTP, Rea T, Lowe R, Brown T, Dreyer J, Davis D, Idris A, Stiell I.Regional variation in out-of-hospital cardiac arrest incidence andoutcome. JAMA. 2008;300:1423–1431.

7. Chugh SS, Jui J, Gunson K, Stecker EC, John BT, Thompson B, Ilias N,Vickers C, Dogra V, Daya M, Kron J, Zheng ZJ, Mensah G, McAnulty J.Current burden of sudden cardiac death: multiple source surveillanceversus retrospective death certificate-based review in a large U.S.Community. J Am Coll Cardiol. 2004;44:1268–1275.

8. de Vreede-Swagemakers JJ, Gorgels AP, Dubois-Arbouw WI, van ReeJW, Daemen MJ, Houben LG, Wellens HJ. Out-of-hospital cardiacarrest in the 1990’s: a population-based study in the Maastricht areaon incidence, characteristics and survival. J Am Coll Cardiol. 1997;30:1500–1505.

9. Byrne R, Constant O, Smyth Y, Callagy G, Nash P, Daly K, Crowley J.Multiple source surveillance incidence and aetiology of out-of-hospitalsudden cardiac death in a rural population in the west of Ireland.Eur Heart J. 2008;29:1418–1423.

10. Hua W, Zhang LF, Wu YF, Liu XQ, Guo DS, Zhou HL, Gou ZP, ZhaoLC, Niu HX, Chen KP, Mai JZ, Chu LN, Zhang S. Incidence of suddencardiac death in China: analysis of 4 regional populations. J AmColl Cardiol. 2009;54:1110–1118.

11. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE,Giles WH, Capewell S. Explaining the decrease in U.S. Deaths fromcoronary disease, 1980–2000. N Engl J Med. 2007;356:2388–2398.

360 Circulation Septembre 2012

Page 35: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 361

Page 361

12. Rosamond WD, Chambless LE, Folsom AR, Cooper LS, Conwill DE,Clegg L, Wang CH, Heiss G. Trends in the incidence of myocardialinfarction and in mortality due to coronary heart disease, 1987 to 1994.N Engl J Med. 1998;339:861–867.

13. Fox CS, Evans JC, Larson MG, Kannel WB, Levy D. Temporal trends incoronary heart disease mortality and sudden cardiac death from 1950to 1999: the Framingham Heart Study. Circulation. 2004;110:522–527.

14. Zheng ZJ, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in theUnited States, 1989 to 1998. Circulation. 2001;104:2158–2163.

15. Dudas K, Lappas G, Stewart S, Rosengren A. Trends in out-of-hospitaldeaths due to coronary heart disease in Sweden (1991 to 2006).Circulation. 2011;123:46–52.

16. Gerber Y, Jacobsen SJ, Frye RL, Weston SA, Killian JM, Roger VL.Secular trends in deaths from cardiovascular diseases: a 25-yearcommunity study. Circulation. 2006;113:2285–2292.

17. Gillum RF. Geographic variation in sudden coronary death. Am Heart J.1990;119:380–389.

18. Myerburg RJ, Interian A, Simmons J, Castellanos A. Sudden cardiacdeath. In: Zipes DP, ed. Cardiac Electrophysiology: From Cell to Bedside.Philadelphia, PA: WB Saunders; 2004:720–731.

19. Cobb LA, Fahrenbruch CE, Olsufka M, Copass MK. Changingincidence of out-of-hospital ventricular fibrillation, 1980–2000. JAMA.2002;288:3008–3013.

20. Field JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM,Hemphill R, Samson RA, Kattwinkel J, Berg RA, Bhanji F, Cave DM,Jauch EC, Kudenchuk PJ, Neumar RW, Peberdy MA, Perlman JM, SinzE, Travers AH, Berg MD, Billi JE, Eigel B, Hickey RW, Kleinman ME,Link MS, Morrison LJ, O’Connor RE, Shuster M, Callaway CW,Cucchiara B, Ferguson JD, Rea TD, Vanden Hoek TL. Part 1: Executivesummary: 2010 American Heart Association guidelines for cardio-pulmonary resuscitation and emergency cardiovascular care. Circulation.2010;122:S640 –S656.

21. Hallstrom AP, Ornato JP, Weisfeldt M, Travers A, Christenson J,McBurnie MA, Zalenski R, Becker LB, Schron EB, Proschan M.Publicaccess defibrillation and survival after out-of-hospital cardiacarrest. N Engl J Med. 2004;351:637–646.

22. Straus SM, Bleumink GS, Dieleman JP, van der Lei J, Stricker BH,Sturkenboom MC. The incidence of sudden cardiac death in the generalpopulation. J Clin Epidemiol. 2004;57:98–102.

23. Becker LB, Han BH, Meyer PM, Wright FA, Rhodes KV, Smith DW,Barrett J. Racial differences in the incidence of cardiac arrest andsubsequent survival. The CPR Chicago Project. N Engl J Med. 1993;329:600–606.

24. Albert CM, Chae CU, Grodstein F, Rose LM, Rexrode KM, Ruskin JN,Stampfer MJ, Manson JE. Prospective study of sudden cardiacdeath among women in the United States. Circulation. 2003;107:2096–2101.

25. Krahn AD, Connolly SJ, Roberts RS, Gent M. Diminishingproportional risk of sudden death with advancing age: implications forprevention of sudden death. Am Heart J. 2004;147:837–840.

26. Kannel WB, Schatzkin A. Sudden death: lessons from subsets inpopulation studies. J Am Coll Cardiol. 1985;5:141B–149B.

27. Cupples LA, Gagnon DR, Kannel WB. Long- and short-term risk ofsudden coronary death. Circulation. 1992;85:I11–I18.

28. Kannel WB, Wilson PW, D’Agostino RB, Cobb J. Sudden coronarydeath in women. Am Heart J. 1998;136:205–212.

29. Albert CM, McGovern BA, Newell JB, Ruskin JN. Sex differences incardiac arrest survivors. Circulation. 1996;93:1170–1176.

30. Chugh SS, Uy-Evanado A, Teodorescu C, Reinier K, Mariani R,Gunson K, Jui J. Women have a lower prevalence of structural heartdisease as a precursor to sudden cardiac arrest: the ORE-SUDS(Oregon Sudden Unexpected Death Study). J Am Coll Cardiol.2009;54:2006–2011.

31. Cowie MR, Fahrenbruch CE, Cobb LA, Hallstrom AP. Out-of-hospitalcardiac arrest: racial differences in outcome in Seattle. Am J PublicHealth. 1993;83:955–959.

32. Gillum RF. Sudden cardiac death in Hispanic Americans and AfricanAmericans. Am J Public Health. 1997;87:1461–1466.

33. Chan PS, Birkmeyer JD, Krumholz HM, Spertus JA, Nallamothu BK.Racial and gender trends in the use of implantable cardioverter-defibrillators among Medicare beneficiaries between 1997 and 2003.Congest Heart Fail. 2009;15:51–57.

34. Teodorescu C, Reinier K, Dervan C, Uy-Evanado A, Samara M,

Mariani R, Gunson K, Jui J, Chugh SS. Factors associated with pulselesselectric activity versus ventricular fibrillation: the Oregon SuddenUnexpected Death Study. Circulation. 2010;122:2116–2122.

35. Chan PS, Nichol G, Krumholz HM, Spertus JA, Jones PG, Peterson ED,Rathore SS, Nallamothu BK. Racial differences in survival afterin-hospital cardiac arrest. JAMA. 2009;302:1195–1201.

36. Spain DM, Bradess VA, Mohr C. Coronary atherosclerosis as a cause ofunexpected and unexplained death. An autopsy study from 1949–1959.JAMA. 1960;174:384–388.

37. Manfredini R, Portaluppi F, Grandi E, Fersini C, Gallerani M.Out-ofhospital sudden death referring to an emergency department.J Clin Epidemiol. 1996;49:865–868.

38. Priori SG, Borggrefe M, Camm AJ, Hauer RN, Klein H, Kuck KH,Schwartz PJ, Touboul P, Wellens HJ. Unexplained cardiac arrest. Theneed for a prospective registry. Eur Heart J. 1992;13:1445–1446.

39. Chugh SS, Kelly KL, Titus JL. Sudden cardiac death with apparentlynormal heart. Circulation. 2000;102:649–654.

40. Adelson L, Hoffman W. Sudden death from coronary disease relatedto a lethal mechanism arising independently of vascular occlusion ormyocardial damage. JAMA. 1961;176:129–135.

41. Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R. Suddencoronary death. Frequency of active coronary lesions, inactive coronarylesions, and myocardial infarction. Circulation. 1995;92:1701–1709.

42. Greene HL. Sudden arrhythmic cardiac death–mechanisms, resuscita-tion and classification: the Seattle perspective. Am J Cardiol. 1990;65:4B–12B.

43. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R.Coronary risk factors and plaque morphology in men with coronarydisease who died suddenly. N Engl J Med. 1997;336:1276–1282.

44. Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effectof risk factors on the mechanism of acute thrombosis and suddencoronary death in women. Circulation. 1998;97:2110–2116.

45. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiacarrhythmias. N Engl J Med. 2001;345:1473–1482.

46. Bayes de Luna A, Coumel P, Leclercq JF. Ambulatory sudden cardiacdeath: mechanisms of production of fatal arrhythmia on the basis ofdata from 157 cases. Am Heart J. 1989;117:151–159.

47. Gang UJ, Jons C, Jorgensen RM, Abildstrom SZ, Haarbo J, MessierMD, Huikuri HV, Thomsen PE. Heart rhythm at the time of deathdocumented by an implantable loop recorder. Europace. 2010;12:254–260.

48. Liberthson RR, Nagel EL, Hirschman JC, Nussenfeld SR, BlackbourneBD, Davis JH. Pathophysiologic observations in prehospital ventricularfibrillation and sudden cardiac death. Circulation. 1974;49:790–798.

49. Eisenberg MS, Copass MK, Hallstrom AP, Blake B, Bergner L, ShortFA, Cobb LA. Treatment of out-of-hospital cardiac arrests withrapid defibrillation by emergency medical technicians. N Engl J Med.1980;302:1379–1383.

50. Hinkle LE Jr, Thaler HT. Clinical classification of cardiac deaths.Circulation. 1982;65:457–464.

51. Polentini MS, Pirrallo RG, McGill W. The changing incidence ofventricular fibrillation in Milwaukee, Wisconsin (1992–2002). PrehospEmerg Care. 2006;10:52–60.

52. Kannel WB, Cupples LA, D’Agostino RB. Sudden death risk inovert coronary heart disease: the Framingham Study. Am Heart J.1987;113:799–804.

53. Solomon SD, Zelenkofske S, McMurray JJ, Finn PV, Velazquez E, ErtlG, Harsanyi A, Rouleau JL, Maggioni A, Kober L, White H, Van deWerf F, Pieper K, Califf RM, Pfeffer MA. Sudden death in patients withmyocardial infarction and left ventricular dysfunction, heart failure, orboth. N Engl J Med. 2005;352:2581–2588.

54. Adabag AS, Therneau TM, Gersh BJ, Weston SA, Roger VL. Suddendeath after myocardial infarction. JAMA. 2008;300:2022–2029.

55. Huikuri HV, Tapanainen JM, Lindgren K, Raatikainen P, MakikallioTH, Juhani Airaksinen KE, Myerburg RJ. Prediction of sudden cardiacdeath after myocardial infarction in the beta-blocking era. J Am CollCardiol. 2003;42:652–658.

56. Makikallio TH, Barthel P, Schneider R, Bauer A, Tapanainen JM,Tulppo MP, Perkiomaki JS, Schmidt G, Huikuri HV. Frequencyof sudden cardiac death among acute myocardial infarction survivorswith optimized medical and revascularization therapy. Am J Cardiol.2006;97:480–484.

57. Stevenson WG, Stevenson LW, Middlekauff HR, Saxon LA. Sudden

Deo et Albert La mort subite 361

Page 36: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 362

Page 362

death prevention in patients with advanced ventricular dysfunction.Circulation. 1993;88:2953–2961.

58. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, DaubertJP, Higgins SL, Brown MW, Andrews ML. Prophylactic implantationof a defibrillator in patients with myocardial infarction and reducedejection fraction. N Engl J Med. 2002;346:877–883.

59. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R,Domanski M, Troutman C, Anderson J, Johnson G, McNulty SE,Clapp-Channing N, Davidson-Ray LD, Fraulo ES, Fishbein DP, LuceriRM, Ip JH. Amiodarone or an implantable cardioverter-defibrillator forcongestive heart failure. N Engl J Med. 2005;352:225–237.

60. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricularmass and hypertrophy are associated with increased risk for suddendeath. J Am Coll Cardiol. 1998;32:1454–1459.

61. Reinier K, Dervan C, Singh T, Uy-Evanado A, Lai S, Gunson K, Jui J,Chugh SS. Increased left ventricular mass and decreased left ventricularsystolic function have independent pathways to ventricular arrhythmo-genesis in coronary artery disease. Heart Rhythm. 2011;8:1177–1182.

62. Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A,Heeringa J, Deckers JW, Kingma JH, Sturkenboom MC, Stricker BH,Witteman JC. Prolonged QTc interval and risk of sudden cardiac deathin a population of older adults. J Am Coll Cardiol. 2006;47:362–367.

63. Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D,Ducimetiere P. Heart-rate profile during exercise as a predictor ofsudden death. N Engl J Med. 2005;352:1951–1958.

64. Stecker EC, Vickers C, Waltz J, Socoteanu C, John BT, Mariani R,McAnulty JH, Gunson K, Jui J, Chugh SS. Population-based analysisof sudden cardiac death with and without left ventricular systolicdysfunction: two-year findings from the Oregon Sudden UnexpectedDeath Study. J Am Coll Cardiol. 2006;47:1161–1166.

65. Deo R, Vittinghoff E, Lin F, Tseng ZH, Hulley SB, Shlipak MG. Riskfactor and prediction modeling for sudden cardiac death in women withcoronary artery disease. Arch Intern Med. 2011;171:1703–1709.

66. Buxton AE. Should everyone with an ejection fraction less than or equalto 30% receive an implantable cardioverter-defibrillator? Not everyonewith an ejection fraction < or = 30% should receive an implantablecardioverter-defibrillator. Circulation. 2005;111:2537–2549.

67. Balkau B, Jouven X, Ducimetiere P, Eschwege E. Diabetes as a riskfactor for sudden death. Lancet. 1999;354:1968–1969.

68. Jouven X, Lemaitre RN, Rea TD, Sotoodehnia N, Empana JP, SiscovickDS. Diabetes, glucose level, and risk of sudden cardiac death. Eur HeartJ. 2005;26:2142–2147.

69. Kucharska-Newton AM, Couper DJ, Pankow JS, Prineas RJ, Rea TD,Sotoodehnia N, Chakravarti A, Folsom AR, Siscovick DS, RosamondWD. Diabetes and the risk of sudden cardiac death, the AtherosclerosisRisk in Communities study. Acta Diabetol. 2010;47:161–168.

70. Deo R, Sotoodehnia N, Katz R, Sarnak MJ, Fried LF, Chonchol M,Kestenbaum B, Psaty BM, Siscovick DS, Shlipak MG. Cystatin C andsudden cardiac death risk in the elderly. Circ Cardiovasc Qual Outcomes.2010;3:159–164.

71. Deo R, Lin F, Vittinghoff E, Tseng ZH, Hulley SB, Shlipak MG. Kidneydysfunction and sudden cardiac death among women with coronaryheart disease. Hypertension. 2008;51:1578–1582.

72. Jouven X, Desnos M, Guerot C, Ducimetiere P. Predicting suddendeath in the population: the Paris Prospective Study I. Circulation.1999;99:1978–1983.

73. Wannamethee G, Shaper AG, Macfarlane PW, Walker M. Risk factorsfor sudden cardiac death in middle-aged British men. Circulation.1995;91:1749–1756.

74. Hallstrom AP, Cobb LA, Ray R. Smoking as a risk factor for recurrenceof sudden cardiac arrest. N Engl J Med. 1986;314:271–275.

75. Vlietstra RE, Kronmal RA, Oberman A, Frye RL, Killip T III. Effectof cigarette smoking on survival of patients with angiographicallydocumented coronary artery disease. Report from the CASS registry.JAMA. 1986;255:1023–1027.

76. Goldenberg I, Jonas M, Tenenbaum A, Boyko V, Matetzky S, Shotan A,Behar S, Reicher-Reiss H. Current smoking, smoking cessation, and therisk of sudden cardiac death in patients with coronary artery disease.Arch Intern Med. 2003;163:2301–2305.

77. Junttila MJ, Barthel P, Myerburg RJ, Makikallio TH, Bauer A, Ulm K,Kiviniemi A, Tulppo M, Perkiomaki JS, Schmidt G, Huikuri HV.Sudden cardiac death after myocardial infarction in patients with type 2diabetes. Heart Rhythm. 2010;7:1396–1403.

78. Jouven X, Zureik M, Desnos M, Guerot C, Ducimetiere P. Resting heartrate as a predictive risk factor for sudden death in middle-aged men.Cardiovasc Res. 2001;50:373–378.

79. Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. QTc prolongationmeasured by standard 12-lead electrocardiography is an independentrisk factor for sudden death due to cardiac arrest. Circulation.1991;83:1888–1894.

80. Teodorescu C, Reinier K, Uy-Evanado A, Navarro J, Mariani R,Gunson K, Jui J, Chugh SS. Prolonged QRS duration on the restingECG is associated with sudden death risk in coronary disease,independent of prolonged ventricular repolarization. Heart Rhythm.2011;8:1562–1567.

81. Morin DP, Oikarinen L, Viitasalo M, Toivonen L, Nieminen MS,Kjeldsen SE, Dahlof B, John M, Devereux RB, Okin PM. QRS durationpredicts sudden cardiac death in hypertensive patients undergoingintensive medical therapy: the life study. Eur Heart J. 2009;30:2908–2914.

82. Haissaguerre M, Derval N, Sacher F, Jesel L, Deisenhofer I, de Roy L,Pasquie JL, Nogami A, Babuty D, Yli-Mayry S, De Chillou C, Scanu P,Mabo P, Matsuo S, Probst V, Le Scouarnec S, Defaye P, Schlaepfer J,Rostock T, Lacroix D, Lamaison D, Lavergne T, Aizawa Y, Englund A,Anselme F, O’Neill M, Hocini M, Lim KT, Knecht S, Veenhuyzen GD,Bordachar P, Chauvin M, Jais P, Coureau G, Chene G, Klein GJ,Clementy J. Sudden cardiac arrest associated with early repolarization.N Engl J Med. 2008;358:2016–2023.

83. Nam GB, Kim YH, Antzelevitch C. Augmentation of J waves andelectrical storms in patients with early repolarization. N Engl J Med.2008;358:2078–2079.

84. Rosso R, Kogan E, Belhassen B, Rozovski U, Scheinman MM, ZeltserD, Halkin A, Steinvil A, Heller K, Glikson M, Katz A, Viskin S. J-pointelevation in survivors of primary ventricular fibrillation and matchedcontrol subjects: incidence and clinical significance. J Am Coll Cardiol.2008;52:1231–1238.

85. Tikkanen JT, Anttonen O, Junttila MJ, Aro AL, Kerola T, Rissanen HA,Reunanen A, Huikuri HV. Long-term outcome associated with earlyrepolarization on electrocardiography. N Engl J Med. 2009;361:2529–2537.

86. Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, WillettWC, Ma J. Blood levels of long-chain n-3 fatty acids and the risk ofsudden death. N Engl J Med. 2002;346:1113–1118.

87. Chiuve SE, Korngold EC, Januzzi JL Jr, Gantzer ML, Albert CM.Plasma and dietary magnesium and risk of sudden cardiac death inwomen. Am J Clin Nutr. 2011;93:253–260.

88. Peacock JM, Ohira T, Post W, Sotoodehnia N, Rosamond W, FolsomAR. Serum magnesium and risk of sudden cardiac death in theAtherosclerosis Risk in Communities (ARIC) study. Am Heart J.2010;160: 464–470.

89. Jouven X, Charles MA, Desnos M, Ducimetiere P. Circulating none-sterified fatty acid level as a predictive risk factor for sudden death in thepopulation. Circulation. 2001;104:756–761.

90. Lemaitre RN, King IB, Mozaffarian D, Sotoodehnia N, SiscovickDS. Trans-fatty acids and sudden cardiac death. Atheroscler Suppl.2006;7:13–15.

91. Empana JP, Jouven X, Canoui-Poitrine F, Luc G, Tafflet M, Haas B,Arveiler D, Ferrieres J, Ruidavets JB, Montaye M, Yarnell J, Morange P,Kee F, Evans A, Amouyel P, Ducimetiere P. C-reactive protein,interleukin 6, fibrinogen and risk of sudden death in European middle-aged men: the Prime Study. Arterioscler Thromb Vasc Biol. 2010;30:2047–2052.

92. Korngold EC, Januzzi JL Jr, Gantzer ML, Moorthy MV, Cook NR,Albert CM. Amino-terminal pro-B-type natriuretic peptide and high-sensitivity C-reactive protein as predictors of sudden cardiac deathamong women. Circulation. 2009;119:2868–2876.

93. Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM. Prospective studyof C-reactive protein, homocysteine, and plasma lipid levels aspredictors of sudden cardiac death. Circulation. 2002;105:2595–2599.

94. Pascual-Figal DA, Ordonez-Llanos J, Tornel PL, Vazquez R, Puig T,Valdes M, Cinca J, de Luna AB, Bayes-Genis A. Soluble ST2 forpredicting sudden cardiac death in patients with chronic heartfailure and left ventricular systolic dysfunction. J Am Coll Cardiol.2009;54:2174–2179.

95. Beygui F, Collet JP, Benoliel JJ, Vignolles N, Dumaine R, Barthelemy O,Montalescot G. High plasma aldosterone levels on admission are

362 Circulation Septembre 2012

Page 37: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 363

Page 363

associated with death in patients presenting with acute ST-elevationmyocardial infarction. Circulation. 2006;114:2604–2610.

96. Tomaschitz A, Pilz S, Ritz E, Morganti A, Grammer T, Amrein K,Boehm BO, Marz W. Associations of plasma renin with 10-yearcardiovascular mortality, sudden cardiac death, and death due to heartfailure. Eur Heart J. 2011;32:2642–2649.

97. Deo R, Katz R, Shlipak MG, Sotoodehnia N, Psaty BM, Sarnak MJ,Fried L, Chonchol M, de Boer IH, Enquobahrie D, Siscovick D,Kestenbaum B. Vitamin D, parathyroid hormone and sudden cardiacdeath: results from the cardiovascular health study. Hypertension.2011;58:1021–1028.

98. Drechsler C, Pilz S, Obermayer-Pietsch B, Verduijn M, Tomaschitz A,Krane V, Espe K, Dekker F, Brandenburg V, Marz W, Ritz E, WannerC. Vitamin D deficiency is associated with sudden cardiac death,combined cardiovascular events, and mortality in haemodialysispatients. Eur Heart J. 2010;31:2253–2261.

99. Patton KK, Sotoodehnia N, DeFilippi C, Siscovick DS, Gottdiener JS,Kronmal RA. N-terminal pro-B-type natriuretic peptide is associatedwith sudden cardiac death risk: the Cardiovascular Health Study. HeartRhythm. 2011;8:228–233.

100. Berger R, Huelsman M, Strecker K, Bojic A, Moser P, Stanek B, PacherR. B-type natriuretic peptide predicts sudden death in patients withchronic heart failure. Circulation. 2002;105:2392–2397.

101. Tapanainen JM, Lindgren KS, Makikallio TH, Vuolteenaho O,Leppaluoto J, Huikuri HV. Natriuretic peptides as predictors ofnon-sudden and sudden cardiac death after acute myocardial infarctionin the betablocking era. J Am Coll Cardiol. 2004;43:757–763.

102. Albert CM, Hennekens CH, O’Donnell CJ, Ajani UA, Carey VJ, WillettWC, Ruskin JN, Manson JE. Fish consumption and risk of suddencardiac death. JAMA. 1998;279:23–28.

103. Mozaffarian D, Ascherio A, Hu FB, Stampfer MJ, Willett WC,Siscovick DS, Rimm EB. Interplay between different polyunsaturatedfatty acids and risk of coronary heart disease in men. Circulation.2005;111:157–164.

104. Mozaffarian D, Lemaitre RN, Kuller LH, Burke GL, Tracy RP,Siscovick DS. Cardiac benefits of fish consumption may depend onthe type of fish meal consumed: the Cardiovascular Health Study.Circulation. 2003;107:1372–1377.

105. Siscovick DS, Raghunathan TE, King I, Weinmann S, Wicklund KG,Albright J, Bovbjerg V, Arbogast P, Smith H, Kushi LH. Dietary intakeand cell membrane levels of long-chain n-3 polyunsaturated fattyacids and the risk of primary cardiac arrest. JAMA. 1995;274:1363–1367.

106. Albert CM, Oh K, Whang W, Manson JE, Chae CU, Stampfer MJ,Willett WC, Hu FB. Dietary alpha-linolenic acid intake and riskof sudden cardiac death and coronary heart disease. Circulation.2005;112:3232–3238.

107. Leaf A, Kang JX, Xiao YF, Billman GE. Clinical prevention of suddencardiac death by n-3 polyunsaturated fatty acids and mechanismof prevention of arrhythmias by n-3 fish oils. Circulation. 2003;107:2646–2652.

108. Dietary supplementation with n-3 polyunsaturated fatty acids andvitamin E after myocardial infarction: results of the Gissi-Prevenzionetrial. Gruppo Italiano per Lo Studio della Sopravvivenza Nell’infartoMiocardico. Lancet. 1999;354:447–455.

109. Kromhout D, Giltay EJ, Geleijnse JM. N-3 fatty acids andcardiovascular events after myocardial infarction. N Engl J Med.2010;363:2015–2026.

110. Rauch B, Schiele R, Schneider S, Diller F, Victor N, Gohlke H, GottwikM, Steinbeck G, Del Castillo U, Sack R, Worth H, Katus H, Spitzer W,Sabin G, Senges J. Omega, a randomized, placebo-controlled trial totest the effect of highly purified omega-3 fatty acids on top of modernguideline-adjusted therapy after myocardial infarction. Circulation.2010;122:2152–2159.

111. Gaziano JM, Buring JE, Breslow JL, Goldhaber SZ, Rosner B,Van-Denburgh M, Willett W, Hennekens CH. Moderate alcohol intake,increased levels of high-density lipoprotein and its subfractions,and decreased risk of myocardial infarction. N Engl J Med. 1993;329:1829–1834.

112. Siscovick DS, Weiss NS, Fox N. Moderate alcohol consumption andprimary cardiac arrest. Am J Epidemiol. 1986;123:499–503.

113. Albert CM, Manson JE, Cook NR, Ajani UA, Gaziano JM,Hennekens CH. Moderate alcohol consumption and the risk of

sudden cardiac death among US male physicians. Circulation. 1999;100:944–950.

114. Chiuve SE, Rimm EB, Mukamal KJ, Rexrode KM, Stampfer MJ,Manson JE, Albert CM. Light-to-moderate alcohol consumptionand risk of sudden cardiac death in women. Heart Rhythm. 2010;7:1374–1380.

115. Zarraga IG, Schwarz ER. Impact of dietary patterns and interventionsoncardiovascular health. Circulation. 2006;114:961–973.

116. Sebbag L, Forrat R, Canet E, Renaud S, Delaye J, de Lorgeril M.Effects of dietary supplementation with alpha-tocopherol onmyocardial infarct size and ventricular arrhythmias in a dog modelof ischemia-reperfusion. J Am Coll Cardiol. 1994;24:1580–1585.

117. Sofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefitsof adherence to the Mediterranean diet on health: an updated system-atic review and meta-analysis. Am J Clin Nutr. 2010;92:1189–1196.

118. Fung TT, Rexrode KM, Mantzoros CS, Manson JE, Willett WC, HuFB. Mediterranean diet and incidence of and mortality from coronaryheart disease and stroke in women. Circulation. 2009;119:1093–1100.

119. Chiuve SE, Fung TT, Rexrode KM, Spiegelman D, Manson JE,Stampfer MJ, Albert CM. Adherence to a low-risk, healthy lifestyleand risk of sudden cardiac death among women. JAMA. 2011;306:62–69.

120. Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH,Elkind MS, Go AS, Harrell FE Jr, Hong Y, Howard BV, Howard VJ,Hsue PY, Kramer CM, McConnell JP, Normand SL, O’Donnell CJ,Smith SC Jr, Wilson PW. Criteria for evaluation of novel markers ofcardiovascular risk: a scientific statement from the American HeartAssociation. Circulation. 2009;119:2408–2416.

121. Muller JE, Ludmer PL, Willich SN, Tofler GH, Aylmer G, Klangos I,Stone PH. Circadian variation in the frequency of sudden cardiacdeath. Circulation. 1987;75:131–138.

122. Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA.Metaanalysis of the morning excess of acute myocardial infarction andsudden cardiac death. Am J Cardiol. 1997;79:1512–1516.

123. Peckova M, Fahrenbruch CE, Cobb LA, Hallstrom AP. Circadianvariations in the occurrence of cardiac arrests: initial and repeatepisodes. Circulation. 1998;98:31–39.

124. Willich SN, Goldberg RJ, Maclure M, Perriello L, Muller JE. Increasedonset of sudden cardiac death in the first three hours after awakening.Am J Cardiol. 1992;70:65–68.

125. Peters RW. Propranolol and the morning increase in sudden cardiacdeath: (the beta-blocker heart attack trial experience). Am J Cardiol.1990;66:57G–59G.

126. Peckova M, Fahrenbruch CE, Cobb LA, Hallstrom AP. Weekly andseasonal variation in the incidence of cardiac arrests. Am HeartJ 1999;137:512–515.

127. Arntz HR, Willich SN, Schreiber C, Bruggemann T, Stern R,Schultheiss HP. Diurnal, weekly and seasonal variation of suddendeath. Population-based analysis of 24,061 consecutive cases. EurHeart J. 2000;21:315–320.

128. Gerber Y, Jacobsen SJ, Killian JM, Weston SA, Roger VL. Seasonalityand daily weather conditions in relation to myocardial infarction andsudden cardiac death in Olmsted county, Minnesota, 1979 to 2002.J Am Coll Cardiol. 2006;48:287–292.

129. Empana JP, Sauval P, Ducimetiere P, Tafflet M, Carli P, Jouven X.Increase in out-of-hospital cardiac arrest attended by the medicalmobile intensive care units, but not myocardial infarction, during the2003 heat wave in Paris, France. Crit Care Med. 2009;37:3079–3084.

130. Siscovick DS, Weiss NS, Fletcher RH, Lasky T. The incidence ofprimary cardiac arrest during vigorous exercise. N Engl J Med.1984;311:874–877.

131. Lemaitre RN, Siscovick DS, Raghunathan TE, Weinmann S, ArbogastP, Lin DY. Leisure-time physical activity and the risk of primary cardiacarrest. Arch Intern Med. 1999;159:686–690.

132. Group MRFITR. Multiple risk factor intervention trial. Risk factorchanges and mortality results. JAMA. 1982;248:1465–1477.

133. Whang W, Manson JE, Hu FB, Chae CU, Rexrode KM, Willett WC,Stampfer MJ, Albert CM. Physical exertion, exercise, and suddencardiac death in women. JAMA. 2006;295:1399–1403.

134. Kannel WB. Exercise and sudden death. JAMA. 1982;248:3143–3144.135. Albert CM, Mittleman MA, Chae CU, Lee IM, Hennekens CH,

Manson JE. Triggering of sudden death from cardiac causes byvigorous exertion. N Engl J Med. 2000;343:1355–1361.

Deo et Albert La mort subite 363

Page 38: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 364

Page 364

136. Kohl HW III, Powell KE, Gordon NF, Blair SN, Paffenbarger RS Jr.Physical activity, physical fitness, and sudden cardiac death. EpidemiolRev. 1992;14:37–58.

137. Marijon E, Tafflet M, Celermajer DS, Dumas F, Perier MC, MustaficH, Toussaint JF, Desnos M, Rieu M, Benameur N, Le Heuzey JY,Empana JP, Jouven X. Sports-related sudden death in the generalpopulation. Circulation. 2011;124:672–681.

138. Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R.Plaque rupture and sudden death related to exertion in men with coron-ary artery disease. JAMA. 1999;281:921–926.

139. Peronnet F, Cleroux J, Perrault H, Cousineau D, de Champlain J,Nadeau R. Plasma norepinephrine response to exercise before and aftertraining in humans. J Appl Physiol. 1981;51:812–815.

140. Hull SS Jr, Vanoli E, Adamson PB, Verrier RL, Foreman RD, SchwartzPJ. Exercise training confers anticipatory protection from sudden deathduring acute myocardial ischemia. Circulation. 1994;89:548–552.

141. Dahabreh IJ, Paulus JK. Association of episodic physical and sexualactivity with triggering of acute cardiac events: systematic review andmeta-analysis. JAMA. 2011;305:1225–1233.

142. Mensah GA, Mokdad AH, Ford ES, Greenlund KJ, Croft JB. State ofdisparities in cardiovascular health in the United States. Circulation.2005;111:1233–1241.

143. Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factorson the pathogenesis of cardiovascular disease and implications fortherapy. Circulation. 1999;99:2192–2217.

144. Reinier K, Stecker EC, Vickers C, Gunson K, Jui J, Chugh SS.Incidence of sudden cardiac arrest is higher in areas of low socio-economic status: a prospective two year study in a large United Statescommunity. Resuscitation. 2006;70:186–192.

145. Kawachi I, Colditz GA, Ascherio A, Rimm EB, Giovannucci E,Stampfer MJ, Willett WC. Prospective study of phobic anxiety and riskof coronary heart disease in men. Circulation. 1994;89:1992–1997.

146. Albert CM, Chae CU, Rexrode KM, Manson JE, Kawachi I. Phobicanxiety and risk of coronary heart disease and sudden cardiac deathamong women. Circulation. 2005;111:480–487.

147. Empana JP, Jouven X, Lemaitre RN, Sotoodehnia N, Rea T,Raghunathan TE, Simon G, Siscovick DS. Clinical depression and riskof out-of-hospital cardiac arrest. Arch Intern Med. 2006;166:195–200.

148. Whang W, Kubzansky LD, Kawachi I, Rexrode KM, Kroenke CH,Glynn RJ, Garan H, Albert CM. Depression and risk of sudden cardiacdeath and coronary heart disease in women: results from the Nurses’Health Study. J Am Coll Cardiol. 2009;53:950–958.

149. Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by anearthquake. N Engl J Med. 1996;334:413–419.

150. Meisel SR, Kutz I, Dayan KI, Pauzner H, Chetboun I, Arbel Y,David D. Effect of Iraqi missile war on incidence of acute myocardialinfarction and sudden death in Israeli civilians. Lancet. 1991;338:660–661.

151. Rosengren A, Orth-Gomer K, Wedel H, Wilhelmsen L. Stressful lifeevents, social support, and mortality in men born in 1933. BMJ.1993;307:1102–1105.

152. Rahe RH, Romo M, Bennett L, Siltanen P. Recent life changes,myocardial infarction, and abrupt coronary death. Studies in Helsinki.Arch Intern Med. 1974;133:221–228.

153. Cerrone M, Priori SG. Genetics of sudden death: focus on inheritedchannelopathies. Eur Heart J. 2011;32:2109–2118.

154. Friedlander Y, Siscovick DS, Weinmann S, Austin MA, Psaty BM,Lemaitre RN, Arbogast P, Raghunathan TE, Cobb LA. Family historyas a risk factor for primary cardiac arrest. Circulation. 1998;97:155–160.

155. Dekker LR, Bezzina CR, Henriques JP, Tanck MW, Koch KT, AlingsMW, Arnold AE, de Boer MJ, Gorgels AP, Michels HR, Verkerk A,Verheugt FW, Zijlstra F, Wilde AA. Familial sudden death is animportant risk factor for primary ventricular fibrillation: a case-control study in acute myocardial infarction patients. Circulation.2006;114:1140–1145.

156. Kaikkonen KS, Kortelainen ML, Linna E, Huikuri HV. Family historyand the risk of sudden cardiac death as a manifestation of an acutecoronary event. Circulation. 2006;114:1462–1467.

157. Newton-Cheh C, Larson MG, Corey DC, Benjamin EJ, Herbert AG,Levy D, D’Agostino RB, O’Donnell CJ. QT interval is a heritablequantitative trait with evidence of linkage to chromosome 3 in agenome-wide linkage analysis: the Framingham Heart Study. HeartRhythm. 2005;2:277–284.

158. Hanson B, Tuna N, Bouchard T, Heston L, Eckert E, Lykken D, SegalN, Rich S. Genetic factors in the electrocardiogram and heart rate oftwins reared apart and together. Am J Cardiol. 1989;63:606–609.

159. Russell MW, Law I, Sholinsky P, Fabsitz RR. Heritability of ECGmeasurements in adult male twins. J Electrocardiol. 1998;30(suppl):64–68.

160. Singh JP, Larson MG, O’Donnell CJ, Tsuji H, Evans JC, Levy D.Heritability of heart rate variability: the Framingham Heart Study.Circulation. 1999;99:2251–2254.

161. Martin LJ, Comuzzie AG, Sonnenberg GE, Myklebust J, James R,Marks J, Blangero J, Kissebah AH. Major quantitative trait locus forresting heart rate maps to a region on chromosome 4. Hypertension.2004;43:1146–1151.

162. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M,West K, Kashuk C, Akyol M, Perz S, Jalilzadeh S, Illig T, Gieger C, GuoCY, Larson MG, Wichmann HE, Marban E, O’Donnell CJ,Hirschhorn JN, Kaab S, Spooner PM, Meitinger T, Chakravarti A.A common genetic variant in the nos1 regulator NOS1AP modulatescardiac repolarization. Nat Genet. 2006;38:644–651.

163. Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger C,Ehret GB, Orru M, Pattaro C, Kottgen A, Perz S, Usala G, Barbalic M,Li M, Putz B, Scuteri A, Prineas RJ, Sinner MF, Gieger C, Najjar SS,Kao WH, Muhleisen TW, Dei M, Happle C, Mohlenkamp S, CrisponiL, Erbel R, Jockel KH, Naitza S, Steinbeck G, Marroni F, Hicks AA,Lakatta E, Muller-Myhsok B, Pramstaller PP, Wichmann HE,Schlessinger D, Boerwinkle E, Meitinger T, Uda M, Coresh J, Kaab S,Abecasis GR, Chakravarti A. Common variants at ten loci modulatethe QT interval duration in the QTSCD study. Nat Genet. 2009;41:407–414.

164. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X,Estrada K, Bis JC, Marciante K, Rivadeneira F, Noseworthy PA,Sotoodehnia N, Smith NL, Rotter JI, Kors JA, Witteman JC, HofmanA, Heckbert SR, O’Donnell CJ, Uitterlinden AG, Psaty BM, Lumley T,Larson MG, Stricker BH. Common variants at ten loci influence QTinterval duration in the QTGEN study. Nat Genet. 2009;41:399–406.

165. Chang KC, Barth AS, Sasano T, Kizana E, Kashiwakura Y, Zhang Y,Foster DB, Marban E. Capon modulates cardiac repolarization vianeuronal nitric oxide synthase signaling in the heart. Proc Natl Acad SciU S A. 2008;105:4477–4482.

166. Tomas M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A,Bellazzi R, Arking DE, Marban E, Chakravarti A, Spooner PM, PrioriSG. Polymorphisms in the NOS1AP gene modulate QT intervalduration and risk of arrhythmias in the long QT syndrome. J Am CollCardiol. 2010;55:2745–2752.

167. Crotti L, Monti MC, Insolia R, Peljto A, Goosen A, Brink PA,Greenberg DA, Schwartz PJ, George AL Jr. NOS1AP is a geneticmodifier of the long-QT syndrome. Circulation. 2009;120:1657–1663.

168. Sotoodehnia N, Isaacs A, de Bakker PI, Dorr M, Newton-Cheh C,Nolte IM, van der Harst P, Muller M, Eijgelsheim M, Alonso A, HicksAA, Padmanabhan S, Hayward C, Smith AV, Polasek O, Giovannone S,Fu J, Magnani JW, Marciante KD, Pfeufer A, Gharib SA, Teumer A, LiM, Bis JC, Rivadeneira F, Aspelund T, Kottgen A, Johnson T, Rice K,Sie MP, Wang YA, Klopp N, Fuchsberger C, Wild SH, Mateo Leach I,Estrada K, Volker U, Wright AF, Asselbergs FW, Qu J, Chakravarti A,Sinner MF, Kors JA, Petersmann A, Harris TB, Soliman EZ,Munroe PB, Psaty BM, Oostra BA, Cupples LA, Perz S, de Boer RA,Uitterlinden AG, Volzke H, Spector TD, Liu FY, Boerwinkle E,Dominiczak AF, Rotter JI, van Herpen G, Levy D, Wichmann HE, vanGilst WH, Witteman JC, Kroemer HK, Kao WH, Heckbert SR,Meitinger T, Hofman A, Campbell H, Folsom AR, van Veldhuisen DJ,Schwienbacher C, O’Donnell CJ, Volpato CB, Caulfield MJ, ConnellJM, Launer L, Lu X, Franke L, Fehrmann RS, te Meerman G, GroenHJ, Weersma RK, van den Berg LH, Wijmenga C, Ophoff RA, NavisG, Rudan I, Snieder H, Wilson JF, Pramstaller PP, Siscovick DS, WangTJ, Gudnason V, van Duijn CM, Felix SB, Fishman GI, Jamshidi Y,Stricker BH, Samani NJ, Kaab S, Arking DE. Common variants in22 loci are associated with QRS duration and cardiac ventricularconduction. Nat Genet. 2010;42:1068–1076.

169. Chambers JC, Zhao J, Terracciano CM, Bezzina CR, Zhang W, KabaR, Navaratnarajah M, Lotlikar A, Sehmi JS, Kooner MK, Deng G,Siedlecka U, Parasramka S, El-Hamamsy I, Wass MN, Dekker LR, deJong JS, Sternberg MJ, McKenna W, Severs NJ, de Silva R, Wilde AA,Anand P, Yacoub M, Scott J, Elliott P, Wood JN, Kooner JS. Genetic

364 Circulation Septembre 2012

Page 39: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 365

Page 365

variation in SCN10A influences cardiac conduction. Nat Genet.2010;42:149–152.

170. Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, ThorgeirssonG, Stefansdottir H, Gudjonsson SA, Jonasdottir A, Mathiesen EB,Njolstad I, Nyrnes A, Wilsgaard T, Hald EM, Hveem K, Stoltenberg C,Lochen ML, Kong A, Thorsteinsdottir U, Stefansson K. Severalcommon variants modulate heart rate, PR interval and QRS duration.Nat Genet. 2010;42:117–122.

171. Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, de Bakker PI, MullerM, Morrison AC, Smith AV, Isaacs A, Sanna S, Dorr M, Navarro P,Fuchsberger C, Nolte IM, de Geus EJ, Estrada K, Hwang SJ, BisJC, Ruckert IM, Alonso A, Launer LJ, Hottenga JJ, Rivadeneira F,Noseworthy PA, Rice KM, Perz S, Arking DE, Spector TD, Kors JA,Aulchenko YS, Tarasov KV, Homuth G, Wild SH, Marroni F, Gieger C,Licht CM, Prineas RJ, Hofman A, Rotter JI, Hicks AA, Ernst F, NajjarSS, Wright AF, Peters A, Fox ER, Oostra BA, Kroemer HK, Couper D,Volzke H, Campbell H, Meitinger T, Uda M, Witteman JC, Psaty BM,Wichmann HE, Harris TB, Kaab S, Siscovick DS, Jamshidi Y,Uitterlinden AG, Folsom AR, Larson MG, Wilson JF, Penninx BW,Snieder H, Pramstaller PP, van Duijn CM, Lakatta EG, Felix SB,Gudnason V, Pfeufer A, Heckbert SR, Stricker BH, Boerwinkle E,O’Donnell CJ. Genome-wide association analysis identifies multipleloci related to resting heart rate. Hum Mol Genet. 2010;19:3885–3894.

172. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH,Kim DJ, Park M, Cha SH, Kim JW, Han BG, Min H, Ahn Y, Park MS,Han HR, Jang HY, Cho EY, Lee JE, Cho NH, Shin C, Park T, ParkJW, Lee JK, Cardon L, Clarke G, McCarthy MI, Lee JY, Oh B, KimHL. A large-scale genome-wide association study of Asian populationsuncovers genetic factors influencing eight quantitative traits. Nat Genet.2009;41:527–534.

173. Peters NS. New insights into myocardial arrhythmogenesis: distributionof gap-junctional coupling in normal, ischaemic and hypertrophiedhuman hearts. Clinical Science. 1996;90:447–452.

174. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, WangH, Chen G, Wang Z. The muscle-specific microRNA miR-1 regulatescardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. NatMed. 2007;13:486–491.

175. Roell W, Lewalter T, Sasse P, Tallini YN, Choi BR, Breitbach M, DoranR, Becher UM, Hwang SM, Bostani T, von Maltzahn J, Hofmann A,Reining S, Eiberger B, Gabris B, Pfeifer A, Welz A, Willecke K, SalamaG, Schrickel JW, Kotlikoff MI, Fleischmann BK. Engraftment ofconnexin 43-expressing cells prevents post-infarct arrhythmia. Nature.2007;450:819–824.

176. Kao WH, Arking DE, Post W, Rea TD, Sotoodehnia N, Prineas RJ,Bishe B, Doan BQ, Boerwinkle E, Psaty BM, Tomaselli GF, Coresh J,Siscovick DS, Marban E, Spooner PM, Burke GL, ChakravartiA. Genetic variations in nitric oxide synthase 1 adaptor protein areassociated with sudden cardiac death in US white community-basedpopulations. Circulation. 2009;119:940–951.

177. Eijgelsheim M, Newton-Cheh C, Aarnoudse AL, van Noord C,Witteman JC, Hofman A, Uitterlinden AG, Stricker BH. Geneticvariation in NOS1AP is associated with sudden cardiac death: evidencefrom the Rotterdam study. Hum Mol Genet. 2009;18:4213–4218.

178. Westaway SK, Reinier K, Huertas-Vazquez A, Evanado A, TeodorescuC, Navarro J, Sinner MF, Gunson K, Jui J, Spooner P, Kaab S, ChughSS. Common variants in CASQ2, GPD1L, and NOS1AP are signifi-cantly associated with risk of sudden death in patients with coronaryartery disease. Circ Cardiovasc Genet. 2011;4:397–402.

179. Arking DE, Junttila MJ, Goyette P, Huertas-Vazquez A, EijgelsheimM, Blom MT, Newton-Cheh C, Reinier K, Teodorescu C, Uy-EvanadoA, Carter-Monroe N, Kaikkonen KS, Kortelainen ML, Boucher G,Lagace C, Moes A, Zhao X, Kolodgie F, Rivadeneira F, Hofman A,Witteman JC, Uitterlinden AG, Marsman RF, Pazoki R, Bardai A,Koster RW, Dehghan A, Hwang SJ, Bhatnagar P, Post W, Hilton G,Prineas RJ, Li M, Kottgen A, Ehret G, Boerwinkle E, Coresh J, KaoWH, Psaty BM, Tomaselli GF, Sotoodehnia N, Siscovick DS, BurkeGL, Marban E, Spooner PM, Cupples LA, Jui J, Gunson K, KesaniemiYA, Wilde AA, Tardif JC, O’Donnell CJ, Bezzina CR, Virmani R,Stricker BH, Tan HL, Albert CM, Chakravarti A, Rioux JD, HuikuriHV, Chugh SS. Identification of a sudden cardiac death susceptibilitylocus at 2q24.2 through genome-wide association in European ancestryindividuals. PLoS Genet. 2011;7:e1002158.

180. Noseworthy PA, Havulinna AS, Porthan K, Lahtinen AM, Jula A,

Karhunen PJ, Perola M, Oikarinen L, Kontula KK, Salomaa V,Newton-Cheh C. Common genetic variants, QT interval, and suddencardiac death in a Finnish population-based study. Circ CardiovascGenet. 2011;4:305–311.

181. Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H,Preuss M, Stewart AF, Barbalic M, Gieger C, Absher D, Aherrahrou Z,Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL, Ardis-sino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC,Berger K, Bis JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ,Burnett MS, Buysschaert I, Carlquist JF, Chen L, Cichon S, Codd V,Davies RW, Dedoussis G, Dehghan A, Demissie S, Devaney JM, Die-mert P, Do R, Doering A, Eifert S, Mokhtari NE, Ellis SG, Elosua R,Engert JC, Epstein SE, de Faire U, Fischer M, Folsom AR, Freyer JGigante B, Girelli D, Gretarsdottir S, Gudnason V, Gulcher JR, Halp-erin E, Hammond N, Hazen SL, Hofman A, Horne BD, Illig T, Iribar-ren C, Jones GT, Jukema JW, Kaiser MA, Kaplan LM, Kastelein JJ,Khaw KT, Knowles JW, Kolovou G, Kong A, Laaksonen R, Lambre-chts D, Leander K, Lettre G, Li M, Lieb W, Loley C, Lotery AJ, Man-nucci PM, Maouche S, Martinelli N, McKeown PP, Meisinger C,Meitinger T, Melander O, Merlini PA, Mooser V, Morgan T, MuhleisenTW, Muhlestein JB, Munzel T, Musunuru K, Nahrstaedt J, Nelson CP,Nothen MM, Olivieri O, Patel RS, Patterson CC, Peters A, Peyvandi F,Qu L, Quyyumi AA, Rader DJ, Rallidis LS, Rice C, Rosendaal FR,Rubin D, Salomaa V, Sampietro ML, Sandhu MS, Schadt E, Schafer A,Schillert A, Schreiber S, Schrezenmeir J, Schwartz SM, Siscovick DS,Sivananthan M, Sivapalaratnam S, Smith A, Smith TB, Snoep JD, Sor-anzo N, Spertus JA, Stark K, Stirrups K, Stoll M, Tang WH, TennstedtS, Thorgeirsson G, Thorleifsson G, Tomaszewski M, Uitterlinden AG,van Rij AM, Voight BF, Wareham NJ, Wells GA, Wichmann HE, WildPS, Willenborg C, Witteman JC, Wright BJ, Ye S, Zeller T, Ziegler A,Cambien F, Goodall AH, Cupples LA, Quertermous T, Marz W, Heng-stenberg C, Blankenberg S, Ouwehand WH, Hall AS, Deloukas P,Thompson JR, Stefansson K, Roberts R, Thorsteinsdottir U, O’Don-nell CJ, McPherson R, Erdmann J, Samani NJ. Large-scale associationanalysis identifies 13 new susceptibility loci for coronary artery disease.Nat Genet. 2011;43:333–338.

182. Agenome-wide association study in Europeans and South Asians iden-tifies five new loci for coronary artery disease. Nat Genet. 2011;43:339–344.

183. Lettre G, Palmer CD, Young T, Ejebe KG, Allayee H, Benjamin EJ,Bennett F, Bowden DW, Chakravarti A, Dreisbach A, Farlow DN,Folsom AR, Fornage M, Forrester T, Fox E, Haiman CA, Hartiala J,Harris TB, Hazen SL, Heckbert SR, Henderson BE, Hirschhorn JN,Keating BJ, Kritchevsky SB, Larkin E, Li M, Rudock ME, McKenzieCA, Meigs JB, Meng YA, Mosley TH, Newman AB, Newton-ChehCH, Paltoo DN, Papanicolaou GJ, Patterson N, Post WS, Psaty BM,Qasim AN, Qu L, Rader DJ, Redline S, Reilly MP, Reiner AP, Rich SS,Rotter JI, Liu Y, Shrader P, Siscovick DS, Tang WH, Taylor HA, TracyRP, Vasan RS, Waters KM, Wilks R, Wilson JG, Fabsitz RR, GabrielSB, Kathiresan S, Boerwinkle E. Genome-wide association study ofcoronary heart disease and its risk factors in 8,090 African Americans:the NHLBI CARe project. PLoS Genet. 2011;7:e1001300.

184. Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, CohenJC, Rubin EM, Pennacchio LA. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature.2010;464:409–412.

185. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer andaging. Cell. 2006;127:265–275.

186. Newton-Cheh C, Cook NR, VanDenburgh M, Rimm EB, Ridker PM,Albert CM. A common variant at 9p21 is associated with sudden andarrhythmic cardiac death. Circulation. 2009;120:2062–2068.

187. Albert CM, MacRae CA, Chasman DI, VanDenburgh M, Buring JE,Manson JE, Cook NR, Newton-Cheh C. Common variants in cardiacion channel genes are associated with sudden cardiac death. CircArrhythm Electrophysiol. 2010;3:222–229.

188. Stecker EC, Sono M, Wallace E, Gunson K, Jui J, Chugh SS. Allelicvariants of SCN5A and risk of sudden cardiac arrest in patients withcoronary artery disease. Heart Rhythm. 2006;3:697–700.

189. Burke A, Creighton W, Mont E, Li L, Hogan S, Kutys R, Fowler D,Virmani R. Role of SCN5A Y1102 polymorphism in sudden cardiacdeath in blacks. Circulation. 2005;112:798–802.

190. Splawski I, Timothy KW, Tateyama M, Clancy CE, Malhotra A, BeggsAH, Cappuccio FP, Sagnella GA, Kass RS, Keating MT. Variant of

Deo et Albert La mort subite 365

Page 40: Cardiac Arrest and Sudden Cardiac Death - Circulationcirc.ahajournals.org/content/circulationaha/125/4/620.full.pdf · Sudden cardiac death (SCD) ... men.8,24,28 In addition, among

10:00:26:07:12

Page 366

Page 366

SCN5A sodium channel implicated in risk of cardiac arrhythmia. Sci-ence. 2002;297:1333–1336.

191. Gavin MC, Newton-Cheh C, Gaziano JM, Cook NR, VanDenburghM, Albert CM. A common variant in the beta2-adrenergic receptor andrisk of sudden cardiac death. Heart Rhythm. 2011;8:704–710.

192. Tseng ZH, Aouizerat BE, Pawlikowska L, Vittinghoff E, Lin F,Whiteman D, Poon A, Herrington D, Howard TD, Varosy PD, HulleySB, Malloy M, Kane J, Kwok PY, Olgin JE. Common beta-adrenergicreceptor polymorphisms are not associated with risk of suddencardiac death in patients with coronary artery disease. Heart Rhythm.2008;5:814–821.

193. Sotoodehnia N, Siscovick DS, Vatta M, Psaty BM, Tracy RP, TowbinJA, Lemaitre RN, Rea TD, Durda JP, Chang JM, Lumley TS, KullerLH, Burke GL, Heckbert SR. Beta2-adrenergic receptor geneticvariants and risk of sudden cardiac death. Circulation. 2006;113:1842–1848.

194. Snapir A, Mikkelsson J, Perola M, Penttila A, Scheinin M, KarhunenPJ. Variation in the alpha2b-adrenoceptor gene as a risk factor forprehospital fatal myocardial infarction and sudden cardiac death.J Am Coll Cardiol. 2003;41:190–194.

195. Hernesniemi JA, Karhunen PJ, Rontu R, Ilveskoski E, Kajander O,Goebeler S, Viiri LE, Pessi T, Hurme M, Lehtimaki T. Interleukin-18promoter polymorphism associates with the occurrence of suddencardiac death among caucasian males: the Helsinki Sudden DeathStudy. Atherosclerosis. 2008;196:643–649.

196. Mikkelsson J, Perola M, Penttila A, Karhunen PJ. Platelet collagenreceptor GPIa (C807T/HPA-5) haplotype is not associated withan increased risk of fatal coronary events in middle-aged men.Atherosclerosis. 2002;165:111–118.

197. Reiner AP, Rosendaal FR, Reitsma PH, Lemaitre RN, Pearce RM,Friedlander Y, Raghunathan TE, Psaty BM, Siscovick DS. Factor VLeiden, Prothrombin G20210A, and risk of sudden coronary death inapparently healthy persons. Am J Cardiol. 2002;90:66–68.

198. Mikkelsson J, Perola M, Penttila A, Karhunen PJ. Platelet glycoproteinIbalpha HPA-2 Met/VNTR B haplotype as a genetic predictor ofmyocardial infarction and sudden cardiac death. Circulation.2001;104:876–880.

199. Mikkelsson J, Perola M, Laippala P, Penttila A, Karhunen PJ.Glycoprotein IIIa Plqq(A1/A2) polymorphism and sudden cardiacdeath. J Am Coll Cardiol. 2000;36:1317–1323.

200. Sotoodehnia N, Li G, Johnson CO, Lemaitre RN, Rice KM, Rea TD,Siscovick DS. Genetic variation in angiotensin-converting enzyme-related pathways associated with sudden cardiac arrest risk. HeartRhythm. 2009;6:1306–1314.

201. Sun AY, Koontz JI, Shah SH, Piccini JP, Nilsson KR Jr, Craig D,Haynes C, Gregory SG, Hranitzky PM, Pitt GS. The S1103Y cardiacsodium channel variant is associated with implantable cardioverter-defibrillator events in blacks with heart failure and reduced ejectionfraction. Circ Cardiovasc Genet. 2011;4:163–168.

202. Albert CM, Nam EG, Rimm EB, Jin HW, Hajjar RJ, Hunter DJ,MacRae CA, Ellinor PT. Cardiac sodium channel gene variants andsudden cardiac death in women. Circulation. 2008;117:16–23.

203. Bezzina CR, Pazoki R, Bardai A, Marsman RF, de Jong JS, Blom MT,Scicluna BP, Jukema JW, Bindraban NR, Lichtner P, Pfeufer A,Bishopric NH, Roden DM, Meitinger T, Chugh SS, Myerburg RJ,Jouven X, Kaab S, Dekker LR, Tan HL, Tanck MW, Wilde AA.Genome-wide association study identifies a susceptibility locus at21q21 for ventricular fibrillation in acute myocardial infarction.Nat Genet. 2010;42:688–691.

204. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, KrithivasA, Hong JS, Horwitz MS, Crowell RL, Finberg RW. Isolation ofa common receptor for coxsackie B viruses and adenoviruses 2 and5. Science. 1997;275:1320–1323.

205. Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human andmouse cellular receptors for subgroup C adenoviruses and group Bcoxsackieviruses. Proc Natl Acad Sci U S A. 1997;94:3352–3356.

206. Bowles NE, Richardson PJ, Olsen EG, Archard LC. Detection ofcoxsackie-B-virus-specific RNA sequences in myocardial biopsysamples from patients with myocarditis and dilated cardiomyopathy.Lancet. 1986;1:1120–1123.

207. Lim BK, Xiong D, Dorner A, Youn TJ, Yung A, Liu TI, Gu Y, DaltonND, Wright AT, Evans SM, Chen J, Peterson KL, McCulloch AD,Yajima T, Knowlton KU. Coxsackievirus and adenovirus receptor(CAR) mediates atrioventricular-node function and connexin 45localization in the murine heart. J Clin Invest. 2008;118:2758–2770.

M : mort, subite � épidémiologie � génétique

366 Circulation Septembre 2012