ANSYS Mechanical APDL Acoustic Analysis Guide

94
ANSYS Mechanical APDL Acoustic Analysis Guide Release 15.0 ANSYS, Inc. November 2013 Southpointe 275 Technology Drive Canonsburg, PA 15317 ANSYS, Inc. is certified to ISO 9001:2008. [email protected] http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494

description

learn ansys acoustics

Transcript of ANSYS Mechanical APDL Acoustic Analysis Guide

  • ANSYS Mechanical APDL Acoustic Analysis

    Guide

    Release 15.0ANSYS, Inc.

    November 2013Southpointe

    275 Technology Drive

    Canonsburg, PA 15317 ANSYS, Inc. iscertified to ISO

    9001:[email protected]

    http://www.ansys.com

    (T) 724-746-3304

    (F) 724-514-9494

  • Copyright and Trademark Information

    2013 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.

    ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any

    and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or

    trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used

    by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service

    and feature names or trademarks are the property of their respective owners.

    Disclaimer Notice

    THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-

    ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products

    and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement

    that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting

    laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products

    and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions

    of that software license agreement.

    ANSYS, Inc. is certified to ISO 9001:2008.

    U.S. Government Rights

    For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use,

    duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc.

    software license agreement and FAR 12.212 (for non-DOD licenses).

    Third-Party Software

    See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software

    and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

    Published in the U.S.A.

  • Table of Contents

    1. Introduction to Acoustic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1. The General Acoustic Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.2. Overview of the Acoustic Analysis Process .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2. Using the Acoustic Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.1. Elements Used in an Acoustic Analysis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.2. Commands Used in an Acoustic Analysis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2.3. Understanding Acoustic Analysis Terminology .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    2.4. Acoustic Analysis Resources and Examples .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    3. Modeling for an Acoustic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    4. Defining the Acoustic Modeling Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    4.1. Defining Element Types .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    4.2. Specifying the System of Units ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    5. Defining Acoustic Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5.1. Basic Material Parameters of Acoustic Media .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    5.2. Non-Uniform Ideal Gas Material ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    5.3. Equivalent Fluid Model of Perforated Material ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    5.4. Viscous-Thermal Materials ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    5.4.1. Acoustic Propagation in the Viscous Fluid .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    5.4.2. Boundary Layer Impedance (BLI) Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    5.4.3. Low Reduced Frequency (LRF) Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    6. Specifying Acoustic Analysis Region Attributes and Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    7. Applying Boundary Conditions in an Acoustic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    7.1. Applying Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    7.1.1. Pressure Boundary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    7.1.2. Rigid Wall Boundary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    7.1.3. Surface Impedance Boundary .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    7.1.4. Free Surface (Sloshing Effect) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    7.2. Absorbing Boundary Condition (ABC) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    7.3. Perfectly Matched Layers (PMLs) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    8. Applying Excitation Sources and Loads in an Acoustic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    8.1. Applying Acoustic Excitation Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    8.1.1. Pressure Excitation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    8.1.2. Outward Normal Velocity (Acceleration) Excitation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    8.1.3. Arbitrary Velocity (Acceleration) Excitation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    8.1.4. Analytic Incident Wave Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    8.1.5. Mass Source (Mass Source Rate) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    8.2. Applying Acoustic Loads .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    8.2.1. Trim Element with Transfer Admittance Matrix ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    8.2.2. Impedance Sheet .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    8.2.3. Equivalent Surface Source .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    8.2.3.1. Flagging an Equivalent Source Surface .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    8.2.4. Surface Port ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    9. Accounting for Acoustic Fluid-Structure Interaction (FSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    10. Solving an Acoustic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    10.1. Acoustic Analysis Solution Settings .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    10.1.1. Modal Analysis Settings .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    10.1.2. Harmonic Analysis Settings .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    10.1.2.1. Full Harmonic Analysis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    10.1.2.1.1. Setting the Analysis Frequencies .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    10.1.2.1.2. Specifying the Analysis Solver ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    iiiRelease 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • 10.1.2.1.3. Selecting the Scattered Formulation for Harmonic Analysis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    10.1.2.2. Mode Superposition Harmonic Analysis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    10.1.3.Transient Analysis Settings .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    10.2. Starting and Finishing the Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    11. Using Advanced Solution Techniques in an Acoustic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    11.1. One-Way Coupling from Structure to Acoustics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    11.2. Linear Perturbation in an Acoustic Application .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    12. Postprocessing Acoustic Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    12.1. Helpful Postprocessing Commands .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    12.2. Postprocessing a Harmonic Acoustic Analysis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    12.2.1. Reviewing Analysis Results ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    12.2.2. Calculating Near Fields, Far Fields, and Far-Field Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    12.2.2.1. Accounting for Model Symmetry .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    12.2.2.2. Radiation Solid Angle .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    12.2.2.3. Near Sound Pressure Field .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    12.2.2.4. Far Sound Pressure Field and Far-Field Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    12.2.2.5. Far-Field Microphone .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    12.2.3. Calculating Acoustic Propagation Parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    12.3. Postprocessing a Modal or Transient Acoustic Analysis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    13. Acoustic Analysis Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    13.1. Example: Acoustic-Structural Coupled Modal Resonance of an Annular Ring Submerged in Water

    with a Harmonic Analysis ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    13.2. Example: Sloshing Modes of a Cylindrical Cavity .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    13.3. Example: Resonant Frequencies in a Pipe with Ideal Gas .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    13.4. Example: Acoustic Harmonic Response in a Room ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    13.5. Example: Transmission Loss of a Muffler ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    13.6. Example: Johnson-Champoux-Allard Model of a Perforated Material ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    13.7. Example: Transfer Admittance Matrix in Fluid .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    13.8. Example: Boundary Layer Impedance Model of a Rigid Walled Waveguide with Viscous-Thermal

    Fluid .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

    13.9. Example: Radiation from Two Waveguides .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    13.10. Example: Radiation from a Dipole .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    13.11. Example: Monopole Incident Wave Scattering of a Rigid Sphere .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    13.12. Example: Planar Incident Wave FSI Scattering of an Infinite Cylindrical Shell .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    13.13. Example: One-Way Coupling from Structure to Acoustics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    13.14. Example: Modal Analysis of an Acoustic-Structural Coupled Structure with Nonlinear Static Prestress

    Using Linear Perturbation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.iv

    Acoustic Analysis Guide

  • List of Figures

    4.1. Acoustic-Structural Interaction Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    6.1. Sound Pressure Distribution and FEM Model ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    7.1. Spherical ABC for Symmetry and Near the Radiation Outlet ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    7.2. 1-D Multiple PMLs for Pipes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    7.3. PML Enclosure .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    7.4. Attenuation Distribution .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    7.5. Buffer Elements .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    7.6. Distance Between Source/Objects and PML Region .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    7.7. PML Near the Radiation Outlet ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    8.1. Spherical Coordinates .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    8.2. Trim Element with Transfer Admittance Matrix ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    vRelease 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.vi

  • List of Tables

    1.1. Acoustic Analysis Steps .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2.1. Acoustic Element Properties ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.2. Primary Acoustic Analysis Commands .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    2.3. Secondary Acoustic Analysis Commands .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    4.1. Key Options for FLUID30, FLUID220, and FLUID221 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    4.2. Key Options for FLUID130 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    4.3. SI Units ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    5.1. Equivalent Fluid Models of Perforated Material ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    5.2. Low Reduced Frequency Models ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    7.1. Acoustic Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    7.2. Surface Impedance Boundary Conditions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    8.1. Acoustic Excitation Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    8.2. Acoustic Analytic Incident Wave Sources .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    8.3. Acoustic Loads .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    8.4.Transfer Admittance Matrix Models of Perforated Structures: TB,PERF,,,,TBOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3910.1. Acoustic Eigen Equations and Solvers ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    11.1. Acoustic Linear Perturbation Analysis Process .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    12.1. Postprocessing Commands .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    12.2. Plotting Commands .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    viiRelease 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.viii

  • Chapter 1: Introduction to Acoustic Analysis

    The following topics introducing you to acoustic analysis are available:

    1.1.The General Acoustic Equations

    1.2. Overview of the Acoustic Analysis Process

    1.1. The General Acoustic Equations

    Acoustic analysis is available in the ANSYS Multiphysics and ANSYS Mechanical products. This type of

    analysis simulates the generation and propagation properties of either the coupled acoustic-structural

    interaction (FSI) or the uncoupled pure acoustic wave in the given environment. Support is available

    for modal, time-harmonic, and transient acoustic analysis.

    The program assumes that the fluid is compressible with zero mean flow. Only relatively small pressure

    changes are allowed with respect to the mean pressure. An acoustic analysis usually involves modeling

    the acoustic phenomena in an acoustic fluid and in a structure. A coupled acoustic-structural interaction

    analysis takes the structural dynamics equation into account, along with the linearized Navier-Stokes

    equations of fluid momentum and the flow continuity equation. A pure acoustic analysis models the

    acoustics fluid.

    In an acoustic analysis, one of the two following matrix equations is solved. For pure acoustic phenomena,

    the program solves for this finite element dynamic matrix equation:

    F e F e F e F

    && &+ + =

    where [MF], [CF], and [KF] are the mass, damping, and stiffness matrices, respectively, and {fF} is the ex-

    ternal excitation vector in the acoustic fluid.

    In acoustic-structural interaction application, the program solves for the fully coupled finite element

    dynamic matrix equation:

    S

    T

    S

    0

    { }{ }

    +

    &&

    &&

    { }{ }

    +

    { }{ }

    &

    &

    S

    =

    S

    where [MS], [CS], and [KS] are the mass, damping, and stiffness matrices, respectively, and {fS} is the ex-

    ternal force vector in the structure. [R] is the coupled matrix and represents the coupling conditions on

    the interface between the acoustic fluid and the structure.

    For more information about the matrices, see the Derivation of Acoustic Matrices and Acoustic Fluid-

    Structural Interaction (FSI) sections in the Mechanical APDL Theory Reference.

    1.2. Overview of the Acoustic Analysis Process

    In general, the program simulates interior problems or exterior problems as well as FSI problems.

    1Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • For interior problems, a sound wave propagates or oscillates in a closed structure. The oscillating fre-

    quencies and transmission loss (TL) are usually investigated. For exterior problems, a sound wave radiates

    into open space or it is scattered by a structural object in the open domain.

    The radiation sound power level (Lw), directive gain, or target strength (TS) is usually investigated. The

    programs applications include, but are not limited to, sonar, noise investigation, acoustic design of ar-

    chitecture, underwater acoustics, and the design of acoustic devices.

    An acoustic analysis involves most of the general steps found in any analysis. Following is the general

    process for performing an acoustic analysis:

    Table 1.1: Acoustic Analysis Steps

    CommentsTasksStep

    An acoustic model generally consists of fluid domain,

    structural parts, FSI interfaces, sound excitations, and

    the truncation of the infinite domain.

    Build the model.1.

    ANSYS Workbench may help in building the model

    easily.

    Acoustic analysis is supported by the FLUID29, FLU-

    ID30, FLUID220, and FLUID221 elements.

    Set up the model envir-

    onment.

    2.

    The FLUID129 and FLUID130 elements can act as ab-

    sorbing elements to truncate the infinite fluid domain.

    The FLUID29 element may not support some 3-D ele-

    ment features. See the documentation for that element

    in the Element Reference.

    Defining the material properties for an acoustic analysis

    is no different from any other analysis. Use the MP or

    Define material proper-

    ties.

    3.

    TB commands to define linear or nonlinear material

    properties.

    The equivalent fluid model is defined by the TB com-

    mand. For more information, see Defining Material

    Properties in the Basic Analysis Guide and Sophisticated

    Acoustic Media in the Mechanical APDL Theory Refer-

    ence.

    Use meshing commands to mesh the different parts

    of the model. Certain areas may require more detailed

    meshing or special considerations.

    Mesh the model.4.

    To ensure a reliable solution, either ten elements per

    wavelength for low-order elements or five elements

    per wavelength for high-order elements are required

    at the highest working frequency.

    For more information, see the Modeling and Meshing

    Guide.

    Define the boundary conditions using the D or SF

    command. The absorbing element FLUID130 or the

    Define the boundary

    conditions.

    5.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.2

    Introduction to Acoustic Analysis

  • Perfectly Matched Layers (PML) can achieve better ac-

    curacy for an open domain problem. For more inform-

    ation refer to Acoustic Boundary Conditions, Absorbing

    Boundary Condition (ABC), or Perfectly Matched Layers

    (PML) in the Mechanical APDL Theory Reference.

    Define the loads and excitations (D, SF, or BF).Define the loads and ex-

    citations.

    6.

    If the analytic wave sources are required, issue the

    AWAVE command.

    The trim element with transfer admittance matrix is

    defined by the TB command for perforated structures.

    For more information, see Defining Material Properties

    in the Basic Analysis Guide and Sophisticated Acoustic

    Media in the Mechanical APDL Theory Reference.

    Use the SF command to account for the acoustic fluid-

    structural interaction (FSI) effect. The solution for FSI

    with the strong coupled matrix is performed.

    Account for the FSI ef-

    fect.

    7.

    For more information, see Acoustic Fluid-Structural

    Interaction (FSI) in theMechanical APDL Theory Refer-

    ence.

    The solution phase of an acoustic analysis adheres to

    standard ANSYS conventions, although the FSI coupled

    Solve the model.8.

    matrices may not be symmetric. Modal, harmonic, and

    transient analyses may be performed.

    You may choose the symmetric algorithm for coupled

    matrices in a modal or harmonic analysis.

    The pure scattered pressure formulation is also avail-

    able for the analytic incident wave, for more informa-

    tion see Pure Scattered Pressure Formulation in the

    Mechanical APDL Theory Reference.

    You can use structural results as the acoustic excitation

    source using one-way coupling process (ASIFILE).

    You can take the nonlinear static analysis into account

    and use a morphed mesh for the acoustic-structural

    coupled solution via a linear perturbation scheme.

    Use the POST1 general postprocessor and the POST26

    time history postprocessor to review results.

    Postprocess the acoustic

    analysis.

    9.

    Specific commands are available in POST1 for near-

    and far-field parameters (PRNEAR, PLNEAR, PRFAR,

    PLFAR, *GET) and for sound power data (SPOWER).

    3Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Overview of the Acoustic Analysis Process

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.4

  • Chapter 2: Using the Acoustic Analysis Tools

    The following tools and resources are available to facilitate an acoustic analysis:

    2.1. Elements Used in an Acoustic Analysis

    2.2. Commands Used in an Acoustic Analysis

    2.3. Understanding Acoustic Analysis Terminology

    2.4. Acoustic Analysis Resources and Examples

    2.1. Elements Used in an Acoustic Analysis

    These elements are available for acoustic analysis: FLUID29, FLUID129, FLUID30, FLUID130, FLUID220,

    and FLUID221. Element properties are as follows:

    Table 2.1: Acoustic Element Properties

    Degrees of Freedom per NodeAttributeElement

    UX, UY, PRES (coupled element)2-D 4-node quadrilateral

    with triangle degeneracy

    FLUID29

    PRES (uncoupled element)

    PRES2-D 2-node lineFLUID129

    UX, UY, UZ, PRES (coupled element)3-D 8-node hexagonal with

    prism with tetrahedral and

    pyramid degeneracy

    FLUID30

    PRES (uncoupled element)

    UX, UY, UZ, PRES (coupled modal symmetric

    matrix)

    PRES3-D 4- or 8-node quadrilater-

    al surface with triangle de-

    generacy

    FLUID130

    UX, UY, UZ, PRES (coupled element)3-D 20-node hexagonal with

    pyramid and prism degener-

    acy

    FLUID220

    PRES (uncoupled element)

    UX, UY, UZ, PRES (coupled modal symmetric

    matrix)

    UX, UY, UZ, PRES (coupled element)3-D 10-node tetrahedralFLUID221

    PRES (uncoupled element)

    UX, UY, UZ, PRES (coupled modal symmetric

    matrix)

    One element shape (hexahedral, wedge, or tetrahedral), or any combination of shapes, can be used in

    a 3-D acoustic model. The pyramid elements are transitional elements between the hexahedral and

    tetrahedral elements.

    5Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Example 2.1: Creating Mixed Hexahedral and Wedge Elements

    /prep7et,1,220 ! define hexahedral elementet,11,200,5 ! define 2-D 6-node triangle mesh elementet,12,200,7 ! define 2-D 8-node quadrilateral mesh elementrect,0,1,0,1 ! create area 1rect,1,2,0,1 ! create area 2aglue,all ! glue areas togetheresize,0.25 ! define the element sizeasel,s,loc,x,0,1 ! select area 1type,11 ! select triangle element typemshape,1 ! define the triangle element shapeamesh,all ! mesh area 1 with triangle mesh elementasel,s,loc,x,1,2 ! select area 2type,12 ! select quadrilateral mesh element typemshape,0 ! define the element quadrilateral shapeamesh,all ! mesh area 2 with quadrilateral mesh elementallsesize,,4 ! define element operationtype,1 ! select hexahedral elementasel,s,loc,z,0 ! select 2-D elementvext,all,,,0,0,1 ! create 3-D elements by extruding 2-D elementsfini

    Example 2.2: Creating Mixed Hexahedral, Pyramid, and Tetrahedral Elements

    /prep7ch=10.16e-3cw=22.86e-3cl=2.e-2h=2.e-3et,1,220,1 ! define hexahedral elementet,2,221,1 ! define tet elementblock,-cw/2,0,-ch/2,ch/2,0,cl/2 ! create volume 1block,-cw/2,0,-ch/2,ch/2,cl/2,cl ! create volume 2vglue,all ! glue volumes togetheresize,h ! define element sizetype,1 ! select hexahedral element typemshape,0,3d ! define hexahedral meshmshkey,1 ! use mapped meshvmesh,1 ! mesh first volumemshape,1,3d ! define tetrahedral elementmshkey,0 ! use free meshingvmesh,3 ! mesh second meshtchg,220,221,2 ! covert degenerated brick into tetfini

    Although a geometrically complex structure can be meshed with tetrahedral elements, it may require

    many elements and lead to a more computationally expensive simulation. Even a regularly shaped

    volume may require many tetrahedral elements if it has a very large aspect ratio. In such a case, hexa-

    hedral or wedge elements are a better choice.

    2.2. Commands Used in an Acoustic Analysis

    The following commands are commonly used in an acoustic analysis:

    Table 2.2: Primary Acoustic Analysis Commands

    CommentsCommand

    Defines writing or reading the one-way acoustic-structural

    coupling data to or from a file.

    ASIFILE

    Specify an acoustic harmonic analysis with the scattered

    pressure formulation.

    ASOL

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.6

    Using the Acoustic Analysis Tools

  • Output control for an acoustic scattering analysis.ASCRES

    Defines the analytic acoustic incident wave source.AWAVE

    Defines spatial angles of a spherical radiation surface for

    an acoustic radiator.

    HFANG

    Indicates the presence of symmetry planes for the compu-

    tation of an acoustic field in the near- or far-field domains

    (beyond the finite element region).

    HFSYM

    Plots acoustic far-field parameters.PLFAR

    Plots the acoustic parameters in the near zone exterior to

    the equivalent source surface.

    PLNEAR

    Defines perfectly matched layers (PML).PMLOPT

    Determines the number of PML layers.PMLSIZE

    Prints acoustic far-field parameters.PRFAR

    Prints the acoustic parameters in the near zone exterior to

    the equivalent source surface.

    PRNEAR

    Calculates sound power data of a multi-port network.SPOWER

    Table 2.3: Secondary Acoustic Analysis Commands

    CommentsCommand

    Defines the acoustic body loads.BF

    Defines the frequency range in the harmonic analysis, in-

    cluding the octave bands.

    HARFRQ

    Specify the morphing operation in an acoustic linear per-

    turbation.

    MORPH

    Prints the solution results for nodes.NSOL

    Plots the acoustic solution results for nodes.PLNSOL

    Prints the acoustic solution results for nodes.PRNSOL

    Defines the acoustic surface loads and flags.SF

    2.3. Understanding Acoustic Analysis Terminology

    The following common terms are used throughout this guide:

    Interior problem The sound wave oscillates in an enclosure or propagates

    to the infinity in a constrained structure.

    Exterior problem The sound wave radiates or is scattered into the infinite

    open space.

    FSI Acoustic fluid-structural interaction.

    Coupled element Acoustic element with FSI interface.

    Uncoupled element Acoustic element without FSI interface.

    PML Perfectly matched layers.

    7Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Understanding Acoustic Analysis Terminology

  • Sound-hard surface A surface on which particle normal velocity is zero.

    Sound-soft surface A surface on which sound pressure is constrained.

    Transparent port An exterior surface on which incident pressure is launched

    into the acoustic model and the reflected pressure wave

    is fully absorbed by a defined matched impedance that

    represents the infinity.

    Vibro port An exterior surface on which incident pressure is launched

    into the acoustic model by the vibration of the structural

    surface.

    2.4. Acoustic Analysis Resources and Examples

    The following additional ANSYS, Inc. documentation is available for further information about acoustics

    and related rotational phenomena:

    Acoustics in the Mechanical APDL Theory Reference

    Elements for Acoustic Analysis in the Element Reference

    Acoustic Analysis of a Small Speaker System in the Technology Demonstration Guide

    Also see Acoustic Analysis Examples (p. 63) in this guide.

    Finally, the Mechanical APDL Verification Manual contains the following acoustics cases:

    VM157 - 3-D Acoustic Modal Analysis with Temperature Change

    VM177 - Natural Frequency of a Submerged Ring

    VM242 - Johnson-Chamoux-Allard Equivalent Fluid Model

    VM282 - Mode Superposition Response Analysis of a Piston-Fluid System

    VM283 - Low Reduced Frequency Model for Visco-thermal Fluid with Thin Structure

    VMR083-CA1 - Sound Radiation of a Vibrating Sphere

    VMR083-CA2 - Sound Radiation of a Cylinder with Vibrating Lateral Surface

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.8

    Using the Acoustic Analysis Tools

  • Chapter 3: Modeling for an Acoustic Analysis

    Use either the preprocessor (/PREP7) or ANSYS DesignModeler to create the model geometry. The

    model-building process is common to most analyses. For more information, see the Modeling and

    Meshing Guide.

    To begin, specify a jobname and title for your analysis.

    9Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.10

  • Chapter 4: Defining the Acoustic Modeling Environment

    The following topics describe the features and applications of the 3-D elements used in an acoustic

    analysis:

    4.1. Defining Element Types

    4.2. Specifying the System of Units

    4.1. Defining Element Types

    To specify element type numbers and key options for acoustic elements, issue the ET command.

    The key options (KEYOPTs) shown in the following two tables define the acoustic element properties:

    Table 4.1: Key Options for FLUID30, FLUID220, and FLUID221

    Element DefinitionsOptionsKEYOPT

    No specification0

    KEYOPT(1) Symmetric modal formulation1

    Symmetric harmonic formulation2

    Coupled element0KEYOPT(2)

    Uncoupled element1

    Normal element0KEYOPT(4)

    Perfectly Matched Layers (PML) element1

    Table 4.2: Key Options for FLUID130

    Element DefinitionsOptionsKEYOPT

    4-node surface element0KEYOPT(1)

    8-node surface element2

    The following figure shows an example of coupled acoustic-structural interaction:

    11Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • Figure 4.1: Acoustic-Structural Interaction Model

    Example 4.1: Defining Element Types

    The following example input defines second-order coupled, uncoupled, and PML elements:

    et,1,220,,0,,0 ! coupled brick element with DOF: UX,UY,UX,PRESet,1,220,,1,,0 ! uncoupled brick element with DOF: PRESet,1,220,,1,,1 ! uncoupled PML brick element with DOF: PRES

    4.2. Specifying the System of Units

    Acoustic analysis uses various unit systems (/UNITS), but uses the SI system as the default.

    For more information about available units systems, see System of Units in the Coupled-Field Analysis

    Guide.

    The following table lists the physical quantities used for an acoustic analysis in the SI units system:

    Table 4.3: SI Units

    Expressed in terms of other SI

    units

    QuantityUnit SymbolUnit Name

    lengthmmeter

    masskgkilogram

    timessecond

    thermodynamic temperatureKkelvin

    frequencyHzhertz

    kgm/s2

    force, weightNnewton

    N/m2

    pressurePapascal

    Nmenergy, heatJjoule

    J/spowerWwatt

    kg/m3

    mass density

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.12

    Defining the Acoustic Modeling Environment

  • m/ssound speedc

    Pasdynamic viscosity

    W/mKthermal conductivity

    J/Kheat coefficient at a constant

    pressure per mass

    cp

    J/Kheat coefficient at a constant

    volume per mass

    cv

    Ns/m3

    impedanceZ

    Support for defining a custom system of units is available via the /UNITS command. Typically, the length

    and mass conversion factor, as well as the offset of the temperature, are defined. The program converts

    the remaining quantities, including the static pressure, reference pressure, and reference power. The

    matrices may have matrix conditions with other systems of units than either the SI or MKS system for

    acoustic fluid-structural interaction (FSI) models.

    Example 4.2: Defining the System of Units

    /batch ! batch mode/units,cgs ! cgs units

    13Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Specifying the System of Units

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.14

  • Chapter 5: Defining Acoustic Material Properties

    The following topics describing how to define acoustic material properties are available:

    5.1. Basic Material Parameters of Acoustic Media

    5.2. Non-Uniform Ideal Gas Material

    5.3. Equivalent Fluid Model of Perforated Material

    5.4.Viscous-Thermal Materials

    5.1. Basic Material Parameters of Acoustic Media

    Several primary commands are available to define basic acoustic material properties:

    MP

    TB,AFDM,,,,MAT

    TBFIELD

    TBDATA,1,DENS,SONC,VISC,KXX,CPH,CVHTBDATA,7,BVIS

    Acoustic analyses require the mass density (MP,DENS) and sound speed (MP,SONC) of the acoustic

    fluid.

    For viscous-thermal material, the dynamic viscosity (MP,VISC), bulk viscosity (MP,BVIS), thermal conduct-

    ivity (MP,KXX), heat coefficient at constant volume (MP,CVH), and heat coefficient at constant pressure

    (MP,C) are defined.

    Example 5.1: Defining Acoustic Material Properties (MP)

    The following example input defines the acoustic material properties of air via the MP command:

    mp,dens,1,1.21 ! mass densitymp,sonc,1,343 ! sound speedmp,visc,1,1.827e-5 ! dynamic viscositymp,bvis,1,1.096e-5 ! bulk viscositymp,kxx,1,0.0257 ! thermal conductivitymp,cvh,1,0.718 ! heat coefficient at a constant volume per massmp,c,1,1.005 ! heat coefficient at a constant pressure per mass

    Frequency-dependent material properties are defined via the TB,AFDM,,,,MAT command. Material values

    defined by TB,AFDM override the values defined by MP.

    Frequency-dependent material properties are interpolated if the working frequency is not one of the

    frequencies defined via the TBFIELD command.

    Example 5.2: Defining Frequency-Dependent Acoustic Material Properties (TB)

    The following example input defines frequency-dependent acoustic material properties via the TB

    command:

    tb,afdm,1,,,mat ! basic acoustic materialstbfield,freq,f1 ! table at frequency f1tbdata,1,dens1,sonc1,visc1,therm1,cph1,cvh1 ! material parameters table

    15Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • tbdata,7,bvis1tbfield,freq,f2 ! table frequency f2 tbdata,1,dens2,sonc2,visc2,therm2,cph2,cvh2 ! material parameters tabletbdata,7,bvis2

    Listing the Defined Material Properties

    The MPLIST command lists the material properties defined via the MP command.

    The TBLIST command lists the frequency-dependent material properties defined via the TB command.

    5.2. Non-Uniform Ideal Gas Material

    In non-uniform acoustic media, both mass density and sound speed vary with the spatial position and

    are derived by the ideal gas law.

    To set up a non-uniform ideal gas model:

    1. Define the temperature T0 via the TREF command (defaults to 22 C).

    2. Define the density 0 and sound speed C0 at the reference temperature T0 via the MP,DENS and MP,SONC

    commands.

    3. Define the reference static pressure Psref via the R,,Psref command.

    4. Define the spatial static pressure Ps via the BF,,CHRGD command.

    5. Define the spatial temperature via the BF,,TEMP command.

    The ideal gas model does not support the MPTEMP and MPDATA commands for mass density and

    sound speed. Mass density and sound speed are defined at a reference temperature, and the ideal gas

    model calculates the temperature-dependent nodal mass density and sound speed.

    Example 5.3: Defining a Non-Uniform Ideal Gas Model

    mp,dens,1,1.21 ! mass densitymp,sonc,1,343 ! sound speedr,1,pref,psref ! static reference pressuretref,22 ! reference temperaturensel,s,loc,x ! nodes at x=0bf,all,chrgd,101325 ! static pressure on nodesbf,all,temp,100 ! temperature on nodes

    For more information, see Non-uniform Acoustic Media in the Mechanical APDL Theory Reference.

    5.3. Equivalent Fluid Model of Perforated Material

    Several equivalent fluid models are available to approximate the perforated material with the rigid

    skeleton.

    The equivalent model uses the wave equation with complex effective density and velocity.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.16

    Defining Acoustic Material Properties

  • Define an equivalent fluid model via the TB,PERF,,,,TBOPT command. The following table shows thevalid TBOPT values and input parameters necessary for defining equivalent fluid models:

    Table 5.1: Equivalent Fluid Models of Perforated Material

    Input ParametersModelTBOPT

    Fluid Resistivity , Porosity , Tortuosity

    , Viscous Characteristic Length ,

    Thermal Characteristic Length

    Johnson-Champoux-AllardJCA

    Fluid Resistivity (0.01 < f/

  • tbdata,1,denr1,deni1,cr1,ci1 ! complex density and velocity at f1tbfield,freq,f2 ! table at f2tbdata,1,denr2,deni2,cr2,ci2 ! complex density and velocity at f2

    Trimming the perforated structures to a transfer admittance matrix avoids dense mesh and creates ex-

    cellent numerical accuracy. See Trim Element with Transfer Admittance Matrix (p. 38).

    For more information, see Equivalent Fluid of Perforated Materials in the Mechanical APDL Theory Refer-

    ence.

    5.4. Viscous-Thermal Materials

    The following topics related to viscous-thermal materials in an acoustic analysis are available:

    5.4.1. Acoustic Propagation in the Viscous Fluid

    5.4.2. Boundary Layer Impedance (BLI) Model

    5.4.3. Low Reduced Frequency (LRF) Model

    5.4.1. Acoustic Propagation in the Viscous Fluid

    An acoustic propagating wave in a viscous media is dampened due to the viscosity of the fluid. The

    interaction between the acoustic pressure wave in a viscous fluid and a rigid wall is not taken into ac-

    count.

    Define the viscosity of a fluid via the MP,VISC command.

    Example 5.6: Defining a Viscous Material

    mp,dens,1,1.21 ! mass densitymp,sonc,1,343 ! sound speedmp,visc,1,1.827e-5 ! dynamic viscosity

    For more information, see Acoustic Fundamentals in the Mechanical APDL Theory Reference.

    5.4.2. Boundary Layer Impedance (BLI) Model

    The interaction between an acoustic pressure wave in a viscous fluid and a rigid wall is taken into account.

    Specify a rigid wall as a boundary layer via the SF,Nlist,BLI command.

    BLI models are supported in full harmonic acoustic analyses only.

    Example 5.7: Defining a BLI Model

    mp,dens,1,1.21 ! mass densitymp,sonc,1,343 ! sound speedmp,visc,1,1.827e-5 ! dynamic viscositymp,bvis,1,1.096e-5 ! bulk viscositymp,kxx,1,0.0257 ! thermal conductivitymp,cvh,1,0.718 ! heat coefficient at a constant volume per massmp,c,1,1.005 ! heat coefficient at a constant pressure per mass

    nsel,s,ext ! select exterior nodessf,all,bli ! flag boundary layer

    For more information, see Boundary Layer Impedance (BLI) Model in the Mechanical APDL Theory Reference.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.18

    Defining Acoustic Material Properties

  • 5.4.3. Low Reduced Frequency (LRF) Model

    The interaction between an acoustic pressure wave in a viscous fluid and a rigid wall is taken into account

    for specific structures according to low reduced frequency (LRF) approximation.

    Define the LRF model via the TB,AFDM,,,,TBOPT command.

    The following table shows the valid TBOPT values and input parameters for the LRF model in a viscous-thermal fluid:

    Table 5.2: Low Reduced Frequency Models

    Input ParametersCommentsTBOPT

    Thickness of the layerThin layer between two rigid platesTHIN

    Width and height of the rectangleA tube with a rectangular cross sectionRECT

    Radius of the circleA tube with a circular cross sectionCIRC

    LRF models are supported in full harmonic acoustic analyses only.

    Example 5.8: Defining an LRF Model

    The following example input defines a low reduced frequency model with a thin layer:

    mp,dens,1,1.21 ! mass densitymp,sonc,1,343 ! sound speedmp,visc,1,1.827e-5 ! dynamic viscositymp,kxx,1,0.0257 ! thermal conductivitymp,cvh,1,0.718 ! heat coefficient at a constant volume per massmp,c,1,1.005 ! heat coefficient at a constant pressure per mass

    tb,afdm,1,,,thin ! basic acoustic materialstbfield,freq,f1 ! table at frequency f1tbdata,1,thick1 ! material parameters tabletbfield,freq,f2 ! table frequency f2 tbdata,1, thick2 ! material parameters table

    For more information, see Low Reduced Frequency (LRF) Model in the Mechanical APDL Theory Reference.

    19Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Viscous-Thermal Materials

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.20

  • Chapter 6: Specifying Acoustic Analysis Region Attributes and

    Meshing

    Attributes assigned to a model prior to meshing include element type and material number. Assign

    these attributes to a region (VATT) for volumes to be meshed with 3-D elements (FLUID30, FLUID220,

    and FLUID221). Specify different material ID numbers for the various material regions.

    For an acoustic FEA formulation, the mesh must be fine enough to minimize numerical dispersion effects

    from finite discretization. In general, the mesh should have at least ten low-order elements and five

    high-order elements per propagating or resonant wavelength of the material.

    If different materials are present in the model, the mesh should have a smooth transition from the

    dense to the coarse. To obtain better accuracy and efficiency, use your best judgment and knowledge

    of the sound pressure field to determine appropriate mesh density. For example, if the pressure varies

    sinusoidally along the wide side of a rectangular cross section and is uniform along the narrow side,

    you might choose to mesh the cross section as shown in this figure:

    Figure 6.1: Sound Pressure Distribution and FEM Model

    Do not mix low-order and high-order elements together in a model. Unlike low-order elements, high-

    order elements have midside nodes to follow the curvature of a model.

    If using MESH200 elements to generate 3-D acoustic elements FLUID30, FLUID220, or FLUID221 (VEXT),

    select one of the following MESH200 options:

    KEYOPT(1) = 4 for 3-D triangle elements, used for FLUID30

    KEYOPT(1) = 5 for 3-D triangle elements with midside nodes, used for FLUID221

    KEYOPT(1) = 6 for 3-D quadrilateral elements, used for FLUID30

    KEYOPT(1) = 7 for 3-D quadrilateral elements with midside nodes, used for FLUID220

    Example 6.1: Generating FLUID220 Elements

    The following input example uses MESH200 elements to generate FLUID220 elements:

    et,1,220,,1et,11,200,7

    Rect,0,d,0,dtype,11amesh,allasel,s,loc,z,0

    21Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • etype,1esize,,2vext,all,,,,,dzaclear,alletdele,11

    fini

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.22

    Specifying Acoustic Analysis Region Attributes and Meshing

  • Chapter 7: Applying Boundary Conditions in an Acoustic Analysis

    Most boundary conditions can be applied to an acoustic analysis, either on the solid model entities or

    on the finite element model entities. Applying boundary conditions to the solid model is advantageous

    in that they are independent of the underlying finite element mesh.

    The following related topics are available:

    7.1. Applying Boundary Conditions

    7.2. Absorbing Boundary Condition (ABC)

    7.3. Perfectly Matched Layers (PMLs)

    7.1. Applying Boundary Conditions

    The following table shows the boundary conditions available for an acoustic analysis:

    Table 7.1: Acoustic Boundary Conditions

    FE Model EntitiesSolid Model EntitiesBoundary Condition

    NodesLines or AreasPressure (Sound-Soft Boundary, SSB)

    None requiredNone requiredRigid Wall (Sound-Hard Boundary, SHB)

    NodesAreasImpedance Boundary Condition (IBC)

    NodesAreasFree Surface (Sloshing Effect)

    NodesAreasAbsorbing Boundary Condition (ABC)

    ElementsNot ApplicablePerfectly Matched Layers (PML)

    For general information about applying boundary conditions, see Loading in the Basic Analysis Guide.

    7.1.1. Pressure Boundary

    The pressure boundary is a Dirichlet boundary with p = p0. To apply pressure to the nodes of a finite

    element model, issue the D,Node,PRES command.

    Example 7.1: Applying Pressure to Nodes

    nsel,s,loc,z,0.0 ! select the nodes d,all,pres,dispr,dispi ! complex pressure

    If using coupled acoustic elements (KEYOPT(2) = 0), avoid zero-pivot warning messages by setting the

    displacement degrees of freedom (UX, UY, and UZ) at the element nodes not on the interface to zero.

    Example 7.2: Applying Displacement to Nodes

    nsel,s,loc,z,0.0 ! select the nodes d,all,ux,0 ! zero ux d,all,uy,0 ! zero uy d,all,uz,0 ! zero uz

    23Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • 7.1.2. Rigid Wall Boundary

    The rigid wall boundary is a Neumann boundary with =^

    applied. It is not necessary to specify

    a rigid wall boundary condition in an FEM acoustic analysis, as it is a natural boundary condition.

    If the pressure spatial distribution can be predicted, the Neumann boundary can be used on the sym-

    metric plane of the model to reduce the model size.

    7.1.3. Surface Impedance Boundary

    Table 7.2: Surface Impedance Boundary Conditions (p. 24) shows surface impedance boundary conditions

    available for acoustic analysis. The sound pressure is damped on the impedance boundary and you can

    use it to approximate infinity.

    Table 7.2: Surface Impedance Boundary Conditions

    SF Command LabelDefinitionBoundary Condition

    INFZ=0C0Infinite Radiation Boundary

    ATTN=

    +

    0

    Boundary with Absorption

    Coefficient

    IMPDZ=Zr+jZiImpedance Boundary

    The infinite radiation boundary assumes the ratio of the pressure and outward normal velocity is equal

    to Z0 = 0C0. When the radiation boundary is close to the objects or the radiators, the outgoing pressure

    wave may no longer hold the ratio Z0 and a numerical error may occur. Using either an absorbing

    boundary element or a Perfectly Matched Layers (PML) is more accurate for modeling the far-field radi-

    ation boundary. An infinite radiation boundary can be applied to the nodes of the finite element

    model via the SF,Nlist,INF command:

    Example 7.3: Defining an Infinite Radiation Boundary

    nsel,s,ext ! select exterior node on selected elementssf,all,inf ! infinite radiation boundary

    The absorption coefficient is often used to measure the absorption of a surface in acoustic applications.

    The surface impedance with real value can deviate from the defined absorption coefficient, as shown

    in Table 7.2: Surface Impedance Boundary Conditions (p. 24). The absorption coefficient of the surface

    can be applied to nodes of the finite element model via the SF,Nlist,ATTN,VALUE command:

    Example 7.4: Defining Boundary Absorption Coefficient

    nsel,s,ext ! select exterior node on selected elementssf,all,attn,0.5 ! boundary absorption coefficient

    A more flexible complex surface impedance represents the specific ratio between pressure and normal

    particle velocity on the surface. Surface impedance can be applied to nodes on the finite element

    model via the SF,Nlist,IMPD,VALUE,VALUE2 command:

    Example 7.5: Applying the Impedance BC in an Acoustic Radiation or Scattering Analysis

    Apply the impedance boundary condition to the exterior surface of the model in an acoustic radiation

    or scattering analysis.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.24

    Applying Boundary Conditions in an Acoustic Analysis

  • Apply the impedance boundary condition to the inlet and outlet surface for the transparent port in an

    acoustic propagating analysis.

    For example, in a transmission loss analysis of a muffler, you might define the following:

    nsel,s,loc,z,0 ! select nodes on inletsf,all,impd,z01 ! impedance on inletsf,all,shld,vn ! normal velocity on inletsf,all,port,10 ! transparent portnsel,s,loc,l ! select nodes on outletsf,all,impd,z02 ! impedance on outlet

    If a complex value is applied to a surface (SF,Nlist,IMPD,VALUE,VALUE2) in an acoustic modal ana-lysis, a negative conductance of admittance is input as VALUE and the quotient of susceptance to theangular frequency is input as VALUE2.

    Do not use the SF,Nlist,IMPD command to define the radiation boundary (SF,Nlist,INF) if the purescattered formulation is selected (ASOL,SC) unless the impedance value is different from the mediacharacteristic impedance Z0 = 0C0.

    7.1.4. Free Surface (Sloshing Effect)

    The free surface (sloshing effect) is taken into account by flagging the plane as a free surface

    (SF,Nlist,FREE) and defining gravitational acceleration (ACEL).

    The free surface must be aligned with the coordinate plane in the global Cartesian coordinate system.

    The gravitational acceleration input is always positive regardless of how the model is set up.

    Example 7.6: Defining the Sloshing Effect

    nsel,s,loc,z,0 ! select the nodes on the free surfacesf,all,free ! flag the nodes on free surfaceallsacel,,,9.85 ! gravity acceleration in z-direction

    For more information, see Acoustic Fluid-Structural Interaction (FSI) in the Mechanical APDL Theory Ref-

    erence.

    7.2. Absorbing Boundary Condition (ABC)

    An exterior acoustics problem typically involves an infinite, homogenous, inviscid fluid. The pressure

    wave must satisfy the Sommerfeld radiation condition. A typical approach to such a problem involves

    truncating the unbounded domain by introducing a second-order absorbing element (FLUID130 or

    FLUID129) on the boundary a at some distance from the structure.

    For a 3-D acoustic analysis, the absorbing boundary must be a spherical enclosure centered at the origin

    (x0,y0,z0) with radius ra.

    For a 2-D acoustic analysis, the absorbing boundary must be a circle centered at the origin (x0,y0,0) with

    radius Ra.

    Absorbing elements have a mesh conforming to the underlying elements. The 4-node element FLUID130

    (KEYOPT(1) = 0) is applied to the top of the 8-node element FLUID30. The 8-node element FLUID130

    (KEYOPT(1) = 2) is applied to the top of the 20-node element FLUID220 or the 10-node element FLUID221.

    The 2-node element FLUID129 is connected to the 4-node element FLUID29.

    Generate the absorbing elements as follows:

    25Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Absorbing Boundary Condition (ABC)

  • 1. Mesh the model enclosed by a spherical surface with FLUID30, FLUID220, or FLUID221 elements.

    2. Select the underlying nodes and elements on the spherical boundary surface.

    3. Generate a surface absorbing element with the ESURF command.

    Example 7.7: Generating an Absorbing Element

    et,1,220,,1 ! FLUID220et,2,130,2 ! second-order FLUID130r,1,1e-6r,2,DIM_DISTANCE ! radius of sphere mp,sonc,1,1500 ! sound speedmp,dens,1,1000 ! densitympcopy,,1,2 ! copy material 1 to 2 ! create 1/8 spheresphere,,DIM_DISTANCE,0,90 ! spherevsbw,allvsel,s,loc,z,0,-DIM_DISTANCEvdele,all,,,1allsel,allesize,DIM_ESIZEvmesh,all ! mesh sphere with FLUID220csys,2 ! activate spherical coordinateasel,s,loc,x,DIM_DISTANCE ! select area on the spherecsys,0 ! activate Cartesian coordinatensla,s,1 ! nodes attaching to area ! create surface meshtype,2 ! FLUID130real,2 ! real constant 2mat,2 ! material 2esurf ! generate surface elementallsel,all

    Absorbing elements accommodate the symmetry of the model. If the radiated acoustic field has no

    significant effect on the excitation source entity, the spherical absorbing boundary can locally enclose

    the open space near the radiation outlet, as shown in this figure:

    Figure 7.1: Spherical ABC for Symmetry and Near the Radiation Outlet

    FLUID130 and FLUID129 can be used for modal, harmonic, and transient analyses.

    For more information, see Absorbing Boundary Condition (ABC) in the Mechanical APDL Theory Reference.

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.26

    Applying Boundary Conditions in an Acoustic Analysis

  • 7.3. Perfectly Matched Layers (PMLs)

    An absorbing boundary condition (ABC) absorbs the outgoing pressure wave so that there are no re-

    flections back into the FEA computational domain. Perfectly matched layers (PMLs) are the layers of

    pressure waves absorbing elements designed for the mesh truncation of an open FEA domain in a

    harmonic analysis.

    PML is an artificial anisotropic material. It is transparent and heavily lossy to incoming pressure waves.

    PML can reduce the size of the computational domain significantly with very small numerical reflections.

    A PML region is backed by a soft-sound boundary condition (p = 0).

    If the pressure wave should be absorbed in only one direction, such as in a traditional tube, construct

    a 1-D PML region in the global Cartesian coordinate system or a local Cartesian coordinate system, as

    shown in this figure:

    Figure 7.2: 1-D Multiple PMLs for Pipes

    To define PML elements, issue the ET command. Set KEYOPT(4) = 1 for FLUID30, FLUID220, or FLUID221

    prior to meshing the PML region. Use any element shape to mesh the PML block.

    More than one 1-D PML regions can exist in a model. The element coordinate system (ESYS) uniquely

    identifies each PML region. Define a Cartesian coordinate system (LOCAL) with one axis in the wave-

    propagating direction, then assign the coordinate system to the elements in the PML region (VATT or

    ESYS prior to meshing, or EMODIF after meshing).

    Example 7.8: Defining PML Elements in a Local Coordinate System

    et,11,200,6 ! mesh elementet,1,30,,1 ! normal fluid30et,2,30,,1,,1 ! pml fluid30

    local,11,0,2,3,4,50,-60,135 ! local coordinatewpcsys,,11rect,0,l,-d/2,d/2 ! area in local csrect,l,l+dpml,-d/2,d/2 ! area in local csaglue,allesize,htype,11amesh,all ! mesh area with mesh200asel,allasel,u,,,3eslatype,1 ! normal elementmat,1esize,,2vext,all,,,0,0,d, ! 3d mesh with normal elementesys,11 ! activate local element coordinateasel,s,,,3type,2, ! pml element

    27Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Perfectly Matched Layers (PMLs)

  • mat,1esize,,2vext,all,,,0,0,d, ! 3d mesh with pml element in esys 11

    nsel,s,loc,x,l+dpml ! nodes backed to pml d,all,pres,0. ! zero pressure on boundary

    A 3-D PML region consists of layers of elements extending from the interior volume towards the open

    domain, as shown in this figure:

    Figure 7.3: PML Enclosure

    Construct a block about the origin in the global Cartesian coordinate system or a local Cartesian coordin-

    ate system. Align the edges of the 3-D PML region with the axes of the Cartesian coordinate system.

    To optimize the absorbing efficiency of the PML, construct the PML regions and apply the following

    parameters carefully:

    Thickness of the PML region

    Number of PML elements

    Attenuation parameters

    Number of buffer elements between the PML region and objects or discontinuities

    The attenuation from the PML interface to the PML exterior surface is a parabolic distribution that

    minimizes numerical reflections from the PML elements, as shown in this figure:

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.28

    Applying Boundary Conditions in an Acoustic Analysis

  • Figure 7.4: Attenuation Distribution

    The numerical reflection is caused by the discretization of a continuous distribution of material from

    element to element. To obtain satisfactory numerical accuracy, use at least two layers of PML elements.

    The PML thickness may need to be greater than 1/10 of a wavelength.

    Because a PML region acts as an infinite open domain, any boundary conditions and material properties

    must be carried over to the PML region. Material properties such as mass density and sound speed in

    the PML region must be identical to those of the adjacent interior region.

    A sound-soft Dirichlet boundary with p = 0 must back all exterior surfaces of the PML region, except

    for symmetric surfaces with the rigid wall boundary condition. To specify a sound-soft boundary condition

    on the outer surfaces of the PML region, use the D command for a finite element model. The sound-

    soft or sound-hard boundary conditions can be applied on symmetric surfaces of a PML region.

    Include at least two buffer elements between the PML region and a discontinuity or object in the domain,

    as shown in this figure:

    Figure 7.5: Buffer Elements

    The PML can then absorb the outgoing wave effectively and minimize numerical reflections.

    Because PML is an artificial anisotropic material, excitation sources are prohibited in the PML region.

    The attenuation of the pressure wave in a PML region can be controlled. If desired, specify the normal

    reflection coefficient (harmonic) for propagating waves as follows:

    PMLOPT,ESYS,Lab,Xminus,Xplus,Yminus,Yplus,Zminus,Zplus

    The direction designations are Xminus, Yminus, Zminus, Xplus, Yplus, and Zplus. The minus andplus refer to the negative and positive directions along the Cartesian coordinate axes, respectively.

    If the propagating wave is absorbed in only one direction, define a 1-D PML region (Lab = ONE). In thiscase, only the Xminus argument is necessary.

    29Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Perfectly Matched Layers (PMLs)

  • For a 3-D PML region, a different normal reflection coefficient can be defined for each direction (Xminus,Yminus, Zminus, Xplus, Yplus, Zplus). Normal reflection coefficients default to 10-3 (-60 dB) fora harmonic analysis. Normal reflection coefficients should be less than 1.0. If only a very few PML layers

    are used (for example, two or three), specifying a very small normal reflection coefficient (such as -100

    dB) may lead to significant numerical reflection.

    Example 7.9: Defining 3-D PML Parameters

    The following example input defines 3-D PML parameters as illustrated in Figure 7.3: PML Enclos-

    ure (p. 28):

    pmlxm=0 ! no pml in x directionpmlxp=-40 ! -40 dB in +x directionpmlym=0 ! no pml in y directionpmlyp=-40 ! -40 dB in +y directionpmlzm=-60 ! -60 dB in z directionpmlzp=-60 ! -60 dB in +z directionpmlopt,0,three,pmlxm,pmlym,pmlzm,pmlxp,pmlyp,pmlzp ! define 3-d pml

    Repeat the PMLOPT command for additional PML regions. The PML may have a different number of

    elements in each direction.

    The number of PML layers determines the absorbing efficiency of the PML region. An excessive number

    of PML elements significantly increases computational requirements. The number of PML layers (n) for

    acceptable numerical accuracy is determined by the following command:

    PMLSIZE,FREQB,FREQE,DMIN,DMAX,THICK,ANGLE

    The following figure shows the relationship between DMIN, DMAX, and THICK:

    Figure 7.6: Distance Between Source/Objects and PML Region

    If n < 2, the number of layers is set to 2 to reduce numerical reflection. If n > 20, the number of layers

    is set to 20 to avoid an excessive number of PML elements.

    Before meshing the model, issue the PMLSIZE command. If the thickness of the PML region is known,

    the command specifies an element edge length. If the thickness of the PML region is unknown, it specifies

    the number of layers (n). For further information, see the PMLOPT and PMLSIZE commands in the

    Command Reference, and Perfectly Matched Layers (PML) in the Mechanical APDL Theory Reference.

    PML is used only in acoustic harmonic analysis.

    PML may be necessary in cases where:

    Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.30

    Applying Boundary Conditions in an Acoustic Analysis

  • The impedance is unknown on exterior surfaces of the model, such as complex scatters.

    Multiple propagating modes on the outlet surface are excited by discontinuities in the structure so that

    the defined impedance may not absorb all outgoing propagating modes.

    Using the spherical second-order ABC leads to numerous elements or lesser accuracy.

    High absorbing rate is required for greater numerical accuracy.

    In most acoustic radiation and scattering applications, the open domain is fully enclosed by 3-D PML,

    as shown in Figure 7.3: PML Enclosure (p. 28). If the radiated acoustic field has no significant effect on

    the excitation source entity, however, the 3-D PML can be used to locally enclose the open space near

    the radiation outlet, as shown in this figure:

    Figure 7.7: PML Near the Radiation Outlet

    It is necessary to separate the PML region and sound-propagating region with the rigid wall, as the

    PML connects only to the infinity.

    For more information, see Perfectly Matched Layers (PML) in the Mechanical APDL Theory Reference.

    31Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

    Perfectly Matched Layers (PMLs)

  • Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential informationof ANSYS, Inc. and its subsidiaries and affiliates.32

  • Chapter 8: Applying Excitation Sources and Loads in an Acoustic

    Analysis

    The following topics are available:

    8.1. Applying Acoustic Excitation Sources

    8.2. Applying Acoustic Loads

    8.1. Applying Acoustic Excitation Sources

    Sound excitation sources are fundamental to an acoustic analysis. You can introduce sound excitation

    sources via:

    Specified pressure at nodes (D)

    Normal velocity (harmonic analysis) or acceleration (transient analysis) on the exterior surface of the domain

    (SF)

    Arbitrary velocity (harmonic analysis) or acceleration (transient analysis) on the exterior surface of the

    domain (BF)

    Analytic incident wave sources (AWAVE)

    Mass source (harmonic analysis) or mass source rate (transient analysis) at nodes, along lines, on surfaces,

    or in volumes (BF)

    The following table shows all excitation sources available for acoustic analysis:

    Table 8.1: Acoustic Excitation Sources

    FE Model EntitiesExcitation Sources

    NodesPressure

    NodesOutward normal velocity (acceleration)

    Nodes or elementsArbitrary nodal velocity (acceleration)

    Not applicableAnalytic incident wave sources

    Nodes or elementsMass sources

    Excitation sources can be applied on the finite element model entities.

    The following detailed descriptions of the available excitations are available:

    8.1.1. Pressure Excitation

    8.1.2. Outward Normal Velocity (Acceleration) Excitation

    8.1.3. Arbitrary Velocity (Acceleration) Excitation

    8.1.4. Analytic Incident Wave Sources

    8.1.5. Mass Source (Mass Source Rate)

    For general information about applying loads, see Loading in the Basic Analysis Guide.

    33Release 15.0 - SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information

    of ANSYS, Inc. and its subsidiaries and affiliates.

  • 8.1.1. Pressure Excitation

    Pressure excitation (D,Node,PRES) behaves as a Dirichlet pressure boundary (Pressure Boundary (p. 23)).

    When applying pressure excitation, the pressure is enforced to a given value. Sound pressure reflected

    by other objects back to the excitation point cannot be taken into account.

    Pressure excitation can be used only under conditions where the effect of reflected sound pressure is

    not required.

    8.1.2. Outward Normal Velocity (Acceleration) Excitation

    Outward normal velocity or acceleration can be applied to the exterior surface of the model

    (SF,Nlist,SHLD).

    Apply a minus sign of the outward normal velocity if an inward normal velocity is required.

    For a harmonic analysis, a complex normal velocity to the surface is defined by the amplitude and phase

    angle. The program solves for the pressure on the normal velocity excitation surface.

    If the reflected sound pressure waves passing through the normal velocity excitation surface are taken

    into account, apply the impedance boundary condition to the excitation surface so that the PML is not

    backed to the excitation surface. In such a case, the normal velocity surface load is applied to the non-

    PML element surface with doubled values that are applied to the exterior surface of the model.

    Normal velocity excitation exists either on the structural surface or on the transparent pressure wave

    port on which the incident wave propagates into the acoustic domain and the reflected wave backs to

    the infinity. To absorb the reflected wave on the transparent port, apply the impedance boundary to

    the port surface (SF,Nlist,IMPD or SF,Nlist,INF) along with the velocity excitation. To distinguishthe transparent wave port from the structural surface, specify the transparent port surface

    (SF,Nlist,PORT).

    The following command applies outward normal velocity or acceleration to the nodes of the FE model:

    SF,Nlist,SHLD,Value,Value2

    Example 8.1: Defining the Normal Velocity and Impedance BC on a Transparent Wave Port

    nsel,loc,z,0 ! select nodes at z = 0sf,all,shld,vn,ang ! complex normal velocitysf,all,impd,z0 ! impedance boundarysf,all,port,1 ! transparent port

    Example 8.2: Defining the Normal Velocity and Impedance BC on a Structural Surface

    nsel,loc,z,0 ! select nodes at z = 0sf,all,shld,vn,ang ! complex normal velocitysf,all,impd,z0 ! impedance boundary

    Example 8.3: Defining the Frequency Dependency of the Normal Velocity of Acceleration

    Use tables (*DIM) in the SF command to define the frequency dependency of the normal velocity of

    acceleration, as shown:

    *dim,vn,TABLE,2,1,1,FREQ ! normal velocity table*dim,ang,TABLE,2