Algorithms, Graph Theory, and the Soluon of …mcgrew/media/Events/distinguished/...the Soluon of...

96
Algorithms, Graph Theory, and the Solu7on of Laplacian Linear Equa7ons Daniel A. Spielman Yale University Rutgers, Dec 6, 2011

Transcript of Algorithms, Graph Theory, and the Soluon of …mcgrew/media/Events/distinguished/...the Soluon of...

Algorithms,GraphTheory,andtheSolu7onofLaplacianLinear

Equa7ons

DanielA.SpielmanYaleUniversity

Rutgers, Dec 6, 2011 

Outline

LinearSystemsinLaplacianMatricesWhat?Why?Classicwaystosolvethesesystems.

Approxima7ngGraphsbyTrees

SparseApproxima7onsofGraphs

LocalGraphClustering

LaplacianLinearSystems

Solvein7mewhere=numberofnon‐zerosentriesofA

           7mesfor‐approximatesolu7on. 

Enablessolu7onofallsymmetric,diagonally‐dominantsystems,includingsub‐matricesofLaplacians.

O(m logc m)m

log(1/!) !!!x!A!1b

!!A" !

!!A!1b!!A

Ax = b

LaplacianQuadra7cFormof

For x : V ! IR

xTLGx =!

(u,v)!E

(x (u)! x (v))2

G = (V,E)

LaplacianQuadra7cFormof

For x : V ! IR

!1!3 01

3

x :

xTLGx =!

(u,v)!E

(x (u)! x (v))2

G = (V,E)

LaplacianQuadra7cFormof

For x : V ! IR

!1!3 0x :

xTLGx = 15

22 1212

32

xTLGx =!

(u,v)!E

(x (u)! x (v))2

1

3

G = (V,E)

LaplacianQuadra7cFormof

For x : V ! IR

0x :

12

xTLGx =!

(u,v)!E

(x (u)! x (v))2

1

G = (V,E)

0 1

10

0

0

xTLGx = 1

Laplacian Quadratic Form, examples 

When x is the characteristic vector of a set S, countstheedgesontheboundaryofS

00

0

1

1

1

S 0xTLGx = |bdry(S)|

Laplacian Quadratic Form, examples 

When x is the characteristic vector of a set S, countstheedgesontheboundaryofS

00

0

1

1

1

S 0xTLGx = |bdry(S)|

xTLGx

xTx=

|bdry(S)||S|

=edge‐expansionofS

LearningonGraphs[Zhu‐Ghahramani‐Lafferty’03]

Infervaluesofafunc7onatallver7cesfromknownvaluesatafewver7ces.

Minimize xTLGx =!

(u,v)!E

w(u,v) (x (u)! x (v))2

Subjecttoknownvalues

0

1

0

10.5

0.5

0.6250.375

Taking deriva,ves, minimize by solving Laplacian 

Infervaluesofafunc7onatallver7cesfromknownvaluesatafewver7ces.

Minimize xTLGx =!

(u,v)!E

w(u,v) (x (u)! x (v))2

Subjecttoknownvalues

LearningonGraphs[Zhu‐Ghahramani‐Lafferty’03]

OtherApplica7ons

Solveforcurrentwhenfixvoltages

1V

0V

Compu7ngeffec7veresistancesinresistornetworks:

OtherApplica7ons

Solveforcurrentwhenfixvoltages

1V

0V

Compu7ngeffec7veresistancesinresistornetworks:

0.5V

0.5V

0.625V0.375V

LaplacianQuadra7cFormforWeightedGraphs

xTLGx =!

(u,v)!E

w(u,v) (x (u)! x (v))2

G = (V,E,w)

w : E ! IR+ assignsaposi7veweighttoeveryedge

MatrixLGisposi7vesemi‐definitenullspacespannedbyconstvector,ifconnected

LaplacianMatrixofaWeightedGraph

LG(u, v) =

!"#

"$

!w(u, v) if (u, v) " E

d(u) if u = v

0 otherwise

4 -1 0 -1 -2 -1 4 -3 0 0 0 -3 4 -1 0 -1 0 -1 2 0 -2 0 0 0 2

1 2

34

51

1

2

1

3

d(u) =!

(v,u)!E w(u, v)

the weighted degree of u

isadiagonallydominantmatrix

ClassicApplica7ons

Compu7ngeffec7veresistances.

SolvingEllip7cPDEs.

Compu7ngEigenvectorsandEigenvaluesofLaplaciansofgraphs.

SolvingMaximumFlowbyInteriorPointMethods

SolvingLaplacianLinearEqua7onsQuickly

Fastwhengraphissimple,byelimina7on.

Fastapproxima7onwhengraphiscomplicated*,byConjugateGradient

*=randomgraphorhighexpansion

CholeskyFactoriza7onofLaplacians

AlsoknownasY‐Δ

Wheneliminateavertex,connectitsneighbors.

3 -1 0 -1 -1 -1 2 -1 0 0 0 -1 2 -1 0 -1 0 -1 2 0 -1 0 0 0 1

1 2

34

51

1

1

1

1

CholeskyFactoriza7onofLaplacians

AlsoknownasY‐Δ

Wheneliminateavertex,connectitsneighbors.

3 -1 0 -1 -1 -1 2 -1 0 0 0 -1 2 -1 0 -1 0 -1 2 0 -1 0 0 0 1

1 2

34

51

1

1

1

1 .33

.33

.33

3 0 0 0 0 0 1.67 -1.00 -0.33 -0.33 0 -1.00 2.00 -1.00 0 0 -0.33 -1.00 1.67 -0.33 0 -0.33 0 -0.33 0.67

CholeskyFactoriza7onofLaplacians

AlsoknownasY‐Δ

Wheneliminateavertex,connectitsneighbors.

3 -1 0 -1 -1 -1 2 -1 0 0 0 -1 2 -1 0 -1 0 -1 2 0 -1 0 0 0 1

1 2

34

5

1

1 .33

.33

.33

3 0 0 0 0 0 1.67 -1.00 -0.33 -0.33 0 -1.00 2.00 -1.00 0 0 -0.33 -1.00 1.67 -0.33 0 -0.33 0 -0.33 0.67

3 0 0 0 0 0 1.67 -1.00 -0.33 -0.33 0 -1.00 2.00 -1.00 0 0 -0.33 -1.00 1.67 -0.33 0 -0.33 0 -0.33 0.67

3 -1 0 -1 -1 -1 2 -1 0 0 0 -1 2 -1 0 -1 0 -1 2 0 -1 0 0 0 1

3 0 0 0 0 0 1.67 0 0 0 0 0 1.4 -1.2 -0.2 0 0 -1.2 1.6 -0.4 0 0 -0.2 -0.4 0.6

1 2

34

51

1

1

1

1

1 2

34

5.33

.33

1

1 .33

1 2

34

5 .2

1.2

.4

1 0 0 0 0 0 2 -1 0 -1 0 -1 2 -1 0 0 0 -1 2 -1 0 -1 0 -1 2

1 -1 0 0 0 -1 3 -1 0 -1 0 -1 2 -1 0 0 0 -1 2 -1 0 -1 0 -1 2

1 0 0 0 0 0 2 0 0 0 0 0 1.5 -1 -0.5 0 0 -1.0 2 -1.0 0 0 -0.5 -1 1.5

2 3

45

11

1

1

1

1

2 3

45

11

1

1

1

2 3

45

1

1

1

0.5

Theordermaeers

ComplexityofCholeskyFactoriza7on

#ops~Σv(degreeofvwheneliminate)2

Tree #ops~O(|V|)

ComplexityofCholeskyFactoriza7on

#ops~Σv(degreeofvwheneliminate)2

#ops~O(|V|)Tree

ComplexityofCholeskyFactoriza7on

#ops~Σv(degreeofvwheneliminate)2

Tree #ops~O(|V|)

ComplexityofCholeskyFactoriza7on

#ops~Σv(degreeofvwheneliminate)2

Tree #ops~O(|V|)

ComplexityofCholeskyFactoriza7on

#ops~Σv(degreeofvwheneliminate)2

Tree #ops~O(|V|)

ComplexityofCholeskyFactoriza7on

#ops~Σv(degreeofvwheneliminate)2

Tree #ops~O(|V|)

ComplexityofCholeskyFactoriza7on

#ops~Σv(degreeofvwheneliminate)2

Tree #ops~O(|V|)

Planar #ops~O(|V|3/2)Lipton‐Rose‐Tarjan‘79

ComplexityofCholeskyFactoriza7on

#ops~Σv(degreeofvwheneliminate)2

Tree #ops~O(|V|)

Planar #ops~O(|V|3/2)Lipton‐Rose‐Tarjan‘79

Expander likerandom,butO(|V|)edges

#ops≳Ω(|V|3)Lipton‐Rose‐Tarjan‘79

For S ! V

!G = minS!V !(S)

S

ExpansionandCholeskyFactoriza7on

!(S) =|bdry(S)|

min (|S| , |V ! S|)

For S ! V

!G = minS!V !(S)

S

ExpansionandCholeskyFactoriza7on

!(S) =|bdry(S)|

min (|S| , |V ! S|)

CholeskyslowwhenexpansionhighCholeskyfastwhenlowforGandallsubgraphs

Cheeger’sInequalityandtheConjugateGradient

Cheeger’sinequality(degree‐dunwtedcase)

=second‐smallesteigenvalueofLG ~d/mixing7meofrandomwalk

!2

neardforexpandersandrandomgraphs

1

2

!2

d! !G

d!

!2!2

d

Cheeger’sInequalityandtheConjugateGradient

Cheeger’sinequality(degree‐dunwtedcase)

=second‐smallesteigenvalueofLG ~d/mixing7meofrandomwalk

!2

ConjugateGradientfinds∊ ‐approxsolu7ontoLG x = b

inmultsbyLGO(!d/!2 log "!1)

isops

1

2

!2

d! !G

d!

!2!2

d

O(dm!!1G log !!1)

Fastsolu7onoflinearequa7ons

ConjugateGradientfastwhenexpansionhigh.

Elimina7onfastwhenlowforGandallsubgraphs.

Fastsolu7onoflinearequa7ons

Elimina7onfastwhenlowforGandallsubgraphs.

Planargraphs

Wantspeedofextremesinthemiddle

ConjugateGradientfastwhenexpansionhigh.

Fastsolu7onoflinearequa7ons

Elimina7onfastwhenlowforGandallsubgraphs.

Planargraphs

Wantspeedofextremesinthemiddle

Notallgraphsfitintothesecategories!

ConjugateGradientfastwhenexpansionhigh.

Precondi7onedConjugateGradient

SolveLG x = bby

Approxima7ngLGbyLH (theprecondi7oner)

Ineachitera7onsolveasysteminLHmul7plyavectorbyLG

∊ ‐approxsolu7onaserO(

!!(LG, LH) log "!1) itera7ons

condi,on number/approx quality 

Inequali7esandApproxima7on

if for all x, xTLHx ! xTLGxLH ! LG

Example:ifHisasubgraphofG

xTLGx =!

(u,v)!E

w(u,v) (x (u)! x (v))2

Inequali7esandApproxima7on

!(LG, LH) ! t LH ! LG ! tLHif

if for all x, xTLHx ! xTLGxLH ! LG

CallsuchanHat‐approxofG

Inequali7esandApproxima7on

!(LG, LH) ! t iff

if for all x, xTLHx ! xTLGxLH ! LG

CallsuchanHat‐approxofG

!c : cLH ! LG ! ctLH

Vaidya’sSubgraphPrecondi7oners

Precondi7onGbyasubgraphH

LH ! LG Justneedtoknowts.t. LG ! tLH

EasytoboundtifHisaspanningtree

And,easytosolveequa7onsinLH byelimina7on

H

ApproximateLaplacianSolvers

ConjugateGradient[Hestenes‘51,S7efel’52]

Vaidya‘90:AugmentedMST

Boman‐Hendrickson’01:UsingLow‐StretchSpanningTrees

S‐Teng’04:Spectralsparsifica7on

Kou7s‐Miller‐Peng‘11:Elegance

O(m logc n)

O(m log n)

TheStretchofSpanningTrees

Where

Boman‐Hendrickson‘01:

stT (G) =!

(u,v)!E

path-lengthT (u, v)

LG ! stT (G)LT

TheStretchofSpanningTrees

path‐len3

Where

Boman‐Hendrickson‘01:

stT (G) =!

(u,v)!E

path-lengthT (u, v)

LG ! stT (G)LT

TheStretchofSpanningTrees

path‐len5

Where

Boman‐Hendrickson‘01:

stT (G) =!

(u,v)!E

path-lengthT (u, v)

LG ! stT (G)LT

TheStretchofSpanningTrees

path‐len1

Where

Boman‐Hendrickson‘01:

stT (G) =!

(u,v)!E

path-lengthT (u, v)

LG ! stT (G)LT

TheStretchofSpanningTrees

Inweightedcase,measureresistancesofpaths

Where

Boman‐Hendrickson‘01:

stT (G) =!

(u,v)!E

path-lengthT (u, v)

LG ! stT (G)LT

49

FundamentalGraphicInequality

1 8

1 2 3

8 7

4 5

6

edge k times path of length k

With weights, corresponds to resistors in serial (Poincaré inequality)

1 2 3

8 7

4 5

6

2 3

7

4 5

6

50

WhenTisaSpanningTree

G T

EveryedgeofGnotinThasuniquepathinT

51

WhenTisaSpanningTree

TheStretchofSpanningTrees

Where

Boman‐Hendrickson‘01:

stT (G) =!

(u,v)!E

path-lengthT (u, v)

LG ! stT (G)LT

Low‐StretchSpanningTrees

(Alon‐Karp‐Peleg‐West’91)

(Elkin‐Emek‐S‐Teng’04,Abraham‐Bartal‐Neiman’08)

ForeveryGthereisaTwith

where m = |E|

Solvelinearsystemsin7me O(m3/2 logm)

stT (G) ! m1+o(1)

stT (G) ! O(m logm log2 logm)

SpectralSparsifica7on[S‐Teng‘04]

ApproximateGbyasparseHwith

!(LG, LH) ! 1 + "

CutSparsifica7on[Benczur‐Karger‘96]

S  S 

ApproximateGbyasparseH,approximatelypreservingallcuts

Sparsifica7on

Goal:findsparseapproxima7onforeveryG

S‐Teng‘04:ForeveryGisanHwithO(n log7 n/!2) edgesand!(LG, LH) ! 1 + "

Sparsifica7on

Goal:findsparseapproxima7onforeveryG

S‐Teng‘04:ForeveryGisanHwithO(n log7 n/!2) edgesand!(LG, LH) ! 1 + "

S‐Srivastava‘08:withedgesbyrandomsamplingbyeffec7veresistances

O(n log n/!2)

0V

0.53V

0.27V

0.33V0.2V

1V

0V

u

v1/(currentflowatonevolt)

Sparsifica7on

Goal:findsparseapproxima7onforeveryG

S‐Teng‘04:ForeveryGisanHwithO(n log7 n/!2) edgesand!(LG, LH) ! 1 + "

S‐Srivastava‘08:withedges

Batson‐S‐Srivastava‘09

determinis7c,poly7me,andedges

O(n log n/!2)

O(n/!2)

Ultra‐Sparsifiers[S‐Teng]

ApproximateG byatreeplusedges

Sparsifiers Low‐StretchTrees

n/ log2 n

LH ! LG ! c log2 n LH

CholeskyfactortosmallersystemEliminatedegree1and2nodes

CholeskyfactortosmallersystemEliminatedegree1and2nodes

CholeskyfactortosmallersystemEliminatedegree1and2nodes

CholeskyfactortosmallersystemEliminatedegree1and2nodes

CholeskyfactortosmallersystemEliminatedegree1and2nodes

CholeskyfactortosmallersystemEliminatedegree1and2nodes

CholeskyfactortosmallersystemEliminatedegree1and2nodes

CholeskyfactortosmallersystemEliminatedegree1and2nodes

CholeskyfactortosmallersystemEliminatedegree1and2nodes

Getsystemofsize,solverecursively[Joshi‘97,Reif‘98,S‐Teng’04‘09]

O(n/ log2 n)

Ultra‐Sparsifiers

SolvesystemsinH by:1.Choleskyelimina7ngdegree1and2nodes

2.recursivelysolvingreducedsystem

Time

O(m logc m)

Kou7s‐Miller‐Peng‘11

Solvein7me O(m log n log2 log n log(1/!))

BuildUltra‐Sparsifierby:1.Construc7nglow‐stretchspanningtree2.Addingotheredgeswithprobability

pu,v ! path-lengthT (u, v)

CodebyYiannisKou7s

GivenvertexofinterestfindnearbyclusterSwithsmallexpansion*in7meO(|S|)

LocalGraphClustering[S‐Teng‘04]

*Actually,useconductance.Countver7cesbydegree.

Prove:GivenasetSofsmallexpansionandarandomvertexvofSprobablyfindasetTofsmallexpansion mostofTinsideS

in7meO(|T|)

LocalGraphClustering[S‐Teng‘04]

S

Prove:GivenasetSofsmallexpansionandarandomvertexvofSprobablyfindasetTofsmallexpansion mostofTinsideS

in7meO(|T|)

LocalGraphClustering[S‐Teng‘04]

S

Prove:GivenasetSofsmallexpansionandarandomvertexvofSprobablyfindasetTofsmallexpansion mostofTinsideS

in7meO(|T|)

LocalGraphClustering[S‐Teng‘04]

S

Prove:GivenasetSofsmallexpansionandarandomvertexvofSprobablyfindasetTofsmallexpansion mostofTinsideS

in7meO(|T|)

LocalGraphClustering[S‐Teng‘04]

S

Prove:GivenasetSofsmallexpansionandarandomvertexvofSprobablyfindasetTofsmallexpansion mostofTinsideS

in7meO(|T|)

LocalGraphClustering[S‐Teng‘04]

Sv

Prove:GivenasetSofsmallexpansionandarandomvertexvofSprobablyfindasetTofsmallexpansion mostofTinsideS

in7meO(|T|)

LocalGraphClustering[S‐Teng‘04]

Sv

T

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:startatonenodeateachstep,αfrac7ondriesofwetpaint,halfstaysput,halftoneighbors

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:startatonenodeateachstep,αfrac7ondriesofwetpaint,halfstaysput,halftoneighbors

1 0 0

dry

wet

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:startatonenodeateachstep,αfrac7ondriesofwetpaint,halfstaysput,halftoneighbors

.66 0 0

dry

wet

(α=1/3)

.33

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:startatonenodeateachstep,αfrac7ondriesofwetpaint,halfstaysput,halftoneighbors

.66 0 0

dry

wet

(α=1/3)

.33

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:startatonenodeateachstep,αfrac7ondriesofwetpaint,halfstaysput,halftoneighbors

.33 .33 0

dry

wet

(α=1/3)

.33

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:startatonenodeateachstep,αfrac7ondriesofwetpaint,halfstaysput,halftoneighbors

.22 .22 0

dry

wet

(α=1/3)

.44 .11

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:startatonenodeateachstep,αfrac7ondriesofwetpaint,halfstaysput,halftoneighbors

dry

wet

(α=1/3)

.44 .11

.22 .22 0

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:startatonenodeateachstep,αfrac7ondriesofwetpaint,halfstaysput,halftoneighbors

.17 .22 .06

dry

wet

(α=1/3)

.44 .11

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:

1 0 0

dry

wet

Timedoesn’tmaeer,canpushasynchronously

Approximate:onlypushwhenalotofpaint

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:

1 0 0

dry

wet

Timedoesn’tmaeer,canpushasynchronously

Approximate:onlypushwhenalotofpaint

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:

Timedoesn’tmaeer,canpushasynchronously

Approximate:onlypushwhenalotofpaint

.33 .33 0

dry

wet

.33

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:

.33 .33 0

dry

wet

.33

Timedoesn’tmaeer,canpushasynchronously

Approximate:onlypushwhenalotofpaint

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:

.11 .06

dry

wet

.33 .11

Timedoesn’tmaeer,canpushasynchronously

Approximate:onlypushwhenalotofpaint

.39

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:

.11 .06

dry

wet

.33 .11

Timedoesn’tmaeer,canpushasynchronously

Approximate:onlypushwhenalotofpaint

.39

UsingApproximatePersonalPageRankVectors

Jeh‐Widom‘03,Berkhin‘06,Andersen‐Chung‐Lang’06

Spillingpaintinagraph:

.24 .06

dry

wet

.46 .11

Timedoesn’tmaeer,canpushasynchronously

Approximate:onlypushwhenalotofpaint

.13

Volume‐BiasedEvolvingSetMarkovChain

[Andersen‐Peres‘09]

Walkonsetsofver7cesstartsatonevertex,endsatV

Dualtorandomwalkongraph

Whenstartinsidesetofconductancefindsetofconductance!1/2 log1/2 n

withwork |S| logc n/!1/2

Volume‐BiasedEvolvingSetMarkovChain

[Andersen‐Peres‘09]

Walkonsetsofver7cesstartsatonevertex,endsatV

Dualtorandomwalkongraph

Whenstartinsidesetofconductancefindsetofconductance!1/2 log1/2 n

withwork |S| logc n/!1/2

can we eliminate this? 

OpenProblems

FasterandbeeerLow‐StretchSpanningTrees.

Fasterhigh‐qualitysparsifica7on.

Fasterlocalclusteringandgraphdecomposi7on.

Otherfamiliesoflinearsystems.

Conclusions

LaplacianSolversareapowerfulprimi7ve!FasterMaxflow:Chris7ano‐Kelner‐Madry‐S‐Teng

FasterRandomSpanningTrees:Kelner‐Madry‐Propp

AllEffec7veResistances:S‐Srivastava

Maybewecansolveallwell‐condi7onedgraphproblemsinnearly‐linear7me.

Don’tfearlargeconstants